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The mechanisms of leading-edge vortex (LEV) formation and its stable attachment to
revolving wings depend highly on Reynolds number (Re). In this study, using numerical
methods, we examined the Re dependence of LEV formation dynamics and stability on
revolving wings with Re ranging from 10 to 5000. Our results show that the duration
of the LEV formation period and its steady-state intensity both reduce significantly
as Re decreases from 1000 to 10. Moreover, the primary mechanisms contributing
to LEV stability can vary at different Re levels. At Re < 200, the LEV stability is
mainly driven by viscous diffusion. At 200 < Re < 1000, the LEV is maintained by
two distinct vortex-tilting-based mechanisms, i.e. the planetary vorticity tilting and the
radial–tangential vorticity balance. At Re > 1000, the radial–tangential vorticity balance
becomes the primary contributor to LEV stability, in addition to secondary contributions
from tip-ward vorticity convection, vortex compression and planetary vorticity tilting. It
is further shown that the regions of tip-ward vorticity convection and tip-ward pressure
gradient almost overlap at high Re. In addition, the contribution of planetary vorticity
tilting in LEV stability is Re-independent. This work provides novel insights into the
various mechanisms, in particular those of vortex tilting, in driving the LEV formation
and stability on low-Re revolving wings.

Key words: swimming/flying, vortex dynamics

1. Introduction

The formation and stable attachment of a leading-edge vortex (LEV), which give rise to
the absence of stall, are prominent features of insect flight (Ellington et al. 1996; Wu
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& Sun 2004) and unidirectional revolving wings at high angles of attack (α) (Sun &
Wu 2004; Kim & Gharib 2010; Ozen & Rockwell 2012; Cheng et al. 2013; Garmann,
Visbal & Orkwis 2013; Wolfinger & Rockwell 2014; Carr, DeVoria & Ringuette 2015;
Chen, Wu & Cheng 2019). The attached LEV enables a sustained high lift generation,
which is the underpinning of the hovering capacity and manoeuvrability of insect flight
(Dickinson, Lehmann & Sane 1999; Sane 2003; Sun 2014). In contrast, the LEV generated
by high-α translating wings quickly detaches once it reaches peak intensity and a normal
stall occurs thereafter (Dickinson & Gotz 1993; Jardin & David 2014). There is no doubt
that the revolving nature leads to the distinctly different LEV behaviours between revolving
wings and their translating counterparts. In the literature, the stable attachment of LEV on
revolving wings has been studied extensively, and several hypotheses have been proposed
to explain the mechanisms that contribute to LEV stability.

One of the most well-known hypotheses for LEV stability is the spanwise vorticity
convection, driven by the tip-ward spanwise flow. The vorticity generated from the
leading edge can be transported towards the wing tip under this spanwise convection,
therefore keeping the vorticity within the LEV from being further accumulated. Ellington
et al. (1996) first proposed this hypothesis and postulated that the spanwise flow can
be generated by a spanwise pressure gradient. However, this hypothesis was questioned
subsequently by several research groups using either experiment (Birch & Dickinson 2001;
Birch, Dickson & Dickinson 2004; Cheng et al. 2013) or simulation (Shyy & Liu 2007),
in which no evidence of significant spanwise flow is observed at a Reynolds number (Re)
around 100. Birch et al. (2004) and Shyy & Liu (2007) both showed that the spanwise
flow, as well as the spanwise vorticity convection, occur only when Re reaches 1000. On
the other hand, Lentink & Dickinson (2009) theorized and experimentally investigated
the effects of rotational accelerations, i.e. centrifugal and Coriolis acceleration, on LEV
stability, and postulated that the formation of the spanwise flow behind the LEV is due
to the Ekman pumping phenomenon. They further proposed that rotational accelerations
are inversely proportional to aspect ratio (AR) and thus a wing with smaller AR possesses
stronger rotational accelerations and a more stable LEV. However, their work still did not
affirm a specific mechanism for the LEV stability and does not apply when significant
spanwise flow is absent, for example, at Re = 100.

Inspired by Lentink & Dickinson (2009), the role of Coriolis acceleration in LEV
stability was further investigated by two research groups. Jardin & David (2015) and
Jardin (2017) further supported that the Coriolis acceleration contributes to LEV stability,
whereas Garmann et al. (2013) and Garmann & Visbal (2014) argued that the Coriolis
acceleration is unlikely to stabilize the LEV, at least as a direct mechanism. It should
be noted that the research of the two groups was conducted at different Re levels.
Alternatively, Werner et al. (2019, 2020) mathematically related the tangential Coriolis
acceleration with the radial tilting of planetary vorticity (PVTr) and proposed that PVTr
can be a universal contributor to LEV stability in the ranges Re = 110–1400 and AR =
3–7. The PVTr can be regarded as the reorientation of planetary vorticity into the spanwise
direction, which produces vorticity opposite to that of the LEV.

