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Cylinder rolling on a wall at low Reynolds
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The flow around a cylinder rolling or sliding on a wall was investigated analytically
and numerically for small Reynolds numbers, where the flow is known to be
two-dimensional and steady. Both prograde and retrograde rotation were analytically
solved, in the Stokes regime, giving the values of forces and torque and a complete
description of the flow. However, solving Navier–Stokes equation, a rotation of the
cylinder near the wall necessarily induces a cavitation bubble in the nip if the fluid
is a liquid, or compressible effects, if it is a gas. Therefore, an infinite lift force is
generated, disconnecting the cylinder from the wall. The flow inside this interstice was
then solved under the lubrication assumptions and fully described for a completely
flooded interstice. Numerical results extend the analysis to higher Reynolds number.
Finally, the effect of the upstream pressure on the onset of cavitation is studied, giving
the initial location of the phenomenon and the relation between the upstream pressure
and the flow rate in the interstice. It is shown that the flow in the interstice must
become three-dimensional when cavitation takes place.
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1. Introduction
A cylinder placed transversally in a free stream is one of the most studied

flows. This has been motivated by its wide relevance to many application fields
and also by its simple geometry for easier numerical and theoretical approaches.
Most of the application examples, from civil engineering to aerodynamics and
fluid–structure interaction, have concerned high-Reynolds-number flows and unsteady
interactions between the wake and the surroundings. Recently, with the development
of microtechnology, microfluidics has brought renewed attention to low-Reynolds-
number flows around rotating cylinders and particularly in microchannels where the
interaction with walls is strong. For low Reynolds number flows, numerical results
can sometimes be compared with analytical solutions obtained under Stokes flow
assumptions, improving the results when solving delicate issues like the contact
problem between a rolling cylinder and a wall. The present paper answers that
problem and gives a detailed description of the flow squeezed between a rotating
cylinder and a wall for a wide range of situations including the onset of cavitation. It
also provides reference Stokes solutions for the global flow around a cylinder rolling
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on a translating wall with an arbitrary slip. A global model of the contact area was
derived so that it could be implemented in numerical two-dimensional computations as
one contact point instead of a time-consuming discretization of the interstice. Finally,
the paper presents an analysis of the onset of the wake at small Reynolds number
which has not been described in the literature.

Experiments on a micropump based on the flow induced by a rotating cylinder
inside a microchannel started fifteen years ago (Sen, Wajerski & Gad-el-Hak 1996)
followed by a series of numerical simulations (Sharatchandra, Sen & Gad-el-Hak
1997, 1998; Decourtye, Sen & Gad-el-Hak 1998; Abdelgawad, Hassan & Esmail
2003). These experiments showed that, for a cylinder asymmetrically located in the
channel, a global flow rate could be obtained with an average velocity of about 10 %
of the cylinder surface velocity. Simulations were attempted to understand the effect
of geometrical parameters such as relative size of the cylinder and the channel or
eccentricity of the cylinder location, relative to the parabolic profile of the oncoming
flow. Further simulations addressed the issue of a series of cylinders working as
a multistage pump (Abdelgawad et al. 2005; Choi, Lee & Choi 2010). Theoretical
approaches to the problem have been undertaken over the last decade through the
lubrication theory (Day & Stone 2000; Matthews & Hill 2006). Nevertheless, in all
these studies, the cylinder was rotating, not rolling on walls. In this context, the Stokes
solutions have a limited validity because of the Stokes paradox (Matthews & Hill
2009). However, sometimes the Stokes solution can coincide with the Navier–Stokes
solution even for small, compared to 1, but not zero Reynolds number. For example,
the cusped corner was solved by Schubert in two particular cases: the cylinder
spinning at a fix point on a wall and the non-rotating cylinder sliding on a wall
(Schubert 1967).

Leaving aside the micropump problem and these two particular cases, the general
flow of a rotating cylinder in the vicinity of a wall at low but non-zero Reynolds
number has not been treated in the literature, unlike the corresponding high-Reynolds-
number flow (Bhattacharyya, Mahapatra & Smith 2004; Stewart et al. 2010). The
present paper fills that gap (§ 2) and clarifies the case of the Stokes flow (zero
Reynolds number) that was tackled incompletely by different authors with sometimes
contradictory results (Jeffery 1922; Schubert 1967; Wakiya 1975; Jeffrey & Onishi
1981).

In the literature, there are two distinct traditions for solving the Stokes flow around
a cylinder rolling and translating in the vicinity of a wall. The oldest one, initiated
by Jeffery (1922), used bipolar coordinates to solve the biharmonic equation around
different configurations involving cylinders. The solution is obtained formally from a
functional basis and the development is finite for a few particular cases. In general,
the condition of finite velocity at infinity is not fulfilled, limiting the solution to flow
confined between two eccentric cylinders with no contact point. Nevertheless the case
of an external cylinder with an infinite radius can be treated at least to determine
the forces and torque on the cylinder which only depend on the lowest coefficients
in the development of the formal solution. While Jeffery only gave the torque around
a cylinder spinning without contact near a fixed wall, Wakiya (1975) tried to solve
the general problem with translation and rotation but without contact. He gave the
force and the torque. Jeffrey & Onishi (1981) solved the same problem but only with
translation or rotation of the cylinder. All these authors concluded that the lift was
zero, the drag only depended on the translation velocity and the torque on the rotation
velocity. Moreover, any non-zero component was found to tend towards infinity when
the gap between the cylinder and the wall vanished. A discrepancy remained between
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Cylinder rolling on a wall 463

the drags given by Wakiya and Jeffrey although Jeffrey’s expression coincided with
a lubrication approach to the flow in the gap (Jeffrey & Onishi 1981). Beside these
papers, Schubert (1967) solved the same cases as Jeffrey but with a totally different
approach based on a transformation of the complex plane. The Schubert paper, more
related to the problem of the cusp corner in the tradition of the paper of Moffatt
(1964) on the sharp corner, did not provide expressions for the forces and torque but
treated exclusively the flow without an interstice between the cylinder and the wall.

In contrast with these papers, the present research treats all the configurations of
rotation and translation with and without a gap for Stokes flows and for small but
non-zero Reynolds numbers. The discussion is concerned with forces, torque and the
flow patterns and allows a better understanding of the contact point problem, drawing
conclusions valid for high Reynolds number (§ 3). Analytical expressions of forces
and torque (§ 3.3) also provided a good understanding of the physical origin of each
component of force and torque and their distribution between the cylinder and the wall.
A global effect of the gap is derived allowing its implementation in two-dimensional
codes in order to avoid a detailed computation of the flow in the interstice.

The analysis of the forces exerted on the cylinder (§§ 2.4 and 3.3) established the
unconditional presence of an interstice between the cylinder and the wall, leading
to a lubrication situation very similar to the Taylor problem between two eccentric
rotating cylinders (Taylor 1963). On one hand, the present paper (§§ 3.1 and 3.2) can
be considered as an extension of Taylor’s, if we consider the radius of the external
cylinder as infinite. On the other hand, it is a generalization since Taylor limited his
analysis to cylinders with the same surface velocity or with one rotating and one fixed.
In addition, stream functions are determined (§ 3.4) whereas Taylor only solved the
lubrication equation for pressure. The resolution of the velocity field in the interstice
allows one to locate stationary saddle points where the fluid driven by the wall and
that by the cylinder converge. In this region, the flow also splits into two parts: one
passes through the interstice and one is pushed away from it and then flows around the
cylinder before joining the interstice downstream.

Obviously the onset of a cavitation problem (§ 3.5) inside the interstice has been
tackled by Taylor. In the present paper, the same logical development has been carried
out, but, thanks to the knowledge of the velocity field, it was possible to demonstrate
that cavitation induces three-dimensionality in agreement with the experiments by
Taylor (1963) and Seddon & Mullin (2006).

Finally, the present computations at low Reynolds number fill the gap between the
Stokes flow and literature results, particularly those of Stewart et al. (2010). Details
are given on the formation process of the two-dimensional wake from an original
vortex structure, already developed in a Stokes flow for prograde rolling.

