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Large eddy simulation investigation of the
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High resolution large eddy simulations (LES) are performed to study the interaction of
a stationary shock with fully developed turbulent flow. Turbulent statistics downstream
of the interaction are provided for a range of weakly compressible upstream turbulent
Mach numbers Mt = 0.03–0.18, shock Mach numbers Ms = 1.2–3.0 and Taylor-based
Reynolds numbers Reλ = 20–2500. The LES displays minimal Reynolds number
effects once an inertial range has developed for Reλ> 100. The inertial range scales of
the turbulence are shown to quickly return to isotropy, and downstream of sufficiently
strong shocks this process generates a net transfer of energy from transverse into
streamwise velocity fluctuations. The streamwise shock displacements are shown to
approximately follow a k−11/3 decay with wavenumber as predicted by linear analysis.
In conjunction with other statistics this suggests that the instantaneous interaction of
the shock with the upstream turbulence proceeds in an approximately linear manner,
but nonlinear effects immediately downstream of the shock significantly modify the
flow even at the lowest considered turbulent Mach numbers.
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1. Introduction
The interaction of a shock wave with a turbulent upstream flow results in a rapid

compression and amplification of the turbulence along with distortion of the shock
front. The behaviour of this phenomenon is of importance to a wide range of problems
involving compressible turbulence, particularly those concerned with shock-driven
mixing in areas such as inertial confinement fusion or supersonic combustion engines.
Practical engineering applications leading to these flows display a wide range of
complex physics, but the fundamental hydrodynamics of the interaction is accessible
in the comparably simple canonical problem of a stationary normal shock interacting
with isotropic upstream turbulence in a single component gas.

An advantage of addressing the canonical shock–turbulence problem is that the
simple geometry involved makes it well suited for application of computationally
inexpensive analytical models. Under the assumption that the time scales associated
with the turbulence are slow relative to those of the shock compressions, Lele (1992)
applied rapid distortion theory (RDT) to investigate the modified mean flow
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Rankine–Huginiot jump conditions and shock velocity of a shock in turbulent flow.
Zank et al. (2002) performed a similar analysis, but incorporated nonlinear effects in
the interaction. RDT has also been applied to investigate the turbulent kinetic energy
amplification over a shock, but for this use RDT shows limited agreement with other
methods (Jacquin, Cambon & Blin 1993).

Linear interaction theory (LIA) is conceptually similar to RDT but builds in a
wider range of physics, including perturbations to the shock front and the downstream
evolution of pressure modes. In LIA, the upstream turbulence is decomposed into its
component planar modes (Kovasznay 1953), and a solution to the linearized Euler
equations for an incident wave passing through a shock is determined for each wave
type – vorticity (Ribner 1953), acoustic (Moore 1954) and entropy (Chang 1957;
Mahesh, Lele & Moin 1997). Integrating the downstream solutions over the energy
spectrum of the upstream turbulence provides the amplifications and near-shock
fluctuations of turbulent statistics such as the Reynolds stresses and vorticity (Ribner
1954). Ryu & Livescu (2014) showed that the LIA-predicted amplifications agree
with direct numerical simulations at low turbulent Mach numbers, and proposed that
the assumptions underlying LIA are valid if the shock thickness is small relative
to the viscous scales of the upstream turbulence. Wouchuk, Huete Ruiz de Lira &
Velikovich (2009) derived exact analytical expressions for the linearized amplifications
of key turbulent statistics, and applied the analysis to the passage of a shock from
quiescent fluid into a turbulent half-space.

A number of direct numerical simulations (DNS) have considered the canonical
shock–turbulence problem. Early works investigated the impact of numerical
shock-capturing schemes and varying turbulent and shock Mach numbers (Lee, Lele &
Moin 1993, 1997), but were limited to low Reynolds numbers. Mahesh et al. (1997)
investigated the effects of an upstream turbulent flow containing entropy fluctuations
and anisotropy arising from correlations in the entropy and vorticity fields, and this
was further expanded on by Jamme et al. (2002). More recent simulations (Larsson
& Lele 2009; Larsson, Bermejo-Moreno & Lele 2013; Ryu & Livescu 2014) have
considered a wider range of Reynolds numbers, Reλ ≈ 10–70, but addressing fully
developed inertial range turbulence in DNS remains impractical due to computational
cost. This is partially because high Reλ flows contain a wide range of scales that must
be resolved in the turbulence, but the cost to implement shock-capturing methods in
an accurate manner is also expected to increase in simulations of higher Reλ flows
because the numerical shock should remain smaller than the smallest turbulent scales
of the flow (Tian et al. 2017).

Experiments allow for substantially larger Reynolds numbers, Reλ≈100–1000 (Agui,
Briassulis & Andreopoulos 2005), but face other difficulties. Barre, Alem & Bonnet
(1996) investigated the turbulent flow downstream of a grid of nozzles as it passed
through a stationary normal shock held in place by a pair of wedges. This yielded
an accelerating mean velocity field downstream of the shock, but the longitudinal
velocity fluctuations still showed agreement with LIA in the far field downstream
of the shock. Agui et al. (2005) considered the subject problem in a shock tube by
passing a shock through a grid. The shock reflects off of a semi-porous wall at the
end of the tube and travels back into the turbulence produced downstream of the grid.
Tailoring the grid, shock strength and end wall porosity allowed Agui et al. (2005) to
consider a range of flow parameters, but the resulting amplifications in the turbulent
Reynolds stresses had limited agreement with LIA, particularly at larger shock Mach
numbers. Kitamura et al. (2017) studied a weak spherical expanding blast wave in
incompressible turbulence, and showed Reλ had a limited effect on the interaction for
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Reλ > 100. The Reynolds number and turbulent intensity in front of the shock were
coupled in this study, but the turbulent Mach number, Mt < 0.003, was small for all
test cases.

Large eddy simulation (LES) resolves the dynamics of the large scale motions
that contain most of the kinetic energy, but employs a subgrid-scale (SGS) model
to approximate the action of small scale eddies that drive viscous dissipation and
mixing. This approach greatly reduces the computational cost of a simulation relative
to DNS, and allows for high Reynolds number conditions to be addressed even on
very coarse meshes. As the shock Mach number is increased the cost to resolve
the shock wave thickness becomes prohibitive, and so in practice these advantages
in the computational cost of LES become achievable only if the shock is captured
numerically. Early work addressing the canonical shock–turbulence problem with LES
found that shock capturing schemes produce excessive dissipation in the turbulence,
suggesting that these schemes should only be applied only in the direct vicinity of
the shock and only in the direction of the shock normal (Lee 1992). Ducros et al.
(1999) introduced a shock sensor that allows localized shock capturing to be applied
to problems where a prior knowledge of the shock location and orientation is not
available. Comparisons of explicit (Garnier, Sagaut & Deville 2002; Bermejo-Moreno,
Larsson & Lele 2010) and implicit (Hickel, Egerer & Larsson 2014) LES approaches
have further explored the relative effectiveness of different SGS models downstream
of a shock.

Previous LES studies targeting the canonical shock–turbulence problem have
focused largely on the ability of LES to reproduce the results of higher resolution
DNS (e.g. Bermejo-Moreno et al. 2010; Hickel et al. 2014). The purpose of this study
is to instead leverage LES to investigate the dynamics of inertial range turbulent flows
interacting with shocks, within regimes that are inaccessible by contemporary DNS.

The canonical shock–turbulence problem to be considered is discussed in § 2.
Sections 3 and 4 provide an overview of the filtered Navier–Stokes equations and the
SGS model used in this study, respectively, and these equations are solved numerically
using the methodology discussed in § 5. Section 6 defines relevant turbulent statistics
and shows how they are calculated from the SGS model. The implementation of LIA
is briefly discussed in § 7. Section 8 summarizes the conducted LES, and evaluates
the mesh sensitivity of the LES with comparisons to relevant DNS and LIA. Finally,
§ 9 discusses the physical results of the LES.

2. Flow description

The subject LES considers a transversely periodic Lx× 2π× 2π channel, as shown
in figure 1, containing a nearly stationary normal shock located shortly downstream of
the inflow boundary at xs. Isotropic, homogeneous turbulence is introduced at the inlet
upstream of the shock, and passes through the shock as it travels down the channel. A
sponge zone is located at the outflow boundary to prevent acoustic reflections (Freund
1997). The flow is initialized with the laminar Rankine–Hugoniot jump conditions, and
because of the perturbations on the shock from the upstream turbulence this yields a
small drift in the mean shock position (Larsson & Lele 2009). This drift velocity was
found to be negligibly small in the LES, which is consistent with DNS at similar
shock Mach numbers and turbulence intensities (Ryu & Livescu 2014).

The inlet turbulence is produced from a separate simulation of forced isotropic
turbulence in a periodic box with a mean background velocity equal to the
shock speed. These simulations are henceforth referred to as box-turbulence
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(a) (b)

FIGURE 1. (Colour online) Layout of the LES. Isotropic turbulence with the same mean
velocity as the flow upstream of the shock is forced at a statistical steady state in a
periodic box LES (a). A plane of the flow in the periodic box (red) is copied into the
inlet of a transversely periodic channel (b) containing a nearly stationary shock.

simulations. The solenoidal part of the filtered velocity field is forced at wavenumbers
k0− 1/2< k< k0+ 1/2 (Petersen & Livescu 2010) until it becomes statistically steady
with peak energetic wavenumber k0, and then planar samples from a fixed location
in the domain are introduced as ghost cells in the shock–turbulence LES.

