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ABSTRACT

Pricing approaches for long-tail quota shares are often based on the chain lad-
der method. Apart from IBNR calculation, common pricing methods require
volumemeasures for accident years in the observation period, and for the quota-
tion period. In practice, in most cases restated premiums are used as the volume
measures. The prediction error of the chain ladder method is an important part
of the prediction uncertainty of these pricing approaches. There are, however,
two sources of uncertainty that are not addressed by the chain ladder model:
the stochastic volatility of the claims in the first development year; and the re-
statement uncertainty, the risk that the restated premium is not a good volume
measure. We extend Mack’s chain ladder model to cover these two sources of
uncertainty, and calculate the mean-squared error of chain ladder pricing ap-
proaches with arbitrary weights for the accident years in the observation period.
Then we focus on the problem of finding optimal weights for the accident years.
First, we assume that the parameters for restatement uncertainty are given, and
provide recursion formulas to calculate approximately-optimal weights. Second,
we describe a maximum likelihood approach that can be used to estimate the
restatement uncertainty.

KEYWORDS

Chain ladder, reinsurance pricing, quota share, mean squared error.

1. INTRODUCTION

Despite a trend towards non-proportional reinsurance, long-tail quota shares
remain extremely important for reinsurers. For instance, in 2012, German in-
surers ceded more than EUR 3 billion motor premium on a pro rata basis (see
Haas (2013)). In view of large volumes and relatively small margins, pricing
accuracy is fundamental in this segment.

Long-tail quota shares often have risk-mitigating features, such as sliding
scale commissions or profit commissions. In these cases, a point estimate for
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the expected loss ratio is not sufficient for pricing — a stochastic loss model is
required. Practitioners often use the method of moments to fit an aggregate loss
model. In this context, it is very useful to have a formula for the standard error
of the selected pricing approach, since it can be used to estimate the standard
deviation of an aggregate distribution that includes parameter uncertainty.

There are two very common but rather different approaches for pricing long-
tail quota shares: the average loss ratio (ALR)method, and the roll forward (RF)
method. Both methods are based on a chain ladder calculation for the claims
triangle.

The ALR method requires trending of losses and restatement of premiums
in order tomake figures comparable across years. The average ultimate loss ratio
of the observation period, as predicted by the chain ladder, is used to forecast
the ultimate loss ratio of the quotation year.

The RF method relies on the chain ladder prediction for the ultimate loss
ratio of the most recent accident year of the observation period. RF parameters
for the premium and expected loss are used to reflect the expected changes from
the last accident year in the observation period to the quotation year.

The ALR method should be preferred for segments with large stochastic
volatility (e.g. quota shares covering industrial liability). On the other hand, the
RF method is the standard method for segments with low stochastic volatility
of the claims burden, and relatively high uncertainty of restated premiums (e.g.
largemotor quota shares, where the loss ratios aremainly driven by the premium
cycle).

The ALR and RF methods are two extreme cases. The ALR method em-
ploys the average over all accident years in the observation period, whereas
the RF method only uses the chain ladder ultimate of the last accident year.
An obvious first approach to generalization of both methods is to allow arbi-
trary weights for the accident years in the observation period. In practice, these
weights are normally used to average the ultimate loss ratios resulting from the
chain ladder calculation. There is, however, a second approach that should be
considered: using the weights to average the loss ratios after the first develop-
ment year, and then multiplying the resulting loss ratio by the product of the
development factors from the chain ladder calculation (see Mack (1993)). This
second approach is less intuitive, but we will see that it should be preferred since
it employs estimators with smaller (conditional) variances.

These pricing methods are suited mainly for attritional losses, i.e. it makes
sense to remove large losses before applying the methods. An approach to sep-
arate large and attritional losses in a consistent way has been introduced by
Riegel (2014).

The standard chain ladder model describes the stochastic claims develop-
ment, provided that the claims burden of the first development year is given. For
predictions using the discussed pricing approaches, there are additional sources
of uncertainty that need to be addressed. First is the stochastic volatility of the
claims in the first development year. We extend the chain ladder model by as-
sumptions for the first development year, and require that the claims burden has
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a compound Poisson distribution. The second source of uncertainty is that the
restated premiums, used as estimators for the volumemeasures, deviate from the
correct volume measures. We call this effect restatement uncertainty and handle
it with a simple time series model. These extensions of the chain ladder model
allow calculation of and comparison between the mean squared errors of the
different pricing approaches, and estimation of approximately-optimal weights
for the accident years in the observation period.

In Section 2, we introduce the mentioned extensions of Mack’s chain ladder
model. We assume that all data have been trended to the quotation year, and
use an axiomatic definition of restatement uncertainty, to keep the model as
simple as possible. In Section 3, we discuss certain aspects of claims trending and
restatement uncertainty to provide a practical motivation for the corresponding
model assumption. In Section 4, we define the pricing approaches in detail and
apply them to an example based on data from aGermanmotor quota share. The
example is used in each of the subsequent sections to illustrate results. Section 5
is dedicated to the calculation of the mean squared errors of the considered
pricing methods. Assuming that the parameters for restatement uncertainty are
known, or at least estimated using expert judgement, we derive a recursion that
allows calculation of approximately-optimal weights for the accident years in
Section 6. In Section 7, we use a maximum likelihood approach to estimate the
parameters for restatement uncertainty.

An Excel implementation of the discussed pricing methods, the calculation
of the standard errors and the recursions for optimal weights is provided by the
author on www.researchgate.net.

2. STOCHASTIC MODEL

In this section, we extendMack’s chain ladder model in such a way that it can be
used to calculate the prediction error of the most common chain ladder based
pricing approaches for long tail quota shares.

We consider the typical situation of a pricing actuary. Assume that a claims
triangle is available for an observation period consisting of the accident years
i = 1, . . . , n. The task is to predict the ultimate loss ratio of the quotation year
q := n + 2. For i = 1, . . . , q and j = 1, . . . , n let Ci, j denote the cumula-
tive claims of accident year i after j development years (payments or incurred
amounts). We assume that all claims data have been trended to the calendar
year q, i.e. that inflation has been removed. More details on trending are found
in Section 3.

The observable claims data at the end of calendar year n (which is the data
available to the pricing actuary) is described by the σ -algebra

D := σ {Ci, j | i + j ≤ n + 1}.
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FIGURE 1: Illustration of the used σ -algebras.

Moreover, let Bk be the claims information given after k development years of
each accident year, i.e.

Bk := σ {Ci, j | 1 ≤ i ≤ q, j ≤ k},
and let

Dk := D ∩ Bk.

The σ -algebras are illustrated in Figure 1.
In addition to the claims information, we assume that restated premiums v̂i

have been calculated for the accident years i = 1, . . . , q. The first three model
assumptions combine the common chain ladder model with additive assump-
tions for the first development year.

Model Assumption 1. The accident years are independent.

Model Assumption 2. There exist volume measures v1, . . . , vq and factors
f0, . . . , fn−1 ≥ 0 such that

E(Ci,1) = f0vi and E(Ci, j+1 |B j ) = f jCi, j ,

for i = 1, . . . , q and j = 1, . . . , n − 1.

Model Assumption 3. There are σ 2
1 , . . . , σ 2

n−1 > 0 such that

Var(Ci, j+1 |B j ) = σ 2
j Ci, j ,

for j ≥ 1. Moreover, there exist x > 0 and c > 0 such that C1,1, . . . ,Cq,1 can be
represented as collective risk models

Ci,1 =
Ni∑
k=1

Xi,k,
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(i.e. Xi,1, Xi,2, . . . i.i.d. and independent of Ni) with Poisson distributed claims
count Ni and E(Xi,k) = x, CV(Xi,k) = c.

Here, CV(X) denotes the coefficient of variation of a random variable X. An
introduction to collective risk models is found in Klugmann et al. (2004). Even-
tually, we add a supplementary model assumption for restatement uncertainty.
The practical background for this assumption is discussed in the next section.

Model Assumption 4. The volume measure vq equals v̂q . The unknown volume
measures v1, . . . , vn+1 are estimated by the restated premiums v̂1, . . . , v̂n+1 such
that

v̂i = vi (1 + ei + · · · + en+1),

with independent and normally distributed random errors ei ∼ N(0, ε2i ). More-
over, the random vector (e1, . . . , en+1) and the claims development σ {Ci, j | 1 ≤
i ≤ q, 1 ≤ j ≤ n} are independent.
Remark 2.1. Since the normal distribution is not bounded from below, Model As-
sumption 4 can yield negative v̂i in extreme cases. In practice, restated premiums
are always positive of course. If the model is used for simulation, paths with v̂i
below a certain threshold, say 0.05 · vi , should therefore be ignored. Correspond-
ingly, we will truncate the distribution of v̂i for the calculation of the prediction
uncertainty (cf. Appendix C).

Remark 2.2. From Model Assumption 3, Wald’s equation and the Blackwell–
Girshick equation we have

E(Ci,1) = E(Ni )E(Xi,1) = E(Ni )x,

Var(Ci,1) = Var(Ni )E(Xi,1)2 + E(Ni )Var(Xi,1) = E(Ni )(1 + c2)x2.

With σ 2
0 := f0(1 + c2)x we obtain

Var(Ci,1) = E(Ci,1)(1 + c2)x = σ 2
0 vi .

3. COMMENTS ON TRENDING AND RESTATEMENT UNCERTAINTY

In the last section, we have assumed that claims data have been trended and
that premiums have been restated to the calendar year q. In order to provide a
practical background forModel Assumption 4, we describe the relevant aspects
of the methods that are typically used in this respect. Restating premiums (also
called trending or on-leveling of premiums) can be very complex. For a detailed
discussion of this topic cf. Jones (2002).

Let p∗
1, . . . , p

∗
n be the (untrended) premiums of the accident years in the ob-

servation period and let p∗
n+1 and p

∗
q be the estimated premiums for the accident

years n+1 and q = n+2. LetC∗
i, j denote the cumulative claims before trending

and let ICi be the expected individual claims size in C∗
i,1. There are a number
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of different methods for trending the claims C∗
i, j to the calendar year q. The

most popular ones are calendar year trending and accident year trending. We do
not go into detail here, but the usual methods have in common that the claims
C∗
i,1 of the first development year should be multiplied by ICq /ICi to obtain the

trended claims Ci,1. Of course, the index ICi is not known. The pricing actuary
uses estimates ÎCi and calculates the trended claims Ci,1 as

Ci,1 :=
ÎCq
ÎCi

· C∗
i,1.

Regarding the premiums, we proceed in two steps. First, we trend the premiums
p∗
i in the same way as the claims C∗

i,1, i.e.

pi :=
ÎCq
ÎCi

· p∗
i .

