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The acquisition of modern Global Navigation Satellite System (GNSS) signals may be difficult
due to the presence of a secondary code. Indeed, short coherent integration times should be
used without non-coherent integration, which implies a low sensitivity; or long coherent inte-
gration times should be used, requiring synchronisation with the secondary code and thus a full
correlation, which implies a significant computational burden, especially for signals with long
secondary codes such as the Galileo E5 signal. A third option that lies between the previous
two is to perform a partial correlation using less than one secondary code period as input, how-
ever this is less efficient in terms of complexity than using an entire secondary code period, and
the code’s autocorrelation properties are completely changed. The authors recently proposed
a method based on combining secondary code correlations, allowing the use of intermediate
coherent integration times with the possibility to do non-coherent integrations, and the method
was successfully applied to the Global Positioning System (GPS) L5 signal. This paper studies
the application of the method to the Galileo E5 signal, compares it with the partial correlation
method, and discusses the case where less than one secondary code period is used as an input
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1. INTRODUCTION. Modern Global Navigation Satellite Systems (GNSS) signals
have introduced new features such as subcarriers, a pilot channel and secondary codes.
The secondary code brings several advantages: it facilitates synchronisation with the data,
it offers a better cross-correlation between satellites or constellations and it helps mitigate
interference thanks to closer spectral lines. However, a secondary code complicates the
acquisition for two reasons: there is a potential sign transition between every period of the
primary code and the extension of the coherent integration time is more difficult (Borio et
al., 2008; Lo Presti et al., 2009; Leclère et al., 2014; Foucras et al., 2016; Leclère et al.,
2017). This article focuses on the second problem.

Three traditional methods are available for dealing with the extension of the coherent
integration time in the presence of a secondary code: (1) Computing the correlation with
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the secondary code to synchronise with it. This enables long coherent integration times
and high sensitivity, but involves a significant computational burden (Leclère et al., 2017;
Hegarty et al., 2003; Yang et al., 2004; Leclère and Landry, 2016; Leclère et al., 2017b);
(2) Testing all the possibilities for the sign transitions between consecutive primary code
correlations. Since the number of possibilities grows exponentially, this solution is limited
to short coherent integration times, typically of four or five primary code periods. The use
of the term short here is relative, it depends on the signal considered, for example, the GPS
L1C signal has a primary code of 10 ms, therefore coherent integration times of 40 or 50 ms
can be reached with this method, which is definitely not a short coherent integration time
(Corazza et al., 2007; Shivaramaiah et al., 2008; Borio, 2011). Moreover, non-coherent
integration cannot be performed in this second case, because the number of possibilities
has a double exponential growth; (3) Computing a partial correlation with the secondary
code, by using less than one secondary code period as input, leading to an intermediate
integration time (again, the term intermediate is relative to the context), and non-coherent
integration can be performed (Borio, 2011). However, even if less input is used, it is still
needed to test all the possible delays as with the full correlation, making this method less
efficient than the full correlation in terms of complexity.

Recently, the authors proposed a method enabling moderate to high sensitivity, while
maintaining reasonable complexity (Leclère and Landry, 2018). The method consists of
combining secondary code correlation results to reduce the complexity by testing fewer
delays, combining inputs (which reduces the number of primary code correlations), and
by using the fact that the modified local secondary code is shorter and may contain zeros.
Moreover, non-coherent integrations can be used with this method. In return, there is a
loss in the Signal-to-Noise Ratio (SNR) compared to the full correlation, which means in
another way that more input data should be used than the integration time. The goal is that
the complexity reduction is more important than the coherent integration time reduction.

For example, with the L5 signal, an equivalent coherent integration time of 12 ms can
be obtained using 20 ms of input data, while the complexity is reduced by a factor greater
than four (Leclère and Landry, 2018). It was also shown that doing this twice and adding
the results together leads to a higher SNR (since the coherent integration time becomes
24 ms) and a lower complexity than the traditional implementation, therefore it is possible
to win on both sensitivity and complexity. The drawback is the use of longer input data,
requiring a larger input memory. This additional memory requirement is compensated by
the reduction of the number of accumulators in the secondary code removal process; thus,
the overall memory requirement may be lower with the proposed method, as shown later.

The number of results combined is flexible. If more results are combined, the complexity
is reduced but the sensitivity is generally reduced as well. However, the actual performance
is specific to every code. For example, the L5 signal combining five results gives a better
sensitivity than combining four results (Leclère and Landry, 2018).