For other hypotheses on LEV stability, Birch & Dickinson (2001) suggested that the
tip-vortex-induced downwash can promote LEV stability since the LEV remains attached
when fences are positioned along the leading edge to block the spanwise flow. The effective
angle of attack of the wing can be reduced due to this downwash effect, preventing the LEV
from shedding. Wojcik & Buchholz (2014) proposed a vorticity annihilation hypothesis to
explain the unbalanced vorticity flux from the leading-edge shear layer, suggesting that
the opposite-sign vorticity layer between the LEV and the wing surface regulates the
unbalanced vorticity flux.
931 A13-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

95
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.950


Re effects on LEV formation and stability in revolving wings

In general, the LEV on revolving wings is stabilized under complex vorticity dynamics,
which may involve multiple interconnected mechanisms across different Re that still
require a thorough examination. According to Jardin & Colonius (2018), the LEV
dynamics also varies along the wing span, and depends on local radius (or Rossby number,
Ro). Therefore, it is plausible that the relative contributions of the above-mentioned
mechanisms can also vary along the spanwise direction. Moreover, the LEV stability
(including the LEV bursting) is also dependent on Re (Lentink & Dickinson 2009).
Notably, Harbig, Sheridan & Thompson (2013) defined a span-based ReR to better predict
the bursting of vortical structure in their study on the LEV stability of revolving wings
with fruitfly geometry. They further applied this definition to decouple the effects of
Re, AR and Ro on LEV stability and lift generation in revolving wings, but without
focusing on the specific mechanisms of LEV stability (Bhat et al. 2019a,b). It is also
noteworthy that previous studies on LEV dynamics mainly focus on its steady state when it
already becomes approximately stable (i.e. without major shedding). Our previous studies,
however, also emphasized the importance of the LEV formation process and the transient
vorticity dynamics in understanding the LEV stability and the aerodynamics of real insect
flights and flapping-wing micro air vehicles (FWMAVs) (Chen et al. 2019; Chen, Wu &
Cheng 2020). However, the Re dependence of the LEV formation dynamics on revolving
wings has not yet been studied.

In this work, as a follow-up of our previous studies (Chen et al. 2019, 2020), the transient
vorticity dynamics on revolving wings at various Re were studied to fully elucidate the
effects of Re on LEV formation dynamics and stability. The flow data were computed
using the computational fluid dynamics (CFD) method with a fixed wing geometry. The
wing started its rotation from stationary with a constant angular acceleration within a
prescribed distance, followed by a constant-speed rotation. The wing geometry, kinematics
and numerical methods are introduced in § 2. The effects of Re on vorticity dynamics
are presented in § 3, starting with the LEV structure and intensity (§ 3.1). The vorticity
transport mechanisms, including convection, vortex tilting and stretching, and diffusion,
are further discussed in § 3.2, and a summary of Re effects on LEV stability is presented
in § 3.3. Finally, our conclusions are presented in § 4.

2. Materials and methods

2.1. Wing geometry and kinematics
Following our previous simulations (Chen et al. 2020), the revolving wing was modelled
by a rectangular rigid plate with an AR of 3, which is close to the average AR of most
insects (Lentink & Dickinson 2009). The AR was defined as the ratio of span (b) over chord
(c), and a root cutoff (r0) of 0.9c was introduced, as shown in figure 1(a). The thickness
of the wing was 0.03c and the angle of attack (α) was 45◦ throughout the rotation. A
chord-normalized wing travelling distance (λ) at the radius of gyration (Rg) was employed
to describe the revolving motion and LEV evolution, which are defined by

Rg =
√∫ b+r0

0
r2c dr/bc, (2.1)

λ = Rgφ/c, (2.2)

where φ is the revolving angle. The wing underwent a quick acceleration within a
prescribed chord-normalized travelling distance (λa) of 0.5 and then maintained the

931 A13-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

95
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.950


L. Chen, L. Wang, C. Zhou, J. Wu and B. Cheng

Y

0

0 2 3 4 5 6 7 8

Chord lengths of travel at radius of gyration (λ)

Ω0

1

Z

X

Revolving

b

c

r0

θ

A(x, y, z)

ex

ey

ez
er

ey

et

θ

Ωy

(a) (b)

Figure 1. Schematics of wing geometry and kinematics: (a) the rectangular rigid wing model and (b) the
revolving speed. The global and rotating Cartesian frames at a selected point A (x, y, z) are shown by base axes
(ex, ey, ez) and (et, ey, er), respectively. The tangential (et) and radial (er) axes vary with the azimuth angle (θ )
of point A.

