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Abstract

Gromov–Wasserstein distances were proposed a few years ago to compare distributions
which do not lie in the same space. In particular, they offer an interesting alternative to
the Wasserstein distances for comparing probability measures living on Euclidean spaces
of different dimensions. We focus on the Gromov–Wasserstein distance with a ground
cost defined as the squared Euclidean distance, and we study the form of the optimal
plan between Gaussian distributions. We show that when the optimal plan is restricted
to Gaussian distributions, the problem has a very simple linear solution, which is also
a solution of the linear Gromov–Monge problem. We also study the problem without
restriction on the optimal plan, and provide lower and upper bounds for the value of the
Gromov–Wasserstein distance between Gaussian distributions.
Keywords: Optimal transport; Wasserstein distance; Gromov–Wasserstein distance;
Gaussian distributions
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1. Introduction

Optimal transport (OT) theory has nowadays become a major tool for comparing probability
distributions. It has been increasingly used in recent years in various applied fields such as
economics [11], image processing [20, 21], machine learning [4, 5], and, more generally, data
science [18], with applications to domain adaptation [9] or generative models [3, 12], to name
just a few.

Given two probability distributions μ and ν on two Polish spaces (X , dX ) and (Y, dY ) and
a positive lower semi-continuous cost function c : X ×Y →R

+, optimal transport focuses on
solving the following optimization problem:

inf
π∈�(μ,ν)

∫
X×Y

c(x, y) dπ (x, y), (1.1)
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Gromov–Wasserstein distances between Gaussian distributions 1179

where �(μ, ν) is the set of measures on X ×Y with marginals μ and ν. When X and Y
are equal and Euclidean, typically R

d, and c(x, y) = ‖x − y‖p with p ≥ 1, (1.1) induces a dis-
tance over the set of measures with finite moment of order p, known as the p-Wasserstein
distance Wp:

Wp(μ, ν) =
(

inf
π∈�(μ,ν)

∫
Rd×Rd

‖x − y‖p dπ (x, y)

)1/p

,

or, equivalently, Wp
p (μ, ν) = infX∼μ,Y∼ν E[‖X − Y‖p], where the notation X ∼ μ means that

X is a random variable with probability distribution μ. It is known that (1.1) always admits
a solution [22, 26, 27], i.e. the infinimum is always reached. Moreover, in the case of W2, it
is known [6] that if μ is absolutely continuous, then the optimal transport plan π∗ is unique
and has the form π∗ = (Id, T)#μ, where # is the push-forward operator and T : Rd →R

d is an
application called the optimal transport map, satisfying T#μ = ν. The 2-Wasserstein distance
W2 admits a closed-form expression [10, 24] when μ =N (m0, �0) and ν =N (m1, �1) are
two Gaussian measures with means m0 ∈R

d, m1 ∈R
d and covariance matrices �0 ∈R

d×d and
�1 ∈R

d×d; this is given by

W2
2 (μ, ν) = ‖m1 − m0‖2 + tr

(
�0 + �1 − 2

(
�0

1/2�1�0
1/2
)1/2

)
, (1.2)

where, for any symmetric semi-definite positive M, M1/2 is the unique symmetric semi-definite
positive square root of M. Moreover, if �0 is non-singular, then the optimal transport map T is
affine and is given, for all x ∈R

d, by

T(x) = m1 + �0
−1/2(�0

1/2�1�0
1/2)1/2

�0
−1/2(x − m0), (1.3)

and the corresponding optimal transport plan π∗ is a degenerate Gaussian measure.
For some applications such as shape matching or word embedding, an important limitation

of classical OT lies in the fact that it is not invariant to rotations and translations, or, more
generally, to isometries. Moreover, OT implies that we can define a relevant cost function to
compare spaces X and Y . Thus, when, for instance, μ is a measure on R

2 and ν a measure on
R

3, it is not straightforward to design a cost function c : R2 ×R
3 →R and so one cannot easily

define an OT distance to compare μ with ν. To overcome these limitations, several extensions
of OT have been proposed [1, 7, 17]. Among them, the most famous one is probably the
Gromov–Wasserstein (GW) problem [16]: given two Polish spaces (X , dX ) and (Y, dY ), each
endowed respectively with probability measures μ and ν, and given two measurable functions
cX : X ×X →R and cY : Y ×Y →R, it aims at finding

GWp(cX , cY , μ, ν) =
(

inf
π∈�(μ,ν)

∫
X 2×Y2

|cX (x, x′) − cY (y, y′)|p dπ (x, y) dπ (x′, y′)
)1/p

,

with p ≥ 1. As for classic OT, it can be shown that this equation always admits a solu-
tion (see [25]). The GW problem can be seen as a quadratic optimization problem in π , as
opposed to OT, which is a linear optimization problem in π . When cX = dq

X and cY = dq
Y

with q ≥ 1, then GWp induces a distance over the space of metric measure spaces (i.e. the
triplets (X , dX , μ)) quotiented by the strong isomorphisms [18, 25]. (We say that (X , dX , μ)
is strongly isomorphic to (Y, dY , ν) if there exists a bijection φ : X →Y such that φ is an isom-
etry (dY (φ(y), φ(y′)) = dX (x, x′)), and φ#μ = ν.) The fundamental metric properties of GWp

have been studied in depth in [8, 16, 23]. In the Euclidean setting, when X =R
m, Y =R

n,
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with m not necessarily being equal to n, and for the natural choice of costs cX = ‖ · ‖2
Rm and

cY = ‖ · ‖2
Rn , where ‖ · ‖Rm means the Euclidean norm on R

m, it can be easily shown that
GW2(cX , cY , μ, ν) is invariant to isometries. With a slight abuse of notation, we will write in
the following GW2(μ, ν) instead of GW2(‖.‖2

Rm , ‖.‖2
Rn , μ, ν).

In this work we focus on the problem of Gromov–Wasserstein between Gaussian mea-
sures. Given μ =N (m0, �0), with m0 ∈R

m and with covariance matrix �0 ∈R
m×m, and

ν =N (m1, �1), with m1 ∈R
n and with covariance matrix �1 ∈R

n×n, we aim to solve

GW2
2 (μ, ν) = inf

π∈�(μ,ν)

∫ ∫ (‖x − x′‖2
Rm − ‖y − y′‖2

Rn

)2 dπ (x, y) dπ (x′, y′), (1.4)

or, equivalently, GW2
2 (μ, ν) = infX,Y,X′,Y ′∼π⊗π E

[
(‖X − X′‖2

Rm − ‖Y − Y ′‖2
Rn )2

]
, where, for

x, x′ ∈R
m and y, y′ ∈R

n, (π ⊗ π )(x, y, x′, y′) = π (x, y)π (x′, y′). In particular, can we find
equivalent formulas to (1.2) and (1.3) in the case of Gromov–Wasserstein? In Section 2 we
derive an equivalent formulation of the Gromov–Wasserstein problem. This formulation is not
specific to Gaussian measures but to all measures with finite order-4 moment. It takes the form
of a sum of two terms depending respectively on co-moments of order 2 and 4 of π . Then, in
Section 3, we derive a lower bound by simply optimizing both terms separately. In Section 4
we show that the problem restricted to Gaussian optimal plans admits an explicit solution, and
this solution is closely related to principal component analysis (PCA). This yields an upper
bound to the general problem. In Section 5 we study the tightness of the bounds found in
the previous sections, and we exhibit a particular case where these upper and lower bounds
coincide, which provides an exact computation of GW2

2 (μ, ν) and the optimal plan π∗ which
achieves it. Finally, Section 6 discusses the form of the solution in the general case, and the
possibility that the optimal plan between two Gaussian distributions is always Gaussian.

1.1. Notation

We define in the following some of the notation that will be used in the paper:

• The notation Y ∼ μ means that Y is a random variable with probability distribution μ.

• If μ is a positive measure on X and T : X →Y is an application, T#μ stands for
the push-forward measure of μ by T , i.e. the measure on Y such that, for all A ∈Y ,
(T#μ)(A) = μ(T−1(A)).