In the following, we assume that claims trending works perfectly. In particular
we assume that ÎCi = ICi and that the trended claims are inflation-free. This
idealization is a common requirement for most IBNR methods (in particular
for chain ladder). Note that this assumption is not more critical in our context
than for normal chain ladder calculations since Ci,1/pi = C∗

i,1/p
∗
i holds even if

ÎCi deviates from ICi .
In a second step, we restate the trended premiums pi in order to correct

for effects that influence the premium quality and thus the expected loss ratio.
Examples are tariff changes, frequency trends and portfolio changes. We define
the premium quality index IQi by

IQi := pi
E(Ci,1)

.

With

f0 := E(Cq,1)

pq
and vi :=

IQq
IQi

· pi ,

we then have vq = pq = p∗
q and

E(Ci,1) = f0 · vi ,

for all i . The premium quality index IQi is not known, of course. The pricing
actuary has to rely on estimates Î Qi which are typically derived frommarket data
and additional individual information regarding tariff and portfolio changes.
Using this estimated index, we obtain the restated premiums

v̆i :=
Î Qq
Î Qi

· pi ,
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that are used as estimators for the volume measures vi . Assume that the annual
changes of the premiumquality index can only be estimated up to random errors
ei with E(ei ) = 0, i.e.

Î Qi+1

Î Qi
= IQi+1

IQi
(1 + ei ).

For i = 1, . . . , n + 1 we then have

v̆i = Î Qq
Î Qi

· pi = IQq
IQi

(1 + ei ) · · · (1 + en+1)pi = vi (1 + ei ) · · · (1 + en+1).

Neglecting the error terms of higher order, we obtain

v̆i ≈ vi (1 + ei + · · · + en+1) =: v̂i . (∗)

With the additional assumption that e1, . . . , en+1 are independent and normally
distributed with standard deviations ε1, . . . , εn+1 these considerations lead quite
naturally to Model Assumption 4.

Note that E(v̆i ) = E(̂vi ) = vi . For the parameters used in practice, v̆i
and v̂i have similar distributions and the random vectors (v̆1, . . . , v̆n+1)

t and
(̂v1, . . . , v̂n+1)

t have very similar covariance matrices (see Appendix A). There-
fore, the approximation (∗) makes sense in our context. Figure 2 shows the re-
alizations of v̆1/v1, . . . , v̆n+1/vn+1 and v̂1/v1, . . . , v̂n+1/vn+1 for 100 simulations
of e1, . . . , en+1 with n = 10 and ε1 = · · · = εn+1 = 3%. The realizations from
each simulation have been connected to a path. Apart from a few extreme cases
(where |̂v1/v1 − 1| > 0.2) the paths for v̆i and v̂i are quite similar.

In the next section, we introduce methods that provide predictions Ĉq, j for
the cumulative claims Cq, j of the quotation year q. Note that the prediction
Ĉq, j has the monetary value of the calendar year q and has to be projected to
the calendar year q + j − 1.

4. CHAIN LADDER BASED PRICING APPROACHES FOR LONG-TAIL QUOTA
SHARES

In this section, we describe the pricing approaches in more detail. All of the
considered pricing methods are based on a chain ladder calculation for the tri-
angle (Ci, j )i+ j≤n+1. For j = 1, . . . , n − 1 we use the D j -conditionally unbiased
estimators

f̂ j :=
∑n− j

i=1 Ci, j+1∑n− j
i=1 Ci, j

,

for f j . For i = 1, . . . , n and j ≤ n − i + 1 let Ĉi, j := Ci, j and for j = n − i +
2, . . . , n

Ĉi, j := Ci,n−i+1 f̂n−i+1 . . . f̂ j−1.
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FIGURE 2: 100 simulated paths for v̆i/vi and v̂i/vi in the case n = 10 and ε1 = · · · = εn+1 = 3%.

The ALR method uses the predictions

ĈALR
q, j := vq∑n

i=1 v̂i

n∑
i=1

Ĉi, j ,

i.e. the predicted loss ratio ĈALR
q, j /vq is a weighted average of the restated loss

ratios Ĉi, j /̂vi , where the restated premium v̂i is used as weight for the accident
year i . The calculation of the predicted ultimate loss ratio ĈALR

q,n /vq is illustrated
in Figure 3.

The RF method predicts the cumulative claims burdens Cq, j by

ĈRF
q, j :=

vq

v̂n
Ĉn, j ,

i.e. the loss ratio Ĉn, j /̂vn of the last accident year in the observation period is
used to estimate the corresponding loss ratio ĈRF

q, j /vq of the quotation year. An
illustration of the RF method is found in Figure 4

The ALR and the RF method are two extreme cases: the ALR method re-
lies on the volume weighted ALR of the observation period, whereas the RF
method only uses the last accident year of the observation period. These two
approaches can be generalized by using arbitrary weights for the accident years
in the observation period.

Let w = (w1, . . . , wn)
t be a vector with non-negative components and∑n

i=1 wi > 0. The most popular and intuitive way to generalize the ALR and
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Cn,1/vn

C1,1/v1 C1,n/v1

C2,n/v2

Cn,n/vnCn,2/vn

CALR
q,1 /vq CALR

q,n /vq

Averaging with weights v1, . . . , vn

FIGURE 3: Illustration of the ALR method.

Cn,1/vn

C1,1/v1 C1,n/v1

C2,n/v2

Cn,n/vnCn,2/vn

CRF
q,1 /vq CRF

q,n/vq

CRF
q,n/vq = Cn,n/vn

FIGURE 4: Illustration of the RF method.

RF methods is to predict the loss ratio Cq, j/vq by the weighted average of the
loss ratios Ĉi, j /̂vi from chain ladder calculation, where the weight wi v̂i is used
for accident year i . Then the cumulative claims burden Cq, j is predicted by

Ĉu,w
q, j :=

vq∑n
i=1 wi v̂i

n∑
i=1

wi Ĉi, j .
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q,n /vq

Averaging with weights w1v1, . . . , wnvn

FIGURE 5: Calculation of Ĉu,w
q,n .

We use the superscript “u” in the notation to indicate that the predictor Ĉu,w
q,n /vq

is obtained by averaging over the ultimate loss ratios Ĉi,n /̂vi of the chain ladder
calculation. Figure 5 provides an illustration of this method.

There is, however, a second way to use arbitrary weights. We consider the
estimator

f̂ w0 :=
∑n

i=1 wiCi,1∑n
i=1 wi v̂i

,

for the factor f0. Note that f̂ w0 is theALR after the first development year, where
wi v̂i is used as weight for accident year i . Then we define alternative predictors

Ĉ f,w
q, j := vq f̂ w0 f̂1 · · · f̂ j−1,

for j = 1, . . . , n. In this case, we use the superscript “ f ” to indicate that the
predictor Ĉ f,w

q,n /vq is obtained by averaging over the loss ratios Ĉi,1/̂vi of the first
development year before the factor f̂1 · · · f̂n−1 is applied. Figure 6 illustrates the
calculation of Ĉ f,w

q,n .
Note that the ALR method and the RF method are really special cases of

these approaches: If w = wALR := 1n := (1, . . . , 1)t then we have

ĈALR
q, j = Ĉ f,w

q, j = Ĉu,w
q, j .

In the case w = wRF := (0, . . . , 0, 1)t we have

ĈRF
q, j = Ĉ f,w

q, j = Ĉu,w
q, j .
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Cf,w
q,1 /vq Cf,w
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·f1 ·f2 ·fn−2 ·fn−1

FIGURE 6: Calculation of Ĉ f,w
q,n .

Remark 4.1. The predictions Ĉu,w
q,k can alternatively be written as

Ĉu,w
q,k = vq f̂ w0 f̂ w1 · · · f̂ wk−1,

with the D j -conditionally unbiased estimators

f̂ wj :=
∑n

i=1 wi Ĉi, j+1∑n
i=1 wi Ĉi, j

,

for f j . A short calculation shows that

f̂ wj =
n− j∑
i=1

λw
i, j∑n− j

k=1 λw
k, j

· Ci, j+1

Ci, j
with λw

i, j :=
(

wi +
∑n

k=n− j+1 wkĈk, j∑n− j
k=1 Ck, j

)
Ci, j ,

i.e. f̂ wj is a convex combination of the D j -conditionally unbiased estimators
Ci, j+1/Ci, j . It is well known that conditionally, givenD j , f̂ j has the smallest vari-
ance amongst all convex combinations of Ci, j+1/Ci, j (see Mack (2002)). There-
fore, we have

Var( f̂ wj |D j ) ≥ Var( f̂ j |D j ),

for j = 1, . . . , n − 1. Based on this observation it is possible to show that Ĉ f,w
q,n

should be preferred to Ĉu,w
q,n if the Conditional Resampling Approach (cf.Wüthrich

and Merz (2008)) is used to compare the prediction errors. A proof is available
on request from the author. At first sight, this is surprising since the predictor Ĉ f,w

q,n
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is not based on the last known diagonal of the triangle. Here, we see a funda-
mental difference between pricing and reserving. In the chain ladder model the
last diagonal is crucial for reserving since the reserve E(Ci,n − Ci,n−i+1 |D) =
( fn−i+1 . . . fn−1 − 1)Ci,n−i+1 is a linear function of Ci,n−i+1. On the contrary, in
pricing we want to predict the random variable Cq,n which is independent of the
last diagonal C1,n, . . . ,Cn,1.

Although Ĉ f,w
q,n should be preferred, we calculate the standard error for both

predictions in the next section since most actuaries intuitively rather use Ĉu,w
q,n in

practice.

For j = 1, . . . , n − 2 we have the usual estimators

σ̂ 2
j :=

1
n − j − 1

n− j∑
i=1

Ci, j

(
Ci, j+1

Ci, j
− f̂ j

)2

,

(see Mack (1993)) and for j = n − 1 we use the extrapolation

σ̂ 2
n−1 := min

(
σ̂ 4
n−2/σ̂

2
n−3, σ̂

2
n−2

)
.

The average claims size x in the first development year and the corresponding
coefficient of variation c cannot be estimated from the data described above.
In segments like motor third party liability or motor hull, x and c are typically
very similar for all portfolios in a market, i.e. estimators x̂ and ĉ can be obtained
from individual claims information of an arbitrary portfolio. In other segments,
where the market is less homogeneous, individual claims data for the respective
portfolio is needed to estimate x and c. Given estimators x̂ and ĉ we use the
estimator (

σ̂w
0

)2
:= f̂ w0 (1 + ĉ2)̂x,

for σ 2
0 .

Example 4.2. We will now apply the discussed methods to a numerical example
which is based on a German MTPL portfolio. The observation period consists
of n = 8 accident years and we predict the loss ratio of the quotation year
q = 10. Table 1 contains the restated premiums and cumulative payments. All
numbers are in 1,000EUR.The result of the chain ladder calculation is provided
in Table 2.