3. Governing equations
The governing equations of the LES are constructed by applying a convolution

filter,

φ(x)=
∫
φ(x′)G(x− x′) dx′, (3.1)

to the compressible Navier–Stokes equations. This a conceptual exercise because the
kernel G(x) is not explicitly defined. Expressed in terms of Favre, or density weighted,
quantities,

φ̃ = ρφ/ρ, (3.2)

the equations of motion are (Hill, Pantano & Pullin 2006)

∂ρ

∂t
+
∂ρũj

∂xj
= 0, (3.3a)

∂ρũi

∂t
+
∂ρũiũj + pδij

∂xj
=
∂σ̃ij

∂xj
−
∂τij

∂xj
, (3.3b)

∂E
∂t
+
∂(E+ p)ũj

∂xj
=

∂

∂xj

(
κ
∂T
∂xj

)
+
∂σ̃ijũi

∂xj
−
∂qT

j

∂xj
, (3.3c)

where ρ is the density, ui is the velocity, p is the pressure and E is the total
energy. The filtered quantities, φ or φ̃, are taken to be the value of φ resolved on the
computational mesh. Repetition of indices implies summation and δij is the Kronecker
delta function. The fluid is assumed to be a calorically perfect gas with a ratio of
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specific heats γ = cp/cv= 1.4 and sound speed c=
√
γ p/ρ. The resolved-scale viscous

stress is assumed to be Newtonian,

σ̃ij = µ̄

(
∂ ũi

∂xj
+
∂ ũj

∂xi
−

2
3
∂ ũk

∂xk
δij

)
, (3.4)

with temperature-dependent dynamic viscosity µ=µ0(T/T0)
0.76. The heat conductivity

κ = µcp/Pr follows the same relation as the viscosity, with Prandtl number Pr = 0.7.
The unresolved viscous stress and heat conduction are given by

τij = ρ(ũiuj − ũiũj), (3.5a)

qT
j = cpρ(T̃uj − T̃ũj), (3.5b)

but these terms cannot be explicitly computed from the information resolved in the
LES, necessitating the subgrid model discussed in § 4. The unresolved kinetic energy
is modelled as discussed in § 4, and is incorporated in the total energy by

E=
p

γ − 1
+

1
2
ρũiũi +

1
2
τii. (3.6)

Despite employing a skew–symmetric formulation of the nonlinear terms that
reduces spurious contributions to the entropy field (Honein & Moin 2004), it was
found that, over time, the forced box-turbulence LES used for the inlet conditions
developed small but significant entropic modes. The interaction of a shock is
dependent not only on the amplitude of these modes but also on their orientation
with respect to the vortical modes in the turbulence (Mahesh et al. 1997), and this
complicates comparison to DNS and linear theory. Thus, a weak linear forcing on
(3.3c) of the form f = Ce(T − T0) is introduced in the box-turbulence simulations,
where Ce is tuned to control the entropic modes and maintain density fluctuations
at amplitudes near the value they initially take shortly after the forced simulations
are begun. At the modest turbulent Mach numbers considered here this results in
effectively vortical turbulence, and this forcing is not included in the shock–turbulence
simulations.

4. Subgrid modelling
4.1. Stretched-vortex model

The interaction of the resolved flow with the subgrid flows is governed by the
subgrid-scale (SGS) stress and heat flux (3.5). The stretched-vortex model (SVM)
approximates these interactions by assuming that the SGS flow within each
computational cell can be modelled by an ensemble of stretched, spiral vortex
flow structures (Misra & Pullin 1997; Kosović, Pullin & Samtaney 2002). The energy
spectrum of the subject spiral vortex flow follows a similar cascade to that of isotropic
incompressible turbulence, (Lundgren 1982)

E(k)=K0ε
2/3k−5/3e(−2k2ν/(3|ã|)), (4.1)

where ã= S̃ijevi evj is the strain rate, S̃ij, aligned with the unit vector along the vortex
axis, ev and

S̃ij =
1
2

(
∂ ũi

∂xj
+
∂ ũj

∂xi

)
. (4.2)

This study assumes the SGS flow consists of a single spiral vortex with axis,
ev, aligned with the principal extensional eigenvector of the strain rate tensor.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

76
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.766


Large eddy simulation of shock–turbulence interaction 505

Vorticity-based orientation models allow for the model to produce backscatter (Kosović
et al. 2002), or anti-dissipative behaviour, which has been suggested to be significant
downstream of a shock (Livescu & Li 2017), but previous implementations of the
vorticity alignment model have seen relatively poor results in shock–turbulence
LES (Bermejo-Moreno et al. 2010). The SGS stress and heat flux for the single,
strain-aligned spiral vortex are,

τij = ρ̄k̃′(δij − evi evj ), (4.3a)

qT
i =−cpρ

1x
2

√
k̃′(δij − evi evj )

(
∂T̃
∂xj

)
, (4.3b)

where k̃′=
∫
∞

kc
E(k) dk is the SGS turbulent kinetic energy obtained by integrating (4.1)

above the cutoff wavenumber, kc = π/1x, corresponding to the largest wavenumber
resolved in the LES. This reduces to (Chung & Pullin 2009)

k̃′ =
1
2
ρK0ε

2/3

(
2ν

3|ã|

)1/3

Γ

[
−1/3,

2νk2
c

3|ã|

]
, (4.4)

where Γ is the incomplete gamma function. The K0ε
2/3 prefactor is computed from

a matching to the local resolved velocity structure functions, 〈F 2(x, r)〉 = 〈(ũ(x+ r)−
ũ(x))2〉. The brackets denote an average value, in this case taken over the surface of
a sphere of radius ∆. This yields (Voelkl, Pullin & Chan 2000; Hill & Pullin 2004)

K0ε
2/3
=
〈F 2(x, 1x)〉

A1x2/3
, (4.5a)

〈F 2(x0, ∆)〉 =
1
6

3∑
j=1

(δũ+1
2
+ δũ+2

2
+ δũ+3

2
+ δũ−1

2
+ δũ−2

2
+ δũ−3

2
)j, (4.5b)

A= 4
∫ π

0
s−5/3(1− sin(s)/s) ds≈ 1.90695, (4.5c)

where (δũ±i
2
)j= (ũi(x0± ej∆)− ũi(x0))

2 and ej is the unit normal in Cartesian direction
j.

4.2. Hybrid stretched-vortex model
It was found that the implementation of the stretched-vortex model discussed in
§ 4.1 developed aliasing errors in the forced upstream turbulence that resulted in an
underestimation of the turbulent kinetic energy dissipation rate downstream of the
shock. To remove these aliasing errors in the forced turbulence a hyperviscous stress
is introduced into the model (Braun, Pullin & Meiron 2018),

∂τij

∂xj
=

∂

∂xj
(ρ̄k̃′(δij − evi evj ))+

1x5c̄
96αmax

min(max(α, 0), αmax)ρ̄L3[ui], (4.6a)

qT
i =−cpρ

1x
2

√
k̃′(δij − evi evj )

(
∂T̃
∂xj

)
, (4.6b)

Ln[ũi] = (−1)n
3∑

j=1

∂2nũi

∂x2n
j
, (4.6c)
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where α is a local measure of the smoothness of the flow, given by a weighted ratio
of the structure functions calculated in (4.5b) as

α(x)=
〈F 2(x, ∆1)〉

〈F 2(x, ∆2)〉

(
∆2

∆1

)2/3

− 1. (4.7)

The scaling of the structure function F2(x, ∆) ∝ (ε∆)2/3 (Batchelor 1953) suggests
that α should approach zero in an average sense in a k−5/3 inertial range. The
constant αmax enforces numerical stability requirements and is taken as αmax = 10
for all simulations in this study. The separation scales are ∆2 = 21x and ∆1 = 1x,
and 〈F 2(x, ∆2)〉 is calculated on a restricted mesh with grid spacing 21x. The
hyperviscosity effectively acts as a physically local alternative to spectrally sharp
explicit filters, which are typically implemented using global methods such as
high-order compact finite differences that are impractical in the localized domain
decomposition used in the numerical method discussed in § 5. This model is referred
to as the hybrid stretched vorted model (HSVM).

4.3. SGS model near the shock
Subgrid-scale flow in a computational cell containing a shock is significantly different
from the type of smooth turbulence that SGS models are typically constructed to
represent. The SGS turbulence model becomes excessively dissipative near a shock,
and so the SGS interaction model (4.6) is set to zero where the weighted essentially
non-oscillatory (WENO) method is active. Previous studies have found WENO alone
to be sufficiently dissipative in this region (Bermejo-Moreno et al. 2010).

The application of the SGS model in meshes refined by adaptive mesh refinement
(AMR) near to but not directly on the shock remains a problem, because the cutoff
wavenumber kc in (4.4) is not clearly defined in regions of AMR. A convection
model is introduced that assumes the unresolved kinetic energy is unchanged by
the prolongation of the flow from the coarse mesh to the fine mesh in front of the
shock, and tracks the motion of the SGS kinetic energy as the flow passes through the
narrow band of AMR cells. The model is detailed in appendix A, as the methodology
is specific to this SGS model and flow geometry.

5. Numerical method

The box-turbulence simulations and shock–turbulence channel simulations are both
run using the same fundamental numerical approach. The governing equations are
implemented in the adaptive mesh refinement in object oriented C++ (AMROC)
framework (Deiterding et al. 2006) to provide mesh refinement and parallelization.
Mesh refinement is flagged based on density contours, and is only active in the direct
vicinity of the shock. The computational mesh spacing is uniform in all directions at
all refinement levels, with equal refinement applied at the shock in the streamwise
and transverse directions.

The nonlinear convection terms of (3.3) are computed according to a conservative
skew–symmetric formulation (Blaisdell 1991; Honein & Moin 2004) that provides
implicit dealiasing. The flux solver is based on the scheme of Hill & Pullin (2004),
and switches between a fifth-order shock-capturing WENO (Liu, Osher & Chan 1994)
method near the shock and a standard low cost, low dissipation sixth-order accurate
centred difference scheme away from the shock. The shock location is flagged using
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the approximate Riemann solver method of Lombardini (2008). The flagging threshold
is set as the simulation runs by calculating the threshold that would flag 40 % of the
turbulent domain, and then dividing that threshold by a factor of 5 to capture only
the sharpest features such as shocks. This approach limits the application of WENO to
only a few cells in either direction of the shock without requiring case by case tuning,
but at the shock WENO is typically applied in all three directions, rather than only
the shock normal direction. WENO is also applied at the boundary between meshes
at different AMR levels.

6. Turbulence statistics
The isotropic flow upstream of the shock is characterized by its turbulent Mach

number Mt and Taylor Reynolds number Reλ. These are provided as a function of
the root-mean-square velocity, urms and Taylor microscale, λ, by

Mt =

√
〈ũ′iu′i〉

〈c〉
, (6.1a)

Reλ =
〈ρ〉λurms

〈µ〉
, (6.1b)

urms =

√
〈ũ′iu′i〉

3
, (6.1c)

λ=

√
u2

rms

〈(∂ ũ1/∂x1)2〉
. (6.1d)

The brackets 〈 f 〉 denote the average of f over an appropriate domain, and for
turbulence statistics averaging is performed over the homogeneous directions and
time. Fluctuating quantities are written f ′ = f − 〈 f 〉. The Kolmogorov length scale,
η, of the flow is defined in terms of the kinematic viscosity, ν = µ/ρ, and density
normalized dissipation rate, ε, as η = 〈ν〉3/4〈ε〉−1/4. Unresolved fluctuations in the
density and viscosity are neglected, and the dissipation from the subgrid stress (3.5a)
is incorporated into ε. The turbulent kinetic energy is

1
2 ũ′iu′i =

1
2 ũ′iũ′i + k̃′, (6.2)

where k̃′ is the SGS turbulent kinetic energy. Other quantities of interest are the
Favre-averaged Reynolds stresses Rij = 〈ρu′′u′′〉/〈ρ〉, where the double prime denotes
a fluctuation from the density-weighted averaged, f ′′ = f − 〈ρf 〉/〈ρ〉, and the squared
vorticity tensor, Ωij = ωiωj where ωi is the vorticity. In most cases, post-shock
statistics are normalized by flow parameters taken immediately upstream of the shock,
which are denoted f0 for the value of f upstream of the shock.

