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Abstract. Let (X, T ) be a topological dynamical system. Given a continuous vector-valued
function F ∈ C(X, Rd) called a potential, we define its rotation set R(F) as the set of
integrals of F with respect to all T-invariant probability measures, which is a convex
body of Rd . In this paper we study the geometry of rotation sets. We prove that if T is a
non-uniquely ergodic topological dynamical system with a dense set of periodic measures,
then the map R(·) is open with respect to the uniform topologies. As a consequence, we
obtain that the rotation set of a generic potential is strictly convex and has C1 boundary.
Furthermore, we prove that the map R(·) is surjective, extending a result of Kucherenko
and Wolf.
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1. Introduction
Let (X, T ) be a topological dynamical system, that is, a compact metric space X

together with a continuous map T : X → X. We denote by MT the set of all T -invariant
probability measures, which is convex and weak-� compact. Given a continuous potential
F : X → R

d , we define its rotation set as

R(F) =
{∫

F dμ : μ ∈ MT

}
.

This is a convex body in R
d , that is, a non-empty compact and convex subset of Rd .

This definition originates from the rotation theory on the torus [MK]: if f : Td →
T

d is continuous, homotopic to the identity with lift f̃ : Rd → R
d , we consider the

displacement function F(x) := f̃ (x) − x. The corresponding rotation set R(F) yields
important information about the dynamics of f . Note that in the one-dimensional case,
R(F) = {ρ(f̃ )}, where ρ(·) is the Poincaré rotation number. For d ≥ 2, it is known that
generically the rotation set is given by a rational polygon [P], and there are rotation sets
with smooth boundary points [BCH].
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Returning to the general context, Ziemian [Zi] studied the situation where the dynamics
is a subshift of finite type (SFT) and the potential F is locally constant, and proved that
in this case the rotation set is a polytope. On the other hand, Kucherenko and Wolf [KW]
proved that if T is an SFT then every convex body of Rd appears as a rotation set of a
continuous potential.

Ergodic optimization [Je2, Je3] is another motivation for the study of the rotation set.
Given a function f ∈ C(X), one is interested in the quantity

β(f ) = sup
μ∈MT

∫
f dμ, (1)

called the maximum ergodic average. Any measure μ ∈ MT satisfying
∫
f dμ = β(f ) is

called an f -maximizing measure. The main problem of ergodic optimization is to identify
maximizing measures and to understand their properties. For generic functions in the
space C(X), the maximizing measure is unique; furthermore, the same holds for other
spaces of functions (see [Je2, Theorem 3.2]). Note that in this case the (one-dimensional)
rotation set is R(f ) = [α(f ), β(f )], where α(f ) = −β(−f ) is the minimum ergodic
average.

Consider the more general problem of computing the maximum ergodic average β(f )

for all functions f in a given finite-dimensional subspace of C(X), say with generators
f1, . . . , fd . If f = ∑d

j=1 αjfj then we have

β(f ) = sup
�x∈R(F)

(α1, . . . , αd) · �x,

where F = (f1, f2, . . . , fd). Therefore, the problem reduces to the study of the rotation
set of F , which is called vectorial ergodic optimization [B, §2].

Let us describe one of the first examples of rotation sets, introduced by Jenkinson [Je1].
Let X = R/Z be the circle, T be the doubling map, and F(x) = (cos(2πx), sin(2πx))

be the potential. The corresponding rotation set R(F) is called the fish. Validating
experimental results of Jenkinson, Bousch [Bo1] proved that the fish is strictly convex
and every point on its boundary is the integral of F with respect to a unique T -invariant
probability measure. Furthermore, he proved that the fish has a dense subset of corners
(points of non-differentiability), and each corner is the integral of F with respect to a
unique T -invariant probability measure, which is periodic, that is, supported on a single
periodic orbit.

It is natural to ask whether these characteristics of the fish are typical among rotation
sets; see [B, §2] for further discussion. In this work, we give a partial answer to this
question. Under a mild hypothesis on the dynamics T (which is satisfied for the doubling
map and SFT), we prove that for generic continuous potentials, the rotation set is strictly
convex and (unlike the fish) has a C1 boundary. This genericity result is obtained as a
corollary of our main theorem, which reads as follows.

