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Reconceiving Eliminative Inference*

Patrick Forber†‡

Eliminative reasoning seems to play an important role in the sciences, but should it
be part of our best theory of science? Statistical evidence, prevalent across the sciences,
causes problems for eliminative inference, supporting the view that probabilistic theories
of confirmation provide a better framework for reasoning about evidence. Here I argue
that deductive elimination has an important inferential role to play in science, one that
is compatible with probabilistic approaches to evidence. Eliminative inferences help
frame testing problems, an essential step that determines the context for evaluating
statistical evidence. I illustrate this process with examples from molecular evolutionary
biology.

1. Introduction. Scientists seldom consider all the possibilities. Successful
theory testing requires restricting attention to a few promising alternatives,
eliminating many possible hypotheses from consideration. Are there good
rules of inference governing this process of elimination, or is this merely
a case of opportunism in science?

I will argue that a process of elimination, call it framing, plays an
important role in theory testing, a role neglected in current philosophical
accounts. Reviewing recent accounts of eliminative inference shows that
they all defend the standard picture, for they treat it as a distinctive pattern
of reasoning that guides theory choice (sec. 2). These views have familiar
problems that make eliminative inference controversial on epistemological
grounds (sec. 3).
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Framing relocates and repurposes eliminative inference (sec. 4). Instead
of guiding theory choices, elimination helps frame testing problems, re-
stricting focus to a few serious rivals. Framing thus aids the statistical
evaluation of evidence and avoids some of the problems that face standard
applications of eliminative inference. To support the philosophical ac-
count, I provide three examples from molecular evolution (sec. 5) and
discuss eliminative inference from the Bayesian perspective (sec. 6). By
relocating eliminative inference we preserve the view that elimination has
a justifiable role to play in our best theory of science and sophisticate our
account of how background theory guides testing procedures.

2. Chasing Holmes. The standard picture of eliminative inference, often
called eliminative induction (EI), attempts to capture the pattern of rea-
soning made so perspicuous by Conan Doyle’s (1890) fictional detective
Sherlock Holmes, who counsels “that when you have eliminated the im-
possible, whatever remains, however improbable, must be the truth.” Ap-
plied to science, EI thus guides theory choice. The idea that elimination
works this way is commonplace, figuring prominently in the influential
accounts of science offered by Mill and Popper. Dretske (1981) suggests
that the process of eliminating relevant alternatives distinguishes knowl-
edge from mere belief. It also has a strong appeal to scientists themselves.
The elimination of alternative hypotheses through “crucial experiments”
drives the process of strong inference (Platt 1964), an account of scientific
method popular in ecology and evolutionary biology.

In the philosophical literature, Earman (1992), Kitcher (1993), and
Norton (1995) defend the standard picture, identifying an important role
for elimination in scientific reasoning. Yet there remains justifiable skep-
ticism about the significance of EI. The contact between theory and data
is, in practice, complex and rarely yields deductive falsification. Prevailing
views take probabilistic theories of confirmation to provide better ac-
counts of testing, and such accounts can accommodate the rare deductive
inference. To motivate the need for a new account of elimination, let me
begin by stating clearly the standard picture and discussing the problems
that generate skepticism about the applicability of EI.

The standard picture treats EI as a two-step inferential pattern:
(1) construct a space of possibilities and then (2) use observations to
eliminate alternatives in that space. The goal of EI is theory choice: the
process of elimination determines which hypothesis one should accept.
Any account of EI must specify procedures for the construction of pos-
sibility space and for the elimination process.

All the accounts in the literature present a version of the standard
picture, differing only in the explication of the two inferential steps. Ear-
man and Norton marshal examples from the physical sciences to argue
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for the importance of standard EI for guiding theory choices.1 They ex-
plicate the construction step by appeal to local features of the community
of practicing scientists, such as the nature of the explanatory domain and
the sets of accepted auxiliary hypotheses (see, e.g., Earman 1992, 177).
They explicate the elimination step in an inclusive way, allowing for both
deductive and inductive ways of eliminating hypotheses, based on evidence
or even theoretical principles.2 Perhaps the only significant difference be-
tween their accounts concerns the epistemic goods EI can produce. Ear-
man sees EI as augmenting epistemic progress within a Bayesian frame-
work, whereas Norton argues that EI can also be a means of discovery.
If all the hypotheses in the possibility space are eliminated, then this
justifies formulating a novel alternative.

Kitcher turns instead to biology and provides a more complex expli-
cation of the two steps in standard EI.3 For the construction step, Kitcher
identifies an algorithm for defining an exhaustive space of possibilities for
explaining some regularity. This algorithm depends on a scientist’s indi-
vidual practice. An individual practice encompasses the complex set of
commitments of a scientist, including a language, patterns of explanation,
available techniques and instrumentation, and assignments of authority
to colleagues, among other things (Kitcher 1993, 74–75, 221). Drawing
on this set of resources, a scientist specifies all the possible explanatory
dependencies. This constitutes the exhaustive possibility space. In contrast
to Earman and Norton, Kitcher offers an individual-based rather than
community-based explication of the construction step.

Kitcher also offers a different explication of the elimination step. For
him, a set of representative observations drives purely deductive elimi-
nation of alternatives in the constructed space. Of course, Kitcher is aware
of the complexities involved in bringing theories in contact with data. He
appeals to the nuanced and reliable skills scientists have for making ob-

1. Their endorsement of the standard picture is explicit. Earman (1992, 167) designs
his “sophisticated eliminativism” to fit within a Bayesian framework and requires
(1) a finite partition of possibility space into observationally distinguishable members
and (2) confrontations between theory and data. Norton (1995, 29) describes EI as a
kind of argument with two kinds of premises: (1) premises that specify a possibility
space and (2) premises that enable elimination.

2. Earman (1992, 178–81) claims that hypotheses can be “probabilistically eliminable,”
a kind of Bayesian elimination that discards alternatives with very low credences.
Norton (1995, 31) wants to allow elimination by “inductive inferences.” Both also want
to countenance elimination by mathematical or theoretical principles. This weakened
form of elimination is problematic, as I make clear below.