The supersonic background convection velocity in the box-turbulence simulations
results in a small amount of spurious high wavenumber anisotropy in the upstream
turbulence, produced from differing numerical errors in the streamwise and transverse
directions. For analysis purposes, during post-processing we instead opt to calculate
mean statistics, such as the Reynolds stresses, on a mesh restricted to half of the
resolution of the coarsest mesh in the LES, and the SGS statistics discussed in § 6.1
are recomputed for this new coarser mesh. Reported dissipation rates are the exception
to this, and are calculated on the computational mesh because they are considered
representative of the numerical behaviour of the LES.
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6.1. Subgrid statistics
An advantage of the stretched-vortex SGS model is that the subgrid flow used to
construct the SGS stresses can be accounted for during post-processing of the LES.
Inclusion of the SGS flows alleviates the need to artificially filter DNS or experimental
results when validating the LES, and allows the LES to capture effects that may
be obscured at the resolved scale. For instance, the SGS statistics are useful when
addressing energy amplifications because turbulent fluctuations transferred to small
scales by the shock compression may appear to be dissipated if they are mapped to
wavenumbers that are not resolved on the computational mesh of the LES.

The SGS Reynolds stresses follow directly from τij (4.3), and (4.4) allows
reconstruction of the SGS kinetic energy in (6.2). Hill & Pullin (2004) derived
expressions for radial energy spectra of the SGS flows in transverse planes. The
vorticity of the subgrid flow is oriented along the spiral vortex axis, and so the SGS
enstrophy may be written

ΩSGS
ij =Ω

SGS
kk evi evj , (6.3a)

ΩSGS
ii = 2

∫
∞

kc

k2E(k) dk, (6.3b)

where Ωij = ωiωj. Inserting the subgrid spectrum (4.1) into (6.3) and integrating
provides an approximation to the enstrophy associated with the local subgrid flow

ΩSGS
ij =K0ε

2/3

(
2ν

3|ã|

)−2/3

Γ

(
2
3
,

2ν
3|ã|

k2
c

)
evi evj . (6.4)

The streamwise Taylor microscale, λ, depends on velocity gradients that are not
directly resolved in the simulations but, neglecting compressibility effects in the
upstream isotropic turbulence, this scale can be related to the dissipation rate by
(Pope 2000)

λ≈

√
15〈ν̄〉
ε

urms. (6.5)

Although this is expected to provide only an approximation to Reλ, the stretched-
vortex model includes a viscous drop off in the subgrid flows and is thus capable
of capturing some Reynolds number effects.

7. Linear interaction analysis
The results in this work are compared extensively to linear interaction analysis

(LIA). The LIA procedure is summarized briefly, with full details to be found in
Mahesh (1996). The interaction of a shock with a weak upstream vorticity fluctuation
generates a mixed entropy/vorticity mode and a acoustic mode in the downstream
flow (Ribner 1953). Integration of these downstream solutions over a spectrum of
upstream modes produces a model for shock–turbulence interaction containing a wide
range of statistics describing the shock and downstream flow behaviour (Ribner 1954).
The single wave solutions are integrated in spherical coordinates over a prescribed
shell summed energy spectrum, which is given here as

E(k)=


k2, 0 6 k< k0,

k2
0(k/k0)

−5/3, k0 6 k 6 kc,LIA,

0, k> kc,LIA,

(7.1)
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where kc,LIA is an appropriate cutoff wavenumber for comparisons with LES. LIA
predicts that far-field amplifications in statistics over the shock are independent
of the shape of the upstream energy spectrum, but the spatial variation of the
downstream flow depends on the spectrum of the upstream flow. The spectrum (7.1)
is qualitatively similar to the spectra developed in the forced LES, allowing for
comparisons of spectrum-dependent quantities such as the near-shock fluctuations and
shock corrugation. The implementation of LIA in this study assumes the upstream
turbulence consists purely of vorticity modes.

Shock-resolved DNS has been shown to converge towards LIA with decreasing
Mt at low Reλ 6 45 and moderate shock Mach numbers, Ms 6 2.2, and it has been
suggested that the accuracy of LIA will improve at higher Reλ (Ryu & Livescu 2014).
LIA provides a basic validation for the LES discussed in the study, as one expects
the LIA to represent the high Reλ flow at least as well as the low Reλ cases that
have been considered in DNS.

8. LES performed
8.1. Summary of simulations

Table 1 summarizes the LES simulations discussed in this study. Upstream quantities
such as Mt and Reλ contain contributions from the SGS model and thus are
approximations. The computational grids are isotropic such that 1x = 1y = 1z,
including within regions of AMR. The given meshes are on the coarsest level, such
that the simulations with Nx = 1024, Ny = 256 and an AMR factor of 4× have an
equivalent resolution of 4096× 10242 in the direct vicinity of the shock where AMR
is active. All simulations are run for a particle passage time across the length of
the computational domain, and then statistics are recorded over a subsequent particle
passage time or three large eddy turnover times in the upstream turbulence, whichever
is longer. This is not sufficient to achieve full temporal convergence of large-scale
quantities, and some statistics, such as the ratio of the streamwise to the transverse
Reynolds stress, R11/Rtr, are slightly perturbed from the value upstream of the shock
that would occur with an infinite time average. Given finite computational resources,
fine mesh resolutions and a broad parametric study are considered here to be more
useful than long simulation times.

Resources are focused on simulations ranging between Ms = 1.5 and Ms = 2.2
because previous DNS have observed interesting behaviour in the post-shock Reynolds
stress anisotropy within this regime. DNS has found that, for shocks weaker than
Ms ≈ 1.5, LIA predicts the post-shock Reynolds stress anisotropy reasonably well
even at modest Mt, but for Ms > 1.5 DNS finds R11/Rtr > 1 in the far-field post-shock
flow and this ratio is approximately constant as Ms is further increased (Larsson et al.
2013). Conversely, for Ms> 1.5 LIA predicts that an increasingly large fraction of the
turbulent kinetic energy is in the transverse Reynolds stress and by Ms= 2.2 predicts
R11/Rtr < 1 in the far field of the post-shock flow. The discrepancy between LIA and
the referenced DNS grows at larger Ms, but it is this transition that is of particular
interest.

8.2. Mesh sensitivity
The two primary mesh parameters in the subject LES are the coarse mesh spacing and
the local refinement level at the shock. Global refinement of the coarse mesh increases
the fraction of the turbulent kinetic energy that is captured at the resolved scale and is
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Ms Mt Reλ Lx xs k0 Nx Ny ×Nz AMR

1.2 0.06 500 8π π/2 4 512 1282 4×
1.4 0.06 500 8π π/2 4 512 1282 4×
1.5 0.18 100 8π π/2 4 1024 2562 4×
1.5 0.18 500 8π π/2 4 1024 2562 4×
1.5 0.18 2500 8π π/2 4 1024 2562 4×
1.5 0.06 500 8π π/2 4 1024 2562 4×
1.5 0.06 20 8π π/2 4 512 1282 4×
1.5 0.06 70 8π π/2 4 512 1282 4×
1.5 0.06 95 8π π/2 4 512 1282 4×
1.5 0.06 130 8π π/2 4 512 1282 4×
1.5 0.06 180 8π π/2 4 512 1282 4×
1.5 0.06 500 8π π/2 4 512 1282 4×
1.5 0.14 75 3π 1.28 6 192 1282 4×
1.5 0.06 500 3π π/2 4 96 642 1×
1.5 0.06 500 3π π/2 4 96 642 2×
1.5 0.06 500 3π π/2 4 96 642 4×
1.5 0.06 500 3π π/2 4 96 642 8×
1.5 0.14 75 3π 1.28 6 96 642 4×
1.6 0.06 500 8π π/2 4 512 1282 4×
1.8 0.06 500 8π π/2 4 512 1282 4×
2.0 0.12 500 8π π/2 4 512 1282 4×
2.0 0.06 500 8π π/2 4 512 1282 4×
2.0 0.03 500 8π π/2 4 512 1282 8×
2.0 0.03 500 8π π/2 4 512 1282 4×
2.2 0.18 100 8π π/2 4 1024 2562 4×
2.2 0.18 500 8π π/2 4 1024 2562 4×
2.2 0.06 500 8π π/2 4 512 1282 4×
2.2 0.06 500 3π π/2 4 96 642 1×
2.2 0.06 500 3π π/2 4 96 642 2×
2.2 0.06 500 3π π/2 4 96 642 4×
2.2 0.06 500 3π π/2 4 96 642 8×
2.6 0.06 500 8π π/2 4 512 1282 4×
3.0 0.06 500 8π π/2 4 512 1282 4×

TABLE 1. Summary of simulations. The conditions of the upstream turbulence, Mt and Reλ,
contain contributions from the model of the subgrid flows and are thus approximations. Lx
is the length of the domain in the streamwise direction, xs is the shock position and k0 is
the wavenumber corresponding to the maximum in the energy spectrum of the upstream
turbulence. Nx and Ny are the resolution of the coarsest mesh level in the streamwise and
transverse directions, respectively. AMR gives the factor of refinement applied to the mesh
near the shock.

expected to improve the LES results in smooth turbulent regions away from the shock.
The local mesh refinement at the shock acts to reduce artificial dissipation from the
shock-capturing scheme, reduces spurious behaviour in the entropy field generated by
the shock-capturing scheme (Lee et al. 1997) and allows the shock curvature to be
resolved (Lee et al. 1997; Garnier et al. 2002).