THEOREM 1.1. Let T : X → X be a non-uniquely ergodic topological dynamical system
with dense set of periodic measures. Then the map

R : (C(X, Rd), ‖·‖∞) → (CB(Rd), dH )
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that associates to each potential F its rotation set R(F) is continuous, open, and
surjective.

Here, C(X, Rd) is endowed with the uniform norm, and CB(Rd) is the set of convex
bodies of Rd endowed with the Hausdorff distance (see §2 for more details). Continuity
of the map R is trivial. Surjectivity of R was already known when T is an SFT; see [KW,
Theorem 2].

The hypothesis of denseness of periodic measures holds for any dynamical system
with the specification property (e.g., uniformly expanding transformations, SFTs, and
Anosov diffeomorphisms). It also holds for many classes of non-hyperbolic dynamics,
for example, β shifts, S-gap shifts, and isolated non-trivial transitive sets of C1-generic
diffeomorphisms; see [GK].

As a consequence of our main result, we have the following corollary.

COROLLARY 1.2. Let T : X → X be a non-uniquely ergodic topological dynamical
system with dense set of periodic measures. Then there exists a residual subset R of
C(X, Rd) such that R(F) is strictly convex and has C1 boundary for all F ∈ R.

Proof of Corollary 1.2. The set of convex bodies which are strictly convex with C1

boundary is residual [S, p. 133]. Therefore the pre-image under R of this set is also residual,
since R is continuous and open by Theorem 1.1.

The C1 regularity in the corollary cannot be improved in this case: for generic convex
bodies the boundary is not C1+α , for any α > 0 (see [KliN]).

It is natural to ask whether Theorem 1.1 holds for spaces of more regular functions, for
example, Lipschitz functions. The answer is negative; see §5.2.

2. Preliminaries
We say that a non-empty subset K ⊂ R

d is a convex body if it is compact and convex. We
denote the set of convex bodies by CB(Rd), and the set of convex bodies with non-empty
interior by CB◦(Rd). Additionally, given a convex body K , we denote by int(K) its interior
and relint(K) its relative interior. We endow CB(Rd) with a metric space structure, given
by the Hausdorff distance defined by

dH (K , L) = max
{

sup
x∈K

inf
y∈L

‖x − y‖ , sup
y∈L

inf
x∈K

‖x − y‖
}

.

This definition only requires K , L to be compact. Also, the sup and inf can be replaced
by max and min due to compactness. This metric turns CB(Rd) into a complete, locally
compact metric space [S, p. 62]. The Hausdorff distance between two convex bodies can
also be obtained just considering their boundaries: if K , L are two convex bodies, then
dH (K , L) = dH (∂K , ∂L) [S, p. 61]. The following lemma is a useful result that will be
used later.

LEMMA 2.1. Let K ∈ CB(Rd) and 0 < δ < 1. Then there exists Kδ ∈ CB(Rd) such that
Kδ ⊂ relint(K) and dH (Kδ , K) < δ.
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Proof. Define the support function of an arbitrary L ∈ CB(Rd) by

hL(u) = sup
x∈L

x · u,

and denote hL = hL|Sn−1 . Applying a translation if necessary, suppose that 0 ∈ relint(K).
Define Kδ = (1 − δ/kd)K , where d = supx∈∂K ‖x‖ and k ∈ N is such that δ/kd < 1. It
is clear that Kδ ⊂ relint(K), and, using [S, Lemma 1.8.14],

dH (Kδ , K) = ∥∥hKδ − hK

∥∥∞

≤ δ

kd

∥∥hK

∥∥∞

= δ

kd
sup

x∈∂K

‖x‖ < δ.

Let X be a compact metric space and let T : X → X be a continuous map. Given x ∈ X,
we denote by O(x) = {T j (x) : j ≥ 0} its positive orbit. For a periodic point x ∈ X,
we denote by μO(x) the unique T -invariant probability measure supported in O(x). These
measures are called periodic, and Mper

T denotes the set of periodic measures.
Letting F : X → R

d be a continuous potential, we use the following notation for
Birkhoff sums:

F (n) := F + F ◦ T + · · · + F ◦ T n−1.