3. Kitcher’s analysis of EI assumes a rich view about the nature of scientific practice,
one I lack the space to treat in detail. I will focus on a few relevant points; for the
complete treatment of his view of science, see Kitcher (1993).
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servations to explain how they transform simple observations into the
public data sets (1993, 222–23). These skills are demonstrably effective
and help adjudicate disputes about the interpretation of observations
(226–27). Provided that there are sufficiently many observations of the
right kind, elimination occurs in a purely deductive Holmesian fashion
(239).

Although the mechanics of Kitcher’s account of EI are complicated,
his view coheres with the standard picture.4 EI works via (1) the con-
struction of a space of possibilities based on a scientist’s individual practice
and then (2) the use of skillfully obtained scientific observations to de-
ductively eliminate those possibilities to inform a specific theory choice.
In the ideal case the deductive inference leaves one hypothesis on the table
and thus supports accepting that hypothesis as true.

On the standard picture, EI informs our theory choices; such inferences
tell us what hypotheses we should accept based on what we take to be
the space of alternative hypotheses and the conflicting evidence. These
accounts are all chasing Holmes by giving plausible accounts of how such
an intuitive process of reasoning functions in science. Yet there are prob-
lems with the standard picture that justify a reasonable skepticism about
the viability of elimination. Reviewing these problems makes clear the
need to sophisticate our account of how we use background knowledge.

3. Problems for Elimination. Both parts of EI, (1) construction of a pos-
sibility space and (2) elimination by evidence, face problems that under-
write skepticism toward EI. The first step can be confounded by un-
cooperative possibility spaces. Such spaces contain either too many
hypotheses (an infinite number) or too few (they fail to include a relevant
alternative). The second step can be confounded by testing holism or
statistical evidence. Of these four problems, only two are problems spe-
cifically for elimination, and only one of those, the problem of statistical
evidence, lacks a viable solution.

Consider the construction of a possibility space. Some inferential tasks,
such as determining the exact value of a physical constant, have an infinite
number of possible solutions. Eliminating one value, or even a large num-
ber of values, will not help. This problem has a clear solution. First, we
should accept that there are some inferential problems in which standard
EI may not work, such as the determination of physical constants. Oth-
erwise, the infinite number problem can be overcome by imposing a finite

4. See Kitcher (1993, 237–42, 247–50); there he provides a kind of formalism for EI.
He is also careful to include conditions that ensure a finite possibility space and defends
the deductive approach against testing holism.
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partition on possibility space. Indeed, this is the solution one finds in
scientific practice.5

The more serious problem for the first step of EI concerns the possibility
that theorists may fail to exhaust possibility space, what Stanford (2006)
calls the problem of unconceived alternatives.6 If scientifically serious pos-
sibilities are left out of the constructed possibility space, then EI may
produce misleading or mistaken theory choices. If Holmes leaves a suspect
off his list, then his deduction should not be trusted and may very well
lead him astray. While this is a serious problem, its scope is not restricted
to elimination. Failure to exhaust possibility space presents a problem for
any account of theory choice, for the accuracy of such choices depends
on the available options.7 Thus, problems with the first part of EI do not
underwrite targeted skepticism for eliminative inferences over and above
general skepticism toward inductive methods.

The second part of EI, the elimination step, faces more severe problems.
One concerns Duhemian testing holism. Testing holism undermines elim-
ination because no hypothesis can make contact with empirical obser-
vations in isolation. A whole body of background theory is necessary to
generate a confrontation between theory and data. Since such background
theory encompasses a vast network, it seems that any conflict between
theory and data can be reconciled by changing some element in the back-
ground. We have no justifiable reason for eliminating the hypothesis in-
stead of the auxiliaries we must use to generate predictions. There are
some sophisticated responses to testing holism.8 Yet, as with Stanford’s
problem, testing holism has implications for any strategy of assessing
evidential relevance; it does not underwrite targeted skepticism about
elimination.

There is a problem with the second inferential step that does support
skepticism about elimination over and above other inductive methods,

5. Earman (1992, 175) argues that the EIs in gravitational research rely on such a
finite partition to eliminate infinite sets of possibilities. Kitcher (1993, 248) claims that
a finite partition can finesse this problem in biology.

6. Stanford’s argument draws on the historical record of science to support an instru-
mentalist view of science. Yet he agrees with Earman, Norton, and Kitcher that EI
plays a crucial role in science (Stanford 2006, 29–30).

7. Stanford argues that his problem undermines Bayesian inferences as well; see Forber
(2008) for discussion.

8. Let me name two promising ones. Kitcher (1993, 249–50) argues that there are
differential costs associated with different “escape routes” from a conflict between
theory and data and that often the low-cost escape route involves eliminating the
hypothesis under suspicion. Sober (1990, 1999, 2008) argues that by using contrastive
testing, one can isolate parts of a theory responsible for specific predictions and thus
provide directed tests of individual hypotheses.
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and that is the challenge of using statistical evidence to drive EI. In
scientific practice, evidence rarely provides deductive falsification but in-
stead favors some hypothesis over others. Most, if not all, evidence in
evolutionary biology favors one hypothesis over others, hence showing
that the rival hypotheses are unlikely rather than deductively eliminating
them. The evidence tends to be statistical. Many current theories of con-
firmation treat this favoring relation as the core of any theory of evidence
and aim to explicate it using probability theory (Maher 2004; Joyce 2007).
Can EI work with favoring evidence? If no, EI captures very little of
scientific practice. If yes, EI requires rules that turn statistical evidence
into eliminative evidence. Within probabilistic confirmation theories, such
rules would be thresholds that identify how much evidence against must
accumulate to eliminate a hypothesis.