Test cases are performed to investigate the level of local refinement needed
about the shock. The low-Mt case considered here is conservative with respect
to mesh refinement requirements because as Mt is reduced for a given Ms, the
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FIGURE 2. LES behaviour for Ms = 1.5, Mt = 0.06, Reλ = 500 on a 96 × 64 × 64 base
mesh with increasing local mesh refinement at the shock. Lines with symbols show the
total statistics, including the contribution from the SGS model. (a) Streamwise Reynolds
stress, (b) transverse Reynolds stress, (c) density-specific volume correlation b=−〈ρ ′ν ′〉,
(d) squared vorticity trace, Ωii=ωiωi. Dashed line (A): uniform grid. Dot-dashed line (E):
2× refinement. Dotted line (@): 4× refinement. Solid line (+): 8× refinement. Thick solid
line: LIA of (7.1).

shock corrugations become smaller and more difficult to resolve. Figure 2 shows the
amplification of various statistics of interest through a Ms = 1.5 shock, plotted in the
shock normal direction. The statistics are time averaged and spatially averaged in
the transverse directions, and contain the contribution from the SGS stretched-vortex
flow. The Reynolds stress and vorticity are normalized by linearly interpolating their
upstream values to the mean shock position. The density-specific volume correlation
b = −〈ρ ′v′〉, where v = 1/ρ, is normalized by the upstream turbulent Mach number
as suggested by scaling in LIA. The density-specific volume correlation b is favoured
over 〈ρ ′ρ ′〉 because of its applications in incompressible mixing of variable-density
fluids (Livescu & Ristorcelli 2008; Schwarzkopf et al. 2011), but for the subject low
Mt, single component flows b ≈ 〈ρ ′ρ ′〉/〈ρ〉2. The SGS model does not provide an
estimate for b at the subgrid scales, and this explains why b tends to be smaller
in the LES than predicted by linear analysis. The contribution of the resolved-scale
flows to the vorticity is negligible at this mesh resolution and Reλ. The downstream
oscillations in b, and to a lesser extent in the Reynolds stresses, are not an artefact of
poor statistical convergence, and previous DNS have seen similar oscillatory behaviour
downstream of shocks at low Mt (Ryu & Livescu 2014). The SGS statistics behave
in a non-physical manner when calculated at the shock, resulting in the large spikes
near the shock in figure 2, but as discussed in § 4.3 these statistics are not used to
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FIGURE 3. Time-averaged radial spectrum of shock displacement, for Ms= 1.5, Reλ≈ 500
and Mt ≈ 0.06 on a 96 × 64 × 64 base mesh. The symbols show the results from LES
with varying levels of AMR at the shock. (A): uniform grid. (E): 2× refinement. (@): 4×
refinement. (+): 8× refinement. Dashed line: LIA of (7.1), which follows a k−11/3 slope
in the inertial range.

calculate SGS terms in the governing equations in the direct vicinity of the shock.
These LES are also performed for a Ms = 2.2 shock with similar results.

The streamwise Reynolds stress converges quickly, but the LES requires a factor of
4× AMR at the shock for the rest of the quantities to converge to an acceptable level.
Garnier et al. (2002) asserts that numerical convergence requires the shock corrugation
to be resolved, and this is evaluated in the LES by extracting a triangular mesh of the
shock surface from the LES using the shock detection algorithm of Samtaney, Pullin
& Kosovic (2001). The shock does not develop holes at the subject Mt and Ms, and
thus the displacement of the triangularized shock mesh from its mean location can be
converted into a continuous, periodic function on a rectangular 64×64 grid. The radial
power spectrum of a two-dimensional (2-D) function ψ(y, z) with Fourier transform
ψ̂ is defined as

E2D
ψ (kr)=

1
2

kr

∫ 2π

0
|ψ̂(kr, θk)|

2 dθk, (8.1)

where kr and θk are the radial and azimuthal wavenumbers. The time-averaged
radial power spectra of the shock displacement is given in figure 3, plotted against
the prediction of LIA applied to (7.1) with kc,LIA = 1024. LIA predicts that the
shock displacements scale as a function of the energy spectrum as E(k)/k2 (Mahesh
1996), yielding an initially flat spectrum that transitions into a k−11/3 slope. The
uniform-grid simulation significantly underestimates the curvature of the shock, but
the LES exhibits a trend towards k−11/3 behaviour as AMR refines the mesh at the
shock. The shock displacement and evolution of streamwise statistics both exhibit an
acceptable degree of invariance with AMR level for refinement factors of at least 4×.

The LES approaches the results of LIA as the upstream Mt is reduced, as shown
in figure 4 for an Ms = 2 shock. The degree of agreement with LIA at Mt = 0.03 is
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FIGURE 4. (Colour online) Streamwise (a) and transverse (b) Reynolds stresses averaged
over time and cross-sectional planes for a Ms = 2.0 shock and upstream Reλ ≈ 500 on a
512× 128× 128 base mesh. Solid line: LIA. Dotted line: Mt= 0.12 and ×4 AMR. Dashed
line: Mt= 0.06 and ×4 AMR. Dot-dashed line: Mt= 0.03 and ×4 AMR. Pluses: Mt= 0.03
and ×8 AMR.

comparable to that observed in shock-captured DNS under the similar flow conditions
at Reλ ≈ 30 (Tian et al. 2017), although the ability of the DNS to match LIA was
limited by the low Reλ simulated. Comparison to LIA requires low Mt and shock
corrugations become smaller and harder to resolve as Mt is reduced. This would
suggest that additional AMR should be required as Mt is reduced to a small value
such as Mt= 0.03, but as shown in figure 4 there is no substantial change in the LES
when AMR refinement about the shock is increased in that case. Tian et al. (2017)
show that shock capturing in DNS is reasonable when the ratio of the Kolmogorov
scale to the numerical shock thickness is large, and the corresponding measure in LES
would be a ratio of the length scale associated with the smallest resolved upstream
eddies to the numerical shock thickness, δs. Assuming that the smallest upstream
eddies are on the scale of the coarse mesh resolution, 1xc, and the numerical shock
is a few cells wide on the refined mesh, this will be a fixed ratio that is only
dependent on the shock-capturing scheme and the mesh. This ratio is approximately
1xc/δs ≈ 1.8 in the LES with 4× AMR, where δs is taken as the mean velocity
difference across the shock divided by the maximum of |∂ ũ1/∂x|, and is similar to
the requirement η/δs > 1.4 found by Tian et al. (2017). The tendency of low Mt
cases to not depend heavily on AMR suggests that the ratio of 1xc/δs may be a
more practical requirement on mesh refinement but, except at extremely low Mt, this
requirement appears to be met under conditions similar to those required to resolve
shock corrugations.

8.3. Comparison to DNS
DNS is available for validation of the LES at moderate Reλ. Figure 5 shows the
subject LES compared against the Ms = 1.5 shock-captured DNS of Larsson et al.
(2013) for upstream inlet conditions of Mt = 0.16, Reλ = 75 and k0 = 6. The method
used to construct turbulence at the inflow boundary upstream of the shock was
different in the DNS and the peak wavenumber is not as well defined as it is in the
LES, yielding some difference in the spatial non-dimensionalization of the simulations.
The LES of primary interest in this study are performed at higher Reλ>100, but those
LES still resolve a comparable fraction of the turbulent kinetic energy relative to this
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FIGURE 5. (Colour online) Streamwise (a) and transverse (b) Reynolds stresses averaged
over time and cross-sectional planes for a Ms = 1.5 shock. Inlet conditions are Mt = 0.16,
Reλ= 75 and k0= 6. The lines show the resolved-scale statistics and the symbols show the
total statistics, including the contribution from the SGS model. The LES have a factor of
4× AMR at the shock, and are normalized by their total upstream value interpolated to the
mean shock position. Dotted line (@): LES with a 192× 128× 128 base grid. Dash-dotted
line (E): LES with a 96 × 64 × 64 base grid. Thick solid line: shock-captured DNS of
Larsson et al. (2013) (data from Hickel et al. 2014).
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FIGURE 6. (Colour online) Streamwise (a) and transverse (b) Reynolds stresses averaged
over time and cross-sectional planes for a Ms = 1.5 shock, with upstream conditions of
Mt = 0.06 and Reλ = 500. LES are conducted with a factor of 4× AMR at the shock,
and results include the contribution from the SGS model. Solid line: LES with 1024 ×
256 × 256 coarse mesh. Circles: LES with 512 × 128 × 128 coarse mesh. Dashed line:
LIA of (7.1).

case. The higher resolution LES appears to underestimate kinetic energy dissipation
upstream of the shock relative to the DNS when including the contribution from the
subgrid continuation, but the behaviour of the resolved scales in the LES at both mesh
resolutions are consistent. The subgrid continuation assumes an inertial range, and
thus becomes less reliable when the mesh cutoff in the LES is in the viscous scales
of the turbulence, particularly at low Reynolds numbers. The agreement of the LES
with the DNS is considered reasonable at both mesh resolutions and changes with
mesh resolution at the coarsest level are found to be minimal under the resolutions
and flow conditions of primary interest in this study, as shown in figure 6.
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FIGURE 7. (Colour online) Streamwise and transverse Reynolds stress amplifications over
a shock. LES has upstream flow conditions of Mt ≈ 0.06 and Reλ ≈ 500, and is on a
512× 128× 128 coarse mesh with 4× AMR. The DNS was performed by Ryu & Livescu
(2014) at Reλ = 20 with Mt ranging between 0.05 and 0.12 immediately upstream of the
shock. Post-shock values are taken at the position of the maximum post-shock streamwise
Reynolds stress and include contributions from the SGS model. Streamwise Reynolds
stress amplifications are given by the squares (LES), triangles (DNS) and solid line (LIA).
Transverse Reynolds stress amplifications are the circles (LES), pluses (DNS) and dashed
line (LIA).

A number of additional comparisons of the HSVM-LES to DNS in the canonical
shock–turbulence problem and several simplified test problems may also be found in
Braun et al. (2018).

9. Results and discussion
9.1. Shock Mach number effects

The shock’s effect on the turbulent statistics is strongly Mach number dependent.
Previous DNS has seen only limited Reynolds number dependency on the Reynolds
stress amplification over the shock (Larsson et al. 2013), suggesting that the LES
should still agree reasonably well with low Reynolds number DNS regarding this
phenomenon. Figure 7 compares the Reynolds stress amplifications from the LES with
those seen in Reλ = 20 DNS (Ryu & Livescu 2014) and LIA. The LIA results show
the ratio of the Reynolds stresses far downstream of the shock to their pre-shock
state. The post-shock values from the DNS and LES are taken at the position of
the maximum streamwise Reynolds stress which occurs in the LES at k0x ≈ 3. The
upstream turbulent Mach number in the DNS varies between 0.05 and 0.12, and this
variation is likely responsible for the lower transverse Reynolds stress amplification
in the Ms= 2.2 DNS. Ryu & Livescu (2014) observed that DNS trended towards the
results of LIA as Mt was reduced, but the lowest Mt DNS run still does not identically
reproduce the predictions of LIA. The scatter in the Reynolds stress amplifications
results from a lack of complete statistical convergence due to the limited number
of large eddy turnover times completed over the duration of the LES. The LES
agrees well with the streamwise Reynolds stress amplifications predicted by LIA. The
transverse Reynolds stress amplifications are lower in LES than in LIA, but the LES
still agree reasonably well with the DNS.
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FIGURE 8. (Colour online) Squared vorticity trace Ωii = ωiωi and kinetic energy
dissipation rate immediately downstream of the shock, normalized by their upstream
values. The LES conditions are the same as in figure 7. The LIA amplification
in dissipation rate is approximated by the amplification in 〈µ〉〈Ωii〉/〈ρ〉. Vorticity
amplifications 〈Ωii〉/〈Ωii〉0 are the circles (LES) and dashed line (LIA). Dissipation rate
amplifications are given by the triangles (LES) and solid line (LIA).