We apply the methods with the following vectors w:

wALR =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, wRF =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, w4y :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
1
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, winc :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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TABLE 1

RESTATED PREMIUMS v̂i AND CLAIMS TRIANGLE (Ci, j )i+ j≤n+1.

i v̂i Ci,1 Ci,2 Ci,3 Ci,4 Ci,5 Ci,6 Ci,7 Ci,8

1 107,309 54,547 74,053 76,573 78,825 80,118 81,419 82,250 82,905
2 114,101 56,961 76,587 79,144 82,421 83,196 84,295 85,203
3 115,849 56,885 73,400 74,865 76,723 77,543 77,737
4 116,540 57,588 72,977 75,295 77,484 79,074
5 114,632 55,629 69,854 72,425 73,274
6 120,303 58,679 80,071 84,169
7 117,410 61,948 80,254
8 116,293 60,105

9 117,000
10 118,000

TABLE 2

LOSS RATIOS Ĉi, j /̂vi RESULTING FROM THE CHAIN LADDER CALCULATION.

j

i 1 2 3 4 5 6 7 8

1 50.8% 69.0% 71.4% 73.5% 74.7% 75.9% 76.6% 77.3%
2 49.9% 67.1% 69.4% 72.2% 72.9% 73.9% 74.7% 75.3%
3 49.1% 63.4% 64.6% 66.2% 66.9% 67.1% 67.8% 68.3%
4 49.4% 62.6% 64.6% 66.5% 67.9% 68.6% 69.3% 69.9%
5 48.5% 60.9% 63.2% 63.9% 64.8% 65.5% 66.2% 66.7%
6 48.8% 66.6% 70.0% 71.9% 72.9% 73.7% 74.5% 75.1%
7 52.8% 68.4% 70.7% 72.7% 73.7% 74.5% 75.3% 75.9%
8 51.7% 67.7% 70.1% 72.0% 73.0% 73.8% 74.6% 75.2%

The vectorswALR andwRF correspond to theALRandRFmethod, respectively.
With w4y we average over the last four accident years and with winc we apply
increasing weights for the accident years. The predicted loss ratios Ĉ f,w

q, j /vq and

Ĉu,w
q, j /vq are provided in Tables 3 and 4. We observe that Ĉ f,w

q, j = Ĉu,w
q, j for w =

wALR and w = wRF. For w = w4y and w = winc we have Ĉ f,w
q, j 	= Ĉu,w

q, j for j ≥ 2.

5. CALCULATION OF THE MEAN SQUARED ERROR

Let Ĉ∗,w
q, j denote one of the predictions Ĉ

f,w
q, j and Ĉ

u,w
q, j . Let Dv be the σ -algebra

generated byD and v̂1, . . . , v̂n+1. In this sectionwe study themean squared error

mse(Ĉ∗,w
q,n ) := E

[(
Cq,n − Ĉ∗,w

q,n

)2 |Dv
]
,
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TABLE 3

PREDICTED LOSS RATIOS Ĉ f,w
q,i

/
vq .

i

w 1 2 3 4 5 6 7 8

wALR 50.12% 65.69% 67.97% 69.85% 70.84% 71.60% 72.35% 72.93%
wRF 51.68% 67.74% 70.09% 72.03% 73.05% 73.83% 74.61% 75.20%
w4y 50.44% 66.10% 68.40% 70.29% 71.28% 72.05% 72.81% 73.39%
winc 50.38% 66.03% 68.33% 70.21% 71.21% 71.97% 72.73% 73.31%

TABLE 4

PREDICTED LOSS RATIOS Ĉu,w
q,i

/
vq .

i

w 1 2 3 4 5 6 7 8

wALR 50.12% 65.69% 67.97% 69.85% 70.84% 71.60% 72.35% 72.93%
wRF 51.68% 67.74% 70.09% 72.03% 73.05% 73.83% 74.61% 75.20%
w4y 50.44% 65.93% 68.53% 70.17% 71.17% 71.93% 72.69% 73.27%
winc 50.38% 65.79% 68.18% 69.98% 70.98% 71.72% 72.47% 73.05%

of the prediction Ĉ∗,w
q,n for the random variable Cq,n, given Dv.

As usual we split the mean squared error mse(Ĉ∗,w
q,n ) into two components,

the process variance pvar(Ĉ∗,w
q,n ) and the squared parameter estimation error

spee(Ĉ∗,w
q,n )

mse
(
Ĉ∗,w
q,n

) = Var(Cq,n |Dv) + [Ĉ∗,w
q,n − E(Cq,n |Dv)]2

= Var(Cq,n)︸ ︷︷ ︸
process variance

+ [Ĉ∗,w
q,n − E(Cq,n)]2︸ ︷︷ ︸

squared parameter estimation error

=: pvar(Ĉ∗,w
q,n ) + spee(Ĉ∗,w

q,n ).

Here, we have used the fact that Cq,n and Dv are independent. The calculation
of the process variance is straight forward (see Appendix B).

Estimator 5.1 (Process variance). We estimate pvar(Ĉ∗,w
q,n ) by

p̂var(Ĉ∗,w
q,n ) = v̂q

(
σ̂w
0

)2
f̂ 21 . . . f̂ 2n−1 + vq

n−1∑
j=1

f̂ w0 f̂1 . . . f̂ j−1σ̂
2
j f̂

2
j+1 . . . f̂ 2n−1.

The squared parameter estimation error cannot be calculated directly. Sim-
ply replacing E(Cq,n) by the estimator Ĉ∗,w

q,n would yield zero. Therefore, we have
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to analyze bias and volatility of the estimator Ĉ∗,w
q,n for E(Cq,n). A nice overview

of the commonly used approaches is found in Wüthrich and Merz (2008), Sec-
tion 3.2.3. One of the most popular techniques is the Conditional Resampling
Approach that has been introduced by Buchwalder et al. (2006). It can be shown
that the volatility of Ĉ f,w

q,n (as measured by this approach) is less than or equal to
the volatility of Ĉu,w

q,n and that both predictors have the same bias as estimators

for E(Cq,n). Therefore, the predictor Ĉ
f,w
q,n should be preferred to Ĉu,w

q,n .
Let us assume now that we have estimators ε̂ j for the standard deviations ε j

of e j . Let ε̂ := (̂ε1, . . . , ε̂n+1)
t. We define

ϕ(x) := 66x4 + 12x3 + 3x2 + x+ 1,

ψ(x) := 29297x6 + 3492x5 + 430x4 + 55x3 + 7x2 + x,

and

�(̂ε,w) := ϕ

(∑n+1
j=1 ε̂2j

(∑n∧ j
i=1 wi v̂i

)2

(∑n
i=1 wi v̂i

)2
)

,

�(̂ε,w) := ψ

(∑n+1
j=1 ε̂2j

(∑n∧ j
i=1 wi v̂i

)2

(∑n
i=1 wi v̂i

)2
)

,

(with n ∧ j := min(n, j)). In Appendix C we show that �(̂ε,w) and �(̂ε,w)

can be used as estimators for

E
(∑n

i=1 wivi∑n
i=1 wi v̂i

)
and Var

(∑n
i=1 wivi∑n
i=1 wi v̂i

)
,

respectively. The following estimators for the squared parameter estimation er-
rors of Ĉ f,w

q,n and Ĉu,w
q,n , respectively, are derived in Appendix B. We use an ap-

proach similar to Braun (2004) since the resulting formulas are slightly simpler
than those obtained with the Conditional Resampling Approach.

Estimator 5.2 (Squared parameter estimation error of Ĉ f,w
q,n ). For spee(Ĉ f,w

q,n ) we
have the estimator

ŝpee
(
Ĉ f,w
q,n

) =
(

vq∑n
i=1 wi v̂i

)2
⎡⎣�(̂ε,w)2V̂ar

(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)

+ �(̂ε,w)

(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)2
⎤⎦ + (

Ĉ f,w
q,n

)2[
�(̂ε,w) − 1

]2
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with

V̂ar

(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)
=

n∑
i=1

w2
i v̂i

(
σ̂w
0

)2
f̂ 21 . . . f̂ 2n−1 +

(
n∑
i=1

wiCi,1

)2

×
n−1∑
j=1

f̂ 21 · · · f̂ 2j−1

σ̂ 2
j∑n− j

κ=1 Cκ, j

f̂ 2j+1 · · · f̂ 2n−1.

Estimator 5.3 (Squared parameter estimation error of Ĉu,w
q,n ). For spee(Ĉu,w

q,n ) we
have the estimator

ŝpee
(
Ĉu,w
q,n

) =
(

vq∑n
i=1 wi v̂i

)2
⎡⎣�(̂ε,w)2V̂ar

(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wn−1

)

+ �(̂ε,w)

(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wn−1

)2
⎤⎦ + (

Ĉu,w
q,n

)2
[�(̂ε,w) − 1]2

with

V̂ar

(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wn−1

)
=

n∑
i=1

w2
i v̂i

(
σ̂w
0

)2
( f̂ w1 )2 . . . ( f̂ wn−1)

2

+
(

n∑
i=1

wiCi,1

)2 n−1∑
j=1

( f̂ w1 )2 · · · ( f̂ wj−1)
2

∑n− j
i=1 (λw

i, j )
2/Ci, j

(
∑n− j

κ=1 λw
i, j )

2
σ̂ 2
j ( f̂

w
j+1)

2 · · · ( f̂ wn−1)
2,

where we have used the coefficients

λw
i, j =

(
wi +

∑n
k=n− j+1 wkĈk, j∑n− j

k=1 Ck, j

)
Ci, j ,

from Remark 4.1.

Note that we have replaced f j by f̂ j in Estimator 5.2 and by f̂ wj in Estimator
5.3 sincewewant to use the same estimators for f j that are used in the predictors.
Therefore, these formulas do not guarantee ŝpee(Ĉ f,w

q,n ) ≤ ŝpee(Ĉu,w
q,n ). But, at

least, we normally have

ŝpee(Ĉ f,w
q,n )/Ĉ f,w

q,n ≤ ŝpee(Ĉu,w
q,n )/Ĉu,w

q,n .