The response to the problem of statistical evidence grants that the exact
thresholds may be elusive, unavailable, or vague but insists that we can
judge most cases unproblematically. Consider the following claim by Ear-
man (1992, 164): “Nevertheless, such a hypothesis or theory may be prob-
abilistically eliminable in that accumulating evidence can drive its prob-
ability so low that it is no longer worth considering.” Stanford (2006, 29)
makes a similar claim: “Of course, eliminative inferences do not always
exclude alternatives by rendering them impossible: they can instead simply
show that some possibilities are much more likely than others.” These
intuitive replies opt for a pragmatic threshold solution to the problem.
However, such a solution obscures the difference between statistical and
eliminative evidence. Evidential support is an epistemic matter, and so we
need an epistemic justification of the rules or thresholds for elimination
or at least some account of these notions of probabilistic eliminability
and strong favoring.9

To further motivate this problem, consider the following argument from
Sober (2005, 2008) against a rule of inference he calls probabilistic modus
tollens (PMT). PMT is an extension of modus tollens, which applies when
some hypothesis makes probabilistic rather than certain predictions. PMT
inferences work like this: if some hypothesis H predicts O with low prob-
ability (the likelihood is very low) and one observes O, thenP(OFH )
(probably) . PMT is not a viable rule of inference because many rea-¬H
sonable hypotheses make predictions that are very improbable. For in-
stance, the likelihood of a mass extinction given a meteor impact may be

9. Notice that Kitcher ostensibly avoids this problem, but only by appealing to an
account of scientific observation that can produce eliminative evidence. This process
of observation must be inductive in character and so must explain how statistical
evidence is converted into eliminative evidence. Appealing to the overall reliability of
observation techniques is unconvincing.
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exceedingly low, yet observing a mass extinction can be evidence for the
impact hypothesis when alternative hypotheses—slow climate change,
say—specify a lower likelihood for the observations. PMT fails because
the absolute value of is meaningless; it is the comparison of like-P(OFH )
lihoods that matters for assessing evidential support.10 Sober uses the
failure of PMT to justify skepticism that there can be any general nor-
mative account of the rules for elimination with statistical evidence.

An old epistemological problem also supports this skepticism: Kyburg’s
(1961) lottery paradox (Sober 1993, 2008). The so-called lottery paradox
reveals a tension between probabilistic credences and the acceptance (or
rejection) of hypotheses. Suppose that we adopt an intuitive rule for elim-
ination: reject H when , where y is the threshold where hypothesesP(H ) ! y
are “probabilistically eliminable.” For any elimination threshold y we can
construct a fair lottery with one randomly chosen winning ticket out of
x total tickets, where . For any ticket z, ; therefore,x 1 1/y P(z wins) ! y
we reject the hypothesis ticket z wins. If we reject the hypothesis that
ticket z wins for all x tickets, then we should accept the conjunction that
no ticket will win. Yet this contradicts our belief that the lottery is fair
and one ticket will win. There are certainly replies to the lottery paradox
(Sorensen 2006). One reply appeals to utilities to explain away the par-
adox. Given the cost of lottery tickets, there is a point where investing
in the lottery is not worth it. We make utility-based judgments when we
claim to reject the hypothesis that ticket z will win, but that does not
entail that we accept the conjunction that no ticket will win. The appeal
to utilities works well for EI in science. Pursuing theories is not a cost-
free enterprise, and thus taking low-probability alternatives off the table
often yields the best epistemic return for our investment. Yet such a reply
dodges rather than defeats the worry Sober raises. EI becomes a matter
for decision theory rather than epistemology. If EI captures a general and
justifiable epistemic pattern of inference in science, then we should strive
to provide a general account of the rules for eliminating hypotheses based
on statistical evidence. Without such an account the applicable scope of
standard EI to scientific practice would be severely restricted.

To put the point another way, standard eliminative induction is not
truly eliminative. In the cases in which we have statistical evidence, the

10. Sober also provides a simple counterexample based on tossing a fair coin. Suppose
that one tosses a fair coin a large number of times, say a million. Given that the coin
is fair— —the probability of any exact sequence of heads andP(heads) p P(tails) p 0.5
tails occurring is one-half to the millionth power; thus the likelihood of observing a
specific sequence is exceedingly low. This likelihood obtains for each of all the possible
sequences. One of those exact sequences must occur. According to PMT, from the
observation of that exact sequence we should infer that (probably) the coin is not fair,
which is absurd.
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elimination step involves a pragmatic judgment that, all things considered,
certain hypotheses should not be accepted or pursued. But EI provides
no additional epistemic justification for theory choices beyond evidential
favoring modeled by current confirmation theories. Instead, it is a con-
coction of pragmatic and epistemic criteria designed to provide a reso-
lution to theory choices in a world of finite scientific resources. While I
am sympathetic to this aim, there is a better way to divide the inferential
burden between pragmatic and epistemic criteria.

4. Relocating Elimination. Let me summarize the state of play. Standard
EI involves (1) constructing a possibility space and (2) using evidence to
eliminate hypotheses in that space, ideally leaving a last one standing.
Each inferential step faces problems. We may fail to articulate an ex-
haustive space of possibilities or to provide a finite partition of that space.
Holism may undermine our ability to eliminate specific hypotheses, and
statistical evidence may not permit elimination at all. The last problem
presents a significant challenge because much of the evidence in science
is statistical. Furthermore, the problem of statistical evidence justifies a
targeted skepticism of EI beyond general inductive skepticism. I do not
see a clear epistemic solution to the problem of statistical evidence, and
the pragmatic threshold solution does not work well for theory choices.
Yet there is a way to relocate eliminative inference that avoids the problem
but still captures eliminative inferential patterns found in good scientific
practice. Here I will propose and defend this relocation of eliminative
inference. In the next section I will provide three examples to demonstrate
that this new proposal describes successful science.

Perhaps eliminative inferences do not directly make theory choices but
establish the boundaries for such choices. In Holmesian terms, instead of
identifying whodunit, elimination determines who should (or should not)
count as a suspect for investigation. On this approach, elimination con-
strains possibility space by ruling out those potential rival hypotheses that
conflict with background knowledge. Evaluation of the focal evidence is
done by using any of a variety of statistical tools to assess favoring re-
lations among the remaining rivals. The statistical evaluation provides an
assessment of epistemic support unencumbered by the stringent require-
ments for (pure or probabilistic) elimination. On the new proposal, elim-
inative inference plays a role in the first inferential step, whereas familiar
confirmation-theoretic analyses suffice to represent the evaluation of the
evidence. Call this application of eliminative inference framing.