The LES dissipation rate and the vorticity are compared to LIA in figure 8. The
dissipation rate amplification in LIA is approximated by the predicted amplification
in 〈T〉0.76

〈Ωii〉/〈ρ〉, as the LIA analysis does not explicitly consider viscosity. The
LES results are sampled immediately downstream of the shock, and small differences
in the position where data are taken, as well as minor differences in the application
of AMR and WENO between runs, introduce a small amount of scattering in the
LES results. LIA predicts that only the transverse components of the vorticity are
amplified, whereas the vorticity in the SGS flows in the LES remains nearly isotropic.
At the subject Reynolds numbers the downstream vorticity field is expected to return
to isotropy very quickly (Larsson et al. 2013), and so this is not considered an
important discrepancy.

DNS has observed vorticity amplifications that converge towards LIA more quickly
than the Reynolds stresses as Mt is reduced (Ryu & Livescu 2014). The LES
and LIA amplifications in the vorticity and dissipation agree reasonably well for
Ms 6 2.2, but at higher shock Mach numbers the post-shock dissipation rate appears
to be consistently lower than LIA. The amplification in these quantities is expected
to be difficult to capture in LES, because they are inherently high-wavenumber
phenomena which are almost entirely modelled by the SGS model for the subject
flow conditions. The rapid change in length scales across the shock, subject to a fixed
cutoff wavenumber in the LES, suggests that LES may have difficulty modelling
these small-scale phenomena at large Ms. Comparisons between LES and LIA are
comparisons of two different models, neither of which represents an exact solution,
but subsequent LES are primarily focused on conditions with Ms 6 2.2 where the
LES shows better agreement with LIA.

9.2. Reynolds number effects
The peak streamwise Reynolds stress downstream of the shock has been observed to
decrease when computed in DNS with Reynolds number increasing from Reλ = 40
to Reλ = 70, although the change was very small (Larsson et al. 2013). Higher peak
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FIGURE 9. (Colour online) Amplification in the streamwise Reynolds stress over a
Ms = 1.5 shock, and the fraction of that Reynolds stress held in the subgrid scales
downstream of the shock. Downstream quantities are sampled at the position of the peak
streamwise Reynolds stress. The dashed line has an upstream Mt ≈ 0.06 and the dotted
line has Mt≈ 0.18. The squares are LES done on a 512× 128× 128 coarse mesh and the
circles are done on a 1024× 256× 256 coarse mesh. Both meshes use 4× AMR.

Reynolds stresses are observed at higher Reynolds numbers over the range of Reλ =
10–45 (Ryu & Livescu 2014), but, likewise, the magnitude of the Reynolds number
effects was limited.

The streamwise Reynolds stress amplifications from the LES at Ms= 1.5 are plotted
in figure 9(a) over the range of Reλ=20–2500. The results agree with the DNS in that
there is initially a small increase in the amplification of R11 with increasing Reλ over
the range Reλ= 20–40, and there is a minor decrease between the Reλ= 40 and Reλ=
70 cases. At Reλ > 100 there is no discernible effect of Reynolds number, consistent
with the transition to fully developed turbulence observed in many flow geometries
near that Reynolds number (Dimotakis 2000). The decrease in the amplification of R11
over the range of Reλ= 40–100, followed by a levelling off with no further Reynolds
number effects, agrees qualitatively with the Ms= 1.05 experiments of Kitamura et al.
(2017), although the amplitude of the observed changes was much larger in that study.

The simulations in figure 9(a) are conducted under conditions that range from DNS,
at Reλ = 20, to LES with almost no resolved viscosity at Reλ = 2500. Figure 9(b)
shows the fraction of the streamwise Reynolds stress that is contained at the subgrid
level in the simulations, measured at the location of the peak in the downstream R11.
The downstream values are used instead of the upstream conditions because a greater
fraction of the kinetic energy is held in the subgrid scales downstream of the shock.
The changes in the LES at various Reλ do not appear to be directly correlated with the
fraction of the kinetic energy that is resolved on the computational mesh, suggesting
that these trends are not merely a result of numerical resolution.

9.3. Density fluctuations
Figure 10 shows radial spectra of density fluctuations and co-spectra of velocity–
density fluctuations in the LES. Density fluctuations upstream of the shock are driven
by the low turbulent Mach number and are considerably smaller than the fluctuations
generated by the shock. There is an increase in the spectra near the mesh cutoff
wavenumber resulting from aliasing errors, but both spectra display a k−5/3 slope in
the inertial range.
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FIGURE 10. (Colour online) Radial power spectra of density fluctuations (a) and
co-spectra of density–velocity fluctuations (b) for a Ms = 1.5 shock, with upstream
conditions of Mt ≈ 0.18 and Reλ ≈ 500 on a 1024× 256× 256 base grid with 4× AMR.
In (b), the lines show the co-spectrum of ρũ1, and the symbols show the co-spectrum of
ρũ2. Solid line (E): k0x=−1.34. Dotted line (+): k0x= 5.57. Dashed line (A): k0x= 28.3.

The downstream density fluctuations arise from a mix of acoustic and entropy
modes generated by the shock. LIA predicts that at low Ms acoustic modes account for
most density fluctuations, but for Ms> 1.65 the entropy modes become dominant (Lee
et al. 1997), at which time the entropy modes grow rapidly with Ms. This behaviour
may be observed in the LES, as shown in figure 11. The density fluctuations initially
remain approximately constant with Ms and contain a region of rapid, smooth decay
near the shock resulting from the relaxation of exponentially decaying pressure modes.
At higher Ms > 2.2, the density amplification begins to grow significantly and the
LES reproduces the transition from a smoothly decaying profile to an sharp jump,
consistent with the transition to a regime where exponentially decaying pressure
modes are comparatively small relative to entropy fluctuations. Velocity dilatation
appears in the transport equations for ai and b (Livescu et al. 2009), and drives
behaviour such as the dissipation of b, εb = v′∂u′k/∂xk, (Schwarzkopf et al. 2011).
In incompressible variable-density turbulence these correlations are the result of
dilatation produced by molecular mixing of different densities of fluid and, despite
weak compressibility effects at the subject Mt, this appears to still be the case in the
LES. The correlation v′∂u′k/∂xk calculated at scales that are well resolved in the LES
is small compared to the observed εb, which is the result of subgrid mixing modelled
by (4.6).

Figure 12 shows the mass-weighted velocity fluctuations ai=〈ρ
′u′i〉/〈ρ〉 downstream

of the shock. This term represents the turbulent mass flux and, along with b=−〈ρ ′v′〉,
is a correlation that tracked in some Reynolds-averaged Navier–Stokes (RANS)
models (e.g. Schwarzkopf et al. 2016). Unlike the Reynolds stresses, which have not
consistently displayed a return to isotropy within the limited domains possible in
numerical studies (Larsson & Lele 2009; Larsson et al. 2013), ai appears to return
to the isotropic state ai = 0 downstream of the shock, although it does so slowly in
the low Mt cases. Capturing the behaviour of measures such as a1 and b is important
in simulations of shock–turbulence interactions, and the production of these statistics
by the shock in the LES agrees reasonably well with the predictions of LIA.
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FIGURE 11. (Colour online) Averaged density-specific volume correlation b=−〈ρ ′v′〉 in
LES with upstream Mt ≈ 0.06 and Reλ ≈ 500 on a 512 × 128 × 128 base grid with 4×
AMR. Solid line: Ms = 1.2. Dashed line: Ms = 1.5. Dotted line: Ms = 2. Dash-dotted line:
Ms= 2.2. Long-dashed line: Ms= 2.6. The circle and triangle symbols show LIA of (7.1)
at Ms = 1.5 and Ms = 2.6, respectively.
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FIGURE 12. (Colour online) Averaged mass-weighted velocity fluctuations ai= 〈ρ
′u′i〉/〈ρ〉.

The LES is shown by the symbols and has upstream Reλ ≈ 500 on a 1024× 256× 256
base grid with 4× AMR. Solid line: Ms = 1.5 LIA of (7.1). Circles: Ms = 1.5, Mt = 0.06.
Pluses: Ms = 1.5, Mt = 0.18. Triangles: Ms = 2.2, Mt = 0.18.

9.4. Post-shock anisotropy
DNS have found that the Reynolds stresses do not quickly return to isotropy, whereas
the vorticity field rapidly relaxes to an isotropic state (Larsson & Lele 2009; Larsson
et al. 2013). The LES agrees with this, and even at high Reynolds number there is
no apparent trend in the Reynolds stresses in the LES that would indicate a return to
isotropy. All components of the SGS vorticity in the LES are amplified by the shock,
whereas LIA predicts that only the transverse components of vorticity are amplified,
but this is considered to be reasonable because of the quick post-shock return to
isotropy of vorticity in DNS (Larsson et al. 2013). The SGS Reynolds stresses, which
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FIGURE 13. (Colour online) Time-averaged radial velocity spectra about a Ms= 2.2 shock,
for upstream conditions of Mt≈ 0.18 and Reλ≈ 500 on a 1024× 256× 256 base grid with
4× AMR. The symbols show the resolved spectra in planes located at k0x=−1.47 (E),
k0x= 5.52(+), k0x= 28.1 (A). The averaged spectra of the modelled subgrid flows at each
plane are given by the solid, dotted and dashed lines, respectively, and these are extended
into the resolved scales to show agreement with the resolved spectra.

numerically govern the interaction of the SGS and resolved scales of the flow in (4.6),
take longer to return to isotropy, and the HSVM-LES is capable of capturing the
initial post-shock anisotropy of the Reynolds stresses at the SGS scales relatively well
relative to the predictions of LIA (Braun et al. 2018).