In this article, this method is applied to the Galileo E5 signal, which has the particularity
of having long secondary codes and each satellite has its own secondary code for the pilot
channel. Two cases will be discussed: (1) When the input is a full period of the secondary
code, or a multiple of it, as in Leclère and Landry (2018). However, here the method will
also be compared to the partial correlation method, which was not done in Leclère and
Landry (2018); (2) When the input is less than a full period of the secondary code, to
reduce the amount of input data needed.
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Note that this paper deals only with the complexity and gain brought after the primary
code correlation. The consequences of extending the coherent integration time can already
be found in the literature, such as in Borio (2011) for the detection probabilities or in
Gaggero (2008) for the oscillators’ requirements and are thus not discussed in this paper.

The rest of this paper is organised as follows. Section 2 introduces the acquisition pro-
cess, the architecture considered, and shows the importance of extending the coherent
integration time and using non-coherent integration. Section 3 presents the three traditional
methods for doing this. Section 4 briefly describes the proposed method and shows the
results when a full period of the secondary code is used as the input. Section 5 discusses
the impact of using less than a full period of the secondary code as input. Finally, Section 6
provides conclusions on the application of the method to the Galileo E5 signal.

2. ACQUISITION OF GNSS SIGNALS WITH A SECONDARY CODE.
2.1. Description of GNSS signals. A GNSS signal contains three essential elements:

navigation data, such as ephemeris, time information and various corrections, which are
needed by the receiver to compute its position; a Pseudorandom Noise (PRN) code, also
called ranging code, which is used for measuring the distance between the receiver and the
satellites (pseudoranges) and allows the satellites to share the spectrum and a carrier, as for
any radio signal.

Modern GNSS signals may include new features such as: a pilot channel without any
data; allowing the use of long coherent integration times and the use of discriminators
offering better sensitivity for tracking loops; a subcarrier, which changes the modulation
(from Binary Phase Shift Keying (BPSK) to Binary Offset Carrier (BOC) typically) to
improve the position accuracy and better mitigate multipath and a secondary code, which
allows an easier synchronisation with the data, better cross-correlation between satellites or
constellations, and better interference mitigation (Kaplan and Hegarty, 2017; Betz, 2015)
With the arrival of the secondary code, the PRN code is now sometimes called the primary
code.

A GNSS signal transmitted by a satellite can thus be expressed as:

st(t) = at,dcd(t)d(t) cos(2π fLt + ϕt,d) + at,pcp(t) sin(2π fLt + ϕt,p), (1)

where the subscripts d and p denote the data and pilot channels respectively, a is the ampli-
tude of the signal, c contains the primary code and possibly the secondary code and the
subcarrier, d is the navigation data, fL is the carrier frequency and ϕ is the carrier phase.
Note that the data and pilot channels are not always in quadrature, hence the use of different
ϕ for the data and pilot channels (Foucras, 2015).

A received GNSS signal differs from a transmitted one in four main points: due to the
distance travelled by the signal, the received power is much lower; again due to the distance
travelled, the received code has an unknown delay; due to the speed of the satellites and
of the receiver, the frequency of the carrier and of the code are shifted and there is a noise
superimposed (Van Diggelen, 2018). A received GNSS signal can thus be expressed as:

sr(t) =
1
L

st((1 + α)t − τ ) + η(t)

= ar,dcd((1 + α)t − τ )d((1 + α)t − τ ) cos(2π (fL + fD)t + ϕr,d)

+ at,pcp((1 + α)t − τ ) sin(2π (fL + fD)t + ϕr,p), (2)
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Figure 1. Acquisition principle

where L corresponds to the travel loss, η is the noise, α represents the Doppler effect, τ

is an unknown delay, and fD is the Doppler shift on the carrier (equal to αfL). For a static
receiver on Earth, the maximum Doppler shift fD is around 5 kHz and 3.8 kHz for GPS L1
and L5 band signals respectively, and around 4 kHz and 3 kHz for Galileo L1 and L5 band
signals respectively (Van Diggelen, 2018; Leclère et al., 2018).

2.2. Acquisition principle. The receiver is designed to decode the navigation data and
synchronise with the code. For this, it needs to estimate the Doppler shift fD to remove the
carrier, and to estimate the delay τ to synchronise with the code. This is the aim of the
acquisition.

