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Instability of sheared density interfaces
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Of the canonical flow instabilities (Kelvin–Helmholtz, Holmboe-wave and Taylor–
Caulfield) of stratified shear flow, the Taylor–Caulfield instability (TCI) has received
relatively little attention, and forms the focus of the current study. First, a diagnostic
of the linear instability dynamics is developed that exploits the net pseudomomentum
to distinguish TCI from the other two instabilities for any given flow profile. Second,
the nonlinear dynamics of TCI is studied across its range of unstable horizontal
wavenumbers and bulk Richardson numbers using numerical simulation. At small
bulk Richardson numbers, a cascade of billow structures of sequentially smaller size
may form. For large bulk Richardson numbers, the primary nonlinear travelling waves
formed by the linear instability break down via a small-scale, Kelvin–Helmholtz-like
roll-up mechanism with an associated large amount of mixing. In all cases, secondary
parasitic nonlinear Holmboe waves appear at late times for high Prandtl number.
Third, a nonlinear diagnostic is proposed to distinguish between the saturated states
of the three canonical instabilities based on their distinctive density–streamfunction
and generalised vorticity–streamfunction relations.

Key words: geophysical and geological flows, instability, stratified flows

1. Introduction
For geophysical flows at scales much smaller than the Rossby deformation radius,

the dynamics is dominated by the interaction and competition between the effects
of ambient density stratification and shear. Understanding this dynamics is essential
for quantifying the degree of the small-scale mixing that occurs in the oceans and
atmosphere, and has motivated a number of observations that have collected vertical
profiles of density, horizontal velocity and dissipation or shear production. Ideally,
one would like to take such data and predict the subsequent evolution, in addition
to inferring what fluid mechanical activity was responsible for the observed state.

Classical analysis of stratified shear flow instability identifies three types of unstable
modes that are popularly referred to as the Kelvin–Helmholtz (KHI) (Helmholtz 1868;
Kelvin 1871), Holmboe-wave (HWI) (Holmboe 1962) and Taylor–Caulfield instability
(TCI) (Taylor 1931; Caulfield et al. 1995). One descriptor for these modes is in
terms of wave interactions: assuming that the flow contains distinctive regions with
an interfacial character, KHI is often thought of as resulting from the interaction of
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146 T. S. Eaves and N. J. Balmforth

waves riding on two vorticity interfaces. HWI arises when the coupled waves are
supported by one density and one vorticity interface, whereas TCI owes its origin to
the interaction between two density interfaces. For flows in which vertical stratification
and shear are the only contributors to the dynamics, these three canonical instabilities
exhaust the potential wave interactions and so paint a complete picture of the linear
normal mode stability of such flows.

The nonlinear dynamics and mixing properties of KHI have been well studied
(Scinocca 1995; Caulfield & Peltier 2000; Peltier & Caulfield 2003; Mashayek &
Peltier 2012a,b; Mashayek, Caulfield & Peltier 2013; Mashayek & Peltier 2013), and
HWI has also received recent attention (Smyth & Winters 2003; Smyth, Carpenter
& Lawrence 2007; Salehipour, Caulfield & Peltier 2016). By contrast, TCI has
been explored much less, with its general character and mixing ability yet to be
determined. The first two-dimensional computations of TCI by Lee & Caulfield
(2001) observed that the density interfaces become drawn together to pinch off
the intervening layer and generate distinctive elliptical ‘Taylor–Caulfield billows’.
They also observed that in the pinch-off region, a smaller billow sometimes formed
whose origin and relation to the primary TCI was unclear. Moreover, the simulations
were conducted at relatively small Reynolds number which inevitably subdues many
secondary instabilities.

Balmforth, Roy & Caulfield (2012) also studied the nonlinear dynamics of TCI
using a reduced model relevant to long horizontal wavelength and weak stratification;
again, billow-like structures emerged from the primary TCI. In addition, the higher
Reynolds number of these simulations permitted the observation of secondary
instabilities at late times that took the form of parasitic nonlinear Holmboe
waves. Such secondary features were confirmed at finite wavelength by Eaves &
Caulfield (2017). However, the saturated states of the primary TCI modes were quite
different in the higher bulk Richardson number simulations of that study, resembling
propagating, cuspy nonlinear waves rather than billows. Thus, existing studies provide
an inadequate characterisation of the nonlinear dynamics of TCI, failing to even
fully describe the possible structures of the saturation states formed by the primary
instability. A key aim of the current work is to conduct numerical simulations
of TCI over a wide range of flow parameters in order to properly map out the
parameter-dependent, primary and secondary, nonlinear dynamics.

Partly underscoring the fact that relatively little is known about the nonlinear
dynamics of TCI is the fact that, unless the Péclet number is sufficiently large
(O(105)), the density interfaces diffuse excessively as the primary TCI grows to
finite amplitude. This renders large three-dimensional simulations extremely expensive
in terms of grid resolution and time-stepping. Moreover, Eaves & Caulfield (2017)
observed a strong dependence of the secondary instabilities on the presence of
confining walls, demanding that simulation domains be relatively deep. For these
reasons, we conduct two-dimensional simulations to flesh out the nonlinear dynamics
of TCI over a wide range of parameter settings, rather than targeting a relatively
small number of three-dimensional cases. This limits the realism of our results, but
enables us to survey the dynamics and catalogue the parasitic secondary instabilities
that limit the lifetime of the primary TCI in two dimensions.

The presence of three types of linear stratified shear flow instability raises the
question of how one may diagnose which evolves on a given basic state and
then follow on to predict the ensuing nonlinear dynamics. This goal requires a
categorisation and classification scheme for the linear and nonlinear behaviour
expected for disturbances to a given stratified shear flow. With this in mind,
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Instability of sheared density interfaces 147

we propose a means to distinguish TCI from KHI and HWI at the linear level
for an arbitrary flow profile, and formulate a nonlinear diagnostic to distinguish
between their saturated states.

Some previous discussion of techniques for distinguishing KHI from HWI at
the linear level has been provided by Carpenter, Balmforth & Lawrence (2010)
(see also Carpenter et al. 2011). The motivation was to suggest how one might
anticipate the subsequent nonlinear flow dynamics and degree of mixing by drawing
a convenient distinction between these two linear instabilities, particularly given that
KHI is more efficient at mixing and hence ‘stronger’ than HWI, although HWI is
typically longer lasting (see for example Salehipour et al. 2016). The classification
of Carpenter et al. (2010), however, has some level of arbitrariness and cannot
distinguish TCI when the base shear flow has inflection points. We instead consider
the net pseudomomentum (Bühler 2014) of a linear normal mode, which can be used
to compare the contributions from density or vorticity interfaces in the evolution of
the unstable mode and provides criteria for deciding whether any given mode has
the character of KHI, HWI or TCI. We apply our diagnostic to the flow originally
considered by Taylor (1931) for which the distinction between KHI and TCI is
ambiguous, and also the flow considered by Holmboe (1962) which exhibits both
KHI and HWI and to which Carpenter et al. (2010) applied their diagnostic.

For a nonlinear diagnostic, we consider steady nonlinear structures that can be
characterised by functional relations between the streamfunction and the density or
a generalised vorticity (Long 1953). These relations suggest a means to distinguish
between the final states reached after the saturation of the linear instabilities by
interrogating the numerical solutions. Since such streamfunction relations do not
explicitly depend on spatial position, they may also be obtained from individual
vertical profiles such as might be extracted from observations. With this in mind, we
examine some oceanographic and laboratory measurements of KHI (van Haren et al.
2014), HWI (Tedford, Pieters & Lawrence 2009) and TCI (Caulfield et al. 1995) to
extract approximate streamfunction relations for comparison with our diagnostic.