In the context of evolutionary biology, framing involves the deductive
elimination of possible evolutionary hypotheses that are incompatible with
the background biology of a target system. Evolutionary theory provides
the resources to construct a set of global alternatives for approaching the
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evolutionary history of any system.11 Yet not all of these possible hy-
potheses will work for a given target system. They may make substantive
biological assumptions that do not cohere with what we know about that
system. Incorporating the background biology of the target system,
through the process of framing, eliminates some alternatives and yields a
set of local rivals for the testing problem at hand. This is the set of viable
evolutionary hypotheses given the background biological information.
Once framing provides a set of rivals, statistical tools help determine which
rival the data favor. Thus the overall chain of evidential reasoning has
both an eliminative element and a statistical element.

Framing inferences require a distinction between test focus and test
background. The focus of a particular test is the evolutionary outcome
we seek to explain, say, the evolution of beak size in Galapagos finches.
The focal data may include samples of beak sizes over many generations
and the available food resources of specific finch populations. The back-
ground for this test would be information about finch beak development,
phylogeny, demography, mating habits, and other aspects of their biology
and ecology that biologists use to frame their evolutionary hypotheses
about natural selection, drift, and constraint. For the purpose of one focal
testing problem, biologists make a defeasible assumption to take the back-
ground biological information as certain. This information is not under
direct investigation and simply is not in question given the test focus. This
defeasible assumption permits the use of pure modus tollens, rather than
the problematic probabilistic kind, for elimination.

Framing differs from the standard picture in three respects. First and
foremost, it makes essential use of the distinction between focus and
background. The decision to accept background biological claims as cer-
tain permits true deductive elimination. Second, it locates elimination in
a different place in the inferential process: elimination is part of the con-
struction of possibility space rather than the evaluation of evidence. Third,
it has a different goal. Framing inferences make possible the effective
statistical evaluation of data, whereas standard EIs make theory choices.

Of course, any biologist worth her salt will draw on background in-
formation about her study system to frame tests of her target hypotheses.
Biologists can focus on only one part of the complex biological web at
a time, and so they assume that background information about the rest
of the web, usually provided by studies done by their colleagues and
predecessors, is reliable. The status of background biological claims
should, and usually does, have at least some sort of evidential support.
Using eliminative inference to capture this commonplace feature of science

11. See Forber (2010) for further exploration of how-possibly explanations and their
connection to confirmation.
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thus faces a number of skeptical objections. Let me respond to one primary
objection here and raise two others that I will discuss later.

The most pressing objection to this proposal concerns its normative
force: what is the justification for taking the background information as
certain? To put the objection more forcefully, simply deciding to take the
background information as certain seems just as problematic as the prag-
matic thresholds that are part of standard EI. Furthermore, without any
criteria for determining what counts as background, this decision appears
dangerously arbitrary: anything a biologist wants to count as certain for
framing a test is relegated to the background. The justification for the
certainty assumption is primarily pragmatic. Treating background infor-
mation as certain permits the conditional assessment of the evidence with-
out background uncertainties clouding the evaluation of the data. If some
biological claims count as background for a specific testing problem and
there is a good account of how to distinguish focus from background,
then scientists are entitled to this pragmatic solution. In effect, we have
a way to impose context-sensitive thresholds for accepting the background
claims as certain. As long as there is some support for the background
claims, we can take them as certain to frame a testing problem. If we
hold science to a higher standard, claiming that auxiliary hypotheses and
background claims must be true or strongly supported, we risk retarding
the epistemic progress of the enterprise. We also close off any possibility
of explaining the origin of such an enterprise, for the lack of support for
background claims would undermine any epistemic support marshaled
for any hypothesis. Allowing for liberal standards for framing arguments
permits science to move forward on certain problems, however tentatively.
This is not to say that anything goes. Indeed, eliminative framing argu-
ments are closely scrutinized and are the source of many scientific con-
troversies over what the evidence says.

This sort of pragmatic justification works for framing but not for stan-
dard eliminative induction. One reason is that the framing inferences
isolate pragmatic considerations from the epistemic assessment of the focal
evidence. This division of inferential labor respects the empiricist desid-
eratum that the evaluation of evidence should be purely epistemic, or as
epistemic as possible. Explicitly incorporating framing provides a picture
of science in which evidential reasoning produces conclusions of the fol-
lowing form: if the framing argument holds, then the data support H1

over the rivals . The support relation is purely epistemic butH , . . . , H2 n

circumscribed to a specific testing problem framed by a mix of pragmatic
and epistemic concerns. Another reason is that the pragmatic solution
for eliminative framing inferences avoids the need for general threshold
rules that apply across all inferential contexts. The thresholds for specific
eliminative inferences depend instead on the structure of the testing prob-
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lem and the support for the background claims. These will vary consid-
erably from case to case. Framing incorporates this context sensitivity.

In contrast, standard EI turns evidential reasoning itself into a decision
problem. Epistemic support is combined with a general pragmatic solution
to the problem of statistical evidence (probabilistic eliminability, strong
favoring) to produce theory choices. But theory choices depend on more
than just epistemic support. The cognitive and material resources at our
disposal and the costs of accepting or pursuing particular theories should
matter for these choices. Imposing a general credence threshold idealizes
these factors away. Also, the plausibility of an eliminative inference de-
pends on the details of the particular inferential context; a blanket thresh-
old rule for elimination lacks sensitivity to these details. Hence, standard
EI, by relying on a general pragmatic justification for elimination, ob-
scures the complexity of theory choices. More important, when a threshold
rule to make an eliminative theory choice is imposed (i.e., the evidence
rules out those hypotheses so accept this one), information about the
exact degree of support is lost. While this strategy can accelerate epistemic
progress in science when applied to background claims, it should not
interfere with the assessment of epistemic support for the focal hypotheses
within a testing problem. Framing inferences thus relocate the pragmatic
elements to permit a clear, yet conditional, epistemic evaluation of the
data. In short, framing a test is pragmatic; assessing the evidential support
is epistemic.