The basic implementation of the acquisition is relatively straightforward, since the
acquisition tests the different possibilities for the Doppler shift and the code delay until
it detects the signal. The testing is performed by multiplying the incoming signal with local
replicas of the carrier and code at a specific frequency and delay, integrating the result and
taking the magnitude since the local carrier is complex, as shown in Figure 1. Therefore,
after the carrier removal, this corresponds to a correlation.

Basically, if the frequency of the local carrier matches the frequency of the incoming
carrier and if the delay of the local code matches the delay of the incoming code, that is, if
f̂D ≈ fD and τ̂ ≈ τ , a high value should be obtained at the output. If one of these two local
parameters does not match the incoming one, that is, f̂D �= fD or τ̂ �= τ , a low value should
be obtained at the output (Borre et al., 2007). This is illustrated in Figure 2, where it can
be seen that the peak progressively decreases when the local parameters move away from
the incoming ones. For the carrier, the peak decreases progressively as a sinc function to
reach its first null after 1/TC (TC being the coherent integration time, which is discussed
later), while for the code the peak decreases linearly to reach a null after one chip for a
BPSK signal (Foucras, 2015; Van Diggelen, 2009) (for BOC signals the decrease is faster
and there are multiple peaks within one chip (De Wilde et al., 2006)).

Of course, the output depends on the signal power, noise power and integration time,
which should be long enough to raise the signal out of the noise. The longer the integration
time, the higher the SNR (Van Diggelen, 2009). Figure 3 illustrates this by showing the
acquisition output for different integration times for a signal weaker than that shown in
Figure 2.

However, the integration time is limited by different factors: data (for data channels);
dynamics, which can change the Doppler during the integration and thus shift and spread
the correlation peak and local oscillator variations, with the same consequences or the
frequency resolution, which would decrease too much (since it is inversely proportional to
TC) and imply too many possibilities to test (Van Diggelen, 2009). One way to overcome
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Figure 2. Illustration of the acquisition output with fD = 1000 Hz and τ = 700 chips.

Figure 3. Illustration of the impact of the integration time on the acquisition output for a signal weaker than
Figure 2 Top left: 1 ms, top right: 5 ms, bottom left: 20 ms, bottom right: 100 ms.

these drawbacks, or alleviate their effect, is to continue integrating after the computation
of the magnitude, as shown in Figure 4. The integration before the magnitude computation
is called coherent integration, and the integration after is called non-coherent integration.
However, in terms of detection, the coherent integration is more efficient than non-coherent
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Figure 4. Acquisition principle with coherent and non-coherent integrations.

Figure 5. Illustration of the impact of coherent and non-coherent integration times on the acquisi-
tion output for a similar total integration time. Left: coherent integration of 1 ms followed by 100
non-coherent integrations, right: coherent integration of 10 ms followed by 10 non-coherent integrations.

integration (Van Diggelen, 2009). This is illustrated in Figure 5 where, in both cases 100 ms
of signals are integrated, but a longer coherent integration time is used in the right figure.
It is clearly seen that with a longer coherent integration time the noise floor is much lower,
and thus the SNR is much higher. This is why, in terms of sensitivity, it is best to use
the longest coherent integration time possible, and then use non-coherent integration (Van
Diggelen, 2009; Pany et al., 2009).

2.3. Acquisition methods. There are different ways to implement the acquisition. The
basic way following Figure 4, called serial search, is very time consuming and not in cur-
rent use. Modern implementations use either massively parallel correlators or Fast Fourier
Transform (FFT)-based techniques (Van Diggelen, 2009; 2014). The FFT can be used to
parallelise the search in the frequency dimension to perform a Parallel Frequency Search
(PFS) (Spangenberg and Povey, 1998; Mathis et al., 2003) in the code delay dimension
to perform a Parallel Code Search (PCS) (Borre et al., 2007; Leclère, 2014) or in both
simultaneously (Ziedan and Garrison, 2004; Akopian, 2005; Foucras, 2015). The PCS is an
efficient method that offers a good balance between performance and memory requirements
and is able to easily manage the Doppler effect on the code (Leclère et al., 2013). There-
fore, this is the implementation considered in this paper to illustrate our method. Note that
the further discussions and the proposed method are also valid with other implementations
since the focus of this paper is only on the correlation of the secondary code.