In § 2 we formulate the stratified shear flow problem mathematically, in § 3 we
derive and discuss the linear pseudomomentum conservation law and in § 4 we
describe our suite of nonlinear TCI simulations. In § 5 we show the streamfunction
relations contained in the equations of motion and find the relations which represent
typical KHI, HWI and TCI saturated states, discuss the use of limited data sets
to approximate these relations and demonstrate the method as applied to the
approximated oceanographic and experimental data. We draw our conclusions in
§ 6.

2. Governing equations
We consider a two-dimensional stratified shear flow in a channel with characteristic

height H, velocity U and density difference 1ρ. Scaling lengths, velocities and density
deviations by these quantities (respectively), we arrive at the dimensionless Boussinesq
equations, in terms of streamfunction ψ , vorticity ζ and density ρ:

ζ =∇2ψ, (2.1)
ρt + {ψ, ρ} = Pe−1

∇
2ρ, (2.2)

ζt + {ψ, ζ } + Jρx = Re−1
∇

2ζ , (2.3)

where the Poisson bracket is given by

{ f , g} ≡ fxgy − fygx, (2.4)
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148 T. S. Eaves and N. J. Balmforth

and the Péclet, Reynolds, bulk Richardson and Prandtl numbers are

Pe=
UH
κ
, Re=

UH
ν
, J =

1ρgH
ρ0U2

, Pr=
ν

κ
, (2.5a−d)

and ρ0 � 1ρ is a reference density. Here κ is the diffusivity of the density field
(e.g. due to temperature or salinity diffusion), ν is the kinematic viscosity of the fluid
medium and g is the gravitational acceleration.

The channel is periodic in the horizontal direction with (dimensionless) length Lx.
For our discussion of classical linear stability results in § 3, the scales H, U and 1ρ
represent characteristics of the base equilibrium profiles of flow speed and density,
and the shear flow is taken to unbounded in the vertical direction. In the numerical
computations of § 4, we consider a finite channel with no normal flow and buoyancy
flux through the walls of the channel, which are located at y = ±1 (the channel
having height 2H). We further fix the shear stress rather than the horizontal velocity
at y=±1 to minimise the effect of the confining walls and avoid viscous boundary
layer instabilities (cf. Eaves & Caulfield 2017). In this situation, we take the initial
horizontal velocity and density deviation to be u=±1 and ρ =∓1 at y=±1 (so the
channel walls are initially moving at a dimensional speed of 2U with respect to one
another and 21ρ is the initial density difference).

3. Pseudomomentum and linear categorisation
In the wave-interaction interpretation of stratified shear instability, one looks for

resonance conditions between waves riding on vorticity and density interfaces. Such
conditions by themselves, however, are not sufficient to predict instability; one must
further show, based on the conservation laws of the system, that the interaction leads
to instability because the waves have the opposite sign of energy, momentum or action.
Below we establish the pseudomomentum of waves in our stratified shear flows; the
arguments also complement the over-reflection arguments of Lindzen & Barker (1985).

3.1. The pseudomomentum of a linearised disturbance

The inviscid linearised equations for perturbations ψ̌ , ζ̌ and ρ̌ about the base flow
profiles U(y) and ρ̄(y) are

ζ̌t +Uζ̌x −U′′ψ̌x + Jρ̌x = 0, (3.1)

ρ̌t +Uρ̌x + ρ̄
′ψ̌x = 0. (3.2)

Formulating the combination〈{[
J +

U′′(U − c∗)
ρ̄ ′

]
ρ̌

ρ̄ ′

}
(equation (3.2))

〉
−

〈[
ψ̌ +

(U − c∗)ρ̌
ρ̄ ′

]
(equation (3.1))

〉
,

(3.3)
where 〈· · ·〉 denotes an integral over the area of the spatial domain and c∗ is an
arbitrary constant velocity, we arrive at a conservation law:

dE
dt
= 0, E =

〈
1
2
(ψ̌2

x + ψ̌
2
y )+

Jρ̌2

2ρ̄ ′
− (U − c∗)U′′

ρ̌2

2ρ̄ ′2
− (U − c∗)

ρ̌ζ̌

ρ̄ ′

〉
(3.4)

(cf. (2.28) of Abarbanel et al. 1986).
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Instability of sheared density interfaces 149

For normal modes, we have ψ̌(x, y, t) = ψ̂(y)eik(x−ct)
+ c.c., where k is the

wavenumber and c= cr + ici is the complex phase speed. We may further exploit the
normal-mode equations, ζ̂ = (U′′ψ̂ − Jρ̂)/(U− c) and ρ̂ =−ρ̄ ′ψ̂/(U− c), to arrive at
the conserved quantity,

M =
E

(cr − c∗)
=

〈
1
2
ψ̌2

[
U′′

|U − c|2
+

2J(U − cr)ρ̄
′

|U − c|4

]〉
= 〈MV +MB〉, (3.5)

with

MV =
1
2

U′′ψ̌2

|U − c|2
and MB =

J(U − cr)ρ̄
′ψ̌2

|U − c|4
. (3.6a,b)

The quantity M represents the net pseudomomentum of a linear disturbance; the time
rate of change of its density MV +MB represents the local acceleration of the mean
flow induced by the disturbance (Bühler 2014). Moreover, because M is conserved,
the exponential growth of any linear perturbation with normal-mode form is forbidden
unless M = 0 for that mode, as noted originally by Synge (1933) and discussed by
Miles (1961) and Howard (1961).

For unstratified flow with ρ̄ ′ = 0, the condition M ≡ 〈MV〉 = 0 leads to the
inflexion-point criterion. With stratification, the fact that the contributions to M must
cancel for an unstable normal mode constrains the types of wave interactions that
can lead to instability: gravity waves localised at a density interface have a sign
for the pseudomomentum density MB given by −sgn(U − cr) (given ρ̄ ′ < 0 for
stable stratification). Thus, waves riding on two density interfaces with phase speeds
between the flow speeds of the interfaces have opposite signs of MB, and set the
scene for TCI. In particular, if U′′ = 0, TCI modes must have cancelling interfacial
contributions to the pseudomomentum to give M ≡ 〈MB〉 = 0.

Likewise, HWI can only arise when a wave on a density interface, with a
pseudomomentum contribution through 〈MB〉, interacts with a wave on a vorticity
interface, with an oppositely signed contribution from 〈MV〉. This demands that
U′′(U − cr) > 0, a Fjortoft-like condition that rules out instability for certain flow
profiles which nevertheless allow wave resonances (cf. Carpenter et al. 2010). For
such stable interfaces, we also see that the criterion M = 0 is stronger than the
Miles–Howard criterion, as the local Richardson number vanishes throughout the bulk
of the flow.

Some examples of the pseudomomentum contributions of unstable modes are shown
in figure 1. These modes are computed from the linear eigenvalue problem for the
basic profiles:

KHI U(y) = tanh(10y),
ρ̄(y) = −tanh(30y), J = 0.05, (3.7)

HWI U(y) = 1+ 4
135(30y− 30− log{cosh[30(y− 1/8)]/ cosh(105/4)}),

ρ̄(y) = −tanh[30(y+ 1/8)], J = 0.2, (3.8)
TCI U(y) = y,

ρ̄(y) = − 1
2 {tanh[30(y− 1/4)] + tanh[30(y+ 1/4)]}, J = 0.14. (3.9)

These profiles have relatively sharp but smooth interfaces in the background density
and vorticity and represent ‘typical’ examples that lead to KHI, HWI and TCI
(respectively). Figure 1 also displays the base profiles and the vorticity and density
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FIGURE 1. (Colour online) Columns from left to right: sample background profiles U(y)
(blue solid) and ρ̄(y) (red dot-dashed) for (a) KHI, (b) HWI and (c) TCI. Absolute value
of vorticity (blue) and density (red dot-dashed) for the associated growing mode. MV
(blue solid, when non-zero) and MB (red dot-dashed) for the background profiles and the
associated modes.

disturbances associated with their modal eigenfunctions. For the KHI case, MB is
negligible and there are cancelling contributions through MV from the two vorticity
interfaces. For HWI, there are equal and opposite contributions to M = 0 from MV
and MB that are centred at the vorticity and density interfaces, respectively. For TCI,
MV ≡ 0 and the contributions of each density interface cancel.