Giving an account of how scientists should determine what claims are
background claims, and therefore what can fairly be used in framing
inferences, is more difficult. In general, the structure of the testing problem
will provide the salient criteria, but such criteria depend on the local
features of inquiry into particular domains and will vary across the sci-
ences. In the case of evolutionary biology, tests of adaptive hypotheses
can treat phylogenetic relationships as background. One reason for this
is that phylogenetic inquiry controls for selection in the evolutionary pro-
cess to reconstruct ancestral relationships (Felsenstein 1985). Another is
that many tests of adaptive hypotheses require background assumptions
about common ancestry (Sober and Orzack 2003; Sober 2008). These are
the sorts of concerns that provide the normative criteria for what counts
as background information for a testing problem, and the examples below
provide illustrations. Ultimately, the normative standards for assessing
framing arguments depend on methodological details internal to partic-
ular sciences, hence the importance of discussing detailed examples.

Before I move to the examples, let me raise two more objections. The
replies to these objections emerge from the discussion in the next two
sections. There is a clear Bayesian objection: why invoke eliminative in-
ference at all when a confirmation-theoretic model of how individuals
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update using multiple sources of information should suffice? Briefly, using
eliminative inference to capture framing provides a more accurate picture
of science. I return to discuss the Bayesian perspective in more detail
below (sec. 6).

There is also the objection that the current proposal is unnecessary:
why invoke a focus/background distinction to augment eliminative infer-
ence when the standard picture should suffice? Distinguishing between
test focus and test background and assuming that the background is
certain have two virtues the standard picture lacks. The epistemic support
for background information used for elimination in the framing process
need not, and often does not, meet the stringent conditions for proba-
bilistic eliminability or strong favoring. Alternative phylogenies for the
finches (say) need not be eliminated or have extremely low credences for
biologists to use one when framing the testing problem for the evolution
of beak size. Also, framing inferences make clear how evidential assess-
ment is context sensitive. The chain of eliminative reasoning applies only
to the focal testing problem and can be (indeed, often is) reevaluated when
the background information about a target system gets updated or revised.
In the finch case, recent research into beak development may bear out
basic assumptions or require refinement of the evolutionary hypotheses
(see, e.g., Abzhanov et al. 2004, 2006). One of the cases below, the
McDonald-Kreitman (MK) test, illustrates this dynamic in more detail.

5. Three Examples. Descriptive adequacy is an integral part of my ar-
gument for relocating eliminative inference. Also, analysis of real examples
provides traction on the normative standards for evaluating framing ar-
guments. Here, I support these claims. As illustrations of the eliminative
process of framing, consider three examples from molecular evolutionary
biology. The first comes from recent work by Fry and colleagues on the
evolution of snake venom. The second looks at a textbook case, conver-
gent evolution of adaptive lysozymes for foregut fermentation in langur
monkeys and cows. The third example is the original MK test for positive
selection on the Adh gene in Drosophila. Each study aims to give evidence
for a specific evolutionary hypothesis. The chain of reasoning includes
eliminative framing, for the biologists explicitly argue for certain biolog-
ical assumptions about their target system, and these assumptions elim-
inate potential rival hypotheses. I will discuss each case in turn.

Recent work on the molecular evolution of snake venom provides evi-
dence for an overall evolutionary picture in which some venoms evolved
early as adaptations and more specialized venoms evolved later, after the
diversification of the snake lineage (Fry, Lumsden, et al. 2003; Fry, Wüster,
Kini, et al. 2003; Fry, Wüster, Ramjan, et al. 2003; Fry and Wüster 2004;
Fry 2005; Fry et al. 2006, 2008). The evolution of snake venom is an
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Figure 1. Phylogeny with evolutionary origins of several different toxin families
marked on the tree. Dashed marks indicate equivocal evidence, and only a subset
of known toxin families are included. (Figure adapted from Fry and Wüster [2004,
882] with permission.) Sequence comparisons provide strong evidence that several
toxins in the venom arsenal evolved early in the snake clade (homologies), before
the radiation of different lineages. The phylogenetic relationships are based on
independent evidence from nuclear and mitochondrial DNA (Vidal and Hedges
2002).

interesting case because venom plays a specialized ecological role critical
to survival. Some lineages (the vipers and elapids; see fig. 1) have evolved
specialized front-fanged delivery systems and larger venom glands to in-
crease the effectiveness of venom (see Vonk et al. 2008). These two lineages
include the more fearsome venomous creatures, such as the American
diamondback rattlesnake, the Australian taipan, and the African cobra.
Given that venom currently plays such a central ecological role in these
two snake lineages, when did the venom arsenal evolve?

To frame their testing problem, Fry and coworkers make three major
assumptions based on the background biology of snakes. First, they as-
sume that the venom arsenal evolves primarily by natural selection. Anal-
ysis reveals significant variation in venom composition. Snake venom is
not a single chemical but a cocktail of proteins that shows high diversity
across lineages (Fry, Wüster, Ramjan, et al. 2003). Certain cocktails affect
prey differently. One set of toxins may be very effective against birds but
not at all effective against amphibians or mammals. Furthermore, the
existence of complex, delicate, and costly physiological mechanisms for
the production and delivery of venom suggests that the traits are adap-
tations for prey capture or defense. This background information does
not make adaptation a certainty, for a thorough functional analysis and
evidence about the historical ecology are necessary to test the adaptive
hypothesis (Fry and Wüster 2004, 880), but it does help justify using the
claim as part of their framing argument.

This aspect of the framing argument for venom evolution raises a gen-
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eral point about the justification of framing inferences. Assumptions about
natural selection are associated with adaptationism and within an adap-
tationist research program require little, if any, independent justification.
Relying solely on methodological principles to justify framing inferences
is problematic. An assumption without any empirical support jeopardizes
the entire case, especially when such assumptions eliminate rivals that we
have some empirical reasons to consider. In the case of adaptation, we
know that genetics, developmental constraints, and fluctuating environ-
ments can confound natural selection, and so we cannot rule out non-
adaptive hypotheses without at least some evidence that these factors are
not significant. In the venom case, Fry and coworkers have the sort of
support they need to assume adaptation, and the biologists are also careful
to point out that this is an assumption they are not testing. Not all
methodological principles are suspect; some do have a role in science.
Their viability will depend on the overall support we have for endorsing
the background framework.12

Second, in part because of the redundancy of the cocktail and in part
because of the overall physiology of snakes, the biologists take venom to
be highly modular. That is, changes in venom composition can occur
without major downstream effects on the development of the individual.
Also because of the redundancy of the arsenal, venom toxins can evolve
rapidly. Knocking out one component of the venom cocktail usually has
relatively little adverse effect since other toxins still function normally.13

Third, they assume a resolved phylogeny for the snake clade based on
different data from a separate study (Vidal and Hedges 2002). The phy-
logeny provides the necessary backdrop for testing hypotheses about an-
cestral character states, and this assumption is not tested by any of the
venom sequence data. Instead, the focal testing problem involves using
molecular data to place evolutionary events on the existing tree.