The architecture considered is given in Figure 6, which shows the memory storing the
input data (typically used to process the samples at a rate faster than the sampling frequency
to reduce the acquisition time (Leclère et al., 2013)) and the correlation with the secondary
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Figure 6. Parallel code search acquisition with secondary code correlation and non-coherent integration.

code. In hardware receivers, the correlation with the secondary code and the non-coherent
integration can be performed serially or in parallel, according to the priority (having lower
processing time or lower memory resources) (Leclère et al., 2017c; Leclère and Landry,
2018). Next, only the parallel implementation is considered, since the comparison between
serial and parallel implementation was already done in Leclère and Landry (2018) and
Leclère et al. (2017c).

For our discussion, we will focus only on the correlation between the primary code
correlations results and the local secondary code. Therefore, the operation considered is
simply a circular correlation:

yk =
NC−1∑

i=0

si−kri, (3)

with k = 0, 1, . . . , NSNS the length of the secondary code, NC the number of primary code
periods accumulated coherently (equal to NS or a multiple of it with a full correlation,
lower than NS with a partial correlation), s the secondary code (its subscript is modulo NS),
and r the primary code correlation results.

2.4. Galileo E5 secondary codes correlation properties. As shown in Equation (3),
the operation performed by the receiver is a correlation. Therefore, knowing the auto-
and cross-correlation properties of the secondary codes is important when looking at
the detection statistics. Moreover, since the proposed method combines the secondary
code correlation results, it is definitely useful to look at the correlation properties of the
secondary codes.

The Galileo E5a and E5b signals have the particularity of having one secondary code
per satellite on the pilot channel. There are thus 100 secondary codes defined for the pilot
channels of the E5 signal (50 for the E5a signal and 50 for the E5b signal) (European
Union, 2016). These codes are 100 chips long, and since one chip is 1 ms, they are 100 ms
long. Figure 7 shows the autocorrelation and cross-correlation of the E5 codes as well as
their distribution. Their autocorrelation sidelobes can be 0, ±4 or ±8, with a magnitude
average of 3·08 and a standard deviation of 2·67, whereas their cross-correlations are much
more important since they can be between −50 and 42, with a magnitude average of 7·97
and a standard deviation of 6·06.

3. EXTENSION OF THE COHERENT INTEGRATION TIME IN THE PRESENCE OF
A SECONDARY CODE. As mentioned in the introduction, there are three main ways to
extend the coherent integration time in the presence of a secondary code: (1) using a short
coherent integration time (TC ≤ 5TPC typically, with TPC the period of the primary code) by
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Figure 7. Autocorrelation (left) and cross-correlation (right) statistics of the E5 secondary codes.

Figure 8. Illustration of short coherent integration with coherent integration only, with NC = 3.

testing all possibilities; (2) using a long coherent integration time (TC ≥ TSC, with TSC the
period of the secondary code) by computing a full correlation or (3) using an intermediate
coherent integration time (5TPC < TC < TSC) by computing a partial correlation.

3.1. Short coherent integration by testing all possibilities. With a short coherent inte-
gration time, all the possible sign sequences should be tested to combine consecutive
primary code correlation results. With coherent integration only, the number of possibilities
grows exponentially as 2NC−1 as shown in Figure 8. This is why the coherent integration
time is short.

If non-coherent integration is also used, the number of possibilities grows even faster
as (2NC−1)NNC as shown in Figure 9. Therefore, non-coherent integration cannot be used
without rapidly exploding the number of accumulators needed, which is a strong limitation.
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Figure 9. Illustration of short coherent integration with coherent and non-coherent integrations, with NC = 2
and NNC = 2.

Figure 10. Traditional parallel implementation computing a full correlation.

The correlation properties of the secondary codes are not exploited here. Indeed, next to
the correct combination giving the maximum peak, the combinations having only one sign
different will give a peak relatively close (NC − 2 instead of NC, assuming normalisation),
and so on. Therefore �NC/2� + 1 peaks from NC to 1 or 0 with a step of 2 will be observed
(still assuming normalisation).