3.2. Pseudomomentum-based mode characterisation
For arbitrary spatial profiles of vorticity and density, one can exploit the decomposition
into MV and MB to classify the instabilities: first, the relative sizes of |MB| and
|MV | indicate whether an interfacial region acts like a density or vorticity interface.
Given this ‘flavour’ of the interface, one can then pick out the two largest cancelling
contributions to M, and thereby classify the instability.

To illustrate this scheme, we solve the linear stability problem analytically for two
piecewise linear profiles. In the first of these examples, a transition occurs from KHI
to TCI (Taylor 1931) as the flow parameters are varied, and the distinction between
the two becomes ambiguous. Similarly, the second example exhibits a transition
between KHI and HWI (Holmboe 1962), and is the flow adopted by Carpenter et al.
(2010) in applying their diagnostic for distinguishing between these two instabilities.

The first example is Taylor’s three-layer flow profile,

U(y)=


−1, if y 6−1
y, if − 1< y< 1
1, if y > 1

and ρ̄(y)=


1, if y 6−1,
0, if − 1< y 6 1,
−1, if y> 1,

(3.10a,b)

in which there are two, coincident vorticity and density interfaces. The dispersion
relation for normal modes is

c4
+ c2

[
e−4k
− (2k− 1)2

4k2
− 1−

J
k

]
+

J2

4k2

(
1− e−4k

)
−

J
k

(
2k− 1+ e−4k

2k

)
−

(
e−4k
− (2k− 1)2

4k2

)
= 0. (3.11)
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FIGURE 2. (Colour online) (a) Contours of constant growth rate of the unstable mode
(black lines) for the linear profile in (3.10) showing the transition between KHI and TCI.
The colour shading shows a density plot of R1=MV/(MV +MB). (b) Contours of constant
growth rate of the rightward propagating mode (black lines) for the piecewise linear profile
in (3.15) showing the transition between KHI and HWI. The colour shading shows a
density plot of R2 = 1− |MB/M+V |, where M+V is the contribution to MV due to the upper
vorticity interface alone.

The pseudomomentum reduces to

M = Lx

[
|ψ̂(1)|2

(
1

|1− c|2
−

2J
|1− c|4

)
+ |ψ̂(−1)|2

(
−

1
|1+ c|2

+
2J
|1+ c|4

)]
(3.12)

≡ Lx

[
|ψ̂(1)|2

(
M+V −M+B

)
+ |ψ̂(−1)|2

(
−M−V +M−B

)]
, (3.13)

where M±V , M±B > 0 are the magnitudes of the contributions from the upper and
lower vorticity and density interfaces, respectively. The unstable normal modes have
|ψ̂(1)|2= |ψ̂(−1)|2, and cr = 0 so that M+V =M−V ≡MV and M+B =M−B ≡MB, allowing
us to define the relative contribution of the vorticity interfaces as

R1 =
MV

MV +MB
=

1+ c2
i

1+ c2
i + 2J

. (3.14)

Then, R1 = 1 corresponds to pure KHI in the sense that only the vorticity interfaces
contribute to the dynamics. Likewise, R1= 0 corresponds to pure TCI dynamics, given
that only the density interfaces then contribute. Intermediate values of R1 indicate that
all four interfaces play a role in the dynamics. Figure 2(a) shows contours of constant
growth rate kci on the k− J plane, superposed on a density plot of R1. For J= 0, the
density variations play no role, implying pure KHI dynamics, and we see that R1→ 1.
For J�1, R1→0, indicating an approach to pure TCI. Between these two limits there
is a smooth transition in which all four interfaces play varying roles in the dynamics;
the contour R1 = 1/2, which occurs when J ≈ 0.6, suggests a convenient distinction
between KHI and TCI. However, we emphasise that this distinction is a relative one,
and does not imply that only the density interfaces are active when R1 < 1/2, or that
the instability is a pure vorticity interface interaction when R1 > 1/2.
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The second example is Holmboe’s flow profile,

U(y)=


−1, if y 6−1
y, if − 1< y< 1
1, if y > 1

and ρ̄(y)=

{
1, if y 6 0,
0, if y> 0,

(3.15)

with dispersion relation,

c4
+ c2

[
e−4k
− (2k− 1)2

4k2
−

J
k

]
+

J
k

[
e−2k
+ (2k− 1)

2k

]2

= 0. (3.16)

The pseudomomentum is given by

M = Lx

[
|ψ̂(−1)|2

2|1+ c|2
−
|ψ̂(1)|2

2|1− c|2
+

2Jcr|ψ(0)|2

|c|4

]
≡M−V +M+V +MB. (3.17)

Figure 2(b) shows contours of constant growth rate kci on the k–J plane for the
rightward propagating unstable mode. These contours are superposed on a density
plot of R2 = 1 − |MB/M+V |. For large wavenumber k, the modal eigenfunctions
decay exponentially away from the interfaces, leading to mode interactions that are
characterised by cancelling pseudomomentum contributions from just two of M±V and
MB. For the rightward propagating modes, R2 → 0 indicates that the instability is
generated by the interaction of the upper vorticity interface with the density interface,
and has the character of HWI. In view of the symmetry of the profiles, simultaneously
there is a leftward travelling HWI with 1− |MB/M−V | → 0. On the other hand, when
R2 → 1, the density interface cannot contribute to the interaction and so the mode
must take a KHI character. Indeed, for these flow profiles, any mode with zero
phase speed cr = 0 has this feature, since MB then vanishes identically. Intermediate
values of R2 indicate balancing contributions to M= 0 from all three of M±V and MB.
The contour R2 = 1/2 again suggests a convenient distinction between KHI-like and
HWI-like interactions. As shown in figure 2(b), the R2 diagnostic cleanly identifies
the one-sided rightward travelling HWI at higher wavenumber and bulk Richardson
number. Moreover, there is an area with 1/2< R2 < 1 just above the transition from
stationary to propagating waves (highlighted by the sharp changes in the growth-rate
contours). Here, the lower vorticity interface plays a role in the mode dynamics, and
these propagating instabilities inherit a KHI-like character. This result complements
the findings of Carpenter et al. (2010), but the extent of the region that they identify
as KHI is slightly different.