• If X and Y are random vectors on R
m and R

n, we denote by Cov(X, Y) the matrix of size
m × n of the form E

[
(X −E[X])(Y −E[Y])


]
.

• tr(M) denotes the trace of a matrix M.

• ‖M‖F stands for the Frobenius norm of a matrix M, i.e. ‖M‖F =√
tr(M
M).

• rk(M) stands for the rank of a matrix M.

• In is the identity matrix of size n.

• Ĩn stands for any matrix of size n of the form diag(( ± 1)i≤n).

• Suppose n ≤ m. For A ∈R
m×m, we denote by A(n) ∈R

n×n the submatrix containing the
n first rows and the n first columns of A.

• Suppose n ≤ m. For A ∈R
n×n, we denote by A[m] ∈R

m×m the matrix of the form
(

A 0
0 0

)
.
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• We denote by Sn(R) the set of symmetric matrices of size n, by S+
n (R) the set of semi-

definite positive matrices, and by S++
n (R) the set of definite positive matrices.

• 1n,m = (1)i≤n,j≤m denotes the matrix of ones with n rows and m columns.

• ‖x‖Rn stands for the Euclidean norm of x ∈R
n. We will write ‖x‖ when there is no

ambiguity about the dimension.

• 〈x, x′〉n stands for the Euclidean inner product in R
n between x and x′.

2. Derivation of the general problem

In this section we derive an equivalent formulation of problem (1.4) which takes the form of
a functional of co-moments of order 2 and 4 of π . (We say that two optimization problems are
equivalent if the solutions of one are readily obtained from the solutions of the other, and vice
versa). This formulation is not specific to Gaussian measures but to all measures with finite
fourth-order moment.

Theorem 2.1. Let μ be a probability measure on R
m with mean vector m0 ∈R

m and covari-
ance matrix �0 ∈R

m×m such that
∫ ‖x‖4 dμ < +∞, and ν a probability measure on R

n with
mean vector m1 and covariance matrix �1 ∈R

n×n such that
∫ ‖y‖4 dν < +∞. Let P0, D0 and

P1, D1 be respective diagonalizations of �0 ( = P0D0P

0 ) and �1 ( = P1D1P


1 ). Let us define
T0 : x ∈R

m �→ P

0 (x − m0) and T1 : y ∈R

n �→ P

1 (y − m1). Then problem (1.4) is equivalent to

sup
X∼T0#μ,Y∼T1#ν

∑
i,j

Cov(X2
i , Y2

j ) + 2‖Cov(X, Y)‖2
F , (2.1)

where X = (X1, X2, . . . , Xm)
, Y = (Y1, Y2, . . . , Yn)
, and ‖ · ‖F is the Frobenius norm. More
precisely, (X,Y) is optimal for (2.1) if and only if the law of (T−1

0 (X), T−1
1 (Y)) is optimal for

(1.4).

This theorem is a direct consequence of the two following intermediary results.

Lemma 2.1. We denote by Om = {O ∈R
m×m | O
O = Im} the set of orthogonal matrices of

size m. Let μ and ν be two probability measures on R
m and R

n. Let Tm : x �→ Omx + xm and
Tn : y �→ Ony + yn be two affine applications with xm ∈R

m, Om ∈Om, yn ∈R
n, and On ∈On.

Then GW2(Tm#μ, Tn#ν) = GW2(μ, ν).

Lemma 2.2. (Vayer, 2020 [25].) Suppose there exist some scalars a, b, c such that cX (x, x′) =
a‖x‖2

Rm + b‖x′‖2
Rm + c〈x, x′〉m, where 〈·, ·〉m denotes the inner product on R

m, and cY (y, y′) =
a‖y‖2

Rn + b‖y′‖2
Rn + c〈y, y′〉n. Let μ and ν be two probability measures respectively on R

m

and R
n. Then GW2

2 (cX , cY , μ, ν) = Cμ,ν − 2 supπ∈�(μ,ν) Z(π ), where Cμ,ν = ∫
c2
X dμ dμ +∫

c2
Y dν dν − 4ab

∫ ‖x‖2
Rm‖y‖2

Rn dμ dν and

Z(π ) = (a2 + b2)
∫

‖x‖2
Rm‖y‖2

Rn dπ (x, y) + c2
∥∥∥∥
∫

xy
 dπ (x, y)

∥∥∥∥
2

F

+ (a + b)c
∫ (‖x‖2

Rm〈EY∼ν[Y], y〉n + ‖y‖2
Rn〈EX∼μ[X], x〉m

)
dπ (x, y). (2.2)

Proof of Theorem 2.1. Using Lemma 2.1, we can focus without any loss of gener-
ality on centered Gaussian measures with diagonal covariance matrices. Thus, defining
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T0 : x ∈R
m �→ P


0 (x − m0) and T1 : y ∈R
n �→ P


1 (y − m1), and then applying Lemma 2.2 on
GW2(T0#μ, T1#ν) with a = 1, b = 1, and c = −2, while remarking that the last term in (2.2) is
null because EX∼T0#μ[X] = 0 and EY∼T1#ν[Y] = 0, it follows that problem (1.4) is equivalent
to

sup
π∈�(T0#μ,T1#ν)

∫
‖x‖2

Rm‖y‖2
Rn dπ (x, y) + 2

∥∥∥∥
∫

xy
 dπ (x, y)

∥∥∥∥
2

F
.

Since T0#μ and T1#ν are centered, we have that
∫

xy
 dπ (x, y) = Cov(X, Y), where X ∼ T0#μ

and Y ∼ T1#ν. Furthermore, it can easily be computed that

∫
‖x‖2

Rm‖y‖2
Rn dπ (x, y) =

∑
i,j

Cov(X2
i , Y2

j ) +
∑
i,j

E[X2
i ]E[Y2

j ].

Since the second term does not depend on π , we get that problem (1.4) is equivalent to
problem (2.1). �

The left-hand term of (2.1) is closely related to the sum of symmetric co-kurtosis and so
depends on co-moments of order 4 of π . On the other hand, the right-hand term is directly
related to the co-moments of order 2 of π . For this reason, problem (2.1) is hard to solve
because it involves simultaneously optimizing the co-moments of order 2 and 4 of π and so
knowing the probabilistic rule which links them. This rule is well known when π is Gaussian
(the Isserlis lemma), but this is not the case in general to the best of our knowledge and there
is no reason for the solution of problem (2.1) to be Gaussian.

3. Study of the general problem

Since problem (2.1) is hard to solve because of its dependence on co-moments of order 2 and
4 of π , one can optimize both terms separately in order to find a lower bound for GW2(μ, ν).
In the rest of the paper we suppose for convenience and without any loss of generality that
n ≤ m.

Theorem 3.1. Suppose, without any loss of generality, that n ≤ m. Let μ =N (m0, �0) and
ν =N (m1, �1) be two Gaussian measures on R

m and R
n. Let P0, D0 and P1, D1 be the respec-

tive diagonalizations of �0( = P0D0P

0 ) and �1( = P1D1P


1 ) which sort the eigenvalues in
decreasing order. We suppose that �0 is non-singular. A lower bound for GW2(μ, ν) is then
GW2

2 (μ, ν) ≥ LGW2
2 (μ, ν), where

LGW2
2 (μ, ν) = 4(tr(D0) − tr(D1))2 + 4(‖D0‖F − ‖D1‖F )2 + 4‖D(n)

0 − D1‖2
F

+ 4
(‖D0‖2

F − ‖D(n)
0 ‖2

F
)
. (3.1)

The proof of this theorem is divided into smaller intermediary results. We first recall the
Isserlis lemma (see [14]), which allows us to derive the co-moments of order 4 of a Gaussian
distribution as a function of its co-moments of order 2.