Example 5.4. We consider the portfolio from Example 4.2. The average pay-
ment in the first development year of a German MTPL claim is approximately
x̂ = 2 (in EUR 1,000). For the coefficient of variation c of individual claims we
use ĉ = 2.5 which has been estimated from individual claims payment data of a
German motor portfolio.
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TABLE 5

RESULTS FOR VARIOUS VECTORS w WITH ε̂i = 0.5%, x̂ = 2 AND ĉ = 2.5.

w wALR wRF w4y winc

Ĉ f,w
q,n /̂vq 72.93% 75.20% 73.39% 73.31%√
p̂var(Ĉ f,w

q,n )/Ĉ f,w
q,n 4.02% 3.95% 4.00% 4.01%√

ŝpee(Ĉ f,w
q,n )/Ĉ f,w

q,n 1.89% 2.27% 1.89% 1.85%

ŝ. e.(Ĉ f,w
q,n )/Ĉ f,w

q,n 4.44% 4.56% 4.43% 4.41%

Ĉu,w
q,n /̂vi 72.93% 75.20% 73.27% 73.05%√
p̂var(Ĉu,w

q,n )/Ĉu,w
q,n 4.02% 3.95% 4.01% 4.02%√

ŝpee(Ĉu,w
q,n )/Ĉu,w

q,n 1.89% 2.27% 2.20% 1.92%

ŝ. e.(Ĉu,w
q,n )/Ĉu,w

q,n 4.44% 4.56% 4.57% 4.46%

For the first calculation we use ε̂1 = · · · = ε̂n+1 = 0.5% which is a rather low
assumption for restatement uncertainty. Table 5 shows the predicted ultimate
loss ratios Ĉ∗,w

q,n /̂vq of the quotation year and the standard errors

ŝ. e.(Ĉ∗,w
q,n ) :=

√
m̂se(Ĉ∗,w

q,n ) :=
√
p̂var(Ĉ∗,w

q,n ) + ŝpee(Ĉ∗,w
q,n ),

in percent of the predicted ultimate loss burden Ĉ∗,w
q,n . In addition, we provide the

square roots of process variance p̂var(Ĉ∗,w
q,n ) and squared parameter estimation

error ŝpee(Ĉ∗,w
q,n ) (in percent of Ĉ∗,w

q,n ). The columns show the results for the selec-
tionswALR,wRF,w4y andwinc ofw that have been introduced in Example 4.2. For
the ALR method and the RF method (first two columns) the predictions Ĉ f,w

q,n

and Ĉu,w
q,n and also the standard errors ŝ. e.(Ĉ f,w

q,n ) and ŝ. e.(Ĉu,w
q,n ) are identical.

Since restatement uncertainty is rather low, themean squared error is dominated
by the process variance and the estimated standard error for the ALRmethod is
smaller than for the RF method. Moreover, we see that in columns 3 and 4 the
standard errors (in percent of the predicted ultimate) for the predictions Ĉu,w

q,n are

slightly larger than for the predictions Ĉ f,w
q,n . This is in line with our expectation.

Table 6 shows the results of the same calculation with ε̂1 = · · · = ε̂n+1 =
4.0% which is a rather high assumption for the restatement uncertainty. In this
case, the mean squared error is dominated by the parameter estimation error. It
is not surprising that we obtain the smallest standard error for the RF method
in the second column.

6. ESTIMATION OF OPTIMAL WEIGHTS

In this section, we assume that the parameters for restatement uncertainty are
known or can be estimated from an external source (e.g. market data or ex-
pert judgment). We derive a recursion that converges to approximately-optimal

https://doi.org/10.1017/asb.2015.2 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.2


284 U. RIEGEL

TABLE 6

RESULTS FOR VARIOUS VECTORS w WITH ε̂i = 4.0%, x̂ = 2 AND ĉ = 2.5.

w wALR wRF w4y winc

Ĉ f,w
q,n /̂vq 72.93% 75.20% 73.39% 73.31%√
p̂var(Ĉ f,w

q,n )/Ĉ f,w
q,n 4.02% 3.95% 4.00% 4.01%√

ŝpee(Ĉ f,w
q,n )/Ĉ f,w

q,n 8.52% 6.12% 7.12% 7.51%

ŝ. e.(Ĉ f,w
q,n )/Ĉ f,w

q,n 9.42% 7.29% 8.16% 8.51%

Ĉu,w
q,n /̂vi 72.93% 75.20% 73.27% 73.05%√
p̂var(Ĉu,w

q,n )/Ĉu,w
q,n 4.02% 3.95% 4.01% 4.02%√

ŝpee(Ĉu,w
q,n )/Ĉu,w

q,n 8.52% 6.12% 7.21% 7.53%

ŝ. e.(Ĉu,w
q,n )/Ĉu,w

q,n 9.42% 7.29% 8.25% 8.53%

weights. In consideration of Remark 4.1, we concentrate on the calculation of
an optimal vector w for Ĉ f,w

q,n , i.e. optimal weights for f̂ w0 . Let

Ti := Ci,1

vi
(1 − ei − · · · − en+1).

Then the Ti are unbiased estimators for f0 with

Var(Ti ) = E(C2
i,1)

v2
i

Var(1 − ei − · · · − en+1) + Var(Ci,1)

v2
i

E(1 − ei − · · · − en+1)
2

= E(Ci,1)
2 + Var(Ci,1)

v2
i

(ε2i + · · · + ε2n+1) + Var(Ci,1)

v2
i

= f 20 (ε2i + · · · + ε2n+1) + σ 2
0

vi
(1 + ε2i + · · · + ε2n+1)

=: si,i (ε),

and for i 	= j

Cov(Ti ,Tj ) = E(Ci,1Cj,1)

viv j
Cov(1 − ei − · · · − en+1, 1 − e j − · · · − en+1)

+ Cov(Ci,1,Ci,1)

viv j
E(1 − ei − · · · − en+1)E(1 − e j − · · · − en+1)

= E(Ci,1)E(Cj,1)

viv j
(ε2max(i, j) + · · · + ε2n+1) + Cov(Ci,1,Cj,1)

viv j

= f 20 (ε2max(i, j) + · · · + ε2n+1)

=: si, j (ε),
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i.e. the random vector T := (T1, . . . ,Tn)t has the covariance matrix

S(ε) :=

⎛⎜⎝ s1,1(ε) · · · s1,n(ε)
...

. . .
...

sn,1(ε) · · · sn,n(ε)

⎞⎟⎠ .

Lemma D.1 in Appendix D implies that S(ε) is positive definite and that
the components of S(ε)−11n are non-negative. Therefore, optimal coefficients
g = (g1, . . . , gn)t for a convex combination g1T1 + · · · + gnTn of the estimators
T1, . . . ,Tn are given by

g := S(ε)−11n

‖S(ε)−11n‖1 ,

where ‖·‖1 denotes the 1-norm (orManhattan norm), i.e. the sumof the absolute
values of the components (see Appendix E).

The estimators Ti are not observable. We only have the estimators Ci,1/̂vi
for f0. Since we have the linear approximation with respect to ei , . . . , en+1 at
ei = · · · = en+1 = 0

Ci,1

v̂i
= Ci,1

vi (1 + ei + · · · + en+1)

≈ Ci,1

vi
(1 − ei − · · · − en+1) = Ti ,

theweights g are approximately-optimal for the estimatorsCi,1/̂vi . Sincewe have

f̂ w0 =
∑n

i=1 wiCi,1∑n
i=1 wi v̂i

=
n∑
i=1

wi v̂i∑n
k=1 wkv̂k

Ci,1

v̂i
,

the vector

w := V̂−1g

‖V̂−1g‖1
= V̂−1S(ε)−11n

‖V̂−1S(ε)−11n‖1
,

with V̂ := diag(̂v1, . . . , v̂n) is approximately-optimal for the calculation of f̂ w0 .
Apart from ε, the matrix S(ε) depends on the parameters f0 and σ 2

0 , which
are not observable. We use the estimator

Ŝ(̂ε,w) :=

⎛⎜⎝ ŝ1,1(̂ε,w) · · · ŝ1,n (̂ε,w)
...

. . .
...

ŝn,1(̂ε,w) · · · ŝn,n (̂ε,w)

⎞⎟⎠ ,

with
ŝi, j (̂ε,w) := ( f̂ w0 )2(̂ε2max(i, j) + · · · + ε̂2n+1),
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TABLE 7

RECURSION TO CALCULATE APPROXIMATELY-OPTIMAL WEIGHTS WITH THE ASSUMPTION ε̂i = 0.5%.

k 0 1 2 3

w
(k)
1 10.0% 5.3% 5.2% 5.2%

w
(k)
2 10.0% 5.8% 5.7% 5.7%

w
(k)
3 10.0% 6.8% 6.8% 6.8%

w
(k)
4 10.0% 8.6% 8.5% 8.5%

w
(k)
5 10.0% 11.2% 11.1% 11.1%

w
(k)
6 10.0% 14.9% 14.9% 14.9%

w
(k)
7 10.0% 20.1% 20.2% 20.2%

w
(k)
8 10.0% 27.4% 27.5% 27.5%

Ĉ f,w(k)

q,n /̂vq 72.93% 73.62% 73.63% 73.63%

ŝ. e.(Ĉ f,w(k)

q,n )/Ĉ f,w(k)

q,n 4.44% 4.40% 4.40% 4.40%

Ĉu,w(k)

q,n /̂vq 72.93% 73.57% 73.57% 73.57%
ŝ. e.(Ĉu,w(k)

q,n )/Ĉu,w(k)

q,n 4.44% 4.43% 4.43% 4.43%

for i 	= j and

ŝi,i (̂ε,w) := ( f̂ w0 )2(̂ε2i + · · · + ε̂2n+1) + (̂σw
0 )2

v̂i
(1 + ε̂2i + · · · + ε̂2n+1).

The matrix Ŝ(̂ε,w) is positive definite and the components of Ŝ(̂ε,w)−11n are
non-negative (see Appendix D). Since Ŝ(̂ε,w) depends on the vector w we need
a recursion to estimate optimal weights for f̂ w0 .

Recursion 6.1 (Estimation of optimal weights for given ε̂). Start with a vector
w(0) and use the iteration

w(k+1) := V̂−1Ŝ(̂ε,w(k))−11n

‖V̂−1Ŝ(̂ε,w(k))−11n‖1
.

In Appendix F, we show that this recursion converges to a fixed point if the
loss ratios Ci,1/̂vi do not fluctuate too much. In practice it is difficult to find
an example where the recursion does not converge. Often two or three steps are
sufficient to obtain a good approximation for the fixed-point, i.e. typically w(2)

or w(3) can be used.