Recall that the rotation set of F is defined as

R(F) =
{∫

F dμ : μ ∈ MT

}
.

This is a compact convex subset of Rd . Also, define the periodic rotation set of F as

R per(F ) =
{∫

F dμ : μ ∈ Mper
T

}
.

Clearly if Mper
T is dense in MT , then R per(F ) is dense in R(F). Let us prove the continuity

of the map R.

PROPOSITION 2.2. The map R : (C(X, Rd), ‖‖∞) → CB(Rd , dH ) is continuous.

Proof. Let μ ∈ MT and F , G ∈ C(X, Rd), and note that∥∥∥∥
∫

F dμ −
∫

G dμ

∥∥∥∥ ≤ ‖F − G‖∞ .

This immediately implies that dH (R(F ), R(G)) ≤ ‖F − G‖∞.

We end this section with a definition that we will use in the rest of the paper. Let A ⊂ R
d

and ε > 0. We define the ε-neighbourhood of A as

Bε(A) = {
x ∈ R

d : inf
y∈A

‖x − y‖ < ε
}
.
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3. Approximate Mañé lemma
The Mañé lemma is a useful tool in ergodic optimization [Sa, Bo1, CG, Je4, Bo2]. It is
stated as follows in the particular situation of expanding dynamics. Let T : X → X be a
expanding map and α ∈ (0, 1]. Then, for any f in the space Cα(X) of α-Hölder functions,
there exists h ∈ Cα(X) such that α(f ) ≤ f + h ◦ T − h ≤ β(f ), where α(f ) and β(f )

are the minimum and maximum ergodic average, respectively. This says that, up to
adding a coboundary h − h ◦ T to f (which does not alter the integrals with respect
to invariant measures), we can assume that the image of f is contained in the rotation
set R(f ) = [α(f ), β(f )].

We can ask if there is an analogue of the Mañé lemma in the setting of vectorial
potentials. In the spirit of the Mañé lemma, we say that a vectorial potential F ∈ C(X, Rd)

satisfies the Mañé lemma if there exists H ∈ C(X, Rd) such that Im(F + H − H ◦ T ) ⊂
R(F). Even if we impose some regularity on F , the classical example of the fish is a
Hölder function that does not satisfy the Mañé lemma, as noted by Bochi and Delecroix;
see [B, Proposition 2.1].

Nevertheless, we have the following approximate Mañé lemma.

LEMMA 3.1. Let F : X → R
d be a continuous function and ε > 0. Then there exists a

continuous function G : X → R
d cohomologous to F such that

Im(G) ⊂ Bε(R(F )).

Moreover, there exists N0 ∈ N such that G can be taken to be (1/n)F (n) for arbitrary
n ≥ N0.

Lemma 3.1 is well known (cf. the ‘enveloping property’ in [B, p. 6]), but for
completeness we give a proof. Note that if F : X → R

d is continuous, then F is
cohomologous to (1/n)F (n) for all n ∈ N, since F = (1/n)F (n) + H − H ◦ T , where
H = (1/n)

∑n
j=1 F (j).

Proof of Lemma 3.1. Suppose in order to get a contradiction that there exist a number
ε > 0 and a sequence {xn}n∈N such that

1
n
F (n)(xn) /∈ Bε(R(F )).

Consider the following sequence of probability measures on X:

μn = δxn + δT (xn) + · · · + δT n−1(xn)

n
.

By compactness of the space of probability measures there exists a subsequence μnk

converging to a probability measure μ. It is not hard to see that μ is a T -invariant
probability measure. Thus, by the weak-� convergence, we obtain

∫
F dμnk

→
∫

F dμ,
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FIGURE 1. Setting for Lemma 4.1 with m = 7.

and since Bε(R(F ))c is closed we have
∫
F dμ /∈ Bε(R(F )), a contradiction. Since F

is cohomologous to its finite time averages, we can take G = (1/n)F (n) for sufficiently
large n.

4. Proof of the main result
In this section we present the main technical ingredients in the proof of Theorem 1.1 and
we combine them at the end. We will always assume that (X, T ) is a non-uniquely ergodic
topological dynamical system with dense set of periodic measures. The first technical
lemma enlarges the rotation sets, without losing the control of the distance to the original
potential.