Species Span (mm) f (Hz) φ (deg.) φRg/c Reest

Wasp (Encarsia formosa) 0.7 370 120 4.4 18
Vegetable leafminer (Liriomyza sativae) 1.4 265 182 6.2 40
Fruitfly (Drosophila) 3 240 150 3.5 150
Hoverfly (Episyrphus balteatus) 7 175 85 2.3 250
Blue blowfly (Calliphora erythrocephala) 9.7 159 120 3.2 1000
Dronefly (Eristalis tenax) 12.7 182 120 3.2 2000
Bumblebee (Bombus terrestris) 17.3 156 150 2.8 4500
Hawkmoth (Manduca sexta) 54 27.3 120 2.6 6700

Table 1. Wing span, kinematics and estimated Reynolds number of typical insect species during hover. The
span is measured on a single wing and φ denotes the full stroke angle.

constant revolving speed (Ω0) until λ = 8 (figure 1b). Note that the total revolving angle
was about 180◦ and no stable downwash induced by multiple rotations was involved here.

In this study, the reference velocity was the constant revolving velocity at Rg, and τ

denoted the dimensionless time. The chord was selected as the length reference and thus
Re was calculated as

Re = Ω0Rgc/ν, (2.3)

where ν denoted the kinematic viscosity. According to the morphology and kinematics of
insect wings (Weis-Fogh 1973; Mou, Liu & Sun 2011; Cheng & Sun 2016) (table 1), the
Re of our research was limited to between 10 and 5000, corresponding to the estimated
Reynolds numbers (Reest) of most insect species during hover.

2.2. Numerical method and simulation set-up
The unsteady flow generated by low-Re revolving wings is governed by the
three-dimensional (3-D) incompressible unsteady Navier–Stokes equations,

∇ · u = 0,

∂u/∂τ + (u · ∇)u + ∇p − ∇2u/Re = 0,

}
(2.4)

where u and p denote the velocity and static pressure. The governing equation was
discretized using a node collocated arrangement of primitive variables and then solved
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Figure 2. (a) The O–H computational mesh and (b) the validation of mesh density.

using an in-house solver. Based on the artificial compressibility method, the in-house
solver implemented an implicit scheme with second-order spatial and time accuracy.
Owing to the low-Re regime in our study, the flow was dominated by laminar structures,
and therefore no turbulence model was included. For more information of the solver,
please refer to Chen et al. (2020). An O–H (topology style) mesh was used in our
numerical set-up to discretize the flow domain around the wing (figure 2a) and a thorough
validation of the mesh was conducted based on a typical revolving motion at Re = 1500
and α = 45◦. The mesh with a moderate density was employed, i.e. 81 × 81 × 91 nodes
in wing-normal, chordwise and spanwise directions (figure 2b). The domain size, first
grid distance from wing surface and dimensionless time step were 30c (wing-normal and
spanwise directions), 0.001c and 0.0075, respectively. In addition, the accuracy of our
numerical method was also proved in our previous studies on revolving wings (Chen et al.
2020) and pitching–flapping perturbed revolving wings (Chen et al. 2018; Wu et al. 2019),
where a comparison of unsteady aerodynamic forces with dynamically scaled robotic wing
experiments was conducted.

2.3. Data analysis
Owing to the rotational nature of the wing, the analysis of flow data and transient vorticity
dynamics was carried out based on a set of rotating Cartesian frames (Cheng et al. 2013;
Werner et al. 2019), as shown by the base axes (et, ey, er) in figure 1(a). The local rotating
Cartesian frame is defined according to the azimuth angle (θ ) of the grid point and is fixed
throughout the entire wing motion. As shown in figure 1(a), the tangential and radial axes
of the local rotating Cartesian frame are perpendicular and parallel to the segment between
the grid point and the centre of rotation and therefore rotate with the point of interest
about the fixed vertical axis. Note that the positive tangential and radial directions are
defined as the backward direction (with respect to the revolving motion) and the centripetal
direction (with respect to the origin), respectively. All vector quantities in the global frame
are therefore projected into the rotating Cartesian frames using the rotation matrix J(θ),

J(θ) =
⎡⎣sin(θ) 0 −cos(θ)

0 1 0
cos(θ) 0 sin(θ)

⎤⎦ . (2.5)