Lemma 3.1. (Isserlis, 1918 [14].) Let X be a zero-mean Gaussian vector of size n. Then,for all
i, j, k, l ≤ n, E[XiXjXkXl] =E[XiXj]E[XkXl] +E[XiXk]E[XjXl] +E[XiXl]E[XjXk].

https://doi.org/10.1017/jpr.2022.16 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.16


Gromov–Wasserstein distances between Gaussian distributions 1183

Then we derive the following general optimization lemmas. The proofs of these two lemmas
are postponed to Appendix A.

Lemma 3.2. Suppose that n ≤ m. Let � be a semi-definite positive matrix of size m + n of the
form

� =
(

�0 K

K
 �1

)
,

with �0 ∈ S++
m (R), �1 ∈ S+

n (R), and K ∈R
m×n. Let P0, D0 and P1, D1 be the respective diag-

onalisations of �0( = P

0 D0P0) and �1( = P


1 D1P1) which sort the eigenvalues in decreasing
order. Then

max
�1−K
�−1

0 K∈S+
n (R)

‖K‖2
F = tr

(
D(n)

0 D1
)
, (3.2)

and is achieved at any

K∗ = P

0

⎛
⎝Ĩn(D(n)

0 )
1
2 D

1
2
1

0m−n,n

⎞
⎠ P1, (3.3)

where Ĩn is of the form diag
(
( ± 1)i≤n

)
.

Lemma 3.3. Suppose that n ≤ m. Let � be a semi-definite positive matrix of size m + n of the
form

� =
(

�0 K

K
 �1

)
,

where �0 ∈ S++
m (R), �1 ∈ S+

n (R), and K ∈R
m×n. Let A ∈R

n×m be a matrix with rank 1.

Then max
�1−K
�−1

0 K∈S+
n (R) tr(KA) = [

tr(A�0A
�1)
]1/2

. In particular, if �0 = diag(α) and

�1 = diag(β) with α ∈R
m and β ∈R

n, then

max
�1−K
�−1

0 K∈S+
n (R)

tr(K1n,m) = [
tr(�0)tr(�1)

]1/2
,

with 1n,m = (1)i≤n,j≤m, and is achieved at

K∗ = αβ
[
tr(�0)tr(�1)

]1/2
. (3.4)

Proof of Theorem 3.1. For μ =N (m0, �0) and ν =N (m1, �1), we write P0, D0 and P1, D1
for the respective diagonalizations of �0 and �1 which sort the eigenvalues in decreasing
order. Let T0 : x ∈R

m �→ P

0 (x − m0) and T1 : y ∈R

n �→ P

1 (y − m1). For π ∈ �(T0#μ, T1#ν)

and (X, Y) ∼ π , we denote by � the covariance matrix of π and by �̃ the covariance matrix of
(X2, Y2), with X2 := ([XX
]i,i)i≤m and Y2 := ([YY
]j,j)j≤n. Using Isserlis’ lemma to compute
Cov(X2, X2) and Cov(Y2, Y2), it follows that � and �̃ are of the form

� =
(

D0 K

K
 D1

)
, �̃ =

(
2D2

0 K̃

K̃
 2D2
1

)
.

In order to find a supremum for each term of (2.1), we use a necessary condition for π to be
in �(T0#μ, T1#ν), which is that � and �̃ must be semi-definite positive. To do so, we can use
the equivalent condition that the Schur complements of � and �̃, namely D1 − K
D−1

0 K and
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2D2
1 − 1

2 K̃
D−2
0 K̃, must also be semi-definite positive. Remarking that the left-hand term in

(2.1) can be rewritten as tr(K̃1m,n), we have the following two inequalities:

sup
X∼T0#μ,Y∼T1#ν

∑
i,j

Cov(X2
i , Y2

j ) ≤ max
2D2

1− 1
2 K
D−2

0 K∈S+
n (R)

tr(K̃1n,m), (3.5)

sup
X∼T0#μ,Y∼T1#ν

‖Cov(X, Y)‖2
F ≤ max

D1−K
D−1
0 K∈S+

n (R)
‖K‖2

F . (3.6)

Applying Lemmas 3.2 and 3.3 on both right-hand terms, we get, on one hand,

sup
X∼T0#μ,Y∼T1#ν

‖Cov(X, Y)‖2
F ≤ tr(D(n)

0 D1),

and, on the other hand,

sup
X∼T0#μ,Y∼T1#ν

∑
i,j

Cov(X2
i , Y2

j ) ≤ 2
[
tr(D2

0)tr(D2
1)
]1/2 = 2‖D0‖F‖D1‖F .

Furthermore, using Lemma 2.2, it follows that

GW2
2 (μ, ν)

= Cμ,ν − 4 sup
X∼T0#μ,Y∼T1#ν

(∑
i,j

Cov(X2
i , Y2

j ) +
∑
i,j

E[X2
i ]E[X2

j ] + 2‖Cov(X, Y)|2F
)

≥ Cμ,ν − 8
[
tr(D2

0)tr(D2
1)
]1/2 − 4tr(D0)tr(D1) − 8tr(D(n)

0 D1),

where

Cμ,ν =EU∼N (0,2D0)[‖U‖4
Rm] +EV∼N (0,2D1)[‖V‖4

Rn ] − 4EX∼μ[‖X‖2
Rm]EY∼ν[‖Y‖2

Rn ]

= 8tr(D2
0) + 4(tr(D0))2 + 8tr(D2

1) + 4(tr(D1))2 − 4tr(D0)tr(D1).

Finally,

GW2
2 (μ, ν) ≥ 4(tr(D0))2 + 4(tr(D1))2 − 8tr(D0)tr(D1) + 8tr(D2

0) + 8tr(D2
1)

− 8
[
tr(D2

0)tr(D2
1)
]1/2 − 8tr(D(n)

0 D1)

= LGW2
2 (μ, ν). �

Inequality (3.5) becomes an equality if there exists a plan π ∈ �(T0#μ, T1#ν) such that
for (X, Y) ∼ π ,

∑
Cov(X2

i , Y2
j ) = 2‖D0‖F‖D1‖F . Thanks to Lemma 3.3, we know that

tr(K̃∗1n,m) = 2‖D0‖F‖D1‖F for

K̃∗ = 2α2(β2)


‖D0‖F‖D1‖F ,

where α2 = (α2
1, α2

2, . . . , α2
m) and β2 = (β2

1 , β2
2 , . . . , β2

n ) are the diagonal vectors of D2
0 and

D2
1. However, it does not seem straightforward to exhibit a plan π ∈ �(T0#μ, T1#ν) such that

for (X, Y) ∼ π , Cov(X2, Y2) = K̃∗. An important point to mention is that it can be shown,
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thanks to Isserlis’ lemma, that there does not exist a Gaussian plan in �(T0#μ, T1#ν) with
such symmetric co-moments of order 4.

On the other hand, it can be easily seen that inequality (3.6) is in fact an equality since the
maximal value of ‖Cov(X, Y)‖2

F is reached when the law of (X,Y) is Gaussian and Cov(X, Y)
is of the form (3.3). Moreover, the following lemma shows that if Cov(X, Y) is of the form
(3.3), then the law of (X,Y) is necessarily Gaussian and (X,Y) is in general suboptimal for the
left-hand term in (2.1) (the proof is postponed to Appendix A).

Lemma 3.4. Suppose that n ≤ m. Let X ∼N (0, D0) and Y ∼N (0, D1) be two Gaussian vec-
tors of respective size m and n with diagonal covariance matrices. If Cov(X, Y) is of the form

Cov(X, Y) =
(

Ĩn
(
D(n)

0

)1/2
D1/2

1

0m−n,n

)
,

then Y =
(

ĨnD1/2
1

(
D(n)

0

)−1/2 0n,m−n

)
X, and so (X,Y) is a Gaussian vector and∑

i,j Cov(X2
i , Y2

j ) = 2tr(D(n)
0 D1), where X = (X1, X2, . . . , Xm)
 and Y = (Y1, Y2, . . . , Yn)
.