LEMMA 4.1. Let F : X → R
d be a continuous function with 
R(F ) ≥ 2 and K ∈

CB◦(Rd) such that R(F) ⊂ int(K). Let z1, . . . , zm be distinct points in R per(F ) \ ∂R(F )

and y1, . . . , ym ∈ int(K) \ R(F) be such that R(F) ⊂ conv{y1, . . . , yn} (see Figure 1).
Then there exists a continuous potential G : X → R

d with:
(1) ‖G − F‖∞ ≤ 7

6 maxi ‖zi − yi‖; and
(2) conv{y1, . . . , ym} ⊂ R(G) ⊂ int(K).

Proof. Fix ε > 0 such that Bε(R(F )) ⊂ int(K) and yj /∈ Bε(R(F )) for all j =
1, . . . , m. Thus, we can apply Lemma 3.1 to F in order to obtain n ∈ N such that the
following statements hold.
• Im((1/n)F (n)) ⊂ Bε(R(F )) ⊂ int(K).
• For each z ∈ {z1, . . . , zm} there exists a periodic point x ∈ X such that the Birkhoff

average (1/n)F (n) equals z on the orbit of x. We denote by xj the corresponding point
to zj .

The main idea is to perturb the potential F nearby the periodic orbits. For this purpose, let
us choose the index set I = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ 
O(xi)} and a collection of open
balls {B(i,j)}(i,j)∈I ⊂ X centred at the periodic points defined by

B(i,j) = Br(T
j (xi)) for all (i, j) ∈ I

https://doi.org/10.1017/etds.2020.129 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.129


256 S. Pavez-Molina

and r > 0 sufficiently small so that the balls {B(i,j)}(i,j)∈I are pairwise disjoint,
(1/n)F (n)(Bi,j ) ⊂ int(R(F )) and

diam
(

conv
{

1
n
F (n)(Bi,j ) ∪ {yi}

})
≤ 7

6
‖yi − zi‖ . (2)

Let B∗ be the complement of O(x1) ∪ . . . ∪ O(xm). Take a continuous partition of unity,

ρ∗ +
∑

(i,j)∈I

ρi,j = 1,

subordinated to the open cover B∗ ∪ ⋃
(i,j)∈I B(i,j) = X. Next, we define a function G̃ :

X → R
d as

G̃(x) =
∑

(i,j)∈I

ρi.j (x)yi + ρ∗(x)
1
n
F (n)(x).

We claim that G̃ satisfies properties very similar to those in the statement of the lemma.
First, note that G̃ is a constant equal to yi on O(xi), which implies yi ∈ R(G̃) for every
i = 1, . . . , m. Therefore, conv{y1, . . . , ym} ⊂ R(G̃). Now,

for all x ∈ X, G̃(x) ∈ conv
{
{y1, . . . , ym} ∪ Im

(
1
n
F (n)

)}
,

since G̃ is a convex combination of y1, . . . , ym and (1/n)F (n). The latter implies

R(G̃) ⊂ conv
{
{y1, . . . , ym} ∪ Im

(
1
n
F (n)

)}
⊂ intK .

Consequently, R(F) ⊂ conv{y1, . . . , ym} ⊂ R(G̃) ⊂ int(K). The next step is to estimate
the distance between G̃ and (1/n)F (n). Let x ∈ X.
• If x ∈ Bi,j then G̃(x) = ρi,j (x)yi + (1 − ρi,j (x))(1/n)F (n)(x), and therefore,

using (2),∥∥∥∥G̃(x) − 1
n
F (n)(x)

∥∥∥∥ = |ρi,j (x)|
∥∥∥∥yi − 1

n
F (n)(x)

∥∥∥∥ ≤ 7
6

‖yi − zi‖ .

• If x /∈ ⋃
(i,j)∈I Bi,j , then G̃(x) = (1/n)F (n)(x).

We conclude that ‖G̃ − (1/n)F (n)‖∞ ≤ 7
6 maxi ‖zi − yi‖. Now consider

G = G̃ +
(

F − 1
n
F (n)

)
.