3.2. Long coherent integration by computing a full correlation. If the full correlation
with the secondary code is computed over one period (that is, following Equation (3) with
NC = NS), the implementation is the one shown in Figure 10, where NS different delays
should be tested and NS samples are accumulated. This allows a long coherent integration
time; however it implies a significant computational burden, and a significant amount of
memory with a parallel implementation. This is especially true for the Galileo E5 signal,
whose secondary codes are 100 chips long (much longer than the 20 chips of the L5 signal
or the 25 chips of the E1 signal) and whose primary codes are also long (10,230 chips).
Note that the non-coherent integration is not shown in Figure 10, but it can of course be
added after each accumulator.
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Figure 11. Traditional parallel implementation computing a partial correlation.

3.3. Intermediate coherent integration by computing a partial correlation. If one
wants to reduce the complexity associated with the previous implementation, it is possi-
ble to simply use less than one secondary code period as input data. This is like computing
a partial correlation, that is, following Equation (3) with NC < NS (Borio, 2011; 2008). The
implementation is the one shown in Figure 11, it differs from Figure 10 by a number of fac-
tors: the number of primary code correlations computed (NC instead of NS); the length of
the local secondary code (NC instead of NS, where each code is a portion of the secondary
code) and the number of coherent accumulations after the product with the local secondary
code (NC instead of NS) but the number of delays to test is still NS. Therefore, although
the coherent integration time is reduced by a factor NS/NC, the complexity is reduced by
a smaller factor. Thus, we can say that this implementation is less efficient than the one
computing the full correlation.

The correlation properties of the codes are not kept at all when less than one code period
is used. This can be easily shown with a simple example. For the traditional correlation
given by Equation (3), if the input is a full period of the secondary code, the correla-
tion result exhibits the same values regardless of the delay of the input secondary code,
except that they are shifted. For instance, with the five-chip code [1 1 1 1 −1]T, the
correlation yk for the five possible input delays is:⎡

⎢⎢⎢⎢⎢⎢⎣

5 1 1 1 1
1 5 1 1 1
1 1 5 1 1
1 1 1 5 1
1 1 1 1 5

⎤
⎥⎥⎥⎥⎥⎥⎦

, (4)

where each column corresponds to one yk for a different delay of the input code.
Now, with the same five-chip code, but considering only four chips for the input, the

correlation result becomes: ⎡
⎢⎢⎢⎢⎣

4 2 2 2 2
2 4 0 0 0
2 0 4 0 0
2 0 0 4 0
2 0 0 0 4

⎤
⎥⎥⎥⎥⎦. (5)
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Figure 12. Autocorrelation statistics of the E5 secondary codes when 50 chips are used in input (left) or 25
chips are used in input (right).

The main correlation peak is reduced since fewer inputs are used, and the correlation for
the other delays is also changed. Moreover, the correlation side peaks depend on the delay
of the incoming partial code. This will have an impact on the discussion in Section 5.

To illustrate this, Figure 12 shows the autocorrelation of the E5 secondary codes when
using 50 and 25 chips instead of 100 chips, respectively. The peak at the correct alignment
is the number of chips used, and for the other delays the autocorrelation is much higher
than with the entire code, since the values can reach 24 and 21 respectively, instead of
eight. Therefore, the ratio between the peak at the correct alignment and the other peaks is
drastically reduced, which can have an impact on the detection probabilities.

4. COMBINING SECONDARY CODE CORRELATIONS USING A FULL SEC-
ONDARY CODE PERIOD.

4.1. Combining secondary code correlations principle. The proposed method con-
sists of computing the combination of one or several outputs yk to reduce the complexity.
The idea is not to compute the yk and then combine them, but to combine the elements first
to compute less outputs and thus reduce the overall complexity. Since the method has been
already detailed in Leclère and Landry (2018), only a summary is given in this section.

In order to maximise the complexity reduction, the results combined should be distant by
a delay of NS/NRC, with NRC being the number of results combined. The combinations can
be either only additions, or alternately additions and subtractions (this last pattern should
also be circular and can be used for even NRC only) (Leclère and Landry, 2018). Following
these rules, there are NRC times less delays to search, which means shorter processing time
or less accumulators needed. NRC inputs can be combined, which means NRC times less
primary code correlations to compute and NRC times shorter local secondary code, which
again implies a shorter processing time. Therefore compared to the traditional integration
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Figure 13. Parallel implementation of the proposed method.

over one secondary code period, the SNR gain is around NS/NRC on average, while the
complexity is divided by about N 2

RC. Thus, this means that the complexity decreases faster
than the gain decreases; this is why this method is interesting. Moreover, the modified
local secondary code may contain zeros, which can reduce the complexity even more. Such
factors are rough estimations, the actual value being more or less close depending on the
code considered and depending on the platform considered.