Thus, there does not exist a plan π ∈ �(T0#μ, T1#μ1) with co-moments of order 2 of the
form (3.3) and with symmetric co-moments of order 4 of the form (3.4), since the former
requires π to be Gaussian and the latter requires π not to be Gaussian. However, the solutions
exhibited in Lemmas 3.2 and 3.3 are not unique, so a plan π may exist which is optimal for
both terms of (2.1) but with co-moments of order 2 of a different form than (3.3) or/and with
symmetric co-moments of order 4 of a different form than (3.4). Thus, we cannot conclude
whether GW2(μ, ν) = LGW2(μ, ν) or GW2(μ, ν) > LGW2(μ, ν).

4. Problem restricted to Gaussian transport plans

In this section we study the following problem, where we constrain the optimal transport
plan to be Gaussian:

GGW2
2 (μ, ν) = inf

π∈�(μ,ν)∩Nm+n

∫ ∫ (‖x − x′‖2
Rm − ‖y − y′‖2

Rn

)2 dπ (x, y) dπ (x′, y′), (4.1)

where Nm+n is the set of Gaussian measures on R
m+n.

Since GGW2 is the Gromov–Wasserstein problem restricted to Gaussian transport plans, it
is clear that (4.1) is an upper bound of (1.4). Combining this result with Theorem 3.1, we get
the following simple but important proposition.

Proposition 4.1. If μ =N (m0, �0) and ν =N (m1, �1), with �0 non-singular, then
LGW2

2 (μ, ν) ≤ GW2
2 (μ, ν) ≤ GGW2

2 (μ, ν).

We exhibit in the following a solution of (4.1) that yields an explicit form for the upper
bound GGW2

2 (μ, ν).

Theorem 4.1. Suppose, without any loss of generality, that n ≤ m. Let μ =N (m0, �0) and ν =
N (m1, �1) be two Gaussian measures on R

m and R
n. Let P0, D0 and P1, D1 be the respective

diagonalizations of �0( = P0D0P

0 ) and �1( = P1D1P


1 ) which sort eigenvalues in decreasing
order. We suppose that �0 is non-singular (μ is not degenerate). Then, problem (4.1) admits a
solution of the form π∗ = (Im, T)#μ with T affine of the form, for all x ∈R

m,

T(x) = m1 + P1AP

0 (x − m0), (4.2)
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where A ∈R
n×m is written as A =

(
ĨnD1/2

1 (D(n)
0 )−1/2 0n,m−n

)
, where Ĩn is of the form

diag(( ± 1)i≤n). Moreover,

GGW2
2 (μ, ν) = 4(tr(D0) − tr(D1))2 + 8‖D(n)

0 − D1‖2
F + 8

(‖D0‖2
F − ‖D(n)

0 ‖2
F
)
. (4.3)

Proof. Since the problem is restricted to Gaussian plans, the left-hand term in (2.1) can be
rewritten as 2‖Cov(X, Y)‖2

F thanks to Lemma 3.1 (Isserlis), and so problem (2.1) in that case
becomes supX∼T0#μ,Y∼T1#ν 4‖Cov(X, Y)‖2

F . Applying Lemma 3.2, we can exhibit a Gaussian
optimal plan π̃∗ ∈ �(T0#μ, T1#ν) with covariance matrix � of the form

� =
(

D0 K∗

K∗
 D1

)
,

with

K∗ =
(

Ĩn
(
D(n)

0

)1/2
D1/2

1

0m−n,n

)
.

Thus, applying Lemma 3.4, it follows directly that π̃∗ is of the form (Im, T̃)#T0#μ, with T̃ lin-

ear of the form T̃(x) = Ax for all x ∈R
m, with A of the form A =

(
ĨnD1/2

1

(
D(n)

0

)−1/2 0n,m−n

)
.

Then, we can deduce the form of the optimal Gaussian plan π∗ ∈ �(μ, ν):

π∗ = (T−1
0 , T−1

1 )#π̃∗

= (T−1
0 , T−1

1 )#(Im, T̃)#T0#μ

= (Im, T−1
1 #T̃#T0)#μ = (Im, T)#μ,

where T is affine of the form, for all x ∈R
m, T(x) = T−1

1 ◦ T̃ ◦ T0(x) = m1 + P1AP

0 (x − m0).

Moreover, using Lemmas 2.2 and 3.2, it follows that

GGW2
2 (μ, ν) = Cμ,ν − 16 sup

X∼T0#μ,Y∼T1#ν

‖Cov(X, Y)‖2
F

= 8tr(D2
0) + 4(tr(D0))2 + 8tr(D2

1) + 4(tr(D1))2 − 4tr(D0)tr(D1) − 16tr(D(n)
0 D1)

= 4(tr(D0) − tr(D1))2 + 8tr
(
(D(n)

0 − D1)2)+ 8
(
tr(D2

0) − tr((D(n)
0 )2)

)
. �

4.1. Link with Gromov–Monge

The previous result generalizes [25, Theorem 4.2.6], which studies the solutions of the linear
Gromov–Monge problem between Gaussian distributions,

inf
T#μ=ν, T linear

∫ ∫ (‖x − x′‖2
Rm − ‖T(x) − T(x′)‖2

Rn

)2 dμ(x) dμ(x′).

Indeed, solutions of this equation necessarily provide Gaussian transport plans π = (Im, T)#μ

if T is linear. Conversely, Theorem 4.1 shows that restricting the optimal plan to be Gaussian
in Gromov–Wasserstein between two Gaussian distributions yields an optimal plan of the form
π = (Im, T)#μ with a linear T , whatever the dimensions m and n of the two Euclidean spaces.
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FIGURE 1. Transport plan πGGW2 solution of problem (4.1) with m = 2 and n = 1. In this case, πGGW2 is
the degenerate Gaussian distribution supported by the affine plane of equation y = TW2 (x), where TW2 is

the classic W2 optimal transport map when the distributions are rotated and centered first.

4.2. Link with PCA

We can easily draw connections between GGW2
2 and PCA. Indeed, we can remark that the

optimal plan can be derived by performing PCA on both distributions μ and ν in order to obtain
distributions μ̃ and ν̃ with zero mean vectors and diagonal covariance matrices with eigenval-
ues in decreasing order (μ̃ = T0#μ and ν̃ = T1#ν), then by keeping only the n first components
in μ̃, and finally by deriving the optimal transport plan which achieves W2

2 between the
obtained truncated distribution and ν̃. In other terms, writing Pn : Rm →R

n as the linear map-
ping which, for x ∈R

m, keeps only its n first components (n-frame), and TW2 as the optimal
transport map such that πW2 = (In, TW2 )#Pn#μ̃ achieves W2(Pn#μ̃, ν̃), it follows that the opti-
mal plan πGGW2 which achieves GGW2(μ̃, ν̃) can be written as πGGW2 = (Im, Ĩn#TW2 #Pn)#μ̃,
where, with an abuse of notation, we write Im (resp. Ĩn) as the map on R

m (resp. Rn) repre-
sented by the similarly denoted matrix. An example of πGGW2 can be found in Figure 1 when
m = 2 and n = 1.

4.3. Case of equal dimensions

When m = n, the optimal plan πGGW2 which achieves GGW2(μ, ν) is closely related to the
optimal transport plan πW2 = (Im, TW2 )#T0#μ. Indeed, πGGW2 can be derived simply by apply-
ing the transformations T0 and T1 to μ and ν respectively, then by computing πW2 between
T0#μ and T1#ν, and finally by applying the inverse transformations T−1

0 and T−1
1 . In other

terms, πGGW2 can be written as πGGW2 = (Im, T−1
1 #Ĩn#TW2 #T0)#μ. An example of transport

between two Gaussian measures in dimension 2 is shown in Figure 2.
As illustrated in Figure 3, the GGW2 optimal transport map TGGW2 defined in (4.2) is not

equivalent to the W2 optimal transport map TW2 defined in (1.3), even when the dimensions m
and n are equal. More precisely, if �0 and �1 can be diagonalized in the same orthonormal
basis with eigenvalues in the same order (decreasing or increasing), then TW2 and TGGW2 are
equivalent (top of Figure 3). On the other hand, if �0 and �1 can be diagonalized in the same
orthonormal basis but with eigenvalues not in the same order, TW2 and TGGW2 will have very
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FIGURE 2. Solution of (4.1) between two Gaussians measures in dimension 2. First the distributions are
centered and rotated. Then a classic W2 transport is applied between the two aligned distributions.