2. Cylinder in contact with the wall
2.1. Stokes analytical solution

We consider the two-dimensional incompressible flow around a cylinder of radius R
in contact at point O with a plane wall (figure 1). The kinematic viscosity of the
fluid is ν. The cylinder translates with speed U > 0 parallel to the wall taken as
x-axis. The rotation velocity of the cylinder is Ω = −kU/R where k is an algebraical
dimensionless parameter, positive if the cylinder is rolling in the clockwise direction.
We assume that the Reynolds number Re = 2UR/ν is very small compared to 1 and
that the flow is governed by the Stokes equation. With the notation of figure 1 and
in the frame of reference (Oxy) linked to the cylinder, stream function ψ satisfies the
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FIGURE 1. Notation: r, θ are the polar coordinates; R is the radius of the cylinder; −U the
upstream velocity (U > 0); O the origin of the frame of reference and the contact point. O′ is
the axis of the cylinder, u and v the polar components of the fluid velocity, k the ratio between
the linear velocity on the cylinder surface and U; ξ is the dimensionless coordinate given by
(2.14). Unit vectors i, j and k= i ∧ j are the classical Cartesian basis.

biharmonic equation: 11ψ = 0. with the following boundary conditions, expressed in
polar coordinates:

1
r

∂ψ

∂θ
=−U for θ = 0 (2.1a)

1
r

∂ψ

∂θ
=−Uk cos θ for r = 2R sin θ (2.1b)

∂ψ

∂r
= Uk sin θ for r = 2R sin θ (2.1c)

∂ψ

∂r
= 0 for θ = 0 (2.1d)

and at infinity:

1
r

∂ψ

∂θ
=−U cos θ for r→∞ (2.2a)

∂ψ

∂r
=−U sin θ for r→∞. (2.2b)

Let us call

u= 1
r

∂ψ

∂θ
the radial component of the velocity (2.3a)

v =−∂ψ
∂r

the orthoradial component. (2.3b)

Assuming that ψ = 0 on the wall θ = 0 and on the cylinder r = 2R sin θ , the
solution can be sought in the form ψ = sin θ(r − 2R sin θ)F(r, θ) where F(r, θ) is a
function to be determined. In polar coordinates, a solution of the biharmonic equation
can be

ψ(r, θ)=
1∑

i=−1

fi(θ)r
i (2.4)

where

f−1 = A−1 cos θ − B−1 sin θ + C−1 cos 3θ − D−1 sin 3θ, (2.5)
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f0 = A0 cos 2θ + B0 sin 2θ + C0θ + D0 (2.6)
f1 = A1 cos 2θ + B1 sin 2θ + C1θ cos θ + D1θ sin θ. (2.7)

This expression induces a finite velocity at infinity, as required, and allows an easy
identification with the form suggested above leading to

ψ = sin θ
r

[
r2B1 − 2A0 sin θr + 4R(A0 − RB1)sin2θ

]
(2.8)

with only two undetermined constants that are fixed by the boundary conditions (2.1a)
and (2.1c) to the following values: B1 = −U and A0 = −(2 + k)UR. Finally, the
solution becomes

ψ =−U sin θ
r

(r − 2R sin θ) [r − 2(1+ k)R sin θ ] (2.9)

and the velocity components are

u= 1
r

∂ψ

∂θ
=−U cos θ

[
1− 4(2+ k)

R sin θ
r
+ 12(k + 1)

R2sin2θ

r2

]
(2.10)

v =−∂ψ
∂r
= U sin θ

[
1− 4(k + 1)

R2sin2θ

r2

]
. (2.11)

It is interesting to separate the effect of the translation and the rotation. Let us call
V = kU = Ω/R the linear velocity on the surface of the cylinder. Stream function ψ
becomes

ψ =−U sin θ
r

(r − 2R sin θ)2 + 2RVsin2θ

r
(r − 2R sin θ). (2.12)

Case U = 0 (no translation), corresponds to a cylinder spinning over a fixed
point O on a steady plate and was obtained by Schubert (1967) in the form
ψ = 2RV(y2/r2)[1 − 2R(y/r2)] with y = r sin θ. Figure 2 depicts the corresponding
streamlines that Schubert could not plot in 1967. The cylinder squeezes the fluid in
the vicinity of the rotating surface inducing a global flow rate QS (from right to left
in the figure). According to (2.12) for U = 0, this global flow rate is QS = 2RV since
0 6 ψ 6 2RV. This is a limit case of a Sen micropump (Sen et al. 1996) with a
cylinder radius which is very small compared to the channel height and without a gap
between the cylinder and the adjacent wall.

Case k = 0 or V = 0 corresponds to a cylinder sliding on a plate at a constant
velocity U without rotation. The stream function was also obtained but not plotted by
Schubert (1967) in the form ψ = −Uy[1 − (Ry/r2)]2. The flow pattern is shown on
figure 3(e).

Formula (2.12) appears to be nothing but the superposition of the two Schubert
flows as expected by the superposition principle applied to the present linear problem.

Another comparison with the literature is possible by extracting an approximation of
ψ in the vicinity of O where sin θ ≈ y/x and r ≈ x. This asymptotic form is

ψO ≈ U

(
4R2(k + 1)

y3

x4
− 2R(k + 2)

y2

x2
+ y

)
(2.13)

which is a generalization of the equation obtained by Bhattacharyya et al. (2004) for
k = 1, U = R= 1 .
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FIGURE 2. Streamlines of the Stokes flow around cylinder spinning at a fixed point for V = 1
and R= 1.

Before turning to a detailed discussion about the flow, let us introduce the useful
change of variable:

ξ = r

2R sin θ
. (2.14)

Notice that curves ξ = const. are circles of diameter 2ξR, tangent to the cylinder at
point O, the cylinder is the circle ξ = 1 and the flow region is located where ξ > 1.
The solution can be rewritten in dimensionless form as a function of ξ and θ :

ψ̄ = ψ

UR
=−2

sin2θ

ξ
[ξ − 1][ξ − (k + 1)] (2.15a)

ū= u

U
=− cos θ

[
1− 2(k + 2)

ξ
+ 3(k + 1)

ξ 2

]
(2.15b)

v̄ = v

U
= sin θ

[
1− k + 1

ξ 2

]
. (2.15c)

2.2. Flow patterns in the Stokes regime
Figure 3 depicts the flow patterns for values of k between 2 and −2. The analytical
solution given by (2.9) is compared with computational results calculated with the full
incompressible two-dimensional Navier–Stokes equations at Re = 2UR/ν = 0.005 (see
the next section for details about the numerical method). These patterns have never
been presented before in the literature, but can be compared qualitatively with some
results of Ballal & Rivlin (1976) or Finn & Cox (2001) for the flow between two
non-concentric cylinders.

It is easy to verify with (2.15b) that for sin θ 6= 0 and cos θ 6= 0 stagnation
points only exist if ξ = ±√k + 1 = (k + 2) ± √k2 + k + 1, which only happens for
k = 0 or k = −1, i.e. respectively ξ = 1 (the cylinder) and ξ = 0 (irrelevant physically
here). This simply underlines a trivial situation since for k = 0 the cylinder is fixed
(figure 3e). Furthermore, in all cases, the contact point O is also a double stagnation
point, once for the upstream flow and once for the downstream flow, since for θ → 0
or θ → π , v is always equal to 0 whereas u is zero for a finite value of ξ :
ξ = (k + 2) ± √k2 + k + 1, which is only possible for these values of θ if r also
tends towards 0.
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FIGURE 3. For caption see next page.