The framing inferences eliminate two possible evolutionary scenarios.
The modularity of venom eliminates the strong selective constraint hy-
pothesis. In molecular evolution, similarity across aligned protein or gene

12. Also, we should expect some diversity on this point since mathematical assumptions
play an important role in physics (Norton 1995). Thanks to an anonymous referee for
drawing my attention to the role of methodological principles.

13. More precisely, Fry, Wüster, Kini, et al. (2003) argue that the sequence data provide
evidence for the “birth-and-death” model of gene family evolution, much like major
histocompatibility complex evolution in vertebrates (Nei, Gu, and Sitnikova 1997).
According to this model, the toxin family evolves rapidly by many gene duplication
events. Most of these duplications become nonfunctional as a result of mutation and
are evident in the genome as pseudogenes (gene death). Some evolve into a new func-
tional version with different toxic effects on prey, thus increasing the family size of
venoms (gene birth).
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sequences can often be explained by selective (functional) constraint. For
example, protein sequences of cytochrome C, an enzyme crucial to cell
metabolism, show a high degree of similarity across the biological world,
from yeast to humans (Margoliash and Smith 1965). This similarity is
due to the strong functional constraints that make most potential amino
acid substitutions deleterious. Also, many detected substitutions in cy-
tochrome C are functionally similar and therefore effectively neutral (King
and Jukes 1969). The assumed phylogeny rules out a late origin homology
hypothesis. Another common way to explain sequence similarity posits a
close phylogenetic relationship between species. On this hypothesis the
gene is conjectured to belong to a recent common ancestor, and the short
divergence time explains similarity. Many venom compounds under in-
vestigation belong to vipers and elapids, two lineages that diverged long
ago (see fig. 1). The framing process leaves two rival hypotheses for the
shared venom compounds in the arsenal: one early origin of the venom
before the viper-elapid split (early homology) versus two independent late
origins in each lineage (convergent evolution).

To test early homology versus convergent evolution for snake venom,
Fry and coworkers compare protein sequences of various venom toxins
across snake lineages and investigate whether venom can be found in
other extant lineages. Evolutionary distances—a measure of how long two
lineages have evolved independently—can be estimated by examining the
differences across aligned protein or gene sequences. The evidence for
their venom origin hypotheses rests primarily on sequence data. An ex-
ample is the sequence comparison of one particular toxin family in the
venom cocktail, the family of “three-finger toxins” (3FTxs). The 3FTx
comparison provides evidence for an early origin and the rapid evolution
of the toxin using two different methods of phylogenetic reconstruction
(maximum parsimony and neighbor-joining methods; Fry, Wüster, Kini,
et al. 2003, 117). They put the point of origin right after the divergence
of vipers, the oldest snake lineage, and the rest of the snakes. As further
support for the early origin of 3FTx, they isolate venom in the Colubrinae
lineage (from a species presumed nonvenomous because of a lack of spe-
cialized delivery systems) that had the same conserved core 3FTx sequence
(Fry, Lumsden, et al. 2003, 450–51). Isolating a conserved 3FTx sequence
from this lineage shows that the 3FTx family originated early before much
diversification. The more comprehensive studies compare sequences of
multiple toxins (fig. 1). The sequence data provide evidence that many
components of the venom arsenal evolved once early and the specialized
front-fanged delivery system, found only in a few lineages, evolved mul-
tiple times later (Fry and Wüster 2004, 870).

The studies make comparisons across different snake lineages to test
the competing hypotheses of homology versus convergent evolution for
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several snake venoms. Also, they use several different statistical tools for
reconstructing ancestral character states from extant sequence data. This
is a common strategy in phylogenetic reconstruction and shows that there
is more to statistical inference than just using the “right” statistical tool.
The framing inferences constrain possibility space. Within the space of
local rivals the different statistical tools converge, clearly favoring one
rival over another.

A textbook study on molecular adaptation, the convergent evolution
of lysozymes in cows and langur monkeys (Graur and Li 2000, 121–
23), provides a second example of using eliminative inference to frame
a testing problem. Among placental mammals these two lineages have
evolved foregut fermentation that involves the use of a specialized form
of lysozyme to aid digestion. Given that two separate lineages have
evolved a molecular trait for the same function, there are three alter-
natives for explaining the evolution of these specialized lysozymes: both
lineages share a common ancestor and the trait evolved once in the
ancestral lineage (homology); the lysozymes and their corresponding use
have evolved independently in each lineage because of positive selection
for the same function (convergent evolution); and cows and langurs have
coopted the use of general lysozymes, found in all placental mammals,
without any intervening selection for a specialized protein (exaptation
with neutral evolution). Notice that both of the first two hypotheses
posit positive selection for the new specialized function, whereas the
third posits no new positive selection and allows only for accumulation
of neutral molecular changes. Again, the assumed phylogeny plays an
important role in framing, for it eliminates the first alternative. Cows
and langurs are distantly related. In addition, many intervening lineages
more closely related to each species lack foregut fermentation and the
specialized lysozyme, another point inconsistent with the expectations
of the homology hypothesis.

In the original study (Stewart, Schilling, and Wilson 1987; Stewart and
Wilson 1987), Stewart and coworkers test convergent evolution against
exaptation plus neutral evolution by sequencing lysozyme proteins from
several lineages. They determined that the specialized lysozymes in cows
and langurs share four convergent (identical) and three parallel (func-
tionally similar) amino acid substitutions arising independently in each
lineage that affect the ability of lysozymes to conduct the foregut fer-
mentation. The evidence thus favors convergent evolution by positive
selection over exaptation with no new adaptive evolution. The lysozyme
case combines phylogenetic and protein sequence data to make a con-
vincing case for positive selection producing convergent evolution in cows
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and langurs.14 Both the eliminative inference used to frame the test and
the statistical evaluation of protein sequence data are necessary to identify
the evidential support for positive selection.