The output of the proposed method can thus be expressed as:

y ′
k =

NRC−1∑
l=0

(sign)lyk+ NS
NRC

l =
NS/NRC−1∑

i=0

s′
i−kr′

i (6)

with k = 0, 1, . . . , NS/NRC − 1, sign = 1 or −1, and:

r′
i =

NRC−1∑
l=0

(sign)lri+ NS
NRC

l, s′
i =

NRC−1∑
l=0

(sign)lsi+ NS
NRC

l. (7)

The corresponding implementation is shown in Figure 13. For example, with NS = 20
and NRC = 4, NS/NRC = 5, the combinations are:

y ′
k =

3∑
l=0

yk+5l = yk + yk+5 + yk+10 + yk+15, (8)

or

y
′
k =

3∑
l=0

(−1)l yk+5l = yk − yk+5 + yk+10 − yk+15. (9)

Regarding the SNR, the correlation gain brought by the secondary code correlation for
a coherent integration time of one secondary code period is:

G =

(∑NS−1
i=0 si−ksi−mS

)2

∑NS−1
i=0 s2

i−k

, (10)
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where mS is the delay of the incoming secondary code. In the traditional case of binary
sequences, at the correct alignment (that is, k = mS), G = N 2

S /NS = NS.
When correlation results are combined, the gain becomes:

G =

(
NS−1∑

i=0

si−k1 si−mS ±
NS−1∑

i=0

si−k2 si−mS ± · · · ±
NS−1∑

i=0

si−kNRC
si−mS

)2

/

NS−1∑
i=0

(
si−k1 ± si−k2 ± · · · ± si−kNRC

)2
, (11)

where k1, k2, . . . , kNRC are the delays of the local secondary code corresponding to the
outputs combined (Leclère and Landry, 2018).

The drawback of this method is that the input data signal should be longer than the
coherent integration time that will be obtained, and there is still an ambiguity in the sec-
ondary code delay. However, for this last point, once the Doppler shift and the primary
code delay are found, the secondary code delay can be determined quickly.

4.2. Application to the E5 signal. As mentioned previously, in order to maximise the
complexity reduction, the results combined should be distant by a delay of NS/NRC. In the
case of the E5 signal where NS = 100, the possibilities are:

• NRC = 2 NS/NRC = 50 sign = 1 or −1.
• NRC = 4 NS/NRC = 25 sign = 1 or −1.
• NRC = 5 NS/NRC = 20 sign = 1 .
• NRC = 10 NS/NRC = 10 sign = 1 or −1.
• NRC = 20 NS/NRC = 5 sign = 1 or −1.
• NRC = 25 NS/NRC = 4 sign = 1.
• NRC = 50 NS/NRC = 2 sign = 1 or −1.

The last case would lead to very low gain and would be less efficient than the short inte-
gration time method, and it is thus not further considered. For the other cases, Figure 14
gives the gain obtained for each code for the different NRC, considering the best combi-
nation between plus only and alternative plus and minus As mentioned previously, it can
be seen that the gain is around NS/NRC on average, and that not all the secondary codes
provide the same performance.

For NRC = 20 or 25, the gain is similar to what can be obtained with short coherent
integration times. With NRC = 20 the proposed method would compute NS/NRC primary
code correlations, and then do a correlation with a five-chip code for five delays, requiring
five accumulators. The traditional implementation with a coherent integration time of 4 ms
would compute four primary code correlations but would have eight accumulators, and
with a coherent integration time of 5 ms, would compute five primary code correlations
but would have 16 accumulators. Therefore, even for such high NRC, the proposed method
can offer similar coherent integration time with a lower complexity, plus the possibility of
using non-coherent integrations. In contrast, it would require much more memory for the
input data, and the possibility to access 20 or 25 different portions of the input data, which
may be difficult with hardware receivers.

For NRC between two and ten, the gain is similar to what can be obtained with the
traditional method computing partial correlations. Comparing the proposed method and
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Figure 14. Gain obtained with the method for the 100 E5 secondary codes, for different NRC. The legend
indicates the minimum, average and maximum values across the codes.

the one computing partial correlation with NC = NS/NRC, the number of primary code cor-
relations is the same, and the length of the local secondary code is the same. However, with
the proposed method the number of delays to test is NS/NRC instead of NS, which implies
a significant saving in operations.