FIGURE 3. Comparison between W2 and GGW2 mappings between empirical distributions. Left:
Two-dimensional source distribution (colored) and target distribution (transparent). Middle: Resulting
mapping of Wasserstein TW2 . Right: Resulting mapping of Gaussian Gromov–Wasserstein TGGW2 . The

colors are added in order to visualize where each sample has been sent.

different behaviors (bottom of Figure 3). Between those two extreme cases, we can say that the
closer the columns of P0 are to being collinear with the columns of P1 (with the eigenvalues
in decreasing order), the more TW2 and TGGW2 will tend to have similar behaviors (middle of
Figure 3).
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4.4. Link with Gromov–Wasserstein with inner product as cost function

If μ and ν are centered Gaussian measures, let us consider the problem

GW2
2 (〈·, ·〉m, 〈·, ·〉n, μ, ν) = inf

π∈�(μ,ν)

∫ ∫
(〈x, x′〉m − 〈y, y′〉n)2 dπ (x, y) dπ (x′, y′). (4.4)

Notice that the above problem is not restricted to Gaussian plans, but the following proposition
shows that in fact its solution is Gaussian.

Proposition 4.2. Suppose m ≤ n. Let μ =N (0, �0) and ν =N (0, �1) be two centered
Gaussian measures respectively on R

m and R
n. Then the solution of problem (4.1) exhibited in

Theorem 4.1 is also a solution of problem (4.4).

Proof. The proof of this proposition is a direct consequence of Lemma 2.2; indeed,
applying it with a = 0, b = 0, and c = 1, it follows that problem (4.4) is equivalent to
supπ∈�(μ,ν)

∥∥ ∫ xy
 dπ (x, y)
∥∥2
F . Since μ and ν are centered, it follows that problem (4.4) is

equivalent to supX∼μ,Y∼ν ‖Cov(X, Y)‖2
F . Applying Lemma 3.2, it follows that the solution

exhibited in Theorem 4.1 is also a solution of problem (4.4). �

5. Tightness of the bounds and particular cases

5.1. Bound on the difference

Proposition 5.1. Suppose, without loss of generality, that n ≤ m. If μ =N (m0, �0) and
ν =N (m1, �1), then

GGW2
2 (μ, ν) − LGW2

2 (μ, ν) ≤ 8‖�0‖F‖�1‖F
(

1 − 1√
m

)
.

To prove this proposition we will use the following technical result (the proof is postponed
to Appendix A).

Lemma 5.1. Let u ∈R
m and v ∈R

m be two unit vectors with non-negative coordinates ordered
in decreasing order. Then u
v ≥ 1/

√
m, with equality if u = (1/

√
m, 1/

√
m, . . . )
 and v =

(1, 0, . . . )
.

Proof of Proposition 5.1. By subtracting (3.1) from (4.3), it follows that

GGW2
2 (μ, ν) − LGW2

2 (μ, ν) = 8
(‖D0‖F‖D1‖F − tr(D(n)

0 D1)
)

= 8
(‖D0‖F‖D[m]

1 ‖F − tr(D0D[m]
1 )

)
, (5.1)

where D[m]
1 = ( D1 0

0 0

) ∈R
m×m. Writing α ∈R

m and β ∈R
m as the vectors of eigenvalues of D0

and D[m]
1 , it follows that GGW2

2 (μ, ν) − LGW2
2 (μ, ν) = 8

(‖α‖‖β‖ − α
β
)= 8‖α‖‖β‖(1 −

u
v), where u = α/‖α‖ and v = β/‖β‖. Applying Lemma 5.1, we get directly that

GGW2
2 (μ, ν) − LGW2

2 (μ, ν) ≤ 8‖D0‖F‖D[m]
1 ‖F

(
1 − 1√

m

)

= 8‖�0‖F‖�1‖F
(

1 − 1√
m

)
.

�
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FIGURE 4. Plot of GGW2
2 (μ, ν) and LGW2

2 (μ, ν) as a function of α2 for μ =N (0, diag(α)), ν =
N (0, β1), α = (α1, α2)
, for (α1, β1) = (1, 1) (left), (α1, β1) = (1, 2) (middle), and (α1, β1) = (1, 10)
(right). We can easily compute using (4.3) and (3.1) that GGW2

2 (μ, ν) = 12α2
2 + 8α2(α1 − β1) + 12(α1 −

β1)2 and LGW2
2 (μ, ν) = 12α2

2 + 8α2(α1 − β1) − 4
[
α2

2 + α2
1

]1/2
β1 + 12(α1 − β1)2 + 8α1β1.

The difference between GGW2
2 (μ, ν) and LGW2

2 (μ, ν) can be seen as the difference
between the right and left terms of the Cauchy–Schwarz inequality applied to the two vec-
tors of eigenvalues α ∈R

m and β ∈R
m. The difference is maximized when the vectors α and

β are the least collinear possible. This happens when the eigenvalues of D0 are all equal and
n = 1 or ν is degenerate of true dimension 1. On the other hand, this difference is null when α

and β are collinear. Between those two extremal cases, we can say that the difference between
GGW2

2 (μ, ν) and LGW2
2 (μ, ν) will be relatively small if the last m − n eigenvalues D0 are

small compared to the n first eigenvalues, and if the n first eigenvalues are close to being pro-
portional to the eigenvalues of D1. An example in the case where m = 2 and n = 1 can be found
in Figure 4.

5.2. Explicit case

As seen before, the difference between GGW2
2 (μ, ν) and LGW2

2 (μ, ν), with μ =N (m0, �0)
and ν =N (m1, �1), is null when the two vectors of eigenvalues of �0 and �1 (sorted in
decreasing order) are collinear. When we suppose �0 non-singular, it implies that m = n
and that the eigenvalues of �1 are proportional to the eigenvalues of �0 (rescaling). This
case includes the more particular case where m = n = 1. In that case, μ =N (m0, σ 2

0 ) and
ν =N (m1, σ 2

1 ), because σ1 is always proportional to σ0.

Proposition 5.2. Suppose m = n. Let μ =N (m0, �0) and ν =N (m1, �1) be two Gaussian
measures on R

m =R
n. Let P0, D0 and P1, D1 be the respective diagonalizations of

�0 ( = P0D0P

0 ) and �1 ( = P1D1P


1 ) which sort the eigenvalues in non-increasing order.
Suppose �0 is non-singular and that a scalar λ ≥ 0 exists such that D1 = λD0. In that case,
GW2

2 (μ, ν) = GGW2
2 (μ, ν) = LGW2

2 (μ, ν) and the problem admits a solution of the form
(Im, T)#μ with T affine of the form, for all x ∈R

m,

T(x) = m1 + √
λP1 ĨmP


0 (x − m0), (5.2)

where Ĩm is of the form diag(( ± 1)i≤m). Moreover,

GW2
2 (μ, ν) = (λ − 1)2

(
4(tr(�0))2 + 8‖�0‖2

F
)

. (5.3)

Proof. From (5.1), GGW2
2 (μ, ν) − LGW22(μ, ν) = 8(‖D0‖F‖D1‖F − tr(D0D1)). Writing

α ∈R
m and β ∈R

m for the eigenvalue vectors of D0 and D1, it follows that
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GGW2
2 (μ, ν) − LGW22(μ, ν) = 8(‖α‖‖β‖ − α
β). Since λ ≥ 0 exists such that D1 = λD0,

we have β = λα, and so α
β = ‖α‖‖β‖. Thus, GGW2
2 (μ, ν) − LGW2

2 (μ, ν) = 0 and, using
Proposition 4.1, we get that GW2

2 (μ, ν) = GGW2
2 (μ, ν) = LGW2

2 (μ, ν). We get (5.2) and (5.3)
by simply reinjecting in (4.2) and (4.3). �

Corollary 5.1. Let μ =N (m0, σ 2
0 ) and ν =N (m1, σ 2

1 ) be two Gaussian measures on R. Then

GW2
2 (μ, ν) = 12

(
σ 2

0 − σ 2
1

)2
, and the optimal transport plan π∗ has the form (I1, T)#μ, with T

affine of the form, for all x ∈R, T(x) = m1 ± (σ1/σ0)(x − m0). Thus, the solution of W2
2 (μ, ν)

is also a solution of GW2
2 (μ, ν).