9.4.1. Transverse spectra
The averaged Reynolds stresses and vorticity are aggregate quantities that only

provide information on the largest and smallest scales in the flow, and say little
about the behaviour of the intermediate scales within the inertial range of the
turbulence. The radial spectra of the streamwise and transverse velocities upstream
and downstream of a Ms = 2.2 shock are shown in figure 13, and these spectra
provide insight into how kinetic energy is distributed at all scales in the flow. The
modest drop off in the spectra near the coarse mesh cutoff wavenumber is, in part, a
physical artefact of using 2-D spectra, as will be subsequently discussed.

Taking ratios of these radial spectra, one can define an anisotropy parameter as a
function of wavenumber (Livescu et al. 2009; Chung & Pullin 2010),

χ 2D
=

E2D
11

E2D
11 + E2D

22 + E2D
33
−

1
3
. (9.1)

If the spectra in (9.1) were taken in three dimensions, then clearly χ = 0 for all
wavenumbers in an isotropic field. Computing χ with radial spectra, as done here,
will generally return χ 2D

6= 0 even if the flow is isotropic. A given wavenumber
in a one-dimensional spectrum contains contributions from larger magnitude three-
dimensional wavenumbers (Pope 2000), and the same phenomenon occurs in radial
spectra. Taking the definition of the radial power spectrum tensor, with k2= kr cos(θ)
and k3 = kr sin(θ),

E2D
ij (kr)=

kr

2

∫
∞

0

∫ 2π

0
φij dθ dk1, (9.2)
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FIGURE 14. (Colour online) Time-averaged anisotropy parameter in isotropic upstream
turbulence upstream of a Ms=1.5 shock, with Mt≈0.18 and Reλ≈500 on a 1024×256×
256 base grid. The solid line shows χ 2D calculated under the assumption of isotropy using
the model spectrum (7.1), and the dashed line is the result for an infinite k−5/3 spectrum.
The circles are the LES, given at a plane located at k0x=−2, just upstream of the mean
shock position shock.

and the isotropic velocity spectrum tensor for k=
√

k2
1 + k2

2 + k2
3,

φij(k)=
E(k)
4πk2

(
δij −

kikj

k2

)
, (9.3)

one obtains expressions for the radial spectra of streamwise and transverse velocities
components,

E2D
11 (kr)=

kr

4

∫
∞

0

E(k)
(k2

1 + k2
r )

(
1−

k2
1

k2
1 + k2

r

)
dk1, (9.4a)

E2D
22 (kr)+ E2D

33 (kr)

2
=

kr

8

∫
∞

0

E(k)
(k2

1 + k2
r )

(
2−

k2
r

k2
1 + k2

r

)
dk1. (9.4b)

Evaluating (9.4) with E(k)= k−5/3 yields a constant value of χ 2D
= 1/33, illustrating

that the 2-D anisotropy parameter will be slightly perturbed from zero in isotropic
turbulence. In the case of a finite spectrum, such as (7.1), the effects are more
pronounced. Figure 14 shows the anisotropy parameter calculated in the isotropic
turbulence in front of the shock. An analytical result for the model isotropic spectrum
(7.1) with kc,LIA = 128 is constructed by performing the same decomposition into
vorticity modes used in LIA, and binning the resulting modes by radial wavenumber.
The cutoff in the model spectrum results in an abrupt rise in χ 2D at high wavenumbers,
which is an artefact of high 3-D wavenumber transverse modes being aliased onto
low 2-D wavenumbers in the radial spectra when the modes are sampled in a 2-D
plane. The LES results are thus truncated at k 6 kmax/2 to focus on the inertial range,
as χ 2D is not considered a useful analysis tool at the largest wavenumbers.

Figure 15 plots χ 2D computed in cross sectional planes at various streamwise
locations downstream of a Ms = 1.5 and a Ms = 2.2 shock. After some transience
close to the shock, the LES shows nearly uniform value in the anisotropy parameter
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FIGURE 15. (Colour online) Time-averaged anisotropy parameter downstream of a shock,
for upstream conditions of Mt ≈ 0.18 and Reλ ≈ 500 on a 1024 × 256 × 256 base grid
with 4× AMR. The solid line shows χ 2D calculated from the results of LIA applied to
the model spectrum (7.1), and the dashed line is the pre-shock result for (7.1). The dotted
line is the result for an infinite k−5/3 spectrum. The LES results are given by the symbols,
and are calculated in cross-sectional planes downstream of the shock. (a) Ms = 1.5. The
LES spectra are taken at (E): k0x= 2.5; (1): k0x= 7.8; (+): k0x= 24.0. (b) Ms= 2.2. The
LES spectra are taken at (E): k0x= 2.3; (1): k0x= 7.7; (+): k0x= 23.9.

with radial wavenumber over the inertial range. χ 2D appears to return to isotropy
over the extent of the inertial range as the flow evolves downstream, with higher
radial wavenumbers becoming isotropic more quickly. The exception to this is a
small numbers of modes near and below k0 which do not return to a profile similar
to the isotropic upstream flow, and the Ms= 2.2 case initially sees an increase in χ 2D

at these low radial wavenumbers as the flow decays. The very largest scales, k ≈ 1,
show continuously increasing anisotropy because these motions are on the scale of
the domain size and may interact with themselves through the periodic boundary
conditions of the domain. This is physically unrealistic but these scales of the flow
contain only a small amount of energy. The contribution of 3-D effects to the 2-D
spectra limits the direct usefulness of χ 2D in determining when specific scales in the
flow relax to isotropy, but this parameter will also be used in subsequent sections
to connect the results of this LES to model problems that simplify analysis in three
dimensions.

Figure 16 shows the behaviour of the first few wavenumbers of the radial velocity
spectra immediately downstream of the Ms = 2.2 shock. These spectra are taken at
planes within the region where exponentially decaying pressure modes contribute
significantly to the Reynolds stresses, but the radial spectrum of the streamwise
Reynolds stresses predicted by LIA and LES still show remarkable agreement. The
transverse velocity spectrum predicted in LIA shows qualitative agreement with
the LES within the inertial range, but at low radial wavenumbers the transverse
fluctuations see no significant amplification in the LES, and even see damping in
the lowest radial wavenumbers as the flow progresses downstream from k0x = 0.7
to k0x = 2.3. It is notable that this damping at the lowest radial wavenumbers is
not necessarily a large-scale phenomenon, and would also be consistent with a loss
of energy in fine-scale transverse velocity modes with wavenumbers approximately
normal to the shock plane that have been aliased onto low radial wavenumbers.
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FIGURE 16. (Colour online) Time-averaged radial power spectra of the streamwise and
transverse velocities downstream of a Ms = 2.2 shock, for upstream conditions of Mt ≈

0.18 and Reλ ≈ 500 on a 1024× 256× 256 base grid with 4× AMR. The symbols show
the LES, and the lines show LIA applied to the model spectrum (7.1). Solid line (E):
k0x=−1.5 upstream spectra. Dotted line (A): k0x= 0.7. Dashed line (@): k0x= 2.3.

9.4.2. The effect of a return to isotropy at inertial range scales
Previous DNS (Larsson & Lele 2009; Larsson et al. 2013) and experiments (Barre

et al. 1996) have tended to observe larger Reynolds stress amplifications in the
streamwise direction than in the transverse directions. This agrees with LIA at low
Ms but, contrary to recent DNS, LIA predicts that the Reynolds stress anisotropy
begins to strongly favour Rtr as Ms is increased. The behaviour of the radial spectra
in figure 16, combined with the return to isotropy of most wavenumbers observed in
figure 15, offers insight into a mechanism that could explain why the Reynolds stress
anisotropy from LIA has not reliably predicted the results of DNS at high Ms.

First, it is noted that low radial wavenumbers in the transverse velocity spectrum
contain significantly more energy than those in the streamwise velocity spectrum.
This is because vorticity modes with a 3-D wavenumber vector normal to the shock
contribute energy to the transverse Reynolds stresses, but when the 3-D wavenumber
is projected onto the plane of the shock the resulting radial wavenumber is small.
Furthermore, to zeroth order, the modes with a wavenumber normal to the shock
will see the greatest change in wavenumber across the shock as a result of the
mean compression. This results in the transverse modes being disproportionately
moved towards high wavenumbers as they pass over the shock, relative to streamwise
velocity modes. At the lowest wavenumbers there are no energetic lower-wavenumber
modes available, and this transfer can result in the energy content in a fixed low
wavenumber decreasing across the shock, even if every upstream mode crossing the
shock is amplified. LIA confirms that the shock damps the 1-D transverse velocity
spectrum at low wavenumbers (Ribner 1986b; Lee et al. 1997). This means that the
amplification of transverse modes is weighted towards high wavenumbers, which are
shown in the LES to begin to return to isotropy downstream of the shock. The low
wavenumbers, where the streamwise modes see greater amplifications, do not show
the same return to isotropy, at least according to the radial spectra considered in
figure 15. Thus, the return to isotropy may drive energy from Rtr to R11 downstream
of a shock even in scenarios where R11 > Rtr, because transverse fluctuations are
focused at scales where the return to isotropy is faster.

Both the rate of this scale-dependent return to isotropy and the amount of
dissipation that occurs during the evolution of the turbulence into its measured
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far-field state are expected to be reduced as Mt is decreased. Thus, a low Mt limit
at which LIA is an accurate approximation for the far-field state of the turbulence is
still expected to exist, consistent with the scaling proposed by Ryu & Livescu (2014),
but the required condition on Mt may become increasingly restrictive when the mean
compression ratio across the shock is large.

9.4.3. LES with LIA modelling of the shock
It is noted that, while figure 15 shows that the anisotropy parameter over the

extent of the inertial range relaxes to a profile similar to that seen in the isotropic
upstream turbulence, the relaxation to isotropy appears to be much slower than the
development of the Reynolds stress anisotropy, which takes an approximately steady
value for downstream positions k0x> 5. If the Reynolds stress anisotropy is strongly
influenced by the relaxation to isotropy in the inertial range, then the inertial range
must relax to isotropy more quickly than suggested by the 2-D anisotropy parameter
(9.1).