4. TCI simulations
4.1. Numerical methods and initial conditions

To simulate TCI, we consider initial-value problems in which small perturbations are
added to the base profiles,

U(y)= y, ρ̄(y)=− 1
2 {tanh[30(y− 1/4)] + tanh[30(y+ 1/4)]} . (4.1)

The perturbations take the form of the unstable mode of the diffusive linear problem
associated with these profiles, with an amplitude corresponding to a perturbation
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Group J k Re Pr Pe Comments

1 0.14 0.8 300 000 0.6 180 000
0.14 0.8 180 000 1 180 000
0.14 0.8 60 000 3 180 000
0.14 0.8 20 000 10 200 000

2 0.14 4/3 300 000 0.6 180 000
0.14 4/3 180 000 1 180 000
0.14 4/3 60 000 3 180 000
0.14 4/3 20 000 10 200 000

3 0.23 4/3 300 000 0.6 180 000
0.23 4/3 180 000 1 180 000
0.23 4/3 60 000 3 180 000
0.23 4/3 20 000 10 200 000

4 0.3 4/3 300 000 0.6 180 000
0.3 4/3 180 000 1 180 000
0.3 4/3 60 000 3 180 000
0.3 4/3 20 000 10 200 000

5 0.3 2 300 000 0.6 180 000
0.3 2 180 000 1 180 000
0.3 2 60 000 3 180 000
0.3 2 20 000 10 200 000

6 0.5 4 300 000 0.6 180 000
0.5 4 180 000 1 180 000
0.5 4 60 000 3 180 000
0.5 4 20 000 10 200 000

X 0.14 0.8 600 300 180 000 TCI, low Re
0.5 4 600 300 180 000 TCI, low Re
0.05 2 25 000 7 175 000 KHI
0.2 4 180 000 1 180 000 HWI

TABLE 1. Parameter values of simulations. Group X includes additional TCI simulations
at low Re and representative KHI and HWI simulations.

energy of E(0) ≈ 10−7. We solve (2.1)–(2.3) in the domain y ∈ [−1, 1] and
x ∈ [0, Lx = 2π/k], with the horizontal wavenumber k as a parameter.

Table 1 lists the parameter values of the simulations conducted. We consider four
different pairings of the Reynolds and Prandtl numbers, (Re, Pr) = (300 000, 0.6),
(180 000,1), (60 000,3) and (20 000,10), chosen so that the Péclet number is nearly
the same (Pe = 180, 000 for the first three pairings and 200 000 for the last). The
simulations form six groups in the table, so that each group has the same bulk
Richardson number J and horizontal wavenumber k, and consists of a simulation
from each of the four Reynolds/Prandtl pairings. In addition, group ‘X’ represents an
additional set of two TCI simulations at small Reynolds number (although still high
Péclet number) at the two extremes of wavelength, plus a pair of representative KHI
and HWI computations at comparable Péclet numbers. For the KHI and HWI cases,
the initial base states are given by (3.7) and (3.8), respectively.

The locations of the simulations on the (k, J)-plane are shown in figure 3. The
comparison of the small wavenumber, small bulk Richardson number simulations
of group 1 with the high wavenumber, high bulk Richardson number of groups 5
and 6 offers insight into how the mechanism of saturation varies across the strip of
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FIGURE 3. (Colour online) Stability boundaries in the (k, J) plane for TCI with
background profiles and boundary conditions given by an infinitely sharp interface version
of (4.1), along with values of (k, J) for the six groups of simulations listed in table 1.
Colours indicate the observed primary dynamics of the saturated instability.

instability, which is also drawn in figure 3 (taking the interfaces to be sharp and
modes to be inviscid). Groups 2–4, which share the wavenumber k = 4/3 but have
bulk Richardson numbers that span those of group 1 and group 5, allow one to
disentangle any combined effect of varying k and J. Note that the values of k were
chosen so that simulations could be compared at different pairings of J and k, whilst
trying to ensure that there was at most one unstable mode in the domain to avoid any
complication due to mode interactions. The choices do not correspond to the fastest
growing mode over all wavenumbers at each fixed J, which is a common strategy
for constraining parameters in numerical studies. However, the nonlinear dynamics
we find for each J appears to be insensitive to the precise choice for k, at least in
two dimensions (it is possible that in three dimensions, the secondary instabilities are
more sensitive to the choice of k).

The simulations were conducted using Diablo, a parallel Fortran-based numerical
integration program developed by Bewley and Taylor (Taylor 2008), which uses
a second-order finite difference scheme in the y-direction and a de-aliased Fourier
decomposition in the x-direction. Time-stepping is implemented by a combined
implicit–explicit third-order Runge–Kutta–Wray Crank–Nicolson scheme. The grid
resolution for the geometry of groups 1–4 is 2048 × 2048 and for groups 5 and 6
it is 1024× 2048. Movies illustrating the simulations are provided as supplementary
information available at https://doi.org/10.1017/jfm.2018.827.

4.2. Diagnostics
To compare the simulations with one another, we make use of a number of global
measures: first, the average perturbation energy E(t) (potential plus kinetic) is defined
as

E(t)=
k

8π

∫ 2π/k

0

∫ 1

−1

{
[u−U(y)]2 + v2

+ J[ρ − ρ̄(y)]2
}

dy dx (4.2)
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FIGURE 4. (Colour online) (a) Instantaneous mixing efficiency η(t) and (b) instantaneous
mixing rate m(t) for representative KHI (blue solid) and HWI (red dashed, for which we
plot 10m(t)) simulations.

(an expansion to second order in mode amplitude connects this quantity to the
pseudo-energy E defined in § 3.1; Bühler (2014)). Second, following Peltier &
Caulfield (2003), a monotonic adiabatic rearrangement of the current density field
ρ(x, y, t) furnishes the background stratification ρ∗(y, t), from which we obtain the
background potential energy PB(t),

PB(t)=−
1
2

∫ 1

−1
Jyρ∗ dy. (4.3)

The instantaneous mixing rate m(t) can then found from the time rate of change of
PB(t), correcting for the natural diffusive increase of PB due to the Péclet number:

m(t)=
dPB

dt
−

J
Pe
. (4.4)

Third, the mixing efficiency η(t) is given by

η(t)=
m(t)

m(t)+D(t)
, (4.5)

where the dissipation rate is

D(t)=
k

4πRe

∫ 2π/k

0

∫ 1

−1

[(
∂u
∂x

)2

+

(
∂u
∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
]

dy dx. (4.6)

It should be emphasised that for the two-dimensional simulations presented here,
the mixing efficiencies are expected to be significantly higher than typical values
for three-dimensional flow; two-dimensional flows dissipate far less than their
three-dimensional counterparts (e.g. Peltier & Caulfield 2003). Nevertheless, we find
the mixing efficiency to be a useful indicator to distinguish between our simulations in
addition to the perturbation energy density E(t) since it is possible to have energetic
flows which do little mixing and vice versa. The final scene is set for our discussion
of the mixing character of TCI by figure 4, which shows η(t) and m(t) for the
representative KHI and HWI computations of table 1, and illustrates the vigorous,
but short-lived mixing of KHI and the lower, but more long-lived action of HWI.
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FIGURE 5. (Colour online) Time evolution of (a) the perturbation energy E(t), (b) mixing
efficiency η(t) and (c) mixing rate m(t) for the simulations in group 1, with (Re, Pr)=
(300 000, 0.6) (blue solid), (180 000, 1) (red dashed), (60 000, 3) (yellow dot-dashed) and
(20 000, 10) (purple dotted).

4.3. Small k, small J dynamics (group 1)
4.3.1. Energetic characteristics

Figure 5 shows the time evolution of E(t), η(t) and m(t) for group 1, for each
of the four (Re, Pr) pairings. The initial evolution of the perturbation energy E(t)
collapses onto the same curve during the initial linear growth and peaks around t =
100 for all four simulations. Subsequently, E(t) settles into a decaying oscillation for
the (Re, Pr)= (300 000, 0.6) and (180 000, 1) simulations; the (60 000, 3) simulation
levels off somewhat, whereas the (20 000, 10) simulation transitions to a much higher
amplitude, chaotic state.

During the linear growth, the mixing efficiency η(t) and rate m(t) remain small,
but increase substantially after the first maximum in E(t). The four simulations reach
different peak efficiencies, mainly because of the enhanced dissipation at lower Re;
the time evolution of the mixing rate m(t) through the first peak is more comparable
between the simulations. Evidently, the simulations with higher Prandtl numbers (Pr=
3 and 10) experience higher levels of sustained mixing than in the lower Prandtl
number cases (Pr= 0.6 and 1).