Example 6.2. We pick up the Examples 4.2 and 5.4. In Tables 7 and 8 we see
the results of Recursion 6.1 with external estimates ε̂1 = · · · = ε̂n+1 = 0.5% and
ε̂1 = · · · = ε̂n+1 = 4.0%, respectively. We start with w(0) := 10% · 1n. In both
cases the recursion converges very quickly, we havew(3) ≈ w(2). If ε̂i = 0.5% then
we obtain substantial weights for the more mature accident years. If ε̂i = 4.0%
then w(3) is close to wRF, i.e. the “optimal” method is close to the RF method.
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TABLE 8

RECURSION TO CALCULATE APPROXIMATELY-OPTIMAL WEIGHTS WITH THE ASSUMPTION ε̂i = 4.0%.

k 0 1 2 3

w
(k)
1 10.0% 0.0% 0.0% 0.0%

w
(k)
2 10.0% 0.0% 0.0% 0.0%

w
(k)
3 1 10.0% 0.0% 0.0% 0.0%

w
(k)
4 10.0% 0.0% 0.0% 0.0%

w
(k)
5 10.0% 0.2% 0.1% 0.1%

w
(k)
6 10.0% 1.2% 1.2% 1.2%

w
(k)
7 10.0% 10.5% 10.3% 10.3%

w
(k)
8 10.0% 88.1% 88.4% 88.4%

Ĉ f,w(k)

q,n /̂vq 72.93% 75.31% 75.31% 75.31%

ŝ. e.(Ĉ f,w(k)

q,n )/Ĉ f,w(k)

q,n 9.42% 7.27% 7.27% 7.27%

Ĉu,w(k)

q,n /̂vq 72.93% 75.26% 75.26% 75.26%
ŝ. e.(Ĉu,w(k)

q,n )/Ĉu,w(k)

q,n 9.42% 7.28% 7.28% 7.28%

7. ESTIMATION OF THE PARAMETERS FOR RESTATEMENT UNCERTAINTY

In this section, we use a maximum likelihood approach to estimate the param-
eters for restatement uncertainty. In the last section, we have used the linear
approximation with respect to ei , . . . , en+1

Ci,1

v̂i
= Ci,1

vi (1 + ei + · · · + en+1)
≈ Ci,1

vi
(1 − ei − · · · − en+1) = Ti .

We now interpret Ci,1/̂vi as a function of the variables Ci,1, ei , . . . , en+1 and use
the linear approximation at ( f0vi , 0, . . . , 0)t, i.e.

Ci,1

v̂i
≈ Ci,1

vi
− f0(ei + · · · + en+1) =: T′

i .

Then T′
1, . . . ,T

′
n are unbiased estimators for f0. We have

Var(T′
i ) = f 20 (ε2i + · · · + ε2n+1) + σ 2

0

vi
=: s ′

i,i (ε),

and for i 	= j

Cov(T′
i ,T

′
j ) = f 20 (ε2max(i, j) + · · · + ε2n+1) =: s ′

i, j (ε),
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i.e. the covariance matrix of the vector T′ := (T′
1, . . . ,T

′
n)
t is given by

S′(ε) :=

⎛⎜⎝ s ′
1,1(ε) · · · s ′

1,n(ε)
...

. . .
...

s ′
n,1(ε) · · · s ′

n,n(ε)

⎞⎟⎠ .

For motor quota shares the expected number of claims per accident year is typ-
ically very large. Taking the asymptotic normality of the compound Poisson
process into account we can therefore assume that the distribution of Ci,1 is
close to the normal distribution N( f0vi , σ 2

0 vi ) (CLT for compound Poisson dis-
tributions, see Kaas et al. (2001)). We have

T′ =

⎛⎜⎝v−1
1 0 − f0 · · · − f0 − f0

. . .
. . .

...
...

0 v−1
n 0 − f0 − f0

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝

C1,1
...

Cn,1
e1
...

en+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

i.e. T′ is a linear transformation of the independent (and nearly normally
distributed) random variables C1,1, . . . ,Cn,1, e1, . . . , en+1. Therefore, the dis-
tribution of T′ can be approximated by the multivariate normal distribution
N( f01n,S′(ε)). We use

F := (C1,1/̂v1, . . . ,Cn,1/̂vn)
t ≈ T′,

and approximate S′(ε) by

Ŝ′(ε,w) :=

⎛⎜⎝ ŝ ′
1,1(ε,w) · · · ŝ ′

1,n(ε,w)
...

. . .
...

ŝ ′
n,1(ε,w) · · · ŝ ′

n,n(ε,w)

⎞⎟⎠ ,

with
ŝ ′
i, j (ε,w) := ( f̂ w0 )2

(
ε2max(i, j) + · · · + ε2n+1

)
,

for i 	= j and

ŝ ′
i,i (ε,w) := ( f̂ w0 )2

(
ε2i + · · · + ε2n+1

) + (̂σw
0 )2

v̂i
.

Note that Ŝ′(ε,w) is positive definite and thus invertible (cf. Appendix D). We
obtain the approximation

L̂w
F(ε) := 1√

(2π)n det
(̂
S′(ε,w)

) exp(
−1
2
(F − f̂ w0 1n)

tŜ′(ε,w)−1(F − f̂ w0 1n)
)

,
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for the likelihood function LF(ε). Note that the approximation depends on the
choice of the weights w.

Obviously, it does not make sense to estimate n+ 1 parameters ε1, . . . , εn+1.
We therefore assume that εi := ciε with ε > 0 and known factors ci > 0, i.e.
ε = cε with c = (c1, . . . , cn+1)

t. The constants ci provide a certain flexibility if
the uncertainty of the index change is not the same for all accident years. In the
case c = 1n+1 we simply have ε1 = · · · = εn+1 = ε.

Recursion 7.1 (Estimation of restatement uncertainty and optimal weights).
Choose an initial estimator ε̂(0) for ε and an initial vector w(0). Given w(k) we
determine ε̂(k+1) such that

L̂w(k)

F (ĉε(k+1)) = max{L̂w(k)

F (cε) | ε ∈ [0, ∞)}.
Then we use the matrix Ŝ(ĉε(k+1),w(k)) from Section 6 to estimate optimal weights
w(k+1) with the new estimator ε̂(k+1) for ε

w(k+1) := V̂−1Ŝ(ĉε(k+1),w(k))−11n

‖V̂−1Ŝ(ĉε(k+1),w(k))−11n‖1
.

Remark 7.2. The likelihood function λ(k) : [0, ∞) → [0, ∞), ε �→ L̂w(k)

F (cε) has a
global maximum since λ(k)(0) > 0 and λ(k)(ε) → 0 for ε → ∞. We have calcu-
lated a number of cases and λ(k) was always either unimodal or strictly decreasing.
However, there might be situations where λ(k) has several local maxima or even
several global maxima. In such cases, we recommend not to use the method, since
the results might be misleading.

We omit a systematic analysis regarding convergence of Recursion 7.1 since it
is much more technical and difficult than for Recursion 6.1. We have calculated
a lot of cases and did not have any issues with convergence of this recursion.
Typically ε̂(k) and w(k) are stable after k = 3 iterations.

Remark 7.3. In calculations with n = 10 and c = 1n+1 we have observed that
the recursion provides quite reliable estimates for ε if the coefficients of variation
CV(Ci,1) are small compared to ε. The results are still good if CV(Ci,1) and ε are
similar in size. Therefore, the algorithm works quite well for segments with low
stochastic volatility of the claims burden (like large German motor quota shares).
Nevertheless, we recommend to check whether the estimated parameter for restate-
ment uncertainty is plausible.

For segments with high stochastic volatility, i.e. segments where the coefficients
of variation CV(Ci,1) are large compared to ε, the results of the algorithm are less
reliable. The algorithm then often yields ε̂(k) = 0 and w(k) = 1n/‖1n‖1 for k ≥ 1
(which corresponds to the ALR method). In such segments, however, the influence
of restatement uncertainty is less material than in segments with low stochastic
volatility. Here, we suggest to use a reasonable external estimator ε̂ for ε and to
apply Recursion 6.1 from Section 6.
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TABLE 9

RECURSION TO ESTIMATE ε = 1n+1 · ε AND CORRESPONDING OPTIMAL WEIGHTS.

k 0 1 2 3

ε(k) 4.00% 2.36% 2.05% 2.05%

w
(k)
1 10.0% 0.0% 0.0% 0.0%

w
(k)
2 10.0% 0.0% 0.0% 0.0%

w
(k)
3 10.0% 0.1% 0.1% 0.1%

w
(k)
4 10.0% 0.3% 0.5% 0.5%

w
(k)
5 10.0% 1.2% 1.7% 1.7%

w
(k)
6 10.0% 4.6% 5.9% 5.9%

w
(k)
7 10.0% 18.7% 20.5% 20.5%

w
(k)
8 10.0% 75.1% 71.2% 71.2%

Ĉ f,w(k)

q,n /̂vq 72.93% 75.23% 75.17% 75.17%

ŝ. e.(Ĉ f,w(k)

q,n )/Ĉ f,w(k)

q,n 9.42% 5.56% 5.29% 5.29%

Ĉu,w(k)

q,n /̂vq 72.93% 75.21% 75.16% 75.16%
ŝ. e.(Ĉu,w(k)

q,n )/Ĉu,w(k)

q,n 9.42% 5.59% 5.33% 5.33%

1% 2% 3% 4% 5% 6% 7% 8%

10

20

30

40

50

0

λ(k)(ε)

ε

k = 0 k ≥ 1

FIGURE 7: Graphs of the likelihood functions λ(k) for k = 0 and k ≥ 1.

Example 7.4. We finalize the preceding examples. Table 9 contains the results
of Recursion 7.1. We have assumed that ε1 = · · · = εn+1, i.e. ε = 1n+1ε. We
start with ε̂(0) = 4.0% andw(0) := 10% · 1n. Again, the recursion converges very
quickly, we have ε̂(3) ≈ ε̂(2) ≈ 2.05% andw(3) ≈ w(2). In Figure 7 we have plotted
the likelihood functions λ(k) (as defined in Remark 7.2) for k = 0 and k ≥ 1 (for
k ≥ 1 the λ(k) are nearly identical).

We conclude that for our example the “optimal”methodmainly relies on the
loss ratios of the last two accident years in the observation period. This is due to
the fact that the average individual claims size x̂ and the coefficient of variation
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ĉ are relatively small. This is typical for large MTPL quota shares in Germany
where the loss ratios are to a large extent driven by the premium cycle.
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error of prediction in the chain ladder reserving method (Mack and Murphy revisited). Astin
Bulletin, 36(2), 521–542.

FRISHMAN, F. (1971) On the Arithmetic Means and Variances of Products and Ratios of Random
Variables. Springfield NA: National Technical Information Service.

HAAS, A. (2013) Rentabilität von Kraftfahrt-Quoten im Niedrigzins-Umfeld. Versicherungswirt-
schaft, 2003(22), 32–35.

JONES, B. D. (2002) An introduction to premium trend. CAS Study Note.
KAAS, R., GOOVAERTS, M., DHAENE, J. and DENUIT, M. (2001) Modern Actuarial Risk Theory.