Describing the scale dependency of anisotropy with respect to 3-D wavenumber is
complicated by the shock and inhomogeneous direction in the full shock–turbulence
LES, but some estimation of this behaviour may be extracted from homogeneous LES
initialized with a post-shock field from LIA. LIA is applied directly to the Fourier
transform of a Reλ = 500, Mt = 0.18, 2563 forced periodic box LES to produce a
3-D approximation to the far field downstream of the shock (Ryu & Livescu 2014;
Livescu & Ryu 2016), that is anisotropic but remains periodic and homogeneous. This
is then used as an initial condition for a decaying 2563 LES, which acts as a model
for the decay of a periodic, anisotropic element of turbulence downstream of a shock.
This is referred to as LIA-processed LES, as LIA is used to model the instantaneous
interaction of a periodic cube of turbulence with a shock. LES where the shock is
explicitly simulated in the computational domain, as done in the other sections of this
study, is referred to as shock-processed LES. DNS initialized with the far-field LIA
result has been shown to converge towards shock-processed DNS as Mt is reduced
(Braun et al. 2018), but LIA can alternatively produce a prediction for the near field
immediately downstream of a shock. The decay of turbulence initialized with this near
field might produce a better agreement to shock-processed DNS, but the near field
from LIA is inhomogeneous which complicates boundary conditions and prevents the
calculation of 3-D spectra that are the primary motivation for this analysis.

Figure 17 shows the 3-D spectra of the LIA-processed LES before LIA is applied,
immediately after the application of LIA, and then after a small amount of post-LIA
decay. The time at which these spectra are taken is converted to a spatial location
using the mean streamwise velocity downstream of a stationary Ms = 2.2 shock,
which allows comparison with the shock-processed LES. The oscillations in the
spectra of the transverse velocity fluctuations are a result of the discretization of
the upstream field onto integer wavenumbers, as some wavenumbers may not have
a significant amount of energy mapped to them by LIA. The transfer of transverse
fluctuations towards smaller scales over the shock is clearly visible in the spectra,
and the energy content of transverse fluctuations is considerably damped at low
wavenumbers. The downstream k0x is quite close to the shock, but the flow has
already begun to show a noticeable movement towards isotropy over most of the
inertial range. The initial anisotropy in the inertial range varies greatly with shock
Mach number, but these scales reliably return to isotropy over the range of Ms
considered, as shown in figure 18. The flows are initialized using the far-field LIA
result, and thus do not contain the exponentially decaying pressure modes that
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FIGURE 17. (Colour online) Three-dimensional spectra of streamwise and transverse
velocity fluctuations in LIA-processed LES, in which a periodic, anisotropic 2563 LES
is initialized by applying LIA to an isotropic LES with Reλ ≈ 500 and Mt ≈ 0.18. The
LIA models a Ms = 2.2 shock. An equivalent downstream position k0x is produced by
scaling the simulation time by the mean convection velocity downstream of a stationary
shock. Dotted line: E11(k) pre-LIA. Dot-dashed line: E22(k) pre-LIA. Solid line: E11(k) at
k0x= 0. Dashed line: E22(k) at k0x= 0. Circles: E11(k) at k0x= 6.0. Triangles: E22(k) at
k0x= 6.0.
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FIGURE 18. (Colour online) Three-dimensional spectra of streamwise and transverse
velocity fluctuations in LIA-processed LES. Pre-LIA flow conditions are the same as in
figure 17. Dotted line: E11(k) pre-LIA. Dot-dashed line: E22(k) pre-LIA. Solid line: E11(k)
at k0x= 0. Dashed line: E22(k) at k0x= 0. Circles: E11(k) at k0x= 6.0. Triangles: E22(k)
at k0x= 6.0.

are predicted near the shock. LIA predicts that pressure fluctuations are weighted
towards high streamwise wavenumbers downstream of the shock (Ribner 1986a),
and pressure–velocity correlations are often believed to drive the Reynolds stresses
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FIGURE 19. (Colour online) Reynolds stress anisotropy. The symbols show the anisotropy
from shock-processed LES with Ms= 2.2, upstream Mt≈ 0.18 and Reλ≈ 500 on a 1024×
256× 256 base grid with 4× AMR. The line shows LIA-processed LES, in which LES in
a periodic 2563 box is initialized by applying LIA to an LES of homogeneous isotropic
turbulence with the same upstream conditions. The temporal decay in the LIA-processed
LES is converted to a spatial coordinate using the mean convection velocity downstream
of the shock.

towards isotropy. Thus, the actual flow which contains these fluctuations near the
shock would be expected to return to isotropy at small scales faster than observed in
this test case. The relaxation of these intermediate-scale modes to isotropy may also
be affected by the construction of the subgrid model, but it is noted that, unlike many
SGS models, the HSVM-LES approach does not assume isotropy in the subgrid flows
(Pullin & Saffman 1994), which has allowed previous applications of the model to
anisotropic flows such as buoyancy-driven turbulence (Chung & Pullin 2010). The
SGS Reynolds stress anisotropy in HSVM-LES of modelled post-shock flows shows
qualitatively similar behaviour to that predicted by LIA (Braun et al. 2018), and the
shock-processed LES conducted in this study also shows comparable results.

Figure 19 gives the Reynolds stress anisotropy from the same simulation as
shown in figure 17. Even though the LIA-processed LES is initialized with the
far-field LIA result, which does not contain the exponentially decaying pressure
modes that contribute to the rapid rise in R11 downstream of a shock, there is still
a rapid correction towards R11 > Rtr within the span of time shown in figure 17.
The Reynolds stress anisotropy in the LIA-processed LES agrees well with the
shock-processed LES, and both methods level off to an approximately constant
Reynolds stress anisotropy beyond k0x≈ 5 downstream of the shock. The anisotropy
parameter (9.1) calculated in 2-D cross-sectional planes of the LIA-processed LES
also exhibits similar behaviour to that seen in transverse planes of the shock-processed
LES, as shown in figure 20. Despite difficulties in interpreting the 2-D anisotropy
parameter directly, its strong similarity to the model problem of the LIA-processed
LES suggests that the scale-dependent relaxation to isotropy in the shock-processed
LES proceeds in a similar manner to the LIA-processed LES. The inertial range of
the LIA-processed LES relaxes to isotropy quickly, over time scales that would imply
that the shock-processed LES has returned to isotropy over much of the extent of the
inertial range by the time the Reynolds stress anisotropy has relaxed to its far-field
value.
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FIGURE 20. (Colour online) Anisotropy parameter calculated from 2-D radial spectra in
planes parallel to the shock. The pre-shock flow has Reλ = 500 and Mt = 0.18. The lines
show shock-processed LES, in which the shock is explicitly simulated, and the symbols
show LIA-processed LES. The temporal decay in the LIA-processed LES is converted to
a spatial coordinate using the mean convection velocity downstream of the shock. Solid
lines and circles: k0x≈ 2.3. Dashed line and triangles: k0x≈ 7.7. Dotted line: χ 2D

= 1/33
analytical result for an infinite isotropic k−5/3 spectrum.
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FIGURE 21. Reynolds stress anisotropy. The symbols show the anisotropy at the location
of the peak downstream value of R11 in LES with upstream Mt≈ 0.06 and Reλ≈ 500 on a
512×128×128 base grid with 4× AMR. The solid line is the far-field result of LIA. The
dashed line is produced by applying LIA to the model spectrum (7.1) and post-processing
the results to enforce that all wavenumbers k/k0> 2 have returned to isotropy downstream
of the shock.

9.4.4. Post-processed LIA
To further illustrate the effect of inertial range isotropy on the Reynolds stresses, the

far-field results of LIA applied to (7.1) with kc,LIA= 128 are post-processed to enforce
that the 3-D spectra of E11(k) and E22(k) are equal for k > kiso, where kiso = 2k0. The
Reynolds stresses are then reconstructed by integrating the spectra, and the resulting
Reynolds stress anisotropy is shown in figure 21. With this modification, LIA agrees
more closely with the shock-processed LES at high Ms. The selection of kiso = 2k0
is arbitrary because in practice the largest scales that are isotropic will depend on
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the shock Mach number and how far downstream measurements are taken, but this
selection is approximately the beginning of the inertial range in the post-shock flow in
figure 17. LIA also predicts that the intersection of E11(k) and E22(k) in the post-shock
field also corresponds to approximately k= 2k0 for Ms > 2.

10. Conclusions
LES of canonical shock–turbulence interactions are conducted to investigate the

flow at high Reynolds number. Adaptive mesh refinement is applied in the direct
vicinity of the shock. The results show reasonable agreement with previous DNS at
low Taylor-based Reynolds number, with an acceptably small amount of variation with
mesh resolution. With sufficient mesh refinement about the shock, the LES shows a
convergence towards the k−11/3 scaling in the shock surface corrugation predicted by
linear analysis, providing an additional validation that the mesh is fine enough that
the shock-capturing scheme is not interfering with the interaction of the turbulence
with the shock. The amplification in the kinetic energy dissipation rate predicted by
LES ceases to agree well with linear interaction analysis (LIA) at larger shock Mach
numbers, and thus results are focused on the parameter space of Ms 6 2.2.

No significant Reynolds number effects are observed in the LES for Reynolds
numbers larger than Reλ = 100. There is a discernible dependency on Reλ in the
Reynolds stress amplifications at Reλ < 100, but as seen in previous DNS the effects
of Reλ within this range remains quite small.

Studies of shock–turbulence interactions at high shock Mach numbers have observed
that the downstream Reynolds stress anisotropy, defined as the ratio of the streamwise
to transverse Reynolds stresses, R11/Rtr, consistently favours R11 (Larsson et al.
2013). The transverse Reynolds stresses are disproportionately weighted towards
smaller scales at high Ms, and as the flow relaxes towards isotropy at inertial range
scales there is a transfer of energy towards the streamwise Reynolds stress. The
LES suggests that this relaxation to isotropy occurs quickly over the extent of the
inertial range, producing larger R11 values than predicted by linear theory. An unusual
phenomenon in which the return to isotropy transfers energy from Rtr into R11 may
occur even in the situations where R11 > Rtr.

LIA, as applied here, neglects the interaction of dilatational modes in the upstream
turbulence with the shock and this assumption, along with other phenomena, could
also contribute to LIA requiring increasingly restrictive flow conditions at higher Ms
in order to capture the Reynolds stress anisotropy downstream of the shock. LIA is
shown to agree more closely with the LES when the LIA results are post-processed
to assume the downstream inertial range scales are isotropic, showing that the
effects of this relaxation of inertial range scales to isotropy are of a sufficient
magnitude that this process could explain much of the difference between LIA and
the LES. The agreement between the LES and LIA regarding factors other than the
Reynolds stresses, such as the shock corrugation spectrum and the radial spectrum
of streamwise velocity fluctuations near the shock, suggests that at high Reynolds
numbers the instantaneous interaction of the shock with the turbulence at the subject
Mt 6 0.18 turbulent Mach numbers can be considered to be effectively linear, but
nonlinear small scale interactions are significant over the short distance downstream
of the shock as the flow is relaxing towards its far-field behaviour, particularly at
large Ms. It is noted that some Reynolds-averaged models have either been tuned
(Schwarzkopf et al. 2016) or explicitly constructed (e.g. Sinha, Mahesh & Candler
2003) to agree with the Reynolds stress trends seen in LIA, and this analysis would
suggest that this may be a more robust approach than previously recognized, so long
as the scale-dependent relaxation to isotropy is accurately modelled.
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Appendix A. Subgrid model in the near-shock region
A.1. Convective SGS kinetic energy model

As the flow enters the refined mesh near the shock, all terms in the SGS model
(4.6) remain well defined with the exception of the SGS kinetic energy (4.4), which
requires the definition of a cutoff wavenumber kc. Upstream of the shock, but within
the refined mesh, the cutoff wavenumber can be assumed to be equal or close to the
cutoff wavenumber of the coarse mesh, because the turbulence does not have time
to populate the new wavenumbers opened by mesh refinement as it convects through
the narrow band of cells refined in front of the shock. The turbulence is compressed
by the shock and mapped towards higher wavenumbers, and thus depending on the
shock strength it may fill any number of the high-wavenumber modes opened by mesh
refinement downstream of the shock. Moreover, the compression from the shock is
anisotropic, and a isotropic definition of the cutoff wavenumber may be insufficient.