Given our definition of reference length and velocity (§ 2.1), the analysis of flow data
and vorticity transport was conducted according to the non-dimensional Navier–Stokes
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equation (2.6) and the non-dimensional vorticity transport equation (2.7) in the co-rotating
frame:

du∗/dτ = −∇p − Ω × (Ω × r) − 2Ω × u∗ + ∇2u∗/Re, (2.6)

∂ω∗/∂τ = −(u∗ · ∇)ω∗ + (ω∗ · ∇)u∗ + (2Ω · ∇)u∗ + ∇2ω∗/Re. (2.7)

Here u∗ = u − Ωr and ω∗ = ω − 2Ω represent the relative velocity and vorticity in
the co-rotating frame, and Ω denotes the angular velocity of the wing. The first three
terms on the right-hand side of (2.6) are pressure gradient, centrifugal acceleration and
Coriolis acceleration that manipulate the motion of a fluid particle. In (2.7), the terms
−(u∗ · ∇)ω∗, (ω∗ · ∇)u∗, (2Ω · ∇)u∗ and ∇2ω∗/Re represent the convection, vortex
tilting and stretching, planetary vorticity tilting, and diffusion, that determine the vorticity
transport at a fixed position. Since the LEV formation and stability are usually represented
by the evolution of radial vorticity, the radial component of (2.6) and (2.7) are thus the
focus of our following discussion, as given by (2.8) and (2.9):

du∗
r /dτ = −∂p/∂r︸ ︷︷ ︸

Fpre

+ Ω2
y r︸︷︷︸

Fcen

+ 2Ωyu∗
t︸ ︷︷ ︸

Fcor

+∇2u∗
r /Re, (2.8)

∂ω∗
r /∂τ = −(u∗ · ∇)ω∗

r + (ω∗ · ∇)u∗
r + (2Ωy∂u∗

r /∂y)︸ ︷︷ ︸
PVTr

+∇2ω∗
r /Re︸ ︷︷ ︸

D

. (2.9)

The radial components of pressure gradient, centrifugal acceleration and Coriolis
acceleration are abbreviated as Fpre, Fcen and Fcor in our research. The first two terms
on the right-hand side of (2.9) can be further expanded as:

−(u∗ · ∇)ω∗
r = −u∗

t ∂ω∗
r /∂t︸ ︷︷ ︸

Ct

−u∗
y∂ω∗

r /∂y︸ ︷︷ ︸
Cy

−u∗
r ∂ω∗

r /∂r︸ ︷︷ ︸
Cr

, (2.10)

(ω∗ · ∇)u∗
r = ω∗

t ∂u∗
r /∂t︸ ︷︷ ︸

Tt→r

+ω∗
y∂u∗

r /∂y︸ ︷︷ ︸
Ty→r

+ω∗
r ∂u∗

r /∂r︸ ︷︷ ︸
Sr

. (2.11)

Here, Ct, Cy and Cr denote the convection of radial vorticity due to tangential, vertical
and radial flows; and Tt→r and Ty→r represent the vortex tilting of tangential and vertical
vorticity components into the radial direction, whereas Sr is the vortex stretching (or
compression) of radial vorticity component. The radial tilting of planetary vorticity (PVTr)
and the viscous diffusion are explicitly defined in (2.9). Our following discussion on
LEV formation dynamics and stability is based on an examination of the spatial–temporal
evolution of these vorticity transport components. Note that the gradient tensors in the
rotating Cartesian frames can be calculated from their counterparts in the global frame
using the chain rule.

The vorticity transport components at a specific grid point can be calculated according to
(2.9)–(2.11). However, their overall impact should be estimated using an integration within
the LEV region. Following our previous procedure (Chen et al. 2019, 2020), a series of 40
cylindrical slices (evenly distributed from root to tip) are introduced to cut through the flow
domain (figure 3a). The LEV region within a specific cylindrical slice is outlined by the
intersection of Q > 1 and ω∗

r < 0 (figure 3b), where Q is the second invariant of velocity
gradient (Jeong & Hussain 1995). The threshold of Q criteria is chosen by a sensitivity
study. (Details can be found in the supplementary material available at https://doi.org/10.
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Figure 3. Schematics showing the definition of LEV region: (a) three representative cylindrical slices that
discretize the vortical structure outlined by Q = 1 and (b) radial vorticity within the mid-span cylindrical slice.
The Re and λ are 1500 and 1.5.

1017/jfm.2021.950.) Therefore, the LEV circulation on the ith t–y plane (Γ (i)) is estimated
using the following equation:

Γ (j) =
∑
LEV

ω∗
r (t, y) dS(t, y). (2.12)

Here, dS(t,y) denotes the area element for the grid point at (t, y) in the cylindrical slice;
and

∑
LEV infers that the summation is conducted within the LEV region defined above.