5.3. Case of degenerate measures

In all the results described above, we have supposed �0 to be non-singular, which means
that μ is not degenerate. Yet, if �0 is not full rank, we can easily extend the previous results
thanks to the following proposition.

Proposition 5.3. Let μ =N (0, D0) and ν =N (0, D1) be two centered Gaussian measures on
R

m and R
n with diagonal covariance matrices D0 and D1 with eigenvalues in decreasing

order. We denote by r = rk(D0) the rank of D0, and we suppose that r < m. Let us define Pr =(
Ir 0r,m−r

) ∈R
r×m. Then GW2

2 (μ, ν) = GW2
2 (Pr#μ, ν), GGW2

2 (μ, ν) = GGW2
2 (Pr#μ, ν),

and LGW2
2 (μ, ν) = LGW2

2 (Pr#μ, ν).

Proof. For r < m, we denote by �r(Rm) the set of vectors x = (x1, . . . , xm)
 of Rm such that
xr+1 = · · · = xm = 0. For π ∈ �(μ, ν), we can remark that for any Borel set A ⊂R

m \ �r(Rm),
and any Borel set B ⊂R

n, we have π (A, B) = 0 and so

GW2
2 (μ, ν) = inf

π∈�(μ,ν)

∫
Rm×Rn

∫
Rm×Rn

(‖x − x′‖2
Rm − ‖y − y′‖2

Rm

)2 dπ (x, y) dπ (x′, y′)

= inf
π∈�(μ,ν)

∫
�r(Rm)×Rn

∫
�r(Rm)×Rn

(‖x − x′‖2
Rm − ‖y − y′‖2

Rm

)2 dπ (x, y) dπ (x′, y′)

= inf
π∈�(μ,ν)

∫
�r(Rm)×Rn

∫
�r(Rm)×Rn

(‖Pr(x − x′)‖2
Rr − ‖y − y′‖2

Rm

)2 dπ (x, y) dπ (x′, y′).

Now, observe that, for π ∈ �(μ, ν), (Pr, In)#π ∈ �(Pr#μ, ν). It follows that

GW2
2 (μ, ν) ≤ inf

π∈�(Pr#μ,ν)

∫
Rr×Rn

∫
Rr×Rn

(‖x − x′‖2
Rr − ‖y − y′‖2

Rm

)2 dπ (x, y) dπ (x′, y′)

= GW2
2 (Pr#μ, ν).

Conversely, since μ has no mass outside of �r(Rm), P

r #Pr#μ = μ, which implies that for

π ∈ �(Pr#μ, ν), (P

r , In)#π ∈ �(μ, ν). It follows that

GW2
2 (Pr#μ, ν)

= inf
π∈�(Pr#μ,ν)

∫
Rr×Rn

∫
Rr×Rn

(‖x − x′‖2
Rr − ‖y − y′‖2

Rm

)2 dπ (x, y) dπ (x′, y′)
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= inf
π∈�(Pr#μ,ν)

∫
Rr×Rn

∫
Rr×Rn

(‖P

r (x − x′)‖2

Rr − ‖y − y′‖2
Rm

)2 dπ (x, y) dπ (x′, y′)

≤ inf
π∈�(μ,ν)

∫
Rm×Rn

∫
Rm×Rn

(‖x − x′‖2
Rr − ‖y − y′‖2

Rm

)2 dπ (x, y) dπ (x′, y′)

≤ GW2
2 (μ, ν).

The exact same reasoning can be made in the case of GGW2. Moreover, it can be easily
seen when looking at (3.1) that LGW2

2 (μ, ν) = LGW2
2 (Pr#μ, ν). �

Thus, when �0 is not full rank, we can apply Proposition 5.3 and consider directly the
Gromov–Wasserstein distance between the projected (non-degenerate) measure Pr#μ on R

r

and ν, and so Proposition 4.1 still holds when μ is degenerate.
In the case of GGW2, an explicit optimal transport plan can still be exhibited. In the follow-

ing, we denote by r0 and r1 the ranks of �0 and �1, and we suppose without loss of generality
that r0 ≥ r1, but this time not necessarily that m ≥ n. If μ =N (m0, �0) and ν =N (m1, �1)
are two Gaussian measures on R

m and R
n, and (P0, D0) and (P1, D1) are the respective diago-

nalizations of �0 ( = P0D0P

0 ) and �1 ( = P1D1P


1 ) which sort the eigenvalues in decreasing
order, an optimal transport plan which achieves GGW2(μ, ν) is of the form π∗ = (Im, T)#μ

with, for all x ∈R
m, T(x) = m1 + P1AP


0 (x − m0), where A ∈R
n×m is of the form

A =
(

Ĩr1 (D(r1)
1 )1/2(D(r1)

0 )−1/2 0r1,m−r1

0n−r1,r1 0n−r1,m−r1

)
,

where Ĩr1 is any matrix of the form diag(( ± 1)i≤r1 ).

6. Behavior of the empirical solution

In this section we perform a simple experiment to illustrate the behavior of the solution
of the Gromov–Wasserstein problem. In this experiment, we draw independently k samples
(Xj)j≤k and (Yi)i≤k from, respectively, μ =N (0, diag(α)) and ν =N (0, diag(β)), with α ∈R

m

and β ∈R
n. Then we compute the Gromov–Wasserstein distance between the two histograms

X and Y with the algorithm proposed in [19] using the Python Optimal Transport library (acces-
sible at https://pythonot.github.io/index.html). In Figure 5, we plot the first coordinates of the
samples Yi as a function of the the first coordinate of the samples Xj they have been assigned
to by the algorithm (blue dots). We also draw the line y = ±√

βx to compare with the the-
orical solution of the Gaussian restricted problem (orange line) for k = 2000, α = (1, 0.1)
,
and β = 2 (top left); k = 2000, α = (1, 0.1)
, and β = (2, 0.3)
 (top right); k = 2000,
α = (1, 0.1, 0.01)
, and β = 2 (middle left); k = 7000, α = (1, 0.3), and β = 2 (middle right);
k = 7000, α = (1, 0.1)
, and β = (2, 1)
 (bottom left); and k = 7000, α = (1, 0.3, 0.1), and
β = 2 (bottom right). Observe that the empirical solution seems to be behaving in exactly the
same way as the theoretical solution exhibited in Theorem 4.1 as soon as α and β are close
to being collinear. However, when α and β are further away from collinearity, determining
the behavior of the empirical solution becomes more complex. Solving Gromov–Wasserstein
numerically, even approximately, is a particularly hard task, therefore we cannot conclude
whether the empirical solution does not behave in the same way as the theorical solution exhib-
ited in Theorem 4.1 or whether the algorithm has not converged in these more complex cases.
This second assumption seems to be more likely because it seems that increasing the number
of points k reduces the gap between the blue dots and the orange line. Thus, we conjecture that
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FIGURE 5. Plot of the first coordinate of samples Yi as a function of the the first coordinate of their
assigned samples Xj (blue dots) and the line y = ±√

βx (orange line) for k = 2000, α = (1, 0.1)
, and
β = 2 (top left); k = 2000, α = (1, 0.1)
, and β = (2, 0.3)
 (top right); k = 2000, α = (1, 0.1, 0.01)
,
and β = 2 (middle left); k = 7000, α = (1, 0.3), and β = 2 (middle right); k = 7000, α = (1, 0.1)
, and

β = (2, 1)
 (bottom left); and k = 7000, α = (1, 0.3, 0.1), and β = 2 (bottom right).

the optimal plan which achieves GGW2(μ, ν) is also a solution of the non-restricted problem
GW2(μ, ν), and that GW2(μ, ν) = GGW2(μ, ν).