Now let us compare the memory. With the proposed method the input memory con-
tains NPNS samples, and the NS/NRC accumulators contain NPNS/NRC samples. For the
traditional method computing partial correlations, the input memory contains NPNS/NRC
samples, and the NS accumulators contain NPNS samples. Therefore, the number of sam-
ples stored overall is the same, however the resolution of the samples in the input memory
is much lower than the samples in the accumulators. Indeed, at the input the resolution
is typically two or three bits, whereas after the primary code correlation the resolution is
around 12 to 18 bits. Table 1 gives a quantitative comparison. It can be seen that the pro-
posed method uses much less memory, up to 3.4 times less (that is, a reduction of 70%),
corresponding to several Mbit. Moreover, this is without considering non-coherent integra-
tion, because if it was considered, the number of accumulators would be doubled which will
be much more advantageous for the proposed method since it has less of those accumula-
tors. In conclusion, the proposed method can offer better or similar gain than the traditional
method using partial correlation, with a lower complexity and a significantly lower memory
requirement. The main drawback of the proposed method here is that the gain obtained is
not the same for all the codes, and variations from one to code to another can be relatively
important.

The proposed method does not change the correlation properties of the codes com-
pletely, unlike the partial correction. This is beacuse what is computed is the sum of the
correlation for different delays. This is shown in Figure 15 for NRC = 2 (left) and NRC = 4
(right), where it can be seen that in both cases the main peak is still around 100, which is
normal since its value is the sum of the main peak (which is 100) and one or three other
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Table 1. Memory requirements for the traditional method computing partial correlation and for the proposed
method with NS = 100, NS = 20 480, three input resolution of three bits, accumulators resolution of 15 bits.

NRC 2 4 5 10

Memory with the traditional method computing partial correlation (Mbit) 33 31·5 31·2 30·6
Memory with the proposed method (Mbit) 21 13·5 12 9
Difference (Mbit) 12 18 19·2 21·6
Ratio 1·57 2·33 2·6 3·4

Figure 15. Autocorrelation statistics of the E5 secondary codes with the proposed method when NRC = 2 (left)
and NRC = 4 (right).

Table 2. Summary of the combinations characteristics when NC < NS.

Is the correlation maximum Is the gain independent on
NRC NC always on the correct delay ? the incoming code delay ?

2 50 ✓ ✓

4 75 ✓ ✗

50, 25 ✗ ✗

5 80 ✓ ✗

60, 40, 20 ✗ ✗

10 90, 80 ✓ ✗

70, . . . , 10 ✗ ✗

peaks whose values can be 0, ±4 or ±8. In the same way, the values for the other delays are
obtained as the sum of two or four peaks whose values can be 0, ±4 or ±8, which prevents
a very high value as was the case with the partial correlation.

5. COMBINING SECONDARY CODE CORRELATIONS USING LESS THAN A
SECONDARY CODE PERIOD. In the previous section, it has been shown that the pro-
posed method is efficient, however it requires a large amount of input signal, at least 100 ms
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Figure 16. Gain obtained with the method for the 100 E5 secondary codes, for NRC = 2.

with E5 (although it was also shown that it does not necessarily imply more memory over-
all). Therefore, in this section, we study the impact of using less than one period of the
secondary code as input for the proposed method, that is, NC < NS in Equation (3).

The implementation is as identified in Figure 13, only the input combinations may be
removed or reduced depending on NC and NS/NRC. Therefore, it can be first seen that using
less input signal will clearly not reduce the complexity to the same proportion.

5.1. Impact of using less than a secondary code period on the correlation. In
Section 3.3, it was shown that when using less than the code period as input, the correla-
tion values are not the same according the input delay. This is problematic for the proposed
method, because it means that when correlation results are combined, the final result will
depend on the delay of the input secondary code, which is not desired. Moreover, when
combining results, it may happen that the maximum does not correspond to the correct
delay, which is definitively not desired since it would prevent the use of non-coherent
integration or at least reduce the gain. The next sections quantify this.

5.2. Impact of using less than a secondary code period on the gain and SNR. Regard-
ing the gain, Equations (10) and (11) still apply if less than one period of the secondary code
is used as input, the only difference is that the upper limit of the sums is NC − 1 instead of
NS − 1.