4.3.2. Billow structure
Figure 6 collects snapshots of the density ρ(x, y, t) and vorticity ζ (x, y, t) at

a number of key times in the simulations of group 1. Figure 6(a) shows the
(Re, Pr) = (300 000, 0.6) simulation. During the initial linear evolution of this
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FIGURE 6. (Colour online) Snapshots of the density ρ(x, y, t) (left) and vorticity
ζ (x, y, t)+1 (right) for four different times and parameter values in group 1: (a) (Re,Pr)=
(300 000, 0.6) at t= 110, (b) (Re,Pr)= (180 000, 1) at t= 141, (c) (Re,Pr)= (20 000, 10)
at t= 188 and (d) (Re,Pr)= (20 000, 10) at t= 375. Colour bars show density (left) and
vorticity (right).

TCI, sinusoidal deformations develop that locally bring the density interfaces together.
Instead of meeting and pinching off, however, the perturbations develop into cuspy
structures that become swept sideways by the mean flow to create a distinctive
billow with a large horizontal extent and associated filaments of baroclinic vorticity.
This initial evolution is shared by all four simulations in group 1, and the billow
corresponds to the primary nonlinear structure observed previously by Lee & Caulfield
(2001) and Balmforth et al. (2012).

At slightly later times, as illustrated by the (Re, Pr) = (180 000, 1) simulation
shown in figure 6(b), a ‘secondary’ billow appears in the gap between the cusps of
the primary billow. Again, this feature appears in all the simulations of group 1 and
was observed by Lee & Caulfield (2001). More interestingly, with higher Prandtl
number, further billows appear at yet later times, in the manner of a cascade to
smaller scales. Figure 6(c) shows the (Re, Pr) = (20 000, 10) simulation at t = 188
in which ‘tertiary’, and possibly even ‘quarternary’ billows of decreasing size have
formed after the secondary billow. This cascade of billows is robust to variations
in Reynolds and Prandtl number, occurring also in the low-Re TCI simulation with
(J, k, Re, Pr)= (0.14, 0.8, 600, 300).

4.3.3. Billow cascade as a secondary TCI
Figure 7 shows the gradient Richardson number −Jρy/u2

y for vertical profiles of
ρ and u, horizontally averaged over a region 2.4 < x < 4.2 outside the primary
billow in the top row of images of figure 6. Also shown is the corresponding initial
condition. The region outside the primary billow retains two relatively strong density
interfaces, but their vertical separation has changed, which suggests that the region
may still be susceptible to TCI. Indeed, one can use the horizontal averages of ρ and
u over this region, together with an adjusted wavenumber of k= 3 consistent with its
rough horizontal extent, to conduct a second linear stability analysis. This calculation
reveals a TCI with a growth rate of approximately 0.1. By contrast, the initial basic
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FIGURE 7. (Colour online) Gradient Richardson number −Jρy/u2
y for the horizontally

averaged buoyancy and velocity profiles in the region between the billow 2.4 < x < 4.2
for the (Re, Pr) = (300 000, 0.6) group 1 simulation at t = 110 (blue), along with the
gradient Richardson number for the initial condition (grey, dotted). Also shown is the
value Ri= 0.25 (black dashed).

state is not unstable at k = 3. Thus, the nonlinear distortion of the mean profile by
the primary instability generates a secondary TCI, and occurs because the original
instability moves the density interfaces closer together to reduce the local length scale.
Moreover, the density interfaces remain sharp through the combined action of the
relatively high Péclet number limiting the diffusive effects and a favourable straining
flow induced by the primary billow. Evidently, this mechanism continues to operate
at higher Prandtl numbers, yielding further secondary instabilities and generating the
cascade described above.

4.3.4. Final attrition and secondary nonlinear Holmboe waves
For the lower Prandtl number simulations, the primary billows slowly pulsate

and diffusively decay, generating the decaying oscillations in E(t). Eventually, the
secondary billows drift sideways to become consumed by the larger primary billow.
In the Pr = 10 simulations, however, a large amplitude, long wavelength, parasitic
nonlinear Holmboe wave develops on top of the array of billows, much as in the
earlier computations of Balmforth et al. (2012) and Eaves & Caulfield (2017). This
is illustrated in figure 6(d); the parasitic Holmboe wave is evidenced by the filaments
of baroclinic vorticity drawn out from the main billow towards the right-hand side
of the domain. This prolonged Holmboe-wave activity accounts for the sustained
levels of perturbation energy E(t), mixing efficiency η(t) and mixing rate m(t) in this
simulation. Note that the base flow U(y) = y does not contain any inflection points;
as detailed by Eaves & Caulfield (2017), the emergence of nonlinear Holmboe
waves results after the nonlinear rearrangement of the mean velocity field due to the
saturation of the primary TCI and its introduction of flow curvature. Evidently, it is
only at large Pr that the density interfaces remain sufficiently sharp in comparison
to the baroclinically generated vorticity filaments bordering the billows to permit the
secondary HWI (the Prandtl number dictates the relative diffusion of density and
vorticity).

4.4. Large k, large J dynamics (groups 5–6)
4.4.1. Energetic characteristics

Figure 8 shows the time evolution of E(t), η(t) and m(t) for the (k, J) = (2, 0.3)
simulations of group 5 and the (k, J)= (4, 0.5) simulations of group 6. Once more,
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FIGURE 8. (Colour online) Time evolution of (a,d) the perturbation energy E(t),
(b,e) mixing efficiency η(t) and (c,f ) mixing rate m(t) for the simulations in (a–c) group
5 and (d–f ) group 6, with (Re, Pr)= (300 000, 0.6) (blue thick solid), (180 000, 1) (red
dashed), (60 000, 3) (yellow dot-dashed) and (20 000, 10) (purple thin solid).

the simulations show the same initial linear growth of the perturbation energy E(t).
The peak in E(t) is again followed by decaying oscillations about a slowly diffusing
nonlinear state at lower Pr, or sustained higher-frequency oscillations symptomatic of
emergent parasitic Holmboe waves at larger Pr. As for the group 1 simulations, the
mixing efficiency η(t) and rate m(t) increase to significant levels only after the end of
the phase of linear growth. The maximum values reached, however, are substantially
higher and are comparable to those observed for two-dimensional KHI simulations
(see Peltier & Caulfield 2003, and figure 4). The implied enhanced mixing events have
only previously been associated with KHI; we uncover the origin of this presently.

4.4.2. Billow break-up
Figure 9 shows snapshots of the density ρ(x, y, t) and vorticity ζ (x, y, t) at

a number of key times in the simulations of group 5. Figure 9(a,b) shows the
(Re, Pr) = (60 000, 3) simulation; once again, during the linear growth of the TCI,
cusp-like deformations appear on each density interface and are swept sideways by
the mean flow. This time, however, the resulting nonlinear travelling waves do not
collide and merge to form a billow. Instead, they retain their identity and generate
more baroclinic vorticity due to the higher bulk Richardson number; these alternative
primary nonlinear structures correspond to the cuspy wave observed by Eaves &
Caulfield (2017). Moreover, the waves interact strongly to draw out large-amplitude
filaments of vorticity as time progresses. These filaments subsequently roll up through
localised KHI-type secondary instabilities, creating vortices throughout the middle
density layer and precipitating a vigorous mixing event, as illustrated by figure 9(c,d)
from the (Re,Pr)= (60 000,3) simulation. Eventually, the finer-scale vortices viscously
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FIGURE 9. (Colour online) Snapshots of the density ρ(x, y, t) (left) and vorticity
ζ (x, y, t)+ 1 (right) for six different times and parameter values in group 5: (Re, Pr)=
(60 000, 3) at (a) t= 56, (b) t= 66, (c) t= 68 and (d) t= 86; (e) (Re, Pr)= (20 000, 10)
at t= 240, ( f ) (Re, Pr)= (300 000, 0.6) at t= 250.
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FIGURE 10. (Colour online) Snapshots of the density ρ(x, y, t) (left) and vorticity
ζ (x, y, t)+ 1 (right) for nine different times and parameter values in group 6: (Re, Pr)=
(300 000, 0.6) at (a) t = 55, (b) t = 62, (c) t = 74, (d) t = 82, (e) t = 88, ( f ) t = 95,
(g) t= 124 and (h) t= 250; (i) (Re, Pr)= (20 000, 10) at t= 200.

decay, coarse graining a residual nonlinear structure (see figure 9f ). At long times, a
parasitic Holmboe wave emerges for Pr= 10 (see figure 9e).