The volumetric average of LEV intensity (Γ̃ ) is thus expressed as the average of Γ (1) to
Γ (40).

3. Results

3.1. Leading-edge vortex intensity and structure
The Re effects on transient and stable LEV intensity are first examined (figure 4). Here,
Γ̃ is used as a measure to characterize the LEV formation. Similar to our previous study
at Re = 1500 (Chen et al. 2019), the LEV intensity of revolving wings with Re > 500
experiences a steep increase after the onset of the motion and then levels off while reaching
the steady state. For revolving wings with Re < 500, an overshoot of LEV intensity is
observed after the steep increase and thereafter Γ̃ falls back to the steady value. In general,
Γ̃ becomes steady within the constant-speed revolving phase and the arrival timing of
the stable LEV (in terms of the chord length of travel) increases with Re, e.g. λc ≈ 1.5
(Re = 10), λc ≈ 3 (10 < Re < 200) and λc ≈ 4 (200 < Re < 5000). Here, λc represents
the critical travel distance at Rg when arriving at the steady Γ̃ . If not noted otherwise,
we regard the arrival of steady Γ̃ as the achievement of a stable LEV in our following
discussion. Note that, for revolving wings with Re = 1000–5000, a slight increase of Γ̃ is
observed at λ > 4, which was also seen in our previous research (Chen et al. 2019, 2020).
However, this slight enhancement is less than 10 % of the stable LEV intensity, and thus is
not considered when estimating λc. In addition to the transient Γ̃ , the stable LEV intensity
(Γ̃s) also experiences an asymptotic trend over Re (figure 4b). A stronger stable LEV is
generated on the revolving wing at a higher Re and an approximately linear trend over
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Figure 4. Effects of Re on LEV intensity and lift generation: (a) transient LEV intensity (Γ̃ ), (b) stable LEV
intensity (Γ̃s) and (c) transient lift coefficient (CL). The solid symbols in panel (a) indicate that the LEV
intensity is saturated, and the Γ̃s in panel (b) is calculated as the average of these solid dots with error bars
denoting the standard deviations.

log10 Re is established within Re < 500. However, the Γ̃s plateaus when Re is above 500,
indicating the existence of a limit for stable LEV intensity on revolving wings.

In addition, as shown in figure 4(c), the transient lift coefficients (CL) at all Re almost
reach their steady states by the end of acceleration, despite the fact that a slight fluctuation
is observed at a Re higher than 1000. An increase of Re from 10 to 1000 leads to an
enhancement of lift generation, which diminishes when Re is further increased.

Considering both transient and stable LEV intensity, it is evident that the effects of Re
are stronger when Re is below 1000. To further elucidate the Re effects and understand
the mechanisms behind the LEV formation and stability, we focus on the revolving wings
at Re = 10, 100 and 1500 in the following sections. These Re are representative of those
corresponding to the hovering flights of common insect species that have been studied,
i.e. wasps, fruitflies and bees (table 1).

The evolution of 3-D vortical structure is shown in figure 5(a). At Re = 1500, a
prominent vortex loop, including LEV, starting vortex, tip vortex and root vortex, is
generated immediately after the start of the motion. During the steady state (λ > 4),
the LEV is stable up to 63 % span and an unsteady vortical region is observed near
the tip. The stable LEV region is defined within the spanwise section where the LEV
circulation remains approximately unchanged from λ = 4 (figure 5b). According to the
vortical structure (figure 5a), the local LEV at the outboard limit of the stable LEV region,
which is approximately 3, reaches the trailing edge, supporting the conclusions of Lentink
& Dickinson (2009) and Jardin (2017). As Re decreases to 100, the vortical structure
becomes steadier but less compact. Moreover, the stable LEV region is slightly enlarged
and less unsteady vortical behaviour is seen around the tip. As Re further decreases to 10,
the vortex ring remains attached to the rim and the LEV is stable along the entire span.
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Figure 5. Effects of Re on LEV structure: (a) 3-D vortical structure (outlined by Q = 2) coloured by vorticity
components and (b) spanwise distribution of LEV circulation and local tangential vorticity (ω̂t). RGB values of
the isosurface colour correspond to the magnitudes of vorticity components: ω∗

t , red; ω∗
y , green; and -ω∗

r , blue.

When comparing vorticity components within the stable LEV region, a remarkable feature
is that the LEV is a mixture of radial vorticity (ω∗

r ) and tangential vorticity (ω∗
t ), which is

more apparent at Re = 100 and 1500 (see RGB colours in figure 5a). This mixing of ω∗
r