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Abstract It is well known that if X is a CW-complex, then for every weak homotopy equivalence f :
A → B, the map f∗ : [X, A] → [X, B] induced in homotopy classes is a bijection. In fact, up to homotopy
equivalence, only CW-complexes have that property. Now, for which spaces X is f∗ : [B, X] → [A, X] a
bijection for every weak equivalence f? This question was considered by J. Strom and T. Goodwillie. In
this note we prove that a non-empty space inverts weak equivalences if and only if it is contractible.
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1. Introduction

A continuous map f : A → B is a weak homotopy equivalence if it induces a bijection
π0(A) → π0(B) between the sets of path components and an isomorphism πn(A, a0) →
πn(B, f(a0)) for every base point a0 ∈ A and every n ≥ 1. We say that an unpointed space
X inverts weak homotopy equivalences if the functor [−, X] inverts weak equivalences,
that is, for every weak homotopy equivalence f : A → B, the induced map f∗ : [B, X] →
[A, X] is a bijection. As usual, [A, X] stands for the set of unpointed homotopy classes of
maps from A to X. This property is clearly a homotopy invariant. In [1] Jeff Strom asked
for the characterization of such spaces. Tom Goodwillie observed in [1] that if X inverts
weak equivalences and is T1 (i.e. its points are closed), then each path component is weakly
contractible (has trivial homotopy groups) and then contractible. His idea was to use finite
spaces weakly homotopy equivalent to spheres. A map from a connected finite space to
a T1-space has a connected and discrete image and is therefore constant. Goodwillie also
proved that if a space inverts weak equivalences, then it must be connected. In this note
we follow his ideas and give a further application of non-Hausdorff spaces to obtain the
following characterization.

Theorem 1. A non-empty space X inverts weak homotopy equivalences if and only
if it is contractible.
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We prove also a pointed version of the same result. A pointed space (X, x0)
inverts pointed weak homotopy equivalences if for every weak homotopy equivalence f :
A → B and every base point a0 ∈ A, f∗ : [(B, f(a0)), (X, x0)] → [(A, a0), (X, x0)] is a
bijection.

Theorem 2. Let (X, x0) be a pointed space which inverts pointed weak homotopy
equivalences. Then X is contractible. Moreover, {x0} is a strong deformation retract of X.

This second proof only involves locally compact metric spaces. Therefore we deduce
the following.

Corollary 3. Let A be one of the following categories of pointed spaces: all spaces,
Hausdorff spaces, locally compact Hausdorff spaces or metric spaces. Then no non-
trivial representable cohomology theory on A can satisfy Eilenberg and Steenrod’s weak
equivalence axiom.

2. Proof of Theorem 1

Lemma 4 (Goodwillie). Suppose that X inverts weak homotopy equivalences and
is weakly contractible. Then it is contractible.

Proof. Just take the weak homotopy equivalence X → ∗. �

Lemma 5. Let X be a space which inverts weak equivalences and let Y be a locally
compact Hausdorff space. Then the mapping space XY, considered with the compact-open
topology, also inverts weak equivalences.

Proof. This follows from a direct application of the exponential law and the fact that
a weak equivalence f : A → B induces a weak equivalence f × 1Y : A × Y → B × Y . �

If A is a discrete space and B is a totally path-disconnected space (i.e. the path compo-
nents are singletons) with the same cardinality as A, then any bijection A → B is a weak
homotopy equivalence. This idea was used by Goodwillie, Strickland and Strom in [1].
We will use this remark in the following constructions. The first one is due to Goodwillie.

Construction 1. Let A = N0 be the set of non-negative integers with the discrete
topology and B = {0} ∪ {1/n}n∈N ⊆ R with the usual subspace topology. The map f :
A → B, which maps 0 to 0 and n to 1/n for every n, is a weak homotopy equivalence.

Construction 2. Let α be a cardinal which is greater than or equal to c, the car-
dinality #R of the continuum. Let B be a set with cardinality #B > α. Consider the
following topology in B: a proper subset F ⊆ B is closed if and only if #F ≤ α. Note that
B is totally path-disconnected, as if γ : I → B is a path, then its image has cardinality at
most c ≤ α, so it is connected and discrete and then a point. Let A be the discretization
of B, i.e. the same set with the discrete topology. Then the function i : A → B, which is
the identity on underlying sets, is a weak homotopy equivalence.

Goodwillie used Construction 1 to prove the following.
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Proposition 6 (Goodwillie). Let X be a space which inverts weak homotopy
equivalences. Then it is connected.