Recall that F − (1/n)F (n) is a coboundary. Therefore, G has the same rotation set of G̃,
which is sandwiched between conv{y1, . . . , ym} and int(K). Furthermore,

‖G − F‖∞ =
∥∥∥∥G̃ − 1

n
F (n)

∥∥∥∥∞
≤ 7

6
max

i
‖zi − yi‖ .

At this moment, we have a technical tool to enlarge rotation sets and control the distance
between the potentials. Now we will upgrade the previous lemma, also considering the
distance between the convex bodies.
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LEMMA 4.2. Let F : X → R
d be a continuous function, let K ∈ CB◦(Rd) be such that

R(F) ⊂ int(K), and let ε = dH (R(F ), K). Then there exists a continuous function G :
X → R

d with the following properties:
(1) R(F) ⊂ R(G) ⊂ int(K),
(2) ‖G − F‖∞ ≤ κε,
(3) dH (R(G), K) ≤ κε,
where κ = 29/30.

Proof. The main idea is to take a polytope which is sufficiently close to R(F) and then
apply Lemma 4.1. But this is not sufficient to ensure that condition (3) is satisfied, so we
need to enlarge the polytope in order to have the new rotation set moderately close to K .

First suppose that R(F) is not a singleton. Fix δ ∈ (0, ε/5) with Bδ(R(F )) ⊂ intK .
Now, by [S, Theorem 1.8.16], we can take distinct points y1, . . . , y� ∈ Bδ(R(F )) \ R(F)

such that R(F) ⊂ conv{y1, . . . , y�}. Due to the compactness of ∂K , we may choose
distinct points w�+1, . . . , wm ∈ ∂K such that

∂K ⊂
m⋃

j=�+1

Bε/4(wj ).

Hence, since dH (R(F ), K) = ε, there exist distinct points y�+1, . . . , ym ∈ int(K) \
R(F) with ‖yj − wj‖ ≤ ε/3 and d(R(F ), yj ) ≤ 2ε/3 for each j = � + 1, . . . , m. Since
R per(F ) is dense in R(F), which by assumption is not a singleton, we can also find distinct
points z1, . . . , zm ∈ R per(F ) \ ∂R(F ) such that

‖zj − yj‖ ≤ 4ε

5
for all j = 1, . . . , m. By Lemma 4.1, we can perturb F and obtain a continuous G : X →
R

d such that

‖G − F‖∞ ≤ 7
6

· 4ε

5
= 28ε

30
and

R(F) ⊂ conv({y1, . . . , ym}) ⊂ R(G) ⊂ int(K).

So conditions (1) and (2) are satisfied. In order to check the remaining condition (3),
note first that dH (K , R(G)) = dH (∂K , ∂R(G)). Let x ∈ ∂K . Then there exists wj ∈ ∂K

such that w ∈ Bε/4(wj ). So

d(w, ∂R(G)) ≤ ‖w − yj‖
≤ ‖w − wj‖ + ‖wj − yj‖
≤ ε

4
+ ε

3

≤ 28ε

30
.

Therefore dH (∂K , ∂R(G)) ≤ (28/30)ε and this implies condition (3).
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For the case when R(F) is a singleton, consider a continuous perturbation F ′ of F near
two disjoint periodic orbits, say O(x1) and O(x2), such that
• ∫

F ′ dμO(x1) �= ∫
F ′ dμO(x2),

• R(F ′) ⊂ int(K),
• ‖F − F ′‖∞ ≤ 0.01ε,
• dH (R(F ′), K) ≤ 1.01ε,
and apply the same procedure as before to F

′
.

As a straightforward consequence of the previous lemma, we have the following
proposition.

PROPOSITION 4.3. Let F : X → R
d be a continuous function and let K ∈ CB(Rd) such

that R(F) ⊂ relint(K). Then there exists a continuous function G : X → R
d such that

‖F − G‖∞ ≤ CdH (R(F ), K) and R(G) = K , where C = 30.