7. Conclusion

We have exhibited lower and upper bounds for the Gromov–Wasserstein distance (with a
squared ground distance) between Gaussian measures living on different Euclidean spaces. We
have also studied the tightness of the provided bounds, both theoretically and numerically. The
upper bound is obtained through the study of the problem with the additional restriction that
the optimal plan itself is Gaussian. We have shown that this particular case has a very simple
closed-form solution, which can be described as first performing PCA on both distributions
and then deriving the optimal linear plan between these aligned distributions. We conjecture
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that the linear solution exhibited when adding this restriction might also be the solution of the
unconstrained problem.

Appendix A. Proofs of the lemmas

A.1. Proof of Lemma 3.2

Proof. The proof is inspired from the proof of (1.2) as provided in [13]. We want to max-
imize tr(K
K) with the constraint that � is semi-definite positive. Let S = �1 − K
�−1

0 K
(Schur complement); problem (3.2) can be written as minS∈S+

n (R) −tr(K
K). For a given

S, the set of feasible K is the set of K such that K
�−1
0 K = �1 − S. Since �0 ∈ S++

m (R),
K
�−1

0 K ∈ S+
n (R) and so �1 − S ∈ S+

n (R). We denote by r the rank of K
�−1
0 K. We can

observe that r ≤ n ≤ m, where the left-hand inequality follows from the fact that rk(AB) ≤
min{rk(A), rk(B)}. Then, �1 − S can be diagonalized,

�1 − S = K
�−1
0 K = U�2U
 = Ur�

2
r U


r , (A.1)

with �2 = diag(λ2
1, . . . , λ2

r , 0, . . . , 0), �2
r = diag(λ2

1, . . . , λ2
r ), and Ur ∈Vr(Rn) := {M ∈

R
n×r | M
M = Ir} (Stiefel manifold [15]) such that U = (

Ur Un−r
)
. From (A.1), we can

deduce that (�−1/2
0 KUr�

−1
r )
�

−1/2
0 KUr�

−1
r = Ir. We can set Br = �

−1/2
0 KUr�

−1
r such that

Br ∈Vr(Rm), and deduce that KUr = �
1/2
0 Br�r. Moreover, since U


m−rK
�−1
0 KUm−r = 0 and

�0 ∈ S++
m (R), it follows that KUn−r = 0 and so

K = KUU
 = KUrU

r = �

1
2
0 Br�rU


r . (A.2)

We can write tr(K
K) as a function of Br:

tr(K
K) = tr(Ur�rB

r �0Br�rU


r ) = tr(U

r Ur�rB


r �0Br�r) = tr(�2
r B


r �0Br).

Thus, for a given S, the set of K such that K
�−1
0 K = �1 − S is parametrized by the

r-frame Br. We want to find Br which maximizes tr(K
K) for a given S. This problem can
be rewritten as

min
Br∈Vr(Rm)

−tr
(
�2

r B

r �0Br

)
. (A.3)

The following is an adaptation of the proof of [2, Proposition (3.1)] for when Br is not a squared
matrix. The Lagrangian of problem (A.3) can be written as L(Br, C) = −tr(�2

r B

r �0Br) +

tr(C(B

r Br − Ir)), where C ∈ Sr(R) is the Lagrange multiplier associated with the constraint

B

r Br = Ir (C is symmetric because B


r Br − Ir is symmetric). We can then derive the first-order
condition −2�0Br�

2
r + 2BrC = 0, or, equivalently, �0Br�

2
r B


r = BrCB

r . Since C ∈ Sr(R),

BrCB

r ∈ Sm(R) and �0Br�

2
r B


r ∈ Sm(R). We can deduce that �0 and Br�rB

r commute.

Moreover, since �0 and Br�
2
r B


r are both symmetric, they can be diagonalized in the same
basis. Since Br ∈Vr(Rm), it can be seen as the r first vectors of an orthogonal basis of
R

m. It means there exists a matrix Bm−r such that Br�
2
r B


r = B�2
mB
, where �2

m ∈R
m×m =

diag(λ2
1, . . . , λ2

r , 0, . . . , 0) and B = (
Br Bm−r

)
. Thus, the eigenvalues of Br�

2
r B


r are exactly
the eigenvalues of �2

m. Since �0 and Br�
2
r B


r can be diagonalized in the same basis, we
get that tr(�2

r B

r �0Br) = tr(�0Br�

2
r B


r ) = tr(D0�̃m), where �̃m is a diagonal matrix with the
same eigenvalues as �m, but in a different order. Now, it can easily be seen that the optimal
value of (A.3) is reached when Br is a permutation matrix which sorts the eigenvalues of �m

in decreasing order.
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Thus, for a given S, the maximum value of tr(K
K) is tr(D0�̃m(S)). We can now establish
for which S, tr(D0�̃m(S)) is optimal. For a given S, we denote by λ1, . . . , λn the eigenvalues of
�1 − S and by β1, . . . , βn the eigenvalues of �1 ordered in decreasing order. Since S ∈ S+

n (R),
for all x ∈R

n, the following inequality holds: x
(�1 − S)x ≤ x
�1x. This inequality still holds
when restricted to any subspace of Rn. Using the Courant–Fischer theorem, we can conclude
that, for all i ≤ n, λi ≤ βi. Thus, the optimal value of tr(D0�̃m(S)) is reached when S = 0 and
�̃m(0) = ( D1 0

0 0

)
, and so tr(D0�̃m(0)) = tr(D(n)

0 D1). Let

A =
(

Ĩn
(
D(n)

0

)1/2
D1/2

1

0m−n,n

)
,

with Ĩn of the form diag(( ± 1)i≤n)). It can be easily verified that A
D−1
0 A = D1 and, if K∗ =

P

0 AP1, K∗
�−1

0 K∗ = P

1 A
P0�

−1
0 P


0 AP1 = P

1 A
D−1

0 AP1 = P

1 D1P1 = �1, and K∗
K∗

has the same eigenvalues as A
A and tr(A
A) = tr(D(n)
0 D1). �

A.2. Proof of Lemma 3.3

In order to prove Lemma 3.3 we will use the following lemma, demonstrated by Anstreicher
and Wolkowicz [2].

Lemma A.1. (Anstreicher and Wolkowicz, 1998 [2])Let �0 and �1 be two symmetric matrices
of size n. We denote by �0 = P0�0P


0 and �1 = P1�1P

1 their respective diagonalization such

that the eigenvalues of �0 are sorted in non-increasing order and the eigenvalues of �1 are
sorted in increasing order. Then minPP
=In

tr
(
�0P�1P
)= tr(�0�1), and it is achieved for

P∗ = P0P

1 .