Proof. We can assume that X is non-empty. Suppose that X0 and X1 are two path
components of X. Let x0 ∈ X0 and x1 ∈ X1. Let f : A → B be the weak homotopy equiv-
alence considered in Construction 1. Take g : A → X defined by g(0) = x0 and g(n) = x1

for every n ≥ 1. By hypothesis there exists a map h : B → X such that h(0) ∈ X0 and
h(1/n) ∈ X1 for every n ≥ 1. Since 1/n → 0, X0 intersects the closure of X1. Thus X0

and X1 are contained in the same connected component of X. �

We use Construction 2 to prove something stronger.

Lemma 7. Let X be a space which inverts weak homotopy equivalences. Then X is
path-connected.

Proof. We can assume that X is non-empty. Let X0 and X1 be path components of
X. For α = max{#X, c}, let B, A and i : A → B be as in Construction 2. Let b0 and
b1 be two different points of B. Define g : A → X in such a way that g(b0) ∈ X0 and
g(b1) ∈ X1 (define g arbitrarily in the remaining points of A). Then g is continuous.
Since i∗ : [B, X] → [A, X] is surjective, there exists a map h : B → X such that hi 	 g.
In particular, h(b0) ∈ X0 and h(b1) ∈ X1. Since #B > α ≥ #X and B =

⋃
x∈X h−1(x),

there exists x ∈ X such that #h−1(x) > α. Let U ⊆ X be an open neighbourhood of
h(b0). Then h−1(U c) ⊆ B is a proper closed subset, so #h−1(U c) ≤ α. Thus, h−1(x)
is not contained in h−1(U c) and then x ∈ U . Since every open neighbourhood of h(b0)
contains x, there is a continuous path from x to h(b0), namely t 
→ x for t < 1 and
1 
→ h(b0). In particular, x ∈ X0. Symmetrically, x ∈ X1. Therefore, X0 = X1. �

Proof of Theorem 1. It is clear that a contractible space inverts weak equivalences.
Suppose that X �= ∅ is a space which inverts weak equivalences. By Lemma 5, XSn

inverts
weak equivalences for every n ≥ 0 and then it is path-connected. Therefore, πn(X) is
trivial for every n ≥ 0 and, by Lemma 4, X is contractible. �

3. Proof of Theorem 2

In the proof of Lemma 7, non-Hausdorff spaces played a central part. If we change our
hypothesis that X inverts weak equivalences for the pointed version, then it can be proved
that X is path-connected using only Hausdorff spaces.

Lemma 8. Let (X, x0) be a pointed space which inverts pointed weak homotopy
equivalences between Hausdorff spaces. Then X is path-connected.

Proof. Let X0 be the path component of x0. Let X1 be any path component of X and
let x1 ∈ X1. We use once again Construction 1. Let A, B, f, g be as in Proposition 6. Let
a0 = 0 ∈ A. By hypothesis there exists h : (B, 0) → (X, x0) such that hf 	 g rel {0}. In
particular, h(1) ∈ X1. Define h′ : B → X by h′(0) = x0 and h′(1/n) = h(1/(n + 1)) for
n ≥ 1. The continuity of h′ follows from that of h. Since h′(1/n) = h(1/(n + 1)) ∈ X1

and h(1/n) ∈ X1 for every n ≥ 1, there exists a homotopy H : A × I → X from h′f
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to hf . Moreover, we can take H to be stationary on 0 ∈ A. Since f∗ : [(B, 0), (X, x0)] →
[(A, 0), (X, x0)] is injective, there exists a homotopy F : B × I → X, F : h′ 	 h rel {0}.
The map F gives a collection of paths from h(1/(n + 1)) to h(1/n). We glue all these
paths to form a path from x0 to h(1). That is, define γ : I → X by γ(0) = x0 and
γ(t) = F (1/n, (1/n − 1/(n + 1))−1(t − 1/(n + 1))) if t ∈ [1/(n + 1), 1/n]. Note that γ is
continuous at t = 0, as if U ⊆ X is a neighbourhood of x0, then {0} × I ⊆ F−1(U),
and by the tube lemma there exists n0 ≥ 1 such that {1/n} × I ⊆ F−1(U) for every
n ≥ n0. Then [0, 1/(n0)] ⊆ γ−1(U). Hence, x0 and h(1) lie in the same path component,
so X0 = X1. �

We will refine the proof of the previous result to obtain a proof for Theorem 2.