Figure 10 collects snapshots of ρ(x, y, t) and ζ (x, y, t) from simulations of group 6.
The horizontal extent of the domain is now sufficiently short that the cuspy nonlinear
travelling waves no longer lock into place when they approach, but pass by one
another to create complex vorticity dynamics in the middle density layer; sharp
filaments of vorticity once more appear and subsequently roll up due to secondary
KHI (see figure 10d–f ). This fills the central density layer with finer-scale vortical
structures that again viscously decay to a smoother state but for the emergence of
parasitic Holmboe waves at Pr= 10, as seen in figure 10(g–i).
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FIGURE 11. (Colour online) Time evolution of (a,d,g) the perturbation energy E(t),
(b,e,h) mixing efficiency η(t) and (c,f,i) mixing rate m(t) for the simulations in (a–c) group
2, (d–f ) group 3 and (g–i) group 4, with (Re, Pr) = (300 000, 0.6) (blue thick solid),
(180 000, 1) (red dashed), (60 000, 3) (yellow dot-dashed) and (20 000, 10) (purple thin
solid).

The roll-up of baroclinically generated vorticity filaments via secondary KHI
rationalises the heightened mixing efficiencies and rates in the simulations of groups
5 and 6; the primary TCI itself generates very little mixing. Because the secondary
roll-ups span the entire middle density layer, the mixing efficiency reaches values
more typically associated with a primary KHI. The baroclinic generation of vorticity
arises through the term Jρx in (2.3), and so can be associated with either large values
of J or small horizontal length scales. The simulations of groups 5 and 6 possess
both attributes in comparison to group 1, and so it remains unclear whether the
secondary behaviour is due to a larger J or smaller horizontal wavenumber k. The
simulations of groups 2, 3 and 4, described below, indicate that the bulk Richardson
number J is chiefly responsible.

Unlike the cascade of Taylor–Caulfield billows for weaker stratification in larger
domains, the destruction of saturated TCI states by secondary KHI roll-up is not
robust to changes in Reynolds number. This is indicated by the (J, k, Re, Pr) =
(0.5, 4, 600, 300) TCI simulation which shows the emergence of large-amplitude
cuspy nonlinear travelling waves on each density interface. These waves interact
relatively weakly, however, and propagate past each other without forming any
small-scale vorticity filaments due to the higher viscosity. The waves thereby slowly
decay without any small-scale KHI roll-up. Such Re-dependent secondary KHI roll-up
also distinguishes the two simulations presented by Eaves & Caulfield (2017).

4.5. Intermediate k, varying J dynamics (groups 2–4); KHI roll-up versus TCI
cascade

Figure 11 shows the time evolution of E(t), η(t) and m(t) for groups 2, 3 and 4. The
plots of mixing efficiency η(t) and rate m(t) illustrate how the small J = 0.14
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FIGURE 12. (Colour online) Snapshots of the density ρ(x, y, t) (left) and vorticity
ζ (x, y, t) + 1 (right) for three different times and parameter values in groups 2, 3 and
4: (Re,Pr)= (20 000,10) for (a) J=0.14 at t=169, (b) J=0.23 at t=104 and (c) J=0.3
at t= 93.

simulations of group 2 resemble those of group 1, whereas the large J = 0.3
simulations of group 4 are more similar to group 5. The evolution of η(t) and
m(t) for the intermediate J = 0.23 simulations of group 3 appears to blend the
behaviours of groups 2 and 4.

Figure 12 collects snapshots from simulations of groups 2, 3 and 4. Figure 12(a),
from the (Re, Pr)= (20 000, 10) simulation with J = 0.14, illustrates how secondary
and tertiary billows again appear in addition to the primary billow, much as in the
simulations of group 1 but now over a shorter horizontal domain. In figure 12(b),
taken from the (Re, Pr) = (20 000, 10) simulation with J = 0.23, a cascade of
billows almost forms, but at the expense of large baroclinic vorticity generation in
the region outside the primary billow. Secondary KHIs then occur over that region,
but the primary billow is shielded from their destructive effect and persists to the
end of the simulation. Finally, figure 12(c) shows the cascade of billows forming in
the (Re, Pr)= (20 000, 10) simulation with J = 0.3. This time, the billows all suffer
secondary KHI due to the elevated baroclinic vorticity generation; small-scale vortices
then fill the middle layer, as in the simulations of groups 5 and 6.

4.6. Nonlinear TCI phenomenology
To summarise, the nonlinear saturation of TCI creates a cascade of billow-like
structures at small J, cuspy travelling waves that draw out tight vorticity filaments
and induce vigorous mixing via small-scale KHI at large J, and parasitic nonlinear
Holmboe waves at large Pr. The occurrence in the (k, J) plane of the former two
primary saturation dynamics are shown in figure 3. The two latter features are
captured and summarised in figure 13. Figure 13(a) plots the maximum mixing rate,
max[m(t)], for all TCI simulations in groups 1–6 against the corresponding value of
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FIGURE 13. (Colour online) (a) Peak mixing rate as a function of J for all simulations.
Groups 1 and 5–6 (circles) and groups 2–4 (triangles) for (Re, Pr) = (300 000, 0.6)
(blue), (180 000, 1) (red), (60 000, 3) (yellow) and (20 000, 10) (purple). (b) Late-time,
time-averaged vertical excursion hρ of the ρ = ±1/2 density contours, normalised by
Lx = 2π/k and plotted against Prandtl number. Groups 1 (dark blue), 2 (red), 3 (yellow),
4 (purple), 5 (green) and 6 (light blue). The size of the points indicates the standard
deviation of hρ , again normalised by Lx.

J. The maximum mixing rate increases almost exponentially with J, quantifying the
mixing associated with the observed breakdown to small-scale KHI. Figure 13(b) plots
a measure of the vertical excursions of the two density interfaces, hρ , against Prandtl
number. This quantity is computed from the contours along which ρ(x, y±, t)=±1/2:
we first determine the instantaneous excursions, h±ρ (t) ≡ maxx(y±) − minx(y±), and
then average hρ = [h+ρ (t) + h−ρ (t)]/2 over late times to obtain hρ . Parasitic Holmboe
waves generate localised large-amplitude vertical motions, and are therefore identified
by elevated levels of hρ and its standard deviation, as in the Pr= 10 simulations.