In Equation (11), the numerator of the gain depends directly on the correlation, and as
shown previously when NC < NS the correlation depends on the delay of the input sec-
ondary code. Therefore the numerator of the gain depends also on the delay of the input
secondary code.

The denominator of the gain is independent of the input secondary code delay only if
NC = NS/NRC. This can be easily seen by expressing the operation with matrices where,
after the combination, the size of the local circulant matrix is NS/NRC × NS/NRC. There-
fore, if the number of inputs used is a multiple of NS/NRC, all the columns of the matrix
will be used, whereas if it is not a multiple of NS/NRC, some columns will not be used, and
consequently a different local code will be used for the different outputs.

https://doi.org/10.1017/S0373463318001054 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318001054


NO. 3 GALILEO E5 SIGNAL ACQUISITION 571

Figure 17. Gain obtained for NRC = 4 (top), and NRC = 5 (bottom). The minimum, average and maximum
value are given across the delay of the incoming code.

Next, we focus only on the case NC = NS/NRC that gives a constant denominator for the
gain.

5.3. Application to the E5 signal. In this section, the combinations of the correla-
tion results when NC = NS/NRC are studied, and two elements are observed. First, it is
checked if the maximum is always obtained at the correct delay for any delay of the incom-
ing secondary code. Second, it is checked if the gain is constant regardless of the delay
of the incoming secondary code. Table 2 summarises this for different possibilities up to
NRC = 10. It can be seen that for NRC = 2 and NC = 50, the delay is correctly estimated, and
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the gain is constant; whereas for the other cases, NC should be relatively high to always
have the correlation maximum on the correct delays.

Figures 16 and 17 show the gain for the values of NC where the delay is correctly esti-
mated. When NRC = 2, it can be seen that the gain is simply divided by two when NC = 50
compared to the case NC = 100. Using less input reduces the complexity by eliminating the
combination of the inputs; however, overall, this is a slight reduction since the number of
outputs computed and the local secondary code stay the same. The main advantage is to
reduce the amount of memory to store the input signal. However, for the traditional imple-
mentation with NC = 50, the number of primary code correlations and their accumulations
are the same, only the number of secondary code delays to test is still NS, while the gain is
twice as high on average.

For the other cases, the average gain is reduced by approximately the same amount as
the reduction in NC. As for the maximum gain, it can even be higher than the case NC = NS,
however the minimum gain is also much lower.

6. CONCLUSION. This paper has shown that the method consisting of combining sec-
ondary code correlations to reduce the complexity applied previously to the GPS L5 signal
can also be applied to the Galileo E5 signal. Compared to the traditional implementation,
this method decreases both the complexity and the gain, but the complexity is reduced by
a factor higher than N 2

RC while the gain is reduced by a factor around NRC with NRC being
the number of combined correlations. Due to the flexibility of the method, it can be applied
for different contexts. It has been shown, for example, that it is possible that the proposed
method offers a higher gain for a lower complexity compared to the traditional implemen-
tation if consecutive results are added. Otherwise, the core application of the proposed
method is to provide intermediate coherent integration times (between 10 ms to 50 ms)
with the possibility of using non-coherent integration. This is similar to the traditional
implementation using partial correlation, but has much lower complexity and lower mem-
ory requirements, while keeping good autocorrelation properties. Even for a short coherent
integration time, the proposed method can have a lower complexity than the short coherent
integration method; however, in this last case the additional memory required to store the
longer input and the high number of simultaneous accessing of the input data may be a
brake (this typically depends on the context, if a hardware or software receiver is used).

Next, the possibility to use less than a full secondary code period as input in order to
reduce the amount of memory to store the input signal has been studied. It has been shown
that not using a full secondary code period changes the correlation result, which implies
additional constraints on the proposed method. Except for the case where two results are
combined, the gain obtained depends on the delay of the input secondary code, which may
give inconsistent performance for a receiver. Moreover, it has been shown that the com-
plexity of the proposed method is not significantly reduced when less than a full secondary
code period, making it not more efficient than the traditional implementation.

In conclusion, the combining of secondary code correlations is efficient when one or
a multiple of a secondary code period is used as an input, allowing the use of interme-
diate coherent integration time and non-coherent integration for reasonable complexity.
However, it cannot be used when less than a full secondary code period is used as an
input.
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