Construction 3. Let k ≥ 0. Define A = {0}  (Sk × N), where N has the discrete
topology. For n ∈ N, denote by 1/nSk the subspace of R

k+1 of points with norm 1/n. Let
B = {0} ∪ ⋃

n∈N
1/nSk ⊆ R

k+1 with the usual subspace topology. The map f : A → B,
which maps 0 to 0 and (s, n) ∈ Sk × N to s/n ∈ 1/nSk, is a homeomorphism in each
path component. Therefore, f is a weak homotopy equivalence.

Proof of Theorem 2. Let k ≥ 0 and let f : (A, 0) → (B, 0) be the weak homo-
topy equivalence of Construction 3. Let ω : Sk → X be any continuous map. Define
g : (A, 0) → (X, x0) by g(0) = x0 and g(s, n) = ω(s) for every s ∈ Sk, n ∈ N. Then g is
continuous and by hypothesis there exists h : (B, 0) → (X, x0) such that hf 	 g rel {0}.
In particular, hf |Sk×{n} : Sk → X is homotopic to ω. Define h′ : (B, 0) → (X, x0) by
h′(0) = x0 and h′(s/n) = h(s/(n + 1)) for every s ∈ Sk and n ∈ N. The continuity
of h′ follows from that of h. For each s ∈ Sk and n ∈ N, h′f(s, n) = hf(s, n + 1),
so h′f |Sk×{n} = hf |Sk×{n+1} 	 ω 	 hf |Sk×{n}. Then there exists a homotopy H : A ×
I → Sk, H : h′f 	 hf rel {0}. By hypothesis h′ 	 h rel {0}. Let F : B × I → X be a
homotopy from h′ to h which is stationary on {0}.

Define G : Sk × I → X by G(s, 0) = x0 for every s ∈ Sk and G(s, t) = F (s/n, (1/n −
1/(n + 1))−1(t − 1/(n + 1))) if t ∈ [1/(n + 1), 1/n] (see Figure 1). It is clear then that G
is well defined and G|Sk×(0,1] is continuous. We prove that G is also continuous at those
points of the form (s, 0). If U ⊆ X is a neighbourhood of x0, then {0} × I ⊆ F−1(U) ⊆
R

k+1 × I. By the tube lemma there exists n0 ≥ 1 such that {1/n} × I ⊆ F−1(U) for
every n ≥ n0. Then Sk × [0, 1/(n0)] is a neighbourhood of (s, 0) contained in G−1(U).
Therefore, G is a (free) homotopy between the constant map x0 and G(−, 1). Since
G(s, 1) = F (s, 1) = h(s) = hf(s, 1), G(−, 1) 	 ω. This proves that every map Sk → X is
freely homotopic to a constant. Since this holds for every k ≥ 0, X is weakly contractible.

Finally, since X is weakly contractible, the constant map x0, c : (X, x0) → (X, x0) is
a weak homotopy equivalence. Then c∗ : [(X, x0), (X, x0)] → [(X, x0), (X, x0)] is bijec-
tive. In particular, the class of the identity 1X : (X, x0) → (X, x0) is in the image of c∗,
which means that 1X 	 c rel x0. In other words, {x0} is a strong deformation retract
of X. �

Of course, the converse of Theorem 2 is also true: if {x0} is a strong deformation retract
of X, (X, x0) inverts pointed weak homotopy equivalences.
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Figure 1. The homotopy F is defined in the cylinder B × I pictured on the left, which looks like
a shut retractable telescope for k = 1. The values of F at the bottom of the cylinder 1/nSk × I
coincide with the values of F at the top of the next smaller cylinder 1/(n + 1)Sk × I. The
homotopy G is constructed by pulling the telescope to its full length.

Since the spaces A and B of Construction 3 are locally compact, Hausdorff and metric,
the proof of Theorem 2 implies Corollary 3.

4. A final comment

The characterization mentioned in the abstract of those unpointed spaces X for which
[X, −] inverts weak equivalences is easy to obtain.

Proposition 9. Let X be a space. Then the following are equivalent:

(i) f∗ : [X, A] → [X, B] is a bijection for every weak equivalence f : A → B;

(ii) X has the homotopy type of a CW-complex.

Proof. It is well known that any CW-complex satisfies the first property (see [2,
Proposition 4.22], for instance). Now, suppose X is such that [X, −] inverts weak equiva-
lences. Let f : Y → X be a CW-approximation. Then f∗ : [X, Y ] → [X, X] is a bijection.
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In particular, there exists a map g : X → Y such that fg 	 1X . Then g is a weak equiva-
lence. Now, since [Y, −] inverts weak equivalences, g∗ : [Y, X] → [Y, Y ] is a bijection, so
there exists h : Y → X with gh 	 1Y . Then g is a homotopy equivalence. �
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