The most interesting feature is the existence of a stagnation point T at θ = π/2 for
k > 0 (figures 3a–d). For this value of θ , u is always zero whereas v is equal to 0
for ξ = √k + 1, i.e. y = 2R

√
k + 1. This point is clearly located inside the flow only

if k > 0. Turning back to the stream function (2.15b), it can be seen that condition
k > 0 determines the existence of a third branch of the streamline ψ = 0 given by
ξ = (k + 1). This branch is a circle of radius 2(k + 1)R, tangent to Ox at point O
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FIGURE 3. (cntd). Streamlines of the Stokes flows. Continuous lines are analytical
streamlines ψ (2.9), dotted lines are numerical computations at Re = 2UR/ν = 0.005. (a–d)
Prograde rotation; (e) fixed cylinder; (f –h) retrograde rotation. (a) k = 2, the cylinder is
sliding on the wall, a cylindrical vortex structure of radius 3R is generated by the rotation,
point T is located at y= 2R

√
3; (b) k = 1, the cylinder is rolling without slip, the vortex radius

is reduced to 2R, point T is located at y = 2R
√

2; (c) k = 0.5, the vortex radius is reduced
to 1.5R; (d) k = 0.1, the vortex is vanishing; (e) k = 0, the cylinder is only sliding on the
wall, first Schubert case (Schubert 1967), the vortex has disappeared; (f –h) k =−0.5, −1, −2
respectively, the vortex does not exist and the flow is progressively squeezed in the vicinity of
the cylinder.
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Open boundary p = 0
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FIGURE 4. Numerical boundary conditions.

and centred on Oy. Between this branch and the cylinder (ξ = 1), the streamlines are
closed loops and point T is the topological centre of this vortex structure. Surprisingly,
this vortex protects the cylinder from any contact with the external flow. The stream
function values then vary from zero on the cylinder, to ψs = 2RU(

√
k + 1 − 1)2, the

maximum value corresponding to a streamline reduced to point T . Between the vortex
boundary (ξ = k + 1) and the wall, the stream function is negative. Such a vortex
structure does not exist for k 6 0 (figure 3e–g). In all cases, the symmetry (x→−x) of
the streamlines is a consequence of the Stokes regime reversibility.

2.3. Numerical simulations at low Reynolds numbers
Numerical simulations were carried out with the commercial finite-element method
(FEM) program Comsol 3.4 (FEMLAB) on a 4-core processor and 20 GB RAM
computer. The model was solved using the two-dimensional laminar Navier–Stokes
flow module. Simulations were made with a perfect contact at point O and with
different gaps between the cylinder and the wall. The lift, drag and torque on the
cylinder or at point O were extracted for each configuration.

In order to cover the range between the Stokes flow conditions and the beginning of
the first instability of the wake that happens around Re= 80 (Stewart et al. 2010), the
Reynolds number was varied between Re= 0.005 and Re= 60. According to the value
of k and Re, the boundaries were located at least at 60 times the radius R in order
to remove any influence of the size of the computational domain. Tests were made to
minimize the influence of this size and optimize the mesh resolution. The boundary
conditions are summarized in figure 4.

The meshes were similar for every configuration, with 400 elements around the
cylinder and with a maximum height s of the elements in the far field such that
s/R = 0.5. Figure 5 shows an example of a mesh, the coarse mesh for clarity.
Structured triangular elements were selected because they were more adapted to a
smooth representation of the cylinder surface. Although a fast convergence in pressure
and in the velocity values was observed with coarse meshes, a higher level of
refinement was necessary to control the mesh quality near the nip and for a good
determination of the forces and torque applied on the cylinder. The typical number of
elements was approximately 70 000.

Our computations can also be compared with the very few papers published on
the subject. In Stewart et al. (2006, 2010) for Reynolds numbers Re = 2UR/ν
from 20 to 500, contrary to the Stokes solution, a wake is observed inducing an
asymmetry between the upstream and downstream flows. A transition between steady
and unsteady wakes appears at Re ≈ 80. Nevertheless, surprisingly, in Bhattacharyya
et al. (2004) numerical results, computed for Re = 100, are symmetrical and similar
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FIGURE 5. Example of a mesh (7002 elements) chosen coarser than in the computation for
clarity.

to our Stokes solution. This is probably due to a very dissipative and highly viscous
computational scheme. In our computations, taking k = 1 as example, the increase of
Re from 0.01 to 1 displaces the vortex structure downstream, resulting in an emerging
wake (figure 6a). The topological centre T of this structure could be relocated on
the former symmetry plane x = 0 by considerably increasing the rotation velocity
(k = 6) but the vortex structure remained asymmetrical (figure 6b). For Re = 60 and
boundaries at x/R = ±100 and y/R = 100 our computation gives the same result as
Stewart et al. (2010) with a second vortex structure of centre T ′ trapped between
the wall and the first vortex (figure 6c). For k = 1, the transition from one vortex to
two vortices in the wake appears for 35 < Re < 40 as shown in figure 7. It must be
underlined that streamlines displayed here are computed without an interstice between
the cylinder and the wall but does not differ from those computed with a gap of height
h provided that h/R� 1. This indicates that the contact area has no influence on the
far flow field. This result is confirmed theoretically in the next section, nevertheless
it will be shown that the interstice plays a prominent role in the forces and torque
applied on the cylinder.

2.4. Stresses, forces and torque in the Stokes regime for a perfect contact
The pressure field is a solution of ∇p = µ1V where µ = ρν is the viscosity and V
the flow velocity field. Using (2.10) and (2.11), the integration gives

p(r, θ)= 8µR cos θ
U

r2

[
(k + 2) sin θ + R

r
(k + 1)− 4

R

r
(k + 1)sin2θ

]
+ p∞. (2.16)

The pressure repartition on the cylinder, r = 2R sin θ , is

pc = µcos θ

sin3θ

U

R

[
(k + 1)− 2ksin2θ

]+ p∞. (2.17)
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FIGURE 6. Streamlines for low but not zero Reynolds numbers without interstice. (a) Rolling
cylinder with no-slip condition (k = 1) at Re = 1. (b) Rotation velocity increased to k = 6 for
Re = 1: the topological centre T of the vortex structure is relocated on the Oy axis but the
vortex remains asymmetrical. (c) Flow for k = 1 and Re = 60: the vortex structure becomes
a wake and induces a second vortex of centre T ′ near the wall. This result coincides with the
computation of Stewart et al. (2010), but is more detailed.

As a consequence, pc→∞ when θ = 0 and pc→−∞ when θ = π . Therefore, just
downstream of the contact point O, the pressure has no physical meaning unless the
reference p∞ is infinite. The same conclusion can be deduced from the pressure on the
wall (θ = 0)

pw = 8µUR2(k + 1)
x3

+ p∞. (2.18)
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FIGURE 7. Streamlines for k = 1: (a) Re= 35, (b) Re= 40, without interstice. The transition
from one vortex to two vortices in the wake happens when the flow driven by the wall and that
driven upstream by the vortex annihilate each other. As a consequence, a new point T ′ where
u= 0 and a closed streamline is generated.

The agreement between the Stokes solution and the numerical computations at
low but non-zero Reynolds number underlines the fact that this infinite pressure
is not specific to the Stokes solution but to the incompressible Navier–Stokes
equations. Actually, incompressible Navier–Stokes solutions are always independent
of the reference pressure. For a finite value of p∞, it is not possible to avoid an
infinitely negative pressure except by introducing a compressible effect or, in the case
of liquids, cavitation. Compressible effects were underlined by Chauveau (2002) in
computations on an F1 racing car wheel. For liquids, the cavitation in narrow channels
is well known and was particularly well studied in Taylor (1963), and others (Savage
1982; Coyle, Macosko & Scriven 1986) but with different geometries and boundary
conditions. More recently, cavitation was reported in Seddon & Mullin (2006) by
careful experiments on a rolling cylinder in the Stokes regime. According to (2.17)
or (2.18), cavitation bubbles must appear downstream for k > −1 but also upstream if
k < −1, i.e. for a retrograde rolling inducing a surface velocity on the cylinder higher
than the translation one. All this means that there are no realistic fully incompressible
Navier–Stokes solutions to the problem of a cylinder rolling or sliding on a wall with
a perfect contact. Nevertheless, it is worthwhile deriving the viscous stresses in order
to check that there is no compensation between pressure and normal viscous stresses
and obtain the forces and torque on the cylinder and the wall in the case of a perfect
contact.
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The viscous stresses are calculated from the viscous tensor σvisc = 2µD where D is
the stain rate tensor. Using again (2.10) and (2.11), the derivation gives

σvisc(r, θ)= 4µU
R

r2

[
(2+ k)− 6(k + 1)

R

r
sin θ

](−sin 2θ cos 2θ
cos 2θ sin 2θ

)
(2.19)

which becomes on the cylinder (r = 2R sin θ ):

σc
visc =

µU(2k + 1)

Rsin2θ

(
sin 2θ −cos 2θ
−cos 2θ −sin 2θ

)
(2.20)

and on the wall (θ = 0 and π ):

σw
visc =

4µUR(2+ k)

x2

(
0 1
1 0

)
. (2.21)

providing a pure shear stress: Tw = (4µUR(2+ k))/x2.