A final example of framing is the classic test for positive selection in
Drosophila. The original study by McDonald and Kreitman (1991) com-
pares alcohol dehydrogenase (Adh) gene sequence data from three species
of fruit flies to detect selection at the molecular level. They aim to contrast
two rivals: the positive selection hypothesis versus the neutral evolution
hypothesis. The selection hypothesis claims that positive directional se-
lection for variants of Adh is responsible for certain amino acid differences
between the species. The neutral evolution hypothesis predicts that mu-
tations generally have no effect on evolutionary fitness, and thus variation
accumulates by genetic drift, not selection. To effectively test selection
against neutral evolution, McDonald and Kreitman use an eliminative
inference that rules out one evolutionary hypothesis that would confound
their statistical analysis. To isolate their framing inference I need to first
present their test and their results.

McDonald and Kreitman construct the test by classifying possible
changes in the gene sequence. Owing to the degeneracy of the genetic
code, some DNA changes are silent; they do not change the amino acid
sequence of the protein. Those nucleotide changes that do change the
protein are replacement changes. By assumption, molecular evolution of
silent changes fits the neutral model. The study aims to test whether the
evolution of replacement changes occurs by selection or drift. Comparing
the number of silent versus replacement differences across the sampled
gene sequences provides an indication of evolutionary rates (Kreitman
2000, 546). On the neutral hypothesis we expect both silent and replace-
ment sites to show the same evolutionary rate since both kinds of sites
evolve by genetic drift, whereas we expect different rates of evolution on
the selection hypothesis. Positive selection for adaptive changes in the
protein should accelerate the rate of replacement evolution.15 The data
indicate a faster rate for molecular evolution at replacement sites, and
this clearly supports the positive selection hypothesis over the neutral
rival (McDonald and Kreitman 1991, 654).

McDonald and Kreitman (1991, 653) note that an alternative hypoth-
esis could explain their data and the faster rate of replacement evolution.
If ancestral Drosophila populations went through a population bottleneck

14. Two studies provide further support for convergent adaptive evolution of lyso-
zymes: Kornegay, Schilling, and Wilson (1994) isolated a similar specialized protein in
a species of leaf-eating bird, and Messier and Stewart (1997) have resolved specific
episodes of adaptive evolution in colobine monkeys.

15. See Eyre-Walker (2006) for a derivation of the MK test.
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followed by rapid expansion, then these dynamics would produce an ar-
tifactual signature of selection in the extant gene sequence data. They
eliminate this hypothesis because it requires sensitive demographic fluc-
tuations to occur at precisely the right time in Drosophila history. They
prefer the assumption that the effective population size has remained large
throughout recent evolutionary history, and this assumption does have
some support (Kreitman 1983). Thus, they explicitly make an eliminative
inference to frame their test. Moreover, the elimination is crucial to the
evidential support for positive selection since the data would fail to ad-
judicate between the bottleneck and selection hypotheses.

There has been some subsequent evaluation of McDonald and Kreit-
man’s demographic assumption and the eliminative inference they make.
In particular, Eyre-Walker (2002) explores the bottleneck alternative in
greater detail. He provides a model that identifies the conditions under
which fluctuations in effective population size can produce artifactual
signatures for positive selection. As it happens, a fairly wide range of
demographic conditions can produce artifactual evidence for selection as
well as synonymous codon bias. This shows just how thin the empirical
support for eliminative inferences can be. It also illustrates how the stan-
dards for framing arguments can change over the course of scientific
inquiry. Now independent support for the demographic assumptions be-
comes more important for applying the MK test (Kreitman 2000). With
respect to the original test on Drosophila, Eyre-Walker (2002, 2023–24)
concludes, after considering several sources of information on demo-
graphic conditions, that the evidence in favor of positive selection still
stands. Background biological information continues to support Mc-
Donald and Kreitman’s eliminative inference.

6. Through the Bayesian Lens. Distinguishing test focus from test back-
ground, and the defeasible assumption to take the background biological
information as certain, sets framing apart from the standard picture. On
the new proposal, evidential reasoning has an eliminative element that
helps constrain the local testing set and a statistical element that involves
assessing how data favor one rival over other hypotheses in the testing
set. In principle, we can represent the second element, the contrastive
evaluation of data, with a variety of statistical tools, Bayesian or other-
wise. Which statistical tool provides the best representation of confir-
mation is a thorny issue, and the arguments in this paper are designed
to be neutral on this point. Yet given the prevalence and flexibility of
Bayesianism, it is worth exploring whether the Bayesian epistemological
framework can capture the eliminative framing inferences and what ad-
ditional commitments this would require. This line of inquiry also provides
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further support for differentiating between new (framing) and old (stan-
dard EI) applications of eliminative inference.

Earman (1992) argues that a Bayesian framework can accommodate
standard EI.16 This is right. The framework can easily capture deductive
elimination of hypotheses by evidence. If the likelihoods of specific ob-
servations given certain hypotheses take the value of zero and there is a
finite set of such hypotheses in the possibility space, then Bayes’s rule for
updating credences handles elimination: data that have a zero likelihood
( ) eliminate that rival if they are observed. However, this kindP(OFH ) p 0
of deductive falsification is uncommon in scientific practice. To extend
the scope of EI, Earman gives elimination a probabilistic gloss. Bayesian
elimination occurs when evidence accumulates and drives the credence in
some hypothesis extremely low. This kind of elimination requires a com-
mitment to some threshold rule and so runs into Sober’s worry that there
can be no epistemic justification for such a threshold (sec. 3).

Hawthorne (1993) goes further than Earman and argues that Bayesian
induction simply is eliminative induction. He offers a more detailed formal
framework and uses various convergence theorems to explicate a Bayesian
notion of “relative refutation” by probabilistic evidence. Disconfirming
evidence pushes the credences of rivals very low and thus pushes the
credence of (what we take to be) the true hypothesis very high. Hawthorne
is right to identify a point of common ground between Bayesian and
eliminative induction—evidence against rivals is evidence for my target
hypothesis—but the notions of refutation and elimination get a similar
probabilistic treatment in his framework and so are not the same as their
deductive counterparts. Both Hawthorne and Earman must contend with
the threshold problem to make EI work. This problem lacks a solution,
and none is forthcoming, but their efforts aptly demonstrate the power
and flexibility of Bayesian models of scientific inference.