Proof. We divide the proof into two cases. Suppose that int(K) �= ∅. Apply Lemma 4.2
recursively to obtain a sequence of continuous functions Fn : X → R

d such that
• dH (Fn, K) ≤ κndH (R(F ), K),
• ‖Fn − Fn+1‖∞ ≤ κndH (R(F ), K),
where F1 = F . Then {Fn}n∈N is a Cauchy sequence, and therefore converges to a
continuous function G : X → R

d which satisfies

‖F − G‖∞ ≤
∞∑

j=1

‖Fj+1 − Fj‖∞ ≤
∞∑

j=1

κjdH (R(F ), K) ≤ 30dH (R(F ), K).

By Proposition 2.2, the map R : C(X, Rd) → CB(Rd) is continuous, and so

R(G) = R(lim Fn) = lim R(Fn) = K .

Thus, the proof of the first case is finished.
Now suppose that int(K) = ∅. Let P(K) be the least affine hyperspace passing through

K . We can consider F as a function taking values in P(K), and this affine hyperplane can
be identified with R

�, where � = dim P(K). In this situation we can see K as a subset of
this R� with int(K) �= ∅. Consequently, the proof is reduced to the first case.

Now we need an adjustment in order to drop the hypothesis R(F) ⊂ relintK .

LEMMA 4.4. Let F : X → R
d be a continuous function, K ∈ CB(Rd), and ε > 0.

Suppose that dH (R(F ), K) ≤ ε. Then there exists a continuous function F ′ : X → R
d

with the following properties.
(1) R(F ′) ⊂ relint(K).
(2) ‖F − F ′‖∞ ≤ 2ε.
(3) There exists a continuous function F ′′ : X → R

d cohomologous to F ′ such that
Im(F ′′) ⊂ P(K), where P(K) is the least affine hyperspace containing K.

Proof. The strategy is similar of the proof of Lemma 4.1. Apply Lemma 3.1 to F and
ε > 0 to obtain n ∈ N with Im(F (n)/n) ∈ Bε(R(F )). Also, apply Lemma 2.1 to K and
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δ = min{ε, 1
2 } to find L ∈ CB(Rd) with L ⊂ relint(K) and dH (K , L) ≤ δ. Define F ′′ as

F ′′ = PL

(1
n
F (n)

)
,

where PL is the projection onto L, that is, the map which sends each point of the space to
its closest point in L. Since PL is Lipschitz, the function F ′′ is continuous. Also R(F ′′) ⊂
relint(K), so the next step is to estimate dH (R(F ′′), K). Given y ∈ K , due to the denseness
of R per((1/n)F (n)) in R(F), there exists z ∈ R per((1/n)F (n)) such that ‖y − z‖ ≤ 2ε.
Let O(x) be the corresponding periodic orbit. We note that

∥∥∥∥y −
∫

F ′′ dμO(x)

∥∥∥∥ ≤ ‖y − z‖ +
∥∥∥∥z −

∫
F ′′ dμO(x)

∥∥∥∥
≤ 2ε +

∥∥∥∥
∫

1
n
F (n) − F ′′ dμO(x)

∥∥∥∥
≤ 2ε +

∫
2ε dμO(x)

≤ 4ε,

since ‖(1/n)F (n) − F ′′‖∞ ≤ 2ε. From above we get that dH (K , R(F ′′)) ≤ 4ε. Now, it
suffices to consider F ′ = F ′′ + (F − (1/n)F (n)), which is cohomologous to F ′′. Finally,

∥∥F − F ′∥∥∞ =
∥∥∥∥F ′′ − 1

n
F (n)

∥∥∥∥∞
≤ 2ε.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let F ∈ C(X, Rd) and ε > 0. Let K ∈ CB(Rd) such that
dH (K , R(F)) ≤ ε. Let F ′ and F ′′ given by Lemma 4.4. Then apply Proposition 4.3
to F ′′ in order to obtain a continuous function G̃ : X → R

d with the properties that
R(G̃) = K and ‖F ′′ − G̃‖∞ ≤ 4Cε. So, we define

G = G̃ + (F ′ − F ′′).

Hence R(G) = K , since F ′ is cohomologous to F ′′. Moreover,

‖G − F ′‖∞ = ‖G̃ − F ′′‖∞ ≤ 4Cε.

Therefore,

‖F − G‖∞ ≤ ‖F − F ′‖∞ + ‖F ′ − G‖∞ ≤ 2ε + 4Cε = (2 + 4C)ε.