To address the question of how robust these finding are when we progress from two
to three spatial dimensions, we conducted a single simulation in three dimensions
corresponding to the (Re, Pr) = (20 000, 10) simulation of group 6. Even for the
relatively small domain of this simulation, the resolution requirements at Pe= 200 000
are substantial. In order to make the three-dimensional (3-D) computation manageable,
we use the 2-D simulation at t= 50 as an initial condition with spanwise wavenumber
2π, adding extra low-level noise to force 3-D dynamics, and then continue the
simulation up to t = 100. The added noise changed the perturbation kinetic energy
from 4.28 × 10−4 to 5.15 × 10−4. Figure 14 compares E(t) for the 2-D and 3-D
simulations. The 3-D simulation shadows the 2-D simulation for much of its evolution,
but begins to deviate at t = 93. Nevertheless, the 3-D simulation follows the 2-D
simulation for sufficiently long to exhibit the same breakdown to small-scale KHI
roll-ups. In figure 15(a) we show surfaces of the two density interfaces ρ =±1/2 for
the 3-D simulation at t= 100. Three-dimensionality is clearly visible. Figure 15(b–d)
also compares a 2-D slice through the full 3-D density field with the density field of
the 2-D computation. As highlighted by the detachment of a feature from a density
interface, the 2-D solution at t = 102 shows most similarity with the 3-D slice at
t=100, indicating a slight lengthening of the time scales in three dimensions. Thus, at
least for the addition of weak 3-D noise, it appears that the breakdown to small-scale
secondary KHI is a robust phenomenon for TCI at large k and J.
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FIGURE 14. (Colour online) Evolution of the perturbation kinetic energy for the 2-D
simulation with (Re, Pr) = (20 000, 10) in group 6 (thin blue) and a 3-D simulation
initialised by randomly perturbing the 2-D simulation at t= 50 (thick red).
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FIGURE 15. (Colour online) (a) Surfaces of ρ = −1/2 (blue) and ρ = 1/2 (red) at t =
100 for a (Re, Pr)= (20 000, 10) 3-D simulation simulation of group 6. (b) Vertical slice
through the 3-D density field at t= 100, and (c,d) the 2-D density fields at t= 100 and
102. White boxes highlight a feature detaching from the upper density interface. Density
colour bar as in figures 6, 9, 10 and 12.

5. Steady nonlinear characterisation
5.1. Streamfunction relations of the saturated states

Without dissipation (i.e. Pe,Re→∞), the equations of motion admit steady nonlinear
wave solutions (Long 1953) that satisfy, in the frame of the wave, the relations

ζ =∇2ψ, ρ =R(ψ), ζ = Jy
dR
dψ
+L(ψ), (5.1a−c)

for two arbitrary functions, R(ψ) and L(ψ). These streamfunction relations can be
used to nonlinearly characterise the states which result after the saturation of KHI,
HWI and TCI.

To illustrate the construction, we use simulations in which secondary instabilities
do not immediately destroy the nonlinear states reached at saturation, but viscous
diffusion smooths the structures to furnish slowly evolving nonlinear waves. Unfortu-
nately, scatter plots of the solution at each point of the computational domain at
a representative time provide poor representations of the effective streamfunction
relations because of the small residual time-dependence of the solutions and the need
to differentiate the density relation. We therefore perform averages of ρ, ζ and y
over streamlines within the domain for a flow snapshot towards the end of each
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FIGURE 16. (Colour online) (a) Density field (left) and vorticity field (right) of the
final state of the representative KHI simulation. Functional relationships (b) R and (c) L
found from averaging over streamlines shown with black dots. Light grey lines show
functional relations of the initial condition. Vertical lines indicate streamfunction values
corresponding to the streamlines overlaid on the density and vorticity fields. Coloured
lines show approximations to the functional relationships R(ψ) and L(ψ) from individual
sparse 1-D profiles of density ρ, horizontal velocity u and dissipation ε, where the
streamfunction ψ ≈

∫
u dy and the vorticity ζ ≈ −

√
ε at x = 2.36 (blue) and x = 2.66

(red). Red and blue lines in (a) show these x-locations in the spatial density and vorticity
fields. Grey dots show relations taken from scattered values of ρ, ψ and ζ at 1/100th of
the total grid points, where dR/dψ is taken from the smooth black data.

simulation, and then use these averages and their derivatives to construct R(ψ) and
L(ψ). More specifically, from the representative snapshot of the solution, we identify
the streamlines from the contours of ψ(x, y, t) = c, for a set of constant values c,
and then average the density and vorticity fields and y over these curves. The former
provides the relation ρ=R(c)=R(ψ); this function can be differentiated numerically
in c and combined with the averages of y, denoted by Y(c), and of ζ , denoted by
Z(c), to arrive at L(ψ)=L(c)= Z(c)− J Y(c)R′(c).

The results of this averaging procedure are shown in figures 16–18 for the
representative KHI and HWI computations and the TCI simulation with (Re, Pr) =
(180 000, 1) from group 1. The figures display the final density and vorticity fields
used for the analysis, and the resulting streamfunction relations. Also included are
scatter plots of ρ and ζ − JyR′(ψ) against ψ taken from a subset of the grid points,
using the streamline-averaged R(ψ) function. The variability of these data about
the streamline average curves is mostly indicative of residual time-dependence. Note
that in the case of HWI, the non-zero phase speed of the final nonlinear state was
subtracted from the velocity field prior to calculating the streamfunction in order to
shift into the wave frame.

The KHI solution in figure 16 displays a clear three-branch structure for R,
reflective of the existence of three density layers. The middle density layer with
ρ ≈ 0 is not present in the initial condition but corresponds to the well-mixed region
forming at the core of the overturning KH billow, and forms the long left-hand tail
of the ρ − ψ relation. The plot of L is reminiscent of Stuart’s cat’s eye vortex
solution for unstratified shear flow (Stuart 1967), for which ζ ∝ exp(−2ψ). The only
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FIGURE 17. (Colour online) A similar plot to figure 16, but for the representative HWI
simulation. The approximate relations built from 1-D profiles are taken at x= 0.78 (blue)
and x= 1.09 (red).

significant deviation from such a smooth curve is the slight kink that arises as one
moves across the border of the KH billow and the baroclinic term Jy dR/dψ enters
the fray.

The HWI solution in figure 17 again has a three-branch structure for R, even
though there are only two distinct density layers. The complication arises because
two pieces of the R function have ρ ≈ −1, one of which corresponds to the upper
density layer whereas the other (left-hand) part characterises the vortex propagating
above the density interface. That vortex draws a filament of dense fluid away from
the density interface to generate the familiar cusp-like form of the Holmboe wave;
the entrainment of this fluid into the vortex slightly elevates its density above the
original level of −1. The plot of L is also fairly complex, with three distinct branches
corresponding to the two density layers and the vortex.

The TCI relations of figure 18 preserve the three-branch structure for R of the
initial condition. Unlike the corresponding KHI relation, the tail of the ρ−ψ relation
in the central density layer ρ = 0 is very short, indicating a much weaker circulation
than for KHI. This feature distinguishes the Taylor–Caulfield billow from the strong
vorticity-driven overturning of KHI. Further distinction with KHI is made when
examining L, which has a rather different, non-monotonic form for TCI inherited
from the initial condition.

The streamfunction relations can also be built approximately using vertical profiles
cutting through the nonlinear structures, such as might be furnished by observational
measurements. Such observations do not readily access the streamfunction or vorticity.
Instead, to mirror a reconstruction from observational data, we first extract the
streamfunction by vertically integrating the horizontal velocity. Then, inspired by the
fact that the total dissipation rate is equal to the integral of the square of the vorticity,
we approximate the vorticity using the negative square root of the dissipation-rate
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FIGURE 18. (Colour online) A similar plot to figure 16, but for the TCI simulation with
(Re, Pr)= (180 000, 1) from group 1. The approximate relations built from 1-D profiles
are taken at x= 0.1 (blue) and x= 1 (red).

profile. We also substantially coarsen the computational data, using a vertical grid
with spacing 0.01 that is approximately ten times larger than the grid spacing in
the simulation. Figures (16–18) include the approximate streamfunction relations
built in this fashion from two particular vertical cuts. The relations are reproduced
qualitatively, if not quantitatively in all cases.