Owing to this incredible flexibility, I do not doubt that such a model
can capture framing as well. Yet fitting this application of eliminative
inference into a Bayesian model requires conceptual resources beyond
updating to adequately represent the inference process found in scientific
practice. In particular, rather than threshold rules, a Bayesian model of
eliminative framing requires a way of changing credence distributions for
specific testing problems in response to the framing arguments. If such a
transformation is driven purely by evidence, for background biological
claims or hypotheses under test, then no resources external to the basic
Bayesian model would be necessary. However, the transformation is not

16. Earman does regard certain elements of EI as non-Bayesian, specifically those that
involve the exploration and partition of possibility space and certain eliminations of
implicit alternatives.
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driven purely by data but by distinguishing the test focus from the test
background and assuming that background claims are certain. This as-
sumption effectively raises the credences for background claims to one in
order to enable their use in (deductive) eliminative framing inferences.

Evidence for the background biological claims raises their credences
in the usual Bayesian way, but this evidence almost never suffices to
raise the credence to the certainty required to deploy true elimination,
as the examples illustrate. Eliminative framing inferences, in turn, reduce
the credences of some possible hypotheses about the focal phenomenon
to zero. Those hypotheses that are incompatible with the assumed cer-
tainty of background biological claims are thus eliminated from con-
sideration. This permits scientists to evaluate statistical data with a con-
strained set of local rivals. By focusing on one element of the biological
world and reducing much of the myriad complexities and empirical
connections to background assumptions, biologists are able to make
good epistemic progress. Such progress requires setting a context for
investigation—distinguishing focus from background—and this dynamic
is not readily captured in a Bayesian model based solely on evidentially
driven belief change.

One could argue that the transformation of credences through framing
arguments should not be modeled in such an extreme way. A more Bayes-
ian-friendly way would avoid setting the credences for background bio-
logical claims to one and by deductive elimination setting the credences
for incompatible focal hypotheses to zero. The credences for background
claims should instead be set to and, by deploying some Bayesian1 � e

elimination rule, the credences in incompatible hypotheses set to , wheree

is very small but greater than zero. This strategy allows one to represente

the overall inference process in science with one master model. When
hypotheses get rehabilitated by new evidence or when background bio-
logical information deployed in a framing argument changes, then the
relevant credences can be updated accordingly. In fact, Earman proposes
his probabilistic notion of elimination to handle the possibility of reha-
bilitation. Bayesian updating simply cannot change credences that have
reached certainty (one or zero).

This strategy of modeling framing does not undermine the conclusion
that framing arguments require extraevidential changes to credences, for
eliminative framing inferences will still transform credences from their
values given the evidence to or . Again, the evidence for background1 � e e

biological claims does not suffice to explain this transformation since the
available evidence almost always fails to drive the credence high enough.
Instead, it is the defeasible assumption to take the background as certain,
based on what evidence we have now, that changes the credence with
respect to a particular testing problem. Moreover, the move to construct
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a Bayesian master model in this way comes at a price: elimination must
be weakened. We must again appeal to some threshold rule that can
“eliminate” hypotheses by setting their credences to something greater
than zero based on background claims that have credences less than one.
This inherits the problem facing Earman’s notion of probabilistic elimin-
ability. Identifying the threshold for elimination and certainty, the value
for , requires confronting Sober’s worry that there is no good epistemice

justification for any particular threshold; any specific value for appearse

to be arbitrary. True deductive eliminative inferences, in the context of
one specific testing problem, require the defeasible assumption to take
background information as certain.

On the basis of these considerations, the modeling strategy best suited
to capturing framing is one that constructs local Bayesian-style models
for specific scientific inferences. Such local models require both the fram-
ing dynamic—transforming credences based on the defeasible assumption
to take background claims as certain—and standard Bayesian updating.
This strategy raises deep questions about how these local inferential mod-
els might figure into the general process of scientific inquiry and how we
might model this general process (see, e.g., Henderson et al. 2010). But
to capture the style of scientific reasoning we see in framing, we must
have inferential models that have a high degree of context sensitivity and
can accommodate the true eliminative aspect.17

7. Conclusion. Framing, a new application of eliminative inference, plays
an important but indirect role in evidential reasoning by constraining the
space of rival hypotheses. Direct evaluation of evidence is done using the
constrained space of rivals and standard statistical tools, Bayesian or
otherwise. The examples from molecular evolution show how this infer-
ential process is instantiated in scientific practice.

In comparison to standard eliminative induction, framing has a number
of virtues. It avoids the problem of statistical evidence by locating elim-
ination in a different place in the inferential process. Elimination helps
frame testing problems rather than make theory choices. It also reveals
how widespread eliminative inferences are in science (framing is ubiquitous
in practice) and focuses attention on evaluating the normative standards
for framing arguments. Finally, it sophisticates our account of how back-
ground theory and information are actively used in scientific reasoning.

17. Looking through the Bayesian lens also reveals another difference between framing
and the standard picture. The crucial element for modeling framing is the transfor-
mation of credences based on the test focus, whereas for standard EI there are no
extraevidential changes to credences and the crucial element is the threshold rules for
elimination.

https://doi.org/10.1086/659232 Published online by Cambridge University Press

https://doi.org/10.1086/659232


206 PATRICK FORBER

While framing may be a different application of eliminative inference
and arguably a better account of how elimination matters in science, it
is compatible with the standard picture. Suppose that the standard picture
provides a viable solution to the threshold problem so that it can cope
systematically with statistical evidence. Then it is possible that framing
(using background information to eliminate potential rivals and frame
testing problems) and standard eliminative induction (using evidence to
eliminate competing theories and make theory choices) could work in
conjunction. Yet if the threshold problem proves insoluble and eliminative
induction has limited applicability, elimination still has an important role
to play in the structure of scientific inference.
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