We have just proved that

R(B(2+4C)ε(F )) ⊃ Bε(R(F )),

and this inclusion implies the openness of R. Surjectivity follows directly from Proposition
4.3. Let K ∈ CB(Rd), v ∈ relint(K) and F ≡ v. Thus, applying Proposition 4.3 to F , we
get a continuous function G ∈ C(X, Rd) such that R(G) = K .

https://doi.org/10.1017/etds.2020.129 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.129


260 S. Pavez-Molina

5. Directions for further research
In this section we discuss related problems and open questions.

5.1. The uniqueness property. Let F ∈ C(X, Rd). We say that F satisfies the
uniqueness property if, for each v ∈ ∂R(F ), there exists a unique μ ∈ MT for which∫
F dμ = v. As mentioned in the introduction, in the one-dimensional case, generic

functions f ∈ C(X, R) satisfy the uniqueness property. So we pose the following question.

Question 5.1. Is it true that generic functions F ∈ C(X, Rd) satisfy the uniqueness
property?

Of course, we can replace C(X, Rd) for other spaces of functions. Following the proof
in the one-dimensional case in [Je1, Theorem 3.2], one can show the following result.

PROPOSITION 5.2. The set of F ∈ C(X, Rd) which satisfy the uniqueness property is a
Gδ set.

Therefore in order to give a positive answer to Question 5.1, it is sufficient to prove
denseness.

5.2. The map R(·) is not open in general. It is natural to ask if the map R(·) is open if
we replace C(X, Rd) by other spaces of functions. The answer is negative in the space of
Lipschitz functions. Let Lip(X, R2) be the subspace of Lipschitz potentials endowed with
the Lipschitz norm

‖f ‖Lip = ‖f ‖∞ + sup
x �=y

|f (x) − f (y)|
d(x, y)

.

Then we have the following proposition.

PROPOSITION 5.3. Suppose that T has a fixed point x0. Then there exists an open set
U ⊂ Lip(X, Rd) such that, for all F ∈ U , ∂R(F ) is non-differentiable. In particular, the
restriction R|Lip(X,R2) is not open.

Proof. The proof is in the same spirit as [Je2, Proposition 4.12]. Let F(x) =
(0, −2d(x, x0)) and U = B1/2(F ). Let G ∈ Lip(X, R2) be a Lipschitz perturbation of F

with ‖G‖Lip < 1
2 . We claim that (F + G)(x0) is a corner of R(F + G). Since the rotation

map is equivariant with respect to translations, we can assume that G(x0) = (0, 0). Thus,

(1, 1) · (F + G)(x) ≤ −2d(x, x0) + √
2G(x) ≤ −2d(x, x0) +

√
2

2
d(x, x0) ≤ 0.

Analogously (1, −1) · (F + G)(x) ≤ 0. We conclude that δx0 is a maximizing measure for
(1, ±1) · (F + G), thus ∫

(F + G) dδ0 = (0, 0)

is a corner for R(F + G), because R(F + G) contains (0, 0) and is contained in the cone
{(x, y) ∈ R

2 : y ≤ −|x|} with vertex (0, 0). Since convex bodies with C1 boundary are
dense, we conclude that R|Lip(X,R2) is not open at F .
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From this proposition, we also conclude that differentiability of the rotation set
boundary is not generic when we consider the space of Lipschitz functions.

5.3. Genericity result for other spaces. In this paper we have considered the case of
continuous potentials. We propose to investigate the same question for other spaces of
functions and other dynamics.

Question 5.4. Is it true that the rotation set is strictly convex for generic potentials in some
dense subspace of C(X, Rd)?

For example, replace C(X, Rd) by the space of α-Hölder potentials Cα(X, Rd) with
the Hölder norm. Also, in view of the fish example and Proposition 5.3, it seems that if
we impose regularity on the potential, then the corresponding rotation set R(F) will have
a considerable number of corners in the boundary. So, we pose the following question.

Question 5.5. It is true that the boundary of rotation set has a (full-measure) dense subset
of corners for generic potentials in Cα(X, Rd)?

For more discussion, see [B, §2].
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