Boston: Kluwer Academic Publishers.
KLUGMAN, S. A., PANJER, H. A. and WILLMOT, G. E. (2004) Loss Models: From Data to Deci-

sions. 2nd Edition. New York: Wiley.
MACK, TH. (1993) Distribution-free calculation of the standard error of chain ladder reserve esti-

mates. Astin Bulletin, 23(2), 213–225.
MACK, TH. (2002) Schadenversicherungsmathematik. Karlsruhe: VVW.
RIEGEL, U. (2014) A bifurcation approach for attritional and large losses in chain ladder calcula-

tions. Astin Bulletin, 44(1), 127–172.
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APPENDIX A

ADDITIONAL DETAILS REGARDING THE APPROXIMATION FROM SECTION 3

In Section 3, we use the approximation

v̆i = vi (1 + ei ) . . . (1 + en+1) ≈ vi (1 + ei + · · · + en+1) = v̂i .
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The following lemma shows that (v̆1, . . . , v̆n+1)
t and (̂v1, . . . , v̂n+1)

t have very
similar covariance matrices.

Lemma A.1. Let ε1, . . . , εn+1 > 0 and ε := max{ε1, . . . , εn+1}. Then we have
Cov(̂vi , v̂ j ) > 0 and

1 ≤ Cov(v̆i , v̆ j )
Cov(̂vi , v̂ j )

≤ (1 + ε2)n+1 − 1
(n + 1)ε2

,

for all i, j ∈ {1, . . . , n + 1}.
For instance, Lemma A.1 yields for n = 10 and ε = 5%

1 ≤ Cov(v̆i , v̆ j )
Cov(̂vi , v̂ j )

≤ 1.012.

Proof of Lemma A.1. For i = 1, . . . , n + 1 let di = en+2−i and δi = εn+2−i . We
define

DM
k := (1 + d1) · · · (1 + dk) and DA

k := 1 + d1 + · · · + dk.

Then we have
v̆i = vi · DM

n+2−i and v̂i = vi · DA
n+2−i ,

for i = 1, . . . , n + 1. Since the di are independent with E(di ) = 0 we obtain for
i ≥ j

Cov(v̆i , v̆ j ) = viv j Cov(DM
n+2−i , D

M
n+2− j ) = viv j Var(DM

n+2−i ) and

Cov(̂vi , v̂ j ) = viv j Cov(DA
n+2−i , D

A
n+2− j ) = viv j Var(DA

n+2−i ),

i.e.
Cov(v̆i , v̆ j )
Cov(̂vi , v̂ j )

= Var(DM
n+2−i )

Var(DA
n+2−i )

.

Let k, l ∈ N, 1 ≤ i1 < · · · < ik and 1 ≤ j1 < · · · < jl . Taking E(di ) = 0 into
account, we can use Lemma D.2 from Riegel (2014) and induction to show that

Cov(di1 · · · dik , d j1 · · · d jl ) =
{

δ2i1 · · · δ2ik if k = l and iν = jν for all ν,
0 else.

Using this fact, it is easy to show that

Var(DM
k ) = (1 + δ21) · · · (1 + δ2k) − 1 and

Var(DA
k ) = δ21 + · · · + δ2k.
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v1 2v1

1

0

Fv1

Fv̆1

FIGURE 8: CDFs of v̆1 and v̂1 for n = 10 and ε1 = · · · = εn+1 = 5%.

Applying the chain rule, we obtain for i ∈ {1, . . . , k}

∂

∂δi

Var(DM
k )

Var(DA
k )

=
2δi

∏
j≤k, j 	=i (1 + δ2j )(

∑k
ν=1 δ2ν ) − 2δi

[∏k
j=1(1 + δ2j ) − 1

]
(
∑n

j=1 δ2j )
2

> 0.

Consequently, δi = εn+2−i ≤ ε for i = 1, . . . , k implies

Var(DM
k )

Var(DA
k )

≤ (1 + ε2)k − 1
kε2

.

With

(1 + ε2)k − 1
kε2

=
∑k

ν=0

(k
ν

)
ε2ν − 1

kε2
= 1 +

k∑
ν=2

(k− 1)!
(k− ν)!ν!

ε2(ν−1)

> 1 +
k−1∑
ν=2

(k− 2)!
(k− ν − 1)!ν!

ε2(ν−1) = (1 + ε2)(k−1) − 1
(k− 1)ε2

,

we see that
Var(DM

k )

Var(DA
k )

≤ (1 + ε2)n+1 − 1
(n + 1)ε2

,

for k = 1, . . . , n + 1. �

Figure 8 shows the distribution functions Fv̆1 and F̂v1 for n = 10 and ε1 = · · · =
εn+1 = 5%. The deviation between the two distribution functions is certainly
acceptable for our purpose. Let δi , DM

i and DA
i be defined as in the proof of

Lemma A.1. Similar arguments as in the proof show that DA
i and DM

i − DA
i are

uncorrelated and that
Var(DM

k − DA
k )

Var(DA
k )
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is a strictly increasing function with respect to k and δ1, . . . , δk. For n ≤ 10 and
ε1, . . . , εn+1 < 5% we therefore expect that for each i the approximation of Fv̆i

by F̂vi is better that the approximation of Fv̆1 by F̂v1 in Figure 8. This qualita-
tive expectation is strongly supported by plots of the distribution functions for
smaller values of n and εi where the approximations look much better.

APPENDIX B

DEDUCTION OF THE ESTIMATORS FOR THE MEAN SQUARED ERROR

In this appendix, we deduct the estimators for process variance and squared
parameter estimation error from Section 5. We have

Var(Cq,1) = σ 2
0 vq ,

and

Var(Cq, j+1) = Var(E(Cq, j+1 |B j )) + E(Var(Cq, j+1 |B j ))

= Var( f jCq, j ) + E(σ 2
j Cq, j )

= f 2j Var(Cq, j ) + σ 2
j vq f0 . . . f j−1.

By induction we obtain

pvar(Ĉ∗,w
q,n ) = Var(Cq,n) = vq

n−1∑
j=0

f0 . . . f j−1σ
2
j f

2
j+1 . . . f 2n−1.

Replacing the unknown parameters f j , σ 2
j by their estimators f̂ j , σ̂ 2

j (for j ≥ 1)

and f̂ w0 ,
(
σ̂w
0

)2
(for j = 0) we obtain Estimator 5.1. For the estimation of the

squared parameter estimation error we use the approximation

spee(Ĉ∗,w
q,n ) ≈ E(spee(Ĉ∗,w

q,n ))

= E([Ĉ∗,w
q,n − E(Cq,n)]2)

= E([Ĉ∗,w
q,n − E(Ĉ∗,w

q,n ) + E(Ĉ∗,w
q,n ) − E(Cq,n)]2)

= Var(Ĉ∗,w
q,n ) + [E(Ĉ∗,w

q,n ) − E(Cq,n)]2

= Var(Ĉ∗,w
q,n ) + v2

q [E( f̂ w0 ) f1 . . . fn−1 − f0 f1 . . . fn−1]2

= Var(Ĉ∗,w
q,n ) + v2

q

[
E

(∑n
i=1 wivi∑n
i=1 wi v̂i

∑n
i=1 wi Ĉi,1∑n
i=1 wivi

)
− f0

]2

f 21 . . . f 2n−1
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= Var(Ĉ∗,w
q,n ) + v2

q

[
E

(∑n
i=1 wivi∑n
i=1 wi v̂i

)
f0 − f0

]2

f 21 . . . f 2n−1

= Var(Ĉ∗,w
q,n ) + E(Cq,n)

2
[
E

(∑n
i=1 wivi∑n
i=1 wi v̂i

)
− 1

]2

.

For the calculation of Var(Ĉ∗,w
q,n )we have to differentiate between Ĉ f,w

q, j and Ĉ
u,w
q, j .

With

Var(Ĉ f,w
q,n ) = Var

(
vq∑n

i=1 wi v̂i

n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)

=
(

vq∑n
i=1 wivi

)2

Var

(∑n
i=1 wivi∑n
i=1 wi v̂i

n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)

=
(

vq∑n
i=1 wivi

)2
⎡⎣E

(∑n
i=1 wivi∑n
i=1 wi v̂i

)2

Var

(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)

+ Var
(∑n

i=1 wivi∑n
i=1 wi v̂i

)
E

⎛⎝(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)2
⎞⎠⎤⎦ ,

we obtain

spee(Ĉ f,w
q,n ) ≈

(
vq∑n

i=1 wivi

)2
⎡⎣E

(∑n
i=1 wivi∑n
i=1 wi v̂i

)2

Var

(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)

+ Var
(∑n

i=1 wivi∑n
i=1 wi v̂i

)
E

⎛⎝(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)2
⎞⎠⎤⎦

+ E(Cq,n)
2
[
E

(∑n
i=1 wivi∑n
i=1 wi v̂i

)
− 1

]2

.

We replace

E
(∑n

i=1 wivi∑n
i=1 wi v̂i

)
and Var

(∑n
i=1 wivi∑n
i=1 wi v̂i

)
by the estimators �(̂ε,w) and �(̂ε,w). For details cf. Appendix C. Moreover,
we replace

vq∑n
i=1 wivi

and E

⎛⎝(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)2
⎞⎠
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by the estimators

vq∑n
i=1 wi v̂i

and

(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)2

,

and use the estimator Ĉ f,w
q,n for E(Cq,n). Apart from the formula for the estimator

V̂ar

(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)
of Var

(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)
,

we then obtain Estimator 5.2. With

Var

(
n∑
i=1

wiCi,1

)
=

n∑
i=1

w2
i Var(Ci,1) =

n∑
i=1

w2
i σ

2
0 vi ,

and

Var

(
n∑
i=1

wiCi,1 f̂1 · · · f̂ j
)

= Var

(
E

(
n∑
i=1

wiCi,1 f̂1 · · · f̂ j
∣∣∣∣∣ D j

))
+ E

(
Var

(
n∑
i=1

wiCi,1 f̂1 · · · f̂ j
∣∣∣∣∣ D j

))

= Var

(
f j

n∑
i=1

wiCi,1 f̂1 · · · f̂ j−1

)
+ E

⎛⎝(
n∑
i=1

wiCi,1 f̂1 · · · f̂ j−1

)2

Var( f̂ j |D j )

⎞⎠
= f 2j Var

(
n∑
i=1

wiCi,1 f̂1 · · · f̂ j−1

)
+ E

⎛⎝(
n∑
i=1

wiCi,1 f̂1 · · · f̂ j−1

)2
σ 2
j∑n− j

κ=1 Cκ, j

⎞⎠
= f 2j Var

(
n∑
i=1

wiCi,1 f̂1 · · · f̂ j−1

)
+ E

((∑n
i=1 wiCi,1 f̂1 · · · f̂ j−1

)2∑n− j
κ=1 Cκ, j

)
σ 2
j

we obtain by induction

Var

(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)
=

n∑
i=1

w2
i viσ

2
0 f

2
1 · · · f 2n−1

+
n−1∑
j=1

E

((∑n
i=1 wiCi,1 f̂1 · · · f̂ j−1

)2∑n− j
κ=1 Cκ, j

)
σ 2
j f

2
j+1 · · · f 2n−1.
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We estimate

E

((∑n
i=1 wiCi,1 f̂1 · · · f̂ j−1

)2∑n− j
κ=1 Cκ, j

)
by

(∑n
i=1 wiCi,1 f̂1 · · · f̂ j−1

)2∑n− j
κ=1 Cκ, j

,

replace f j and σ 2
j by their estimators f̂ j , σ̂ 2

j (for j ≥ 1) and f̂ w0 ,
(
σ̂w
0

)2
(for j = 0)

and obtain

V̂ar

(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)

=
n∑
i=1

w2
i v̂i

(
σ̂w
0

)2
f̂ 21 . . . f̂ 2n−1

+
n−1∑
j=1

(
n∑
i=1

wiCi,1 f̂1 · · · f̂ j−1

)2
σ̂ 2
j∑n− j

κ=1 Cκ, j

f̂ 2j+1 · · · f̂ 2n−1.