For k > 0, it is also interesting to evaluate the stress tensor on the vortex boundary
(r = 2R(k + 1) sin θ ):

σvvisc =
µU(1− k)

(k + 1)2Rsin2θ

(
sin 2θ −cos 2θ
− cos 2θ −sin 2θ

)
(2.22)

which shows that for a non-slipping cylinder (k = 1), the vortex boundary is not
subjected to any shear stresses.

The lift and drag forces are obtained by projecting stresses on the x- and y-axes and
integrating along the cylinder surface. We have

Tx = i ·σc
visc ·n= µU(2k + 1)

Rsin2θ
cos 2θ (2.23)

and

Ty = jσc
visc ·n= µU(2k + 1)

Rsin2θ
sin 2θ. (2.24)

When θ is replaced by π − θ , Ty and pc (2.17) are antisymmetric, and therefore, the
lift Fy is zero. Note that, mathematically, the pressure lift is given by:

lim
ε→0

∫ π−ε

ε

µ
cos θ

sin3θ

U

R

[
(k + 1)− 2ksin2θ

]
cos 2θ(2R) dθ (2.25)

which converges to zero only in the Cauchy principal value.
On the contrary, the global drag

Dc =
∫ π

0
(Tx − (pc − p∞) sin 2θ) (2R dθ)i=−2µU

∫ π

0

dθ

sin2θ
i (2.26)

diverges to −∞ except if U = 0 where it is zero. Note that Dc is independent of k.
The same happens for the torque applied by the fluid on the cylinder:

Mc/O′ = 2(2k + 1)µUR
∫ π

0

dθ

sin2θ
. (2.27)
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The only global quantity that gives a finite value is the viscous torque on the
cylinder at the contact point O. We have

Mv/O =
∫ π

0
(2R sin θ)

(2k + 1)µU

Rsin2θ
sin θ(2R) dθ = 4π(2k + 1)µUR. (2.28)

On the wall, the drag is

Dw =
∫ ∞
−∞

Tw dx i= 4Uµ(k + 2)R
∫ ∞
−∞

1
x2

dx i (2.29)

and the torque at point O is

Mw =−
∫ ∞
−∞

xpw dx=−8µU(k + 1)R2

∫ ∞
−∞

1
x2

dx. (2.30)

Note that the change of variable x/R= tan θ leads to I = R
∫∞
−∞ dx/x2 = ∫ π0 dθ/sin2θ .

Despite the fact that I is infinite, the forces and torque can be written formally:

Dc =−2µUI i, Mc/O′ = 2(2k + 1)µURI (2.31)
Dw = 4Uµ(k + 2)I i, Mw =−8µU(k + 1)RI. (2.32)

These expressions clearly show that the global balance of forces and torque is not
fulfilled. It is therefore necessary to introduce a point force and torque exerted by the
fluid at point O:

DO =−(D+ Dw)=−2(2k + 3)µUI i, MO = 4(k + 1)µURI. (2.33)

Unfortunately at this stage it is impossible to distinguish which part of DO and MO

is applied on the cylinder and on the wall.
It is clear now that cavitation or compressibility will substantially change the lift

and drag forces. For example, if a cavitation bubble appears just downstream of the
contact point O, where p drops towards zero, the antisymmetry is broken and an
infinite positive lift appears since the integral in (2.25) does not converge any more. It
is therefore impossible to maintain the cylinder in contact with the wall. A very tiny
flow must pass under the cylinder and, in two dimensions, this must be represented
by an interstice between the wall and the cylinder. In real three-dimensional situations,
the roughness of the surfaces even at molecular level is compatible with both the
wall–cylinder contact and a non-zero interstitial flow, but that will not modify the
solution of the Navier–Stokes equations far enough from the contact area and the onset
of cavitation for a finite value of p∞.

3. Interstitial flow between the cylinder and the wall
3.1. Lubrication solution

In two dimensions, a more realistic treatment of the problem must therefore take into
account a gap between the cylinder and the wall. The direct treatment by bipolar
coordinates (Jeffery 1922) is limited to Stokes flows around the cylinder whereas
the lubrication approach to the interstitial flow is valid for any Reynolds number
provided that Re h2/R2� 1 where h is the characteristic height of the interstice, here
the minimum distance between the wall and the cylinder. Moreover, the lubrication
equation is an easy way to determine the pressure field and discuss the cavitation
onset, while the bipolar approach generally provides the pressure field by means of
an infinite formal sum of undetermined coefficients. For these reasons, the lubrication
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point of view was adopted here. In fact, the problem is a generalization of the one
dealt with in Taylor (1963) for k = 0 and 1 and the approach presents similarities with
Coyle et al. (1986) treating counter- and corotating cylinders. However, all published
papers related to coating processes between cylinders and with a gas–liquid interface.

The fluid flows between the wall (y = 0) and the cylinder, locally approximated
by yc = h + (x2/2R). Calling ux and vy the velocity components along the Ox- and
Oy-axes, the problem is reduced to

1
µ

∂p

∂x
= ∂

2ux

∂y2
= A(x)

µ
for x� R (3.1)

with the following boundary conditions:

ux =−kU for y= yc (3.2a)
ux =−U for y= 0. (3.2b)

The solution for ux, as a function of the pressure gradient, is:

ux = A(x)

2µ

(
y− x2

2R
− h

)
y+ (1− k)Uy

h+ x2

2R

− U. (3.3)

The second component of the velocity vy is obtained by integrating the mass
conservation equation:

vy =−
∫ y

0

∂ux

∂x
dŷ (3.4)

that results in:

vy =

 (1− k)Ux

2R

(
h+ x2

2R

)2 +
Ax

4µR
− A′

2µ

(
y

3
− x2

4R
− h

2

) y2. (3.5)

It is useful to rewrite the solution in terms of the algebraic mass flux: Q= ∫ yc
0 ux dy,

which gives for the pressure gradient

A=−12µQ

y3
c

− 6U(k + 1)µ
y2

c

(3.6)

and, for the velocity field:
ux

U
=−3Y2(2q+ k + 1)+ 2Y(3q+ k + 2)− 1 (3.7)

vy

U
= Y2x

R
((6q+ k + 2)− 2Y(3q+ k + 1)) (3.8)

where Y = y/yc and q(x/R)= Q/Uyc.
Given that dy = yc dY + Y(x/R) dx, it is easy to deduce by integration of (3.7) and

(3.8), that the stream function is

Ψ = Uyc

[−(2q+ k + 1)Y3 + (3q+ k + 2)Y2 − Y
]
. (3.9)

The dimensionless solution Ψ̄ = Ψ/Uh only depends on parameters q∗ = Q/Uh and
h/R.
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3.2. Problem closure for a completely flooded interstice
The present lubrication solution can be considered as focusing on the flow in the
vicinity of point O (figure 1) when the contact is not perfect. It is worthwhile verifying
that it is asymptotically compatible with the Stokes solution far from O. Taking the
velocity components (2.15b) and projecting it on the x and y directions gives

ux

U
=−(3cos2θ − sin2θ)

1
ξ 2
(k + 1)+ 2cos2θ

1
ξ
(k + 2)− 1 (3.10)

vy

U
= 2 sin θ cos θ

(
1
ξ
(k + 2)− 2

1
ξ 2
(k + 1)

)
. (3.11)

The interstitial area is characterized by θ � 1 and its asymptotic border by x→∞,
which leads to

Y ≈ 1
ξ
≈ 2Ry

x2
� 1, sin θ ≈ y

x
, cos θ ≈ 1. (3.12)