5.2. A comparison with reality
Guided by the considerations above, we examine some existing oceanographic and
laboratory measurements of KHI, HWI and TCI in order to investigate the feasibility
of distinguishing their respective nonlinear states using the functions R and L. More
specifically, KHI is distinguished by a monotonic L function in which R′ plays little
role with the density field acting almost like a passive tracer. HWI is distinguished
by a three-branch structure for R in which two of the branches share nearly the
same value of ρ, and L has two branches away from the region associated with the
vortex core. Finally, TCI inherently contains three layers in R, and has a sharply
peaked hump in L, which is otherwise reasonably flat. Nevertheless, real evolving
flows involve three-dimensional time-dependent dynamics on all scales down to the
dissipation scales, which our nonlinear diagnostic is unlikely to capture in any detail.
The most we may hope for is that the framework provides a ‘flavour’ of the associated
nonlinear dynamics.

For KHI, we construct approximate streamfunction relations using oceanographic
observations of a train of KH-like billows by van Haren et al. (2014); figure 19(a)
shows the results, exploiting fits of their 1-D data profiles. The details of the fits are
provided in appendix A. A large-scale layering of the density field is evident in R,
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FIGURE 19. Approximations to the functional relationships R(ψ) and L(ψ) for
approximated profiles taken from (a) the observational data of van Haren et al. (2014),
and experimental data of (b) Tedford et al. (2009) and (c) Caulfield et al. (1995).
Relations plotted for fits to the data; see appendix A for details of the fits.

and the functional form of L(ψ) is clearly of KH type. Note that a suitable choice for
the phase speed of the observed structures is crucial in the construction; in producing
figure 19(a), we adjusted the supposed phase speed to increase the degree of overlap
between the two branches evident in L(ψ).

Figure 19 also plots approximate relationships for observations of HWI (Tedford
et al. 2009) and TCI (Caulfield et al. 1995) from wave-tank experiments. The fits to
the observed 1-D profiles used for the constructions are again given in appendix A.
For the data of Tedford et al. (2009), the three-branch structure of R is evident, as
are the two distinct branches of L connected by a turning point at the minimum value
of ψ . The form of L is much smoother here because the mean profiles provided do
not contain much vertical structure. Nevertheless, both R and L are similar to the
theoretical relations for HWI. For the data of Caulfield et al. (1995), we see a clear
three-layer structure in R, and a characteristic humped structure in L, as expected for
a nonlinearly saturated TCI.
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6. Concluding remarks
We have performed a large number of 2-D numerical simulations of the Taylor–

Caulfield instability (TCI) which span the parameter space over which it arises in
order to flesh out our knowledge of its nonlinear evolution. The simulations show a
dichotomy between the behaviour at small or large bulk Richardson number J. For
small J the billows formed by the saturation of the TCI modify the background flow
to render the flow susceptible to further TCI, leading to an array of billows with
cascading wavelength. At large J, large-amplitude gravity waves on each density
interface interact nonlinearly to produce significant horizontal density gradients
and vorticity filaments. These new flow features very rapidly break down through
small-scale KHI, generating a large amount of mixing. In addition, a previously
observed late-time appearance of parasitic Holmboe waves is found for flows with
sufficiently large Prandtl number.

Although our investigation has been primarily two-dimensional, a limited investiga-
tion of the 3-D behaviour of TCI at large k and J indicated that the breakdown
via small-scale KHI of nonlinear travelling waves is robust to weak noisy 3-D
perturbation. Nevertheless, further examination of TCI is needed in three dimensions
in order to fully characterise its mixing characteristics and for the full range of
secondary dynamics to be explored.

We have also provided two diagnostics to distinguish TCI from Kelvin–Helmholtz
(KHI) and Holmboe-wave (HWI) instabilities. The first diagnostic is based on the
properties of the linear normal modes and considers their conserved pseudomomentum.
The second diagnostic applies to the nonlinear steady states that can be found after
the saturation of the linear instability and is based on the streamfunction relations
characterising steady nonlinear waves.

The pseudomomentum M of a linear disturbance must vanish exactly for an unstable
normal mode and can be split into components stemming from the background
vorticity and density gradients. This decomposition distinguishes the mechanisms
exploited by the various kinds of flow instability and can be used to identify KHI,
HWI or TCI for an arbitrary flow profile. This new classification is more robust than
existing classification schemes since it follows directly from the conservation laws of
the system.

The nonlinear diagnostic distinguishes the steady structures that appear after the
saturation of the linear instability. We demonstrated the feasibility of applying this
methodology to distinguish the three instabilities based only on 1-D profiles of the
data, as might be measured observationally or experimentally. Approximate relations
found for observations of KHI in ocean currents, as well as experimental observations
of HWI and TCI in wave tanks, revealed the same characteristic streamfunction
relations as the 2-D numerical simulations.

Supplementary movies
Supplementary movies are available at https://doi.org/10.1017/jfm.2018.827.

Appendix A
For the data of van Haren et al. (2014), we use the provided 1-D profile of density

ρ, and approximate the streamfunction via the North–South velocity V (in their
notation) as ψ ≈

∫
[V − V(−4450)] dz. We use the provided smooth profile of the

gradient Richardson number Ri(z) = N2(z)/S2(z), from which we back-out S2 after
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calculating N2 from ρ using ρ0 = 48.1275 and then approximating the vorticity as
ζ ≈−

√
ε≈−

√
2S2. Note that another approximation of the vorticity could be ζ ≈−Vz

and that both of these estimates are rather crude. We chose to use the dissipation
estimate since (at least in a global integral sense) it contains all contributions to the
vorticity rather than that just due to one velocity component. To approximate their
profiles, we use

V ≈ 50sech2

(
z+ 4550

120

)
− 15, (A 1)

Ri ≈ 0.2+ 0.4sech2

(
z+ 4565

20

)
+ 1.7sech2

(
z+ 4225

20

)
+ 0.2sech2

(
z+ 4350

50

)
, (A 2)

ρ ≈ 48.1275− 0.0175 tanh
(

z+ 4425
50

)
, (A 3)

for vertical coordinate z=−4650 to −4225. To avoid an awkward issue of sign, we
plot L=−

√
2S2 − (z+ 4400)N2/V̄ in figure 19.

We approximate the profile of horizontal velocity and density of Tedford et al.
(2009) as

u= 0.02 tanh[50(z− 0.05)] − 0.005, (A 4)
ρ = 1.4− tanh[300(z− 0.055)], (A 5)

for vertical coordinate z = 0.05 to 0.1. We approximate the streamfunction as ψ ≈∫
[u− ū] dz where ū is the mean of u, and the vorticity as ζ ≈−uz. We also set ρ0=

1.205. We plot L= ζ − g(z− z̄)dρ/dψ/ρ0, where z̄ is the z-location where u(z̄)= ū.
The profile data of Caulfield et al. (1995) is approximated as

u = 0.045− 0.055sech2
[35(z− 0.015)], (A 6)

ρ = 1.0323− ( 1.775× 10−3 tanh[1000(z− 0.058)] + 1.6× 10−3

× tanh[1000(z− 0.043)]), (A 7)

for vertical coordinate z= 0 to 0.1. We approximate the streamfunction as ψ ≈
∫
[u−

u(0.0505)] dz and the vorticity as ζ ≈ −uz. We also set ρ0 = 1.0325. We plot L =
ζ − (g/ρ0)(z− 0.0505)dρ/dψ to avoid issues of sign.
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