To avoid defining a cutoff wavenumber on the region containing the refined mesh, it
is instead assumed that the unresolved kinetic energy remains unchanged through the
prolongation process onto the fine mesh. A transport model for a convection-modelled
SGS kinetic energy, k̃′cm, is introduced to compute the unresolved kinetic energy prior
to entering the refined region, and then convect that energy through the region
containing the shock using a model of the form

∂ρk̃′cm

∂t
+

∂

∂xj

(
ρũjk̃′cm − ν

∂ρk̃′cm

∂xj

)
= εinject − εdiss + φrc. (A 1)

The left-hand side constitutes a conservation law with a resolved shear stress, and the
right-hand side consists of a source term from the injection of turbulent kinetic energy
into the unresolved scales, εinject, a source term from the dissipation of kinetic energy
at the SGS scales, εdiss, and a source term from the rapid compression at the shock, φrc.
The injection term is assumed to be equal to the negative of the loss of kinetic energy
at the local resolved scales resulting from the stresses in (3.5a), with k̃′ calculated
from the local resolved structure functions as in (4.4). The dissipation term, εdiss, is
taken to be of the same form as the injection but instead dependent on the current
amount of energy held in the unresolved scales, namely k̃′cm. It can be shown that the
resolved kinetic energy dissipation arising from (3.5a) is

ε= S̃ij(δij − evi evj )k̃′, (A 2)

and this suggests a model for the convected SGS kinetic energy,

∂ρk̃′cm

∂t
+

∂

∂xj

(
ρũjk̃′cm − ν

∂ρk̃′cm

∂xj

)
=−ρS̃ij(δij − evi evj )(k̃′ − k̃′cm)H(1x)+ φrc. (A 3)
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FIGURE 22. (Colour online) Two-shock Riemann problem at a cell boundary between
cells located at xi and xi+1. Regions (1) and (4) correspond to unshocked fluid, (2) is
fluid initially from cell xi that has been shocked by the left facing wave, and (3) is from
cell xi+1 shocked by the right facing wave.

The switch H(1x)= 1 on the coarse mesh, and H(1x)= 0 if on a refined mesh. The
dissipation and exchange with the resolved scale thus has the effect of forcing k̃′cm≈ k̃′
on the coarse mesh, because (A 2) is strictly dissipative with the vortex alignment
model for evi that is used in this study (Misra & Pullin 1997). Upon entering the
refined region near the shock where k̃′ is not well defined, the source term turns off
and the model convects k̃′cm downstream through the shock.

A.2. Amplification of the SGS kinetic energy by the shock
The remaining rapid compression term, φrc, is included to ensure the shock amplifies
k̃′cm, as it should amplify all scales of the turbulent flow. The model for φrc selected
to enforce that k̃′cm is amplified by the far-field predictions of LIA. This is reasonable
because the turbulent Mach number associated with k̃′cm is small and the Reynolds
numbers of the simulations are large, and DNS has generally shown good agreement
with LIA regarding turbulent kinetic energy amplification (Larsson et al. 2013).
Furthermore, the SGS flows are small scale and will evolve to their far-field behaviour
very quickly downstream of the shock.

The method to enforce the LIA predicted amplifications in k̃′cm is constructed
by decomposing each cell boundary into a one-dimensional Riemann problem, as
conventionally done in some flux solvers. The evolution of the resulting flow about
the boundary between cells centred at xi and xi+1 is shown for one representative
case in figure 22. The solution of the Riemann problem, giving the types of waves
generated at the interface and the flow in the intermediate states (2) and (3), is
computed by direct iterative methods. This approach is computationally expensive but
this process must only be performed at the shock, corresponding to a small fraction
of the domain where WENO is flagged.

A two-shock solution on the interface between cells centred at xi and xi+1 will be
considered here, producing left and right facing shock waves of Mach numbers ML

and MR, respectively, and a contact discontinuity moving at velocity ũ23. The case in
which one or both of the waves are expansion fans is addressed in the same manner as
the two-shock case, except that there is no amplification enforced over the expansions.
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The function L(Ms) is defined as

L(Ms)=
k̃′cm,post

k̃′cm,0

− 1, (A 4)

where k̃′cm,0 and k̃′cm,post are pre-shock and far-field post-shock kinetic energy from
LIA, respectively, such that the subgrid kinetic energy in regions in the intermediate
regions (2) and (3) are k̃′cm,(2) = k̃′cm,i(1 + L(ML)) and k̃′cm,(3) = k̃′cm,i+1(1 + L(MR)),
respectively. The selection of φrc is set to enforce that, over the duration of one time
step, the subgrid kinetic energy is amplified by the LIA predicted amount, weighted
by the fraction of the cell covered by regions (2) and (3). The form of φrc depends on
if regions (2) and (3) lie in cell i or i+ 1, and is given for the possible configurations
as

(i) ũi −MLãi > 0 and ũi+1 +MRãi+1 > 0:

φrc,i = 0, (A 5a)

φrc,i+1 =
1
1x

((ũ23 − (ũi −MLãi))L(ML)k̃′cm,i

+ ((ũi+1 +MRãi+1)− ũ23)L(MR)k̃′cm,i+1); (A 5b)

(ii) ũi −MLãi < 0 and ũi+1 +MRãi+1 > 0 and ũ23 > 0:

φrc,i =
1
1x
(−(ũi −MLãi)L(ML)k̃′cm,i), (A 6a)

φrc,i+1 =
1
1x
(ũ23L(ML)k̃′cm,i + ((ũi+1 +MRãi+1)− ũ23)L(MR)k̃′cm,i+1); (A 6b)

(iii) ũi −MLãi < 0 and ũi+1 +MRãi+1 > 0 and ũ23 < 0:

φrc,i =
1
1x
((ũ23 − (ũi −MLãi))L(ML)k̃′cm,i − ũ23L(MR)k̃′cm,i+1), (A 7a)

φrc,i+1 =
1
1x
((ũi+1 +MRãi+1)L(MR)k̃′cm,i+1); (A 7b)

(iv) ũi −MLãi < 0 and ũi+1 +MRãi+1 < 0:

φrc,i =
1
1x

((ũ23 − (ũi −MLãi))L(ML)k̃′cm,i

+ ((ũi+1 +MRãi+1)− ũ23)L(MR)k̃′cm,i+1), (A 8a)

φrc,i+1 = 0. (A 8b)

Shocks are nonlinear, and low-order numerical shock-capturing schemes that smear
a discontinuity across several cell boundaries cannot be expected to be compatible
with this approach. The fifth-order WENO solver used here, combined with the
moderate shock Mach numbers considered in this report, is sufficiently sharp to give
a reasonable amplification in the SGS kinetic energy as it passes through the shock,
as shown for a representative case in figure 23.
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FIGURE 23. (Colour online) Amplification in the SGS kinetic energy through a shock.
LES results are averaged in time and in the periodic directions. The LES flow conditions
are Ms= 1.5, Mt= 0.18 and Reλ= 500 on a 1024× 256× 256 base grid, with a factor of 4
refinement at the shock. The LIA results are calculated from (4.4) with kc,LIA=1024. Solid
line: LIA kinetic energy amplification. Dashed line: LIA kinetic energy amplification at
wavenumbers k> 128. Dotted line: convective SGS kinetic energy model k̃′cm. Dash-dotted
line: SGS kinetic energy k̃′ calculated from (4.4).

Transport models for the SGS kinetic energy have been employed to control
backscatter (Ghosal et al. 1995), and this approach may also improve performance
when the large scales are temporarily out of equilibrium with the small scales.
Unfortunately, for the subject problem the usefulness of k̃′cm is limited by the
restriction process back onto the coarse mesh downstream of the shock. As shown
in figure 23, the selection of φrc appears to be effective in enforcing that k̃′cm
approximately agrees with the LIA kinetic energy amplification over a shock. This
is the desired result on the refined mesh near the shock because the AMR increases
the mesh cutoff wavenumber by a factor greater than the mean compression ratio of
the shock, suggesting that all modes that are resolved upstream of the shock are also
resolved downstream of the shock within the region of mesh refinement.

The structure function calculation for k̃′ on the coarse mesh sees a noticeably
larger amplification, instead matching the kinetic energy amplification from LIA at
the unresolved wavenumbers. The LIA result is calculated by performing the full
LIA analysis on (7.1) with kc,LIA = 1024, and then taking the ratio of the kinetic
energy in modes with wavenumbers k > 128 in the pre-shock and post-shock field.
The amplification in the high wavenumber modes is larger than the full-spectrum
result due to the mean flow compression in the shock mapping energy towards larger
wavenumbers. In LES on a fixed coarse mesh, the increased amplification is expected,
because the shock compresses high-wavenumber turbulence onto wavenumbers that
the LES does not resolve. The restriction operator from the fine to coarse grid is
conservative, and k̃′cm under-predicts the SGS kinetic energy on the coarse mesh
immediately downstream of the shock. In the shown case, k̃′cm corrects itself fairly
quickly, but in low Mt simulations this is not guaranteed. Thus, k̃′cm is only used
in the SGS stresses (4.6) on the refined mesh, and (4.4) is used to calculate the
SGS kinetic energy on the coarse mesh. The convection equation for k̃′cm, (A 3), is
still computed everywhere in the domain, but is only coupled with the resolved flow
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equations in within the region of AMR about the shock. Extending k̃′cm for use in
the whole domain would require development of a restriction operator capable of
capturing the turbulent kinetic energy lost during restriction from a fine to a coarse
mesh.
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