With this approximation, Stokes solutions (3.10) and (3.11) become
ux

U
=−3Y2(k + 1)+ 2Y(k + 2)− 1 (3.13)

vy

U
= Y2x

R
((k + 2)− 2Y(k + 1)), (3.14)

that is, exactly (3.7) and (3.8) if q−→ 0, which is the case when x2/2Rh� 1.
This shows that, as suggested by the numerical computations, far enough from the

contact area, the global Stokes flows either with a perfect contact or with a gap
between the wall and the cylinder, are identical. Unfortunately this does not help
to determine flux Q in this gap. However, this can be done analytically as long as
the interstitial flow is governed by Rayleigh equation (i.e. Re h2/R2u� 1) and is
completely flooded (no cavitation). In fact, in that case, pressure gradient A(x) (3.6) is
an even function of x and, therefore, p− p∞ must be odd. At x= 0, let us write

p(0)− p∞ =
∫ 0

−∞
A dx= 0 (3.15)

and introduce, for convenience, the following notation:

q∗ = Q

Uh
; Z = q

q∗
= h

yc
=
(

1+ x2

2Rh

)−1

, |x| = √2Rh

√
1− Z

Z
. (3.16)

Equation (3.15) becomes

∫ 1

0

q∗Z3/2 + k + 1
2

Z1/2

√
1− Z

dZ = 0 (3.17)

and therefore

q∗ =−k + 1
2

∫ 1

0

Z1/2

√
1− Z

dZ∫ 1

0

q∗Z3/2

√
1− Z

dZ

=−k + 1
2

π/2
3π/8

=−2
3
(k + 1). (3.18)
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The explicit expression of p is therefore

p− p∞ = sgn(x)
12µU

h2

√
Rh

2
(k + 1)

∫ Z

0

√
z(−2z/3+ 1/2)√

1− z
dz. (3.19)

Integration and going back to the original variables gives

p− p∞ = 2µU(k + 1)
h2

x(
1+ x2

2Rh

)2 . (3.20)

This expression tends towards the pressure distribution on the wall (2.18) for the
Stokes flow with perfect contact if x2/2Rh� 1. Distance

√
2Rh appears to be the

characteristic length of the interstitial area along the x axis and also corresponds to
points ±xA′ where the derivative A′ of the pressure gradient is zero. This can be
verified easily since, according to (3.6), A′ = 0 for q(xA′) = q∗h/yc =−(k + 1)/3. This
is understandable from a physical point of view: in the case of a perfect contact, the
pressure gradient increases continuously until point O, but when the interstice exists,
it stops growing at a certain distance because of the leak under the cylinder. This
distance xA′ can therefore be considered as the characteristic distance of influence of
the interstice. It is remarkable that xA′ do not depend on k, and that xA′/h =√2R/h is
just a geometrical factor. This result is valid as long as the Rayleigh equations are also
valid and the interstice is completely flooded, which does not depend directly on the
Reynolds number Re = 2UR/ν of the external flow. Therefore, the present results are
applicable to high-Reynolds-number situations as in Stewart et al. (2010) if h is small
enough.

3.3. Forces and torque for Stokes flows

Forces and torque exerted on the cylinder can be calculated from the global linear
and angular momentum on the domain defined in figure 8. For the cylinder in Stokes
regime this can be done analytically. From (2.19) and (2.16) it is easy to show that
viscous and pressure forces decay at infinity like 1/r and that the contribution of the
surface Σ to the viscous torque at O,

∫ π
0 4µU(2 + k) cos 2θ dθ is zero by symmetry.

On a finite numerical square domain, this is not strictly the case and therefore the
numerical cylinder torque must be corrected by removing the residual torque generated
by external boundaries.

Since the fluxes of linear and angular momentum are zero on the domain of figure 8,
the forces and torque exerted on the cylinder are just balanced by those applied on
the wall. It follows immediately, by the antisymmetry of the pressure at the wall, that
no lift force is applied on the cylinder as long as the interstice is completely flooded
and without cavitation effects. Therefore, the drag is the only force that balances the
viscous stress on the wall. As the lubrication and the Stokes solution are identical on
the wall far from the nip, the viscous stress can be deduced from (3.3):

D=−
∫ ∞
−∞
µ
∂ux

∂y

∣∣∣∣
y=0

i dx

= 2µU

√
2R

h

(
k
∫ ∞
−∞

dX

(1+ X2)2
− (k + 2)

∫ ∞
−∞

X2 dX

(1+ X2)2

)
i (3.21)
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n
O

y

Σ

x

n

n

FIGURE 8. Integration domain for forces and torque. Surface Σ is a cylinder centred on point
O with a radius tending toward infinity.

where X = x/
√

2Rh, resulting in

D=−2πµU

√
2R

h
i. (3.22)

Notice that this result surprisingly does not depend on k. This is because in (3.21)
both integrals are equal although they have a different physical origin. Rewriting the
viscous stress on the wall in dimensional form and assuming that x2/2Rh� 1, we
have

µ
∂ux

∂y

∣∣∣∣
y=0

≈ 8µUR2

x4
(kh− (k + 2)x2), (3.23)

which implies that the first contribution is negligible far from the nip and strictly zero
for h = 0. The first integral in (3.21) is mainly the contribution of the interstice
and the second one the influence of the rest of the wall. That is why, for the
perfect contact problem, the contribution of the contact point could only be deduced
from the global balance and the force obtained on the wall was only the second
contribution. Comparing (3.22) and (2.29) shows that it is possible to model the
interstice as a contact point, substituting π/4

√
2R/h by I in (2.29) and assuming

that a force of FOw = −πµUk
√

2R/h i is applied on the wall at point O. Within
this model, it follows from (2.33) that point O applies on the cylinder a force
FOc = −(3π/2)µU

√
2R/h i resulting in the global drag (3.22) on the cylinder. Notice

that drag Dc = −(π/2)µU
√

2R/h i (2.26) is only a quarter of D and represents the
contribution of the whole cylinder except the interstice.

As with the forces, in the Stokes regime the cylinder torque, with respect to point O,
only balances the pressure torque applied on the wall. From (3.20) this can be written

M/O =
∫ ∞
−∞

pwx dx k= 4µU(k + 1)R

√
2R

h

∫ ∞
−∞

X2

(1+ X2)2
dX k (3.24)

and finally

M/O = 2πµU(k + 1)R

√
2R

h
k. (3.25)

Applying the same substitution of I, this is exactly the opposite of torque Mw (2.30),
and from (2.33) we can deduce that a torque McO = πµU(k + 1)

√
2R/h is applied on
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the cylinder at point O. The torque at the centre of the cylinder is therefore:

M/O′ = 2πµUkR

√
2R

h
k= 2πµΩR2

√
2R

h
k. (3.26)

The fact that drag D is only due to the translation and the torque only to the rotation
is in agreement with the results of Wakiya (1975) and Jeffrey & Onishi (1981), but
Wakiya erroneously gave a drag proportional to (2R/h)3/2 in contradiction to ours and
that obtained by Jeffrey for k = 0 and 1.

It is now possible to give a good approximation (at order O(
√

h/R)) of the pressure
and viscous contributions. Since the torque due to pressure is zero at the centre of the
cylinder, this torque at point O is Mp/O = (Dp(R + h)) where Dp is the pressure drag
modulus. But we know from (2.28) that the viscous torque at point O tends towards
the finite value Mc/O for h tending towards zero. We have therefore

M/O −Mp/O −Mc/O = O(h/R) (3.27)

from which we can deduce the contributions of pressure and viscosity:

Dp =−
(

2πµU(k + 1)

√
2R

h
+ 4πµU(2k + 1)+ O(

√
h/R)

)
i (3.28)

Dv =
(

2πµUk

√
2R

h
− 4πµU(2k + 1)+ O(

√
h/R)

)
i (3.29)

Mp/O =
(

2πµU(k + 1)(R+ h)

√
2R

h
− 4πµU(2k + 1)R+ O(

√
h/R)

)
k (3.30)

MV/O =
(

4πµU(2k + 1)R+ O(
√

h/R)
)
k. (3.31)

The numerical computation corroborates these analytical results as shown in
figure 9.

3.4. Forces and torque for non-zero Reynolds numbers
At higher Reynolds numbers, the effect of the wake becomes sensitive, first to the lift
that is zero only if Re = 0 but also to the drag. Taking the classical definition of the
drag coefficient: CD = FD/ρU2R, (3.22) becomes

CD = 4π
Re

√
2R

h
. (3.32)

Formula (3.32) can be compared with the numerical simulations of Stewart et al.
(2010) and explains, at least for the lowest Reynolds numbers, why these authors
noticed a weak influence of k compared with the effect of h. Present results show
clearly that, for any Reynolds number, the rotation has no effect on the drag
owing to the interstice that is dominant for low Reynolds numbers. For example
for Re = 20 (the lowest Reynolds number discussed by Stewart et al.), formula (3.32)
gives CD = 9.93 for h/2R = 4 × 10−3, which is near the value found numerically by
these authors: CD ≈ 11 to 12. According to our own results for h/R = 0.005 and
Re = 20, the contribution of the wake is less than 10 % of the total drag. Stewart
et al.estimated that the decrease of CD versus h could be fitted to a power law of
exponent −0.41 instead of 0.5 for the pure interstitial drag (3.32). Hence for Re= 200
(3.32) gives CD ≈ 1 equivalent to about one-half to one-third of the value found in
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FIGURE 9. Numerical and analytical drag and torque versus k for different ratios h/R:
(a) total drag, (b) pressure drag, (c) viscous drag, (d) total momentum. The total drag
is remarkably constant and the agreement between numerical simulation and analytical
prediction is perfect. The pressure and viscous drag are well predicted by the analytical
approximations (3.28) and (3.29). It can be seen that when h increases the simulation and the
analytical prediction tend to diverge as expected since the analytical formula are precise at
order O(h). Similar reasoning leads to an identical conclusion for the total momentum.
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FIGURE 10. Numerical and theoretical values of the drag (a,b) and lift (c,d) coefficients
for different values of h/R for k = 1. Analytical curves in (a) and (b) give the effect of
the interstice alone (formula (3.32)), and (b) shows a good agreement between theory and
numerical results at very low Reynolds numbers when the wake is not fully developed. At
higher Reynolds number, the difference increases because theoretical curves correspond to the
effect of the interstice alone. The lower h/R is, the higher is the drag induced by the interstice.
The lift is entirely due to the asymmetry of the wall pressure on the cylinder induced by the
wake. The lift coefficient increases continuously as Re decreases (c) but for Re� 1 (d) the lift
coefficient drops suddenly towards zero as expected since in the Stokes flow regime, the lift is
zero, at least in the absence of cavitation or compressible effects.
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Stewart et al. (2010), suggesting a relative decrease of the interstitial contribution to
the global drag.

As a significant example, figures 10 depict the variation of drag and lift coefficients
versus Reynolds number between Re = 0 and Re = 60 for k = 1 and different values
of h/R. Figure 10(b) shows the validity of formula (3.32) at low Reynolds number.
As already mentioned in a previous section, the interstitial flow is independent of
the external Reynolds number as long as the lubrication equation is valid; therefore
(3.22) and (3.32) still fit for high values of Re but only represent the contribution of
the interstice to the total drag. This contribution is prominent as long as the wake
is not fully developed. A wider range of Re is displayed on figure 10(a), allowing
the evaluation of the difference between the total drag obtained numerically and
the interstitial contribution obtained analytically. This difference measures the wake
contribution to the drag. These numerical results match perfectly with those of Stewart
et al. (2010) and extend them to very low Reynolds numbers.

Figures 10(c) and 10(d), underline more specifically that the lift coefficient
increases when Re decreases whereas it is supposed to be zero in the Stokes regime.
Figure 10(d) depicts the lift behaviour for 0 < Re < 1; it can be seen that the decline
to zero is very sharp and that the Stokes regime around the rolling cylinder is very
singular. This is because, even in presence of an interstitial flow, the lift is entirely due
to the asymmetry of the flow, particularly because of the wake, which only vanishes in
the Stokes regime.

3.5. Description of the flow for a completely flooded interstice
Once q∗ has been determined all features of the flow can be defined. Let us first
summarize the solution in the interstice:

Ψ̄ = Ψ

Uh
= (k + 1)

3

(
1− 3x2

2Rh

)
y3

y3
c

−
(

k − (k + 2)x2

2Rh

)
y2

y2
c

− y

h
(3.33a)

ux

U
= (k + 1)

(
1− 3x2

2Rh

)
hy2

y3
c

− 2
(

k − (k + 2)x2

2Rh

)
y

yc
− 1 (3.33b)

vy

U
= xy2

Ry2
c

(
2(k + 1)

y

yc
− (3k + 2)

)
(3.33c)

p= 2µU(k + 1)
h2

x(
1+ x2

2Rh

)2 (3.33d)

Q=−2
3
(k + 1)Uh. (3.33e)

It is worthwhile underlining that the interstitial flow Q does not depend on the
fluid properties. Even more remarkable is the position xA of the pressure extrema
where the pressure gradient is zero. A = 0, corresponds to qA = −(k + 1)/2 and
therefore xA/h = ±√(2/3)(R/h), which only depends on the geometry and not on any
characteristic of the flow! Any change in the flow conditions (rotation (k), translation
(U) or Re) for a given geometry, only induces a modification of the pressure gradient
between these two fixed points that is to say, in pressure extrema variation. The
pressure gradient at x= 0 is A0 = (2(k + 1)µU)/h2 and the extremum pressure

pM = 3
√

3|k + 1|
4
√

2

µU

h

√
R

h
(3.34)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

33
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.331


Cylinder rolling on a wall 483

x  (2Rh)1/2

 20000

 40000

 60000

 80000

 100000

 120000

 140000

h R

Analytical
Computational

–1.5

–1.0

0

1.0

1.5

0.5

–0.5

–6–8 –4 –2 0 2 4 6 8 0.05 0.15 0.250.10 0.20

(a) (b)

0

Computational h R = 0

Computational h R = 0.01

Computational h R = 0.10

Computational h R = 0.20

Analytical h R > 0

Analytical h R = 0

FIGURE 11. Pressure distribution in the interstice. Comparison between numerical and
analytical results: (a) normalized pressure repartition p/pM; (b) maximum pressure pM. All
computed cases for h 6= 0 fit with (3.35) and (3.34) while h = 0 compares the numerical
pressure repartition with (2.18).

with the maximum downstream at xA = −√(2/3)Rh if k > −1 and upstream at
xA = √(2/3)Rh if k < −1. Obviously, the minimum pressure pmin = −pM is located
symmetrically. Except for k =−1 where p= 0 for all x, the pressure distribution in the
interstice is given by the universal function

p

pM
= 16

3
√

3

X

(1+ X2)2
(3.35)

where X = x/
√

2Rh (figure 11).
For a good description of the interstitial flow it is necessary to localize the

stagnation points. As a first step, let us identify curve Cu where ux = 0. From (3.7),

Y = (3q+ k + 2)±√9q2 + 6q(k + 1)+ k2 + k + 1
3(2q+ k + 1)

(3.36)

which is a real two-branch function if 9q2 + 6q(k+ 1)+ k2 + k+ 1> 0. In the far field
where q→ 0, the lower branch C−u is always in the flow 0 < Y < 1 whereas it is the
case for the upper branch only if k > 0. Figure 12 presents an example of Cu for k = 1
and h/R= 0.025.