This concludes the deduction of Estimator 5.2. For Estimator 5.3 we only derive
the formula for

V̂ar

(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wn−1

)
.

The rest is completely analogous to Estimator 5.2. Recall from Remark 4.1 that

f̂ wj =
n− j∑
i=1

λw
i, j∑n− j

k=1 λw
k, j

· Ci, j+1

Ci, j
with λw

i, j =
(

wi +
∑n

k=n− j+1 wkĈk, j∑n− j
k=1 Ck, j

)
Ci, j .

Using

Var( f̂ wj |D j ) =
n− j∑
i=1

(λw
i, j )

2

(
∑n− j

k=1 λw
i, j )

2
Var

(
Ci, j+1

Ci, j

∣∣∣∣ D j

)
=

∑n− j
i=1 (λw

i, j )
2/Ci, j

(
∑n− j

k=1 λw
i, j )

2
σ 2
j
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we obtain

Var

(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wj
)

= Var

(
E

(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wj
∣∣∣∣∣ D j

))

+ E

(
Var

(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wj
∣∣∣∣∣ D j

))

= Var

(
f j

n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wj−1

)

+ E

⎛⎝(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wj−1

)2

Var( f̂ wj |D j )

⎞⎠
= f 2j Var

(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wj−1

)

+ E

⎛⎝(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wj−1

)2 ∑n− j
i=1 (λw

i, j )
2/Ci, j

(
∑n− j

κ=1 λw
i, j )

2
σ 2
j

⎞⎠
= f 2j Var

(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wj−1

)

+ E

⎛⎝(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wj−1

)2 ∑n− j
i=1 (λw

i, j )
2/Ci, j

(
∑n− j

κ=1 λw
i, j )

2

⎞⎠ σ 2
j ,

and by induction

Var

(
n∑
i=1

wiCi,1 f̂1 · · · f̂n−1

)
=

n∑
i=1

w2
i viσ

2
0 f

2
1 · · · f 2n−1

+
n−1∑
j=1

E

⎛⎝(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wj−1

)2 ∑n− j
i=1 (λw

i, j )
2/Ci, j

(
∑n− j

κ=1 λw
i, j )

2

⎞⎠ σ 2
j f

2
j+1 · · · f 2n−1.
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We estimate

E

⎛⎝(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wj−1

)2 ∑n− j
i=1 (λw

i, j )
2/Ci, j

(
∑n− j

κ=1 λw
i, j )

2

⎞⎠
by (

n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wj−1

)2 ∑n− j
i=1 (λw

i, j )
2/Ci, j

(
∑n− j

κ=1 λw
i, j )

2
,

replace f j and σ 2
j by the estimators f̂ wj and σ̂ 2

j and obtain

V̂ar

(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wn−1

)
=

n∑
i=1

w2
i v̂i (̂σ

w
0 )2( f̂ w1 )2 . . . ( f̂ wn−1)

2

+
n−1∑
j=1

(
n∑
i=1

wiCi,1 f̂ w1 · · · f̂ wj−1

)2 ∑n− j
i=1 (λw

i, j )
2/Ci, j

(
∑n− j

κ=1 λw
i, j )

2
σ̂ 2
j ( f̂

w
j+1)

2 · · · ( f̂ wn−1)
2.

APPENDIX C

MOMENTS OF THE RECIPROCAL TRUNCATED NORMAL DISTRIBUTION

For the calculation of the mean squared error we need an estimator for mean
and variance of the random variable∑n

i=1 wivi∑n
i=1 wi v̂i

.

In our simple time series model for restatement uncertainty we have

n∑
i=1

wi v̂i =
n∑
i=1

wivi +
n∑
i=1

wivi

n+1∑
j=i

e j =
n∑
i=1

wivi +
n+1∑
j=1

e j

n∧ j∑
i=1

wivi .

Since the error terms ei are normally distributed and independent
∑n

i=1 wi v̂i is
normally distributed with mean

∑n
i=1 wivi and

Var

(
n∑
i=1

wi v̂i

)
= Var

⎛⎝n+1∑
j=1

e j

n∧ j∑
i=1

wivi

⎞⎠ =
n+1∑
j=1

ε2j

(n∧ j∑
i=1

wivi

)2

,

i.e. the reciprocal random variable∑n
i=1 wi v̂i∑n
i=1 wivi

,
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of (
∑n

i=1 wivi )/(
∑n

i=1 wi v̂i ) is normally distributed with mean 1. As mentioned
by Frishman (1971), in the real world, few if any, random variables are truly nor-
mally distributed since they typically cannot range from−∞ to+∞. In practice,
the normal distribution is always only an approximation and can at best be a
good approximation around the mean of the data. Therefore, it is typically not
critical to replace a normal distribution by a truncated normal distribution. In
our case, an adequate truncation is definitely no issue since a pricing actuary
would notice extremely large deviations from the mean (e.g. if

∑n
i=1 wi v̂i is close

to zero or even negative). In this case, the method would not be used.
Therefore, we are interested inmean and variance of the reciprocal truncated

normal distribution. Let Xσ be normally distributed with mean μ = 1 and
standard deviation σ > 0, i.e. Xσ ∼ N(1, σ 2). Then the reciprocal variable
1/Xσ is not integrable due to the behavior at {Xσ = 0}. Let �1,σ 2 denote the
CDF of Xσ and let k > 0. Let �kσ

1,σ 2 be the CDF of the distribution which is
truncated from below at 1 − kσ and from above at 1 + kσ , i.e.

�kσ
1,σ 2(x) := �1,σ 2(x) − �1,σ 2(1 − kσ)

�1,σ 2(1 + kσ) − �1,σ 2(1 − kσ)
for 1 − kσ ≤ x ≤ 1 + kσ .

Let Ykσ
σ be a random variable with CDF �kσ

1,σ 2 . The random variable

Zkσσ := τ(Ykσ
σ − 1) + 1,

with

τ := σ√
Var(Ykσ

σ )
,

has the same mean and standard deviation as Xσ . If k is not too small (e.g.
k ≥ 3) then τ ≈ 1 and the distributions of Zkσσ and Xσ are very similar around
the mean. Zkσσ only ranges from 1 − kτσ to 1 + kτσ . Let

Zk := Zkσσ − 1
σ

.

If kτσ < 1 then mean and variance of 1/Zkσσ can be expanded into power series

E(1/Zkσσ ) = 1 +
∞∑
i=2

σ 2i E(Z2i
k ),

Var(1/Zkσσ ) = σ 2 +
∞∑
i=2

σ 2i Var(Zik) + 2
∞∑
i=1

∞∑
j=i+1

σ i+ j (−1)i+ j Cov(Zik, Z
j
k),
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(see Frishman (1971)). We use k = 3. Then for 0 ≤ σ ≤ 0.3 the first terms of
the power series provide good approximations

E(1/Z3σ
σ ) ≈ 66σ 8 + 12σ 6 + 3σ 4 + σ 2 + 1 = ϕ(σ 2)

Var(1/Z3σ
σ ) ≈ 29297σ 12 + 3492σ 10 + 430σ 8 + 55σ 6 + 7σ 4 + σ 2 = ψ(σ 2),

with

ϕ(x) := 66x4 + 12x3 + 3x2 + x+ 1 and

ψ(x) := 29297x6 + 3492x5 + 430x4 + 55x3 + 7x2 + x.

Let Zuσ denote the random variable obtained from Xσ by truncation from below
at u > 0. For 0 < σ < 0.3 and 0.05 ≤ u ≤ 1 − 3σ numerical calculations show
that

E(1/Zuσ ) ≈ E(1/Z3σ
σ ) and Var(1/Zuσ ) ≈ Var(1/Z3σ

σ ),

i.e. the result does not depend materially on the choice of the truncation.
Applying these results to our situation, we obtain

E
(∑n

i=1 wivi∑n
i=1 wi v̂i

)
≈ ϕ

(
Var

(∑n
i=1 wi v̂i∑n
i=1 wivi

))
= ϕ

(∑n+1
j=1 ε2j

(∑n∧ j
i=1 wivi

)2

(∑n
i=1 wivi

)2
)

and

Var
(∑n

i=1 wivi∑n
i=1 wi v̂i

)
≈ ψ

(
Var

(∑n
i=1 wi v̂i∑n
i=1 wivi

))
= ψ

(∑n+1
j=1 ε2j

(∑n∧ j
i=1 wivi

)2

(∑n
i=1 wivi

)2
)

.

If we replace the parameters εi and vi by their estimators ε̂i and v̂i we obtain
the estimators

E
(∑n

i=1 wivi∑n
i=1 wi v̂i

)
≈ �(̂ε,w) and Var

(∑n
i=1 wivi∑n
i=1 wi v̂i

)
≈ �(̂ε,w).

APPENDIX D

A TECHNICAL LEMMA FROM LINEAR ALGEBRA

In this appendix, we provide a technical lemma from linear algebra that guar-
antees the asserted properties of the variance matrices in Sections 6 and 7.

Lemma D.1. For k = 1, . . . , n let

Ak :=

⎛⎜⎜⎜⎜⎝
a1 a2 · · · ak−1 ak
a2 a2 · · · ak−1 ak
...

...
. . .

...
...

ak−1 ak−1 · · · ak−1 ak
ak ak · · · ak ak

⎞⎟⎟⎟⎟⎠ and Dk := diag(d1, . . . , dk),
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with a1 > a2 > · · · > an > 0 and d1, . . . , dn ≥ 0. Then An + Dn is positive
definite. Moreover, the components of w(n) := (An + Dn)

−11n are non-negative.