Proof of Lemma 3.3. We proceed in the same way as before: first, we derive the expres-
sion of the optimal value for a given S = �1 − K
�−1

0 K, then we determine for which S
this expression is maximum. The start of the proof is exactly the same as the proof of
(3.2), up until (A.2). We diagonalize �1 − S = K
�−1

0 K = Ur�rU

r , where r is the rank of

K
�−1
0 K, then we set Br = �

−1/2
0 KUr�

−1
r while observing that Br ∈Vr(Rm), and we deduce

that K = �
1/2
0 Br�rU


r . By reinjecting this expression, it follows that tr(KA) = tr
(
A
K
)=

tr
(
A
Ur�rB


r �
1/2
0

)= tr
(
�

1/2
0 A
Ur�rB


r

)
. For a given S, the problem of finding the optimal

value is parametrized by Br and is minBr∈Vr(Rm) −tr
(
�

1/2
0 A
Ur�rB


r

)
. The Lagrangian of this

problem can be written as L(Br, C) = −tr
(
�

1/2
0 A
Ur�rB


r

)+ tr
(
C
(
B


r Br − Ir
))

, where C ∈
Sr(R) is the Lagrangian multiplier associated with the constraint B


r Br = Ir. We can then derive

the first-order condition, −�
1/2
0 A
Ur�r + 2BrC = 0, or, equivalently, �

1/2
0 A
Ur�rB


r =
2BrCB


r . Since C ∈ Sr(R), 2BrCB

r ∈ Sm(R) and �

1/2
0 A
Ur�rB


r ∈ Sm(R). Moreover, the rank

of �
1/2
0 A
Ur�rB


r is equal to 1 because rk(A) = 1 and rk
(
�

1/2
0 A
Ur�rB


r

)= 0 would imply
that tr(KA) = 0, which cannot be the maximum value of our problem. So there exists a vec-
tor um ∈R

m such that �
1/2
0 A
Ur�rB


r = umu

m . Then we can reinject the value Br in the

expression:

�
1/2
0 A
Ur�rB


r = �
1/2
0 A
Ur�r�

−1
r U


r K
�
−1/2
0

= �
1/2
0 A
UrU


r K
�
−1/2
0

= �
1/2
0 A
K
�

−1/2
0 ,

where we used the fact that K = KUU
 = KUrU

r because KUn−r = 0.
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We therefore have, on one hand, tr(KA) = tr
(
�

1/2
0 A
K
�

−1/2
0

)= tr
(
umu


m

)= u

mum, and

on the other hand,

�
1/2
0 A
K
�

−1/2
0

(
�

1/2
0 A
K
�

−1/2
0

)
 = �
1/2
0 A
K
�−1

0 KAD1/2
0

= �
1/2
0 A
(�1 − S)A�

1/2
0

= umu

mumu


m = u

mumumu


m,

and thus tr
(
�

1/2
0 A
(�1 − S)A�

1/2
0

)= u

mumtr(umu


m) = (u

mum)2 = (tr(KA))2. Then, we can

determine for which S, tr
(
�

1/2
0 A
(�1 − S)A�

1/2
0

)
is maximum:

tr
(
�

1/2
0 A
(�1 − S)A�

1/2
0

)= tr
(
A�0A
(�1 − S)

)= tr(A�0A
�1) − tr(A�0A
S).

Let B = A�0A
. We can observe that B ∈ S+
n (R) with rank 1. Moreover, since S ∈ S+

n (R), it
can be diagonalized, and we denote this as S = PDP
. As before, we first determine the value
of tr(BS) for a given D, and then we determine which D minimizes tr(BS). For a given D, we
want the optimal value of minPP
=Ib

tr(BPDP
).
Since B is symmetric with rank 1, it has only one non null eigenvalue which is equal to its

trace. Using Lemma A.1, we can deduce that minPP
=In
tr(BPDP
) = tr(B)λn, where λn is the

smallest eigenvalue of D. Since S ∈ S+
n (R), the smallest possible value for λn is 0.

If �0 = diag(α), �1 = diag(β), it can easily be seen that tr(1n,m�01m,n�1) = tr(�0)tr(�1).
Thus, if

K = αβ
[
tr(�0)tr(�1)

]1/2
= �01m,n�1[

tr(�0)tr(�1)
]1/2

,

we can observe that

tr(K1n,m) = tr(1n,mK) = tr(1n,m�01m,n�1)[
tr(�0)tr(�1)

]1/2
= [

tr(�0)tr(�1)
]1/2.

Now we must show that S = �1 − K
�−1
0 K ∈ S+

n (R). To do so, we will show that, for all i ≤ n,
the determinant of the principal minor S(i) is positive. We can derive that

S = �1 − βα
�−1
0 αβ


tr(�0)tr(�1)
= �1 − ββ
tr(�0)

tr(�0)tr(�1)
= �1 − ββ


tr(�1)
.

Using the matrix determinant lemma, it follows that, for all i ≤ n,

det(S(i)) =
i∏
k

βk

(
1 − tr(�(i)

1 )

tr(�1)

)
.

Thus, for all i < n, det(S(i)) > 0, and det(S) = 0. We conclude that S ∈ S+
n (R) and the smallest

eigenvalue of S is 0. �

A.3. Proof of Lemma 3.4

Proof. for any i ≤ m and any j ≤ n, the Cauchy–Schwarz inequality tells us that
|Cov(Xi, Yj)| ≤

{
E[X2

i ]E[Y2
j ]
}1/2, with equality if and only if Yj = λXi with λ ∈R. If Cov(X, Y)

is of the form (
Ĩn(D(n)

0 )1/2D1/2
1

0m−n,n

)
,
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then, for all i ≤ n, |Cov(Xi, Yi)| = √
αiβi, where αi =E[X2

i ] and βi =E[Y2
i ]. Thus, for all i ≤ n,

Yi = λiXi with λi ∈R. Since Xi ∼N (0, αi) and Yi ∼N (0, βi), it follows that λi = ±√
βi/αi and

that Y = (
ĨnD1/2

1 (D(n)
0 )−1/2 0n,m−n

)
X. Since Y depends linearly on X, it follows that (X,Y) is

a Gaussian vector. Thus, using Isserlis’ lemma, we can compute that

Cov(X2
i , Y2

j ) =
{

2αiβi if i = j,

0 otherwise,

so that
∑

i,j Cov(X2
i , Y2

j ) = 2tr(D(n)
0 D1). �

A.4. Proof of Lemma 5.1

Proof. For m ≥ 1, let �m denote the set of vectors v = (v1, . . . , vm) of Rm such that v1 ≥ v2 ≥
· · · ≥ vm ≥ 0 and

∑m
i=1 v2

i = 1. We want to prove that, for all u, v ∈ �m,
∑m

i=1 uivi ≥ 1/
√

m.
We proceed by induction on m. For m = 1, it is obviously true since �1 = {1}. Assume now
that m > 1, and that the result is true for m − 1. Let u, v ∈ �m; then, using the result for
(u2, . . . , um)/

(∑m
i=2 u2

i

)1/2 and (v2, . . . , vm)/
(∑m

i=2 v2
i

)1/2 that both belong to �m−1, we
have

m∑
i=1

uivi = u1v1 +
m∑

i=2

uivi ≥ u1v1 + 1√
m − 1

(
m∑

i=2

u2
i

)1/2( m∑
i=2

v2
i

)1/2

= u1v1 + 1√
m − 1

(1 − u2
1)1/2(1 − v2

1)1/2.

Now, since u, v ∈ �m, we have u1, v1 ∈ [1/
√

m, 1]. Let us write F(u1, v1) = u1v1 +
(m − 1)−1/2(1 − u2

1)1/2(1 − v2
1)1/2. We have, for all v1 ∈ [1/

√
m, 1], F(1, v1) = v1 ≥ 1/

√
m and

F(1/
√

m, v1) = (√
1 − v2

1 + v1
)
/
√

m ≥ (1 − v2
1 + v1)/

√
m ≥ 1/

√
m, and computing the partial

derivative of F with respect to u1, we get

∂F

∂u1
(u1, v1) = v1 −

u1

√
1 − v2

1
√

m − 1
√

1 − u2
1

.

This is a decreasing function of u1, with value v1 at u1 = 0 and a value that goes to −∞ when
u1 goes to 1. Therefore, the function F(·, v1) on [0,1] is first increasing and then decreas-
ing, showing that, for all u1 ∈ [1/

√
m, 1], F(u1, v1) ≥ min (F(1/

√
m, v1), F(1, v1)) ≥ 1/

√
m.

Finally, we have thus proved that
∑m

i=1 uivi ≥ 1/
√

m, and moreover the equality is achieved
when the vectors u and v are the vectors (1, 0, . . . , 0) and (1/

√
m, 1/

√
m, . . . , 1/

√
m). �
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