For k > 0 the junction point of both branches corresponds to q= qu =−(k + 1)/3+√
k/3. Therefore, since q∗ < qu < 0, for k > 0 and x > 0 the two branches come from

x =∞ and join each other at x = xu =√2((q∗)/(qu)− 1)Rh> 0. A symmetrical curve
exists for x < 0. For a stagnation point to exist on Cu, equation vy = 0 must hold for
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FIGURE 12. Upstream curve Cu (analytical (3.36) and numerical) and streamlines for k = 1
and h/R = 0.025: (a) global view; (b) close-up of the interstice. Both analytical Cu and
numerical curves coincide, in the vicinity of the two-branch junction and near the wall. This
coincidence increases if the dimensionless interstice size h/R decreases. Curve Cu is the
location where streamlines turn back upstream, with a behaviour similar to a jet around
line Y = 1/2 that corresponds, in the Stokes regime, to the external boundary of the vortex
structure. Downstream from the nip, the feature is the same as in the Stokes regime but the
fluxes are inverted. At higher global Reynolds numbers (Re� 1), the interstice feature is
identical but the fit with the external flow is modified, particularly downstream.

x 6= 0 and 0< Y < 1. Taking (3.8) into account, this leads to

Y = 6q+ k + 2
2(3q+ k + 1)

. (3.37)

The physical solution qst of the system (3.36) and (3.37) is the root of the polynomial
equation (

18q2 + 12q(k + 1)+ (k + 1)(k + 2)
)2

= 4(3q+ k + 1)2(9q2 + 6q(k + 1)+ k2 + k + 1) (3.38)

that fulfils the requirements 0< Y < 1 and qu < q< 0. This solution is

qst =−k + 1
3
+ 1

6

√
8+ 2k + 2k2 − 4

√
(k − 1)2 + k2 + 3. (3.39)
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FIGURE 13. Streamlines of the interstitial flow for k = 1. Close-up of the upstream
stagnation point area. The flow is the confluence of two equal fluxes, one dragged by the
cylinder and the other by the wall. Around the upstream stagnation point, the part of the
flow that cannot enter the interstice is ejected upstream on both sides of a central line that
corresponds to the external boundary of the vortex structure. Of these streamlines, those
located above this central line are trapped in the vortex structure, the others turn around the
vortex and reach the downstream stagnation point area before continuing at x→−∞.

In the case k = 1, since qu = qst =−1/3 and Yst = 1/2, the stagnation point is located
just at the junction of the two branches of Cu (figure 13) at xst =

√
2Rh (figure 14).

This location corresponds exactly to points xA′ where the pressure gradient derivative is
zero.

For k > 1 the stagnation points S are located on the lower branch of Cu and for
k < 1 on the upper one (figures 15a and 15b). These stagnation points behave as
saddle points where the flow driven by the cylinder meets the flow driven by the wall
before entering the interstice or being pushed back around the cylinder.

For k = 0, it is easy to verify that the upper branch of Cu (3.36) degenerates to
Y = 1 for all q since the velocity is zero on the cylinder. In that case, we have
qu = qst = −1/3, and Yu = Yst = 1. This means that the lower branch of Cu ends on
the cylinder surface at xst = x′A =

√
2Rh (figure 16). This location of the stagnation

points for k = 0 was already obtained theoretically in Jeffrey & Onishi (1981) and
numerically in Stewart et al. (2010).

For k < 0 and k 6= −1, curve Cu is reduced to its lower branch that exists for any
value of q and is therefore continuous in the interval −∞ < x <∞. Moreover, no
root of (3.38) fulfils condition 0 6 Y < 1. Therefore, vy is zero only for x = 0. As a
consequence, qst = q∗ and, according to (3.36), the stagnation point is located at

Yst = k +√k2 + k + 1
k + 1

, xst = 0. (3.40)

The general features for k < 0 are given figure 17. The case k = −1 is singular
because (3.7) degenerates into q = q∗ = 0. The solution becomes q = 0 for all x and
curve Cu reduces simply to Y = 1/2 ∀x.

It is now possible to determine the rate difference between the flow driven by the
wall and that driven by the cylinder in the interstice. The flow rate driven by the
wall is simply given by the value of the stream function Ψst at the stagnation point.
Moreover, Ψ = Ψst corresponds to the streamline that separates the flow driven by
the wall and passing through the interstice from the flow turning around the cylinder.
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FIGURE 14. Position of stagnation points for k = 1. Comparison between analytical and
numerical results, for varying h/R: (a) x/R and (b) y/R. Analytical and numerical predictions
coincide until h/R> 0.1.

According to (3.33a), the value of Ψst for x→∞, q→ 0 and y/yc→ 0 is equal to the
ratio −y∞/h where y∞ is the thickness of the fluid film driven by the wall and passing
through the interstice:

y∞
h
=−Ψst =−Ψ (xst, qst,Yst) (3.41)

where, for k > 0, Yst and qst are given respectively by (3.37) and (3.39) and xst by

xst =
√

2Rh

(
q∗

qst
− 1
)
. (3.42)

For k < 0, xst = 0, qst = q∗ and Yst is given by (3.40). Tables 1 and 2 summarize these
results for a few significant values of k.

For k > 0, table 1 provides the ratio Ψst/q∗ between the flow driven by the wall
and the global interstitial flow, while table 2, which covers k < 0 values, gives the
ratio between the fluid driven downstream by the wall and the opposite flow driven
upstream by the cylinder: |Ψst|/|q∗ − Ψst|.

3.6. Cavitation
The familiar Reynolds conditions for cavitation are

A= dp

dx
= 0 and p= 0. (3.43)
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FIGURE 15. Close-up of the vicinity of the upstream stagnation point S. Streamlines for
(a) k = 2. The stagnation point is on the lower Cu branch. The downstream stagnation point
can be deduced inverting the direction of the arrows. (b) k = 0.5. The stagnation point is on
the upper branch of Cu.
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FIGURE 16. The particular case k = 0. Close-up of the stagnation point area. All the flow
crossing the nip is driven by the wall, the upper branch or Cu is the cylinder itself where the
velocity is zero. The flow that does not enter the nip turns around the cylinder and the vortex
structure does not exist. The pattern is the same downstream but with inverted arrows.

Surface tension γ can be neglected if γ /µU
√

h/R� 1 (Savage 1982) which is always
the case for h sufficiently small. The cavitation condition can be summarized as
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FIGURE 17. Interstitial flow for k < 0, two opposite flows are competing. (a) k = −0.5: the
stagnation point position S (Yst = 0.732) is given by (3.40). (b) k = −1: the two opposite
flows are equal and therefore q∗ = 0, Yst = 1/2. (c) k = −2: (3.40) gives Yst = 0.268, the flux
driven upstream by the cylinder is higher than the flux driven downstream by the wall.

k 0 0.25 0.5 1 2 3 4
xst/
√

2Rh ±1 ±1.531 ±1.673 ±1.732 ±1.712 ±1.732 ±1.774
Yst 1 0.751 0.6479 1/2 0.321 0.250 0.228
y∞/h 2/3 0.742 0.74 2/3 0.518 0.417 0.339
Ψst/q∗ 1 0.891 0.74 1/2 0.259 0.156 0.102

TABLE 1. Prograde rotation. Line 1: x coordinates of stagnation points; line 2: y
coordinates of stagnation points; line 3: thickness of the fluid film that enters the interstice,
far upstream at the wall; line 4: ratio between the flow rate driven by the wall and the total
flow rate in the interstice.

k −3 −2 −1 −0.5
Yst 0.177 0.268 1/2 0.732
y∞/h 0.087 0.131 1/4 0.339
|Ψst|/|q∗ − Ψst| 0.061 0.164 1 6.100

TABLE 2. Retrograde rotation. Line 1: y coordinates of stagnation points; line 2: thickness
of the fluid film that enters the interstice, far upstream at the wall; line 3: ratio between the
flow rates driven by the wall and the cylinder in the interstice.
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k −3 −2 −1 −0.5 0 1 2 3 4
q∗0 (p∞ = 0) 1.225 0.6128 0 −0.306 −0.6128 −1.225 −1.8386 −2.452 −3.06

q∗M (p∞ = pM) 1.333 0.667 0 −0.333 −0.667 −1.333 −2 −2.667 −3.333

TABLE 3. Limit values of q∗ = Q/Uh in the case of cavitation. For p∞ growing from 0
to pM cavitation happens with an increasing interstitial flow rate Q from q∗0Uh until the
maximum value q∗MUh for which cavitation disappears. For p∞ > pM the interstice is totally
flooded and the flow rate remains equal to q∗MUh.

follows:

if p∞ < pM = 3
√

3|k + 1|
4
√

2

µU

h

√
R

h
cavitation appears (3.44)

if p∞ > pM = 3
√

3|k + 1|
4
√

2

µU

h

√
R

h
the nip is totally flooded. (3.45)

Let us denote as xcav the location of the minimum pressure (A= 0). At that abscissa
we have q = −(k + 1)/2 or, in terms of variable Z, Z = Zcav = (1 + x2

cav/2Rh)−1 =
−(k + 1)/2q∗. Because of the symmetry of A(x), it is easier to replace equation
p(xcav)= 0 with the equivalent condition p(0)= p(xmax)/2 or explicitly:

sgn(xmax)
12µU

h2

√
Rh

2

∫ −(k+1)/2q∗

0

√
Z(q∗Z + (k + 1)/2)√

1− Z
dZ + p∞

= 2sgn(xmax)
12µU

h2

√
Rh

2

∫ 1

0

√
Z(q∗Z + (k + 1)/2)√

1− Z
dZ (3.46)

resulting after integration in:

(
3q∗

4
+ k + 1

2

)(
arcsin

√
−k + 1

2q∗
− π −

√
−k + 1

2q∗

(
1+ k + 1

2q∗

))

+ k + 1
4

√
−k + 1

2q∗

(
1+ k + 1

2q∗

)
− sgn(q∗)

p∞h2

12µU

√
2

Rh
= 0 (3.47)

since sgn(xmax)=−sgn(q∗).
It is easy to verify that q∗ = −2(k + 1)/3 gives as expected p∞ = pM (3.34).

Solutions q∗ of (3.47) appear to be monotonic growing functions of p∞ for all k, in
the range [p∞ = 0, p∞ = pM] where cavitation happens. Table 3 gives the limits of the
cavitation domain [q∗0, q∗M] versus k (q∗0 corresponding to p∞ = 0 and q∗M =−2/3(k+1)
to p∞ = pM). It is remarkable that the result is antisymmetrical relative to k = −1,
which comes from the expression of pM (3.34). The values of q∗M and q∗0 for k = 1
were obtained by Taylor (1963) in a different way. Notice that case k = −1 is very
particular since the flow rate is zero and moreover the relative pressure in the interstice
is zero all along the wall.
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1
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0 (k + 1) 2–

210–1–2–3

FIGURE 18. Comparison between qst and qA = −(k + 1)/2 for k > 0 and between qA and q∗0,
q∗M . It is clear that qst > qA for all k > 0 and that qA is never in the domain limited by q∗0 and
q∗M corresponding to the possible value of q∗ at the stagnation point x= 0 for k > 0.

The location of the cavitation point can be deduced from q = −(k + 1)/2 =
q∗/(1+ x2

A/2Rh)2:

xcav = sgn(q∗)

√
−2
(

2q∗

k + 1
− 1
)

Rh. (3.48)

For a completely flooded interstice (q∗ = −2(k + 1)/3) this expression corresponds to
xA as expected.

It is remarkable that the cavitation inception xcav does not takes place at the
stagnation points. For k > 0 according to (3.42) and (3.48), the equality xcav = xst

would lead to qst = −(k + 1)/2 which is impossible since qst(k) > −(k + 1/2) for
all k > 0 (figure 18), and as a consequence: −xst < xcav < 0. For k < 0, condition
xst = 0 would lead to q∗ =−(k + 1/2) but, as −(k + 1/2) never belongs to the domain
limited by q∗0 and q∗M except for k = −1 (figure 18), cavitation cannot appear at x = 0.
These results show that, under the present assumptions (γ /µU

√
h/R� 1), a steady

two-dimensional meniscus cannot occur in the interstice. The flow must become three-
dimensional as confirmed in the experimental work by Taylor (1963) with Newtonian
fluids and more recently by Ouibrahim, Fruman & Gaudemer (1996) for Newtonian
and non-Newtonian fluids with no major differences. Moreover, if the cylinder is free
to move under the effect of the lift force, an unsteady behaviour may occur as the
periodic emission of bubbles that appear in experiments (Seddon & Mullin 2006).

As was seen previously, for k < −1 the cavitation appears upstream of the nip, and
downstream for k > −1, but the case k = −1 is particular since the relative pressure
in the interstice is p= p∞ in terms of absolute pressure, there are no pressure extrema
and therefore no localized cavitation onset.
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FIGURE 19. Pressure repartitions in the interstice for p∞ = 0 and p∞ = pM and negative
values of q∗. Similar figures for q∗ > 0 (k < −1) can be obtained by changing x to −x while
k is changed to −(k + 2). The maximum pressure increases with k as expected from (3.34).
Cavitation slightly increases this maximum. The cavitation location is always very near to x=
−√Rh. The exact values for the case p∞ = pM is xcav/

√
2Rh= xA/

√
2Rh=−√1/3≈−0.577

which does not depend on k. For p∞ = 0, xcav/
√

2Rh is 0.473 for k = −0.5 (a), 0.474 for
k = 1 (b).

In all cases, the relative pressure can be obtained by

p(x)= sgn(x)
12µU

h2

√
Rh

2

∫ (1+(x2/2Rh))−1

0

√
Z (q∗Z + (k + 1)/2)√

1− Z
dZ + p(0) (3.49)

where

p(0)=−sgn(q∗)
3πµU

h2

√
2Rh

(
3
4

q∗ + k + 1
2

)
+ p∞. (3.50)

Figure 19 depicts examples of the relative pressure repartition p − p∞ in the interstice
for q∗ < 0 (i.e. −1 < k). Similar figures for q∗ > 0 (k < −1) can be obtained by
changing x to −x while k is changed to −(k + 2). The case p∞ = pM corresponds
to a flow without cavitation, the case p∞ = 0 is the upper limit for cavitation flows.
For intermediate values of p∞ the pressure repartition is located between these two
curves. It can be seen that the maximum relative pressure increases slightly when
cavitation appears. It is also shown that xcav is always very close to −√Rh since, for
all k > −1, it varies from −0.577

√
2Rh for p∞ = pM to approximately 0.474

√
2Rh

when p∞ decreases to zero.

4. Conclusion
The two-dimensional Stokes flow around a cylinder rolling on a plate was solved

for any translation and rotation velocity of the cylinder and with a perfect contact.
Agreement between the Stokes solutions and the full Navier–Stokes numerical
simulations at Re � 1 is excellent and computations at higher Reynolds numbers
are in total agreement with those of Stewart et al. (2010). A vortex structure is
shown to appear for prograde rotation in the Stokes regime. This vortex is converted
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progressively into a wake when the Reynolds number increases, and at about Re = 40
a second vortex is therefore generated in the wake, in the vicinity of the wall.

A pathologic problem of the Stokes solutions was detected at the contact point
where the upstream pressure tends toward +∞ and the downstream pressure tends
towards −∞. Therefore, for realistic stagnation pressures, there is no solution of
the incompressible Navier–Stokes equations. Compressibility or cavitation must occur
systematically near the contact point, limiting the pressure drop to a physically
acceptable value. This results in an infinite lift force that opens an interstice between
the wall and the cylinder. The flow in the completely flooded interstice was solved
analytically within the theory of lubrication and stream functions were obtained for
all configurations. A detailed description of the flow field inside the interstice was
therefore provided, giving the location of stagnation points and the thickness of
the far-field layer coming along the wall and entering the interstice. The drag and
the torque applied on the cylinder were determined analytically and compared with
computations for different heights of the interstice and Reynolds numbers, clarifying
some discrepancies in the literature.

A global model of the interstice was deduced allowing its treatment as a contact
point but with a non-zero flow and where point forces and a torque are applied on
the wall and the cylinder. This global concept of the interstice can be very useful for
modelling small gaps between two-dimensional boundaries.

Drag and torque were studied in detail for the Stokes flow around the cylinder in
order to separate the effect of pressure and viscosity, but also the respective influence
of the body and the interstice. At higher Reynolds numbers, the lift force was also
studied numerically for 0< Re< 40. It is shown that the lift coefficient increases when
Re decreases except for Re� 1 where it undergoes a sudden decay to zero as expected
for the Stokes regime.

Finally, the study of the conditions for cavitation inception in the interstice enabled
the determining of the location of the onset of cavitation and the correlative fluxes.
It is shown that these locations are never identical to those of stagnation points and
that, consequently, when cavitation appears, the flow must become three-dimensional
downstream from the cavitation onset.

Further research can take advantage of the present punctual model of interstices,
not only for finding analytical Stokes flows in configurations including cylinders, but
also for simplifying the mesh strategy in two-dimensional computations with small
gaps between solid boundaries. This can be helpful for treating problems related to
micropumps based on cylinder rotations, squeezed thin films or aquaplaning since the
interstitial flow is not limited to small Reynolds numbers.
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