Proof. We use induction to show that det(Ak) > 0 for k = 1, . . . , n. We have
det(A1) = a1 > 0. Assume that det(Ak−1) > 0. We consider Ak and subtract
ak
ak−1

times row k− 1 from row k. Then we obtain

det(Ak) = det

⎛⎜⎜⎜⎝
∗

Ak−1
...

∗
0 · · · 0 ak − ak

ak−1
ak

⎞⎟⎟⎟⎠ = det(Ak−1)

(
ak − ak

ak−1
ak

)
> 0.

Since the leading principal minors det(Ak) of An are all positive, we conclude
that An is positive definite.

Let v1, . . . , vn be an orthonormal eigenbasis of An and λ1, . . . , λn > 0 the
corresponding eigenvalues. Since di ≥ 0, we obtain for an arbitrary non-zero
vector v = x1v1 + · · · + xnvn

vt(An + Dn)v = λ1x21 + · · · + λnx2n︸ ︷︷ ︸
>0

+ vtDnv︸ ︷︷ ︸
≥0

> 0,

i.e. An + Dn is positive definite.
We use induction to show that the components of w(k) := (Ak + Dk)

−11k
are non-negative for k = 1, . . . , n. For k = 1 this is obvious. Assume that the
components of w(k−1) are non-negative. From the first k − 1 equations of the
system (Ak + Dk)w(k) = 1k we see that

w(k) =

⎛⎜⎝ (1 − akλ)w(k−1)

λ

⎞⎟⎠ ,

with a unique λ ∈ R. Since the components ofw(k−1) are non-negative it remains
to show that 0 ≤ λ ≤ 1/ak. We define

χ(λ) := 〈ak1k−1 , (1 − akλ)w(k−1)〉 + (ak + dk)λ,

where 〈 · , · 〉 denotes the standard scalar product ofRk−1. Then the last equation
of the system (Ak + Dk)w(k) = 1k can be written as

χ(λ) = 1.

We have

χ(0) = 〈ak1k−1 , w(k−1)〉 < 1 and χ(1/ak) = ak + dk
ak

≥ 1.
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Since λ �→ χ(λ) is continuous, the intermediate value theorem guarantees the
existence of a λ ∈ (0, 1/ak] with χ(λ) = 1. �
Remark D.2. The assertion of Lemma D.1 remains true if we assume a1 ≥ · · · ≥
an > 0 and d1, . . . , dn > 0 instead of a1 > · · · > an > 0 and d1, . . . , dn ≥ 0.

APPENDIX E

OPTIMAL WEIGHTS FOR CONVEX COMBINATIONS OF CORRELATED
ESTIMATORS

For independent and unbiased estimators Ti of a parameter t it is well known
that the weights of Ti in a convex combination should be chosen in proportion to
1/Var(Ti ) (see e.g.Mack (2002)). In this appendix we provide the corresponding
result for correlated estimators since it is probably less well known.

Lemma E.1. Let T1, . . . ,Tn be unbiased estimators for t, let T := (T1, . . . ,Tn)t

and assume that the covariance matrix

S := Cov(T),

is positive definite. Then a linear combination g1T1 + · · · + gnTn with g1 + · · · +
gn = 1 has minimal variance (amongst all such linear combinations) if and only
if g = (g1, . . . , gn)t satisfies

g = S−11n

〈S−11n,1n〉 ,

where 〈· , ·〉 denotes the standard scalar product in Rn.

Proof. Let f (g1, . . . , gn) := Var(
∑n

i=1 giTi ). We calculate the minimum of f
under the boundary condition ϕ(g1, . . . , gn) :=

∑n
i=1 gi = 1. We have

grad f (g) = 2Sg and H f (g) = 2S,

(where H f denotes the Hessian matrix of f ). Moreover, we have

gradϕ(g) = 1n.

The Lagrange condition for a local extremum is

Sg = λ1n,

i.e.
g = λS−11n

where λ is chosen such that
∑n

i=1 gi = 1, i.e.

λ = 1
〈S−11n,1n〉 .
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Note that 〈S−11n,1n〉 	= 0 since S is positive definite. As H f = 2S is positive
definite, we see that f has a local minimum at g. It is a unique global minimum
since it is the only local minimum and since f (g) → +∞ for ‖g‖2 → +∞. �
Remark E.2. If the components of S−11n are non-negative then we have

S−11n

〈S−11n,1n〉 = S−11n

‖S−11n‖1 ,

where ‖ · ‖1 denotes the 1-norm in Rn.

APPENDIX F

CONVERGENCE OF THE RECURSION FROM SECTION 6

In this appendix, we first show that Recursion 6.1 converges to a fixed point if
the loss ratiosCi,1/̂vi do not fluctuate too much. Afterwards we use a numerical
calculation to illustrate this result for the case n = 10, v̂1 = · · · = v̂q and
ε̂ = ε̂1n+1.

Lemma F.1. Assume that restated premiums v̂1, . . . , v̂q and estimators ĉ, x̂ and
ε̂1, . . . , ε̂n+1 are given. For arbitrary a > 0 there exists b > a with the following
property: If Ci,1/̂vi ∈ [a, b] for i = 1, . . . , n then Recursion 6.1 converges to a
fixed point.

Proof. Let

Rn
+ := {(w1, . . . , wn) |wi ≥ 0,

n∑
i=1

wi > 0} and

�n−1 := {(w1, . . . , wn) |wi ≥ 0,
n∑
i=1

wi = 1}.

We define

F : Rn
+ → R, w �→ f̂ w0 =

∑n
i=1 wiCi,1∑n
i=1 wi v̂i

,

and
f := F |�n−1.

Moreover, we define S∗(t) := (s∗
i, j (t))i, j=1,...,n with

s∗
i,i (t) := t2(̂ε2i + · · · + ε̂2n+1),

and

s∗
i, j (t) := t2(̂ε2i + · · · + ε̂2n+1) + t(1 + ĉ2)̂x

v̂i
· (1 + ε̂2i + · · · + ε̂2n+1),
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for i 	= j . Eventually, we consider the curve

α : (0, ∞) → �n−1, t �→ V̂−1S∗(t)−11n

‖V̂−1S∗(t)−11n‖1
.

Since
Ŝ(̂ε,w) = S∗( f̂ w0 ),

we then have
w(k+1) = (α ◦ F)(w(k)).

If we can show that the mapping α ◦ f : �n−1 → �n−1 is contracting, then we
can apply Brewer’s fixed point theorem to see that Recursion 6.1 converges to a
fixed point.

The continuous function ‖α̇‖2 assumes a global maximumC on the compact
interval [a, 2a]. Let m := max{̂vi /̂v j | i, j = 1, . . . , n} and choose b ∈ (a, 2a]
such that

b − a ≤ 1

Cm
√
n − 1

.

We have

gradF (w) = 1∑n
j=1 w j v̂ j

⎛⎜⎜⎜⎝
v̂1

(
C1,1

v̂1
− f̂ w0

)
...

v̂n

(
Cn,1
v̂n

− f̂ w0
)
⎞⎟⎟⎟⎠ .

For w ∈ �n−1 the gradient grad f (w) is the orthogonal projection of gradF (w)

to the tangent space Tw�n−1. We therefore have

‖ grad f (w)‖2 ≤ ‖ gradF (w)‖2 =
√√√√ 1

(
∑n

j=1 w j v̂ j )2

n∑
i=1

v̂2
i

(
Ci,1

v̂i
− f̂ w0

)2

.

Let a0 := min{Ci,1/̂vi | i = 1, . . . , n}, b0 := max{Ci,1/̂vi | i = 1, . . . , n}. The
function

χ : [a0, b0] → [0, ∞), x �→
n∑
i=1

(
Ci,1

v̂i
− t

)2

is convex and therefore χ(t) ≤ max{χ(a0), χ(b0)} for all t ∈ [a0, b0]. We obtain

n∑
i=1

(
Ci,1

v̂i
− f̂ w0

)2

≤ (n − 1)(b0 − a0)2.

Since v̂2
i /(

∑n
i=1 wi v̂i )

2 ≤ m2 for w ∈ �n−1 we conclude that

‖ grad f (w)‖2 ≤ m
√
n − 1(b0 − a0).
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FIGURE 9: Plot of (1 + ĉ2 )̂x/̂vi �→ maxt∈[0.5,1.3]{‖α̇(t)‖2} for n = 10, v̂1 = · · · = v̂q and various ε̂ = ε̂1n+1.

If Ci,1/̂vi ∈ [a, b] for all i , i.e. [a0, b0] ⊂ [a, b], then we have

‖α̇( f (w))‖2 · ‖ grad f (w)‖2 ≤ Cm
√
n − 1(b − a) ≤ 1,

for all w ∈ �n−1 which implies that α ◦ f is contracting. �

Lemma F.1 does not provide an indication on how large b can be chosen for
given a. In order to obtain a better feeling we consider an example. Let n = 10,
v̂1 = · · · = v̂n and ε̂ = ε̂1n+1. As lower bound for the loss ratios Ci,1/̂vi we
choose a = 50%. We will use a numerical calculation to see that the recursion
always converges if Ci,1/̂vi ∈ [50%, 130%] for all i . Hence, we can choose b =
130% in Lemma F.1. Note that this condition for Ci,1/̂vi is sufficient but not
necessary. In practice, it is not easy to find an example where the recursion does
not converge.

We use the notation from the proof of Lemma F.1. If we consider the defini-
tion of S∗(t)we see that the curve α : (0, ∞) → �n−1 depends on the parameters
(1 + ĉ2)̂x/̂vi and ε̂ (we omit these parameters in the notation). In Figure 9 we
have plotted the graphs of

(1 + ĉ2)̂x
v̂i

�→ max
t∈[0.5,1.3]

‖α̇(t)‖2,

for a number of values for ε̂ on logarithmic paper. For small values of ε̂ we have

1 + ε̂i + · · · + ε̂n+1

ε̂i + · · · + ε̂n+1
≈ 1

ε̂i + · · · + ε̂n+1
,

which implies that a change of ε̂ results approximately in a shift of the graph
(using logarithmic scale). From Figure 9 it seems to be quite obvious that

max
t∈[0.5,1.3]

‖α̇(t)‖2 ≤ 0.4 =: C,
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for arbitrary x̂, ĉ, v̂1 = · · · = v̂n and ε̂ (although this is not a strict proof of
course). Since v̂1 = · · · = v̂n we havem = 1. Like in the proof of Lemma F.1 we
obtain with n = 10

‖α̇( f (w)‖2·‖ grad f (w)‖2 ≤ Cm
√
n − 1(130%−50%) = 0.4·1·3·0.8 = 0.96 < 1,

which implies that Recursion 6.1 converges to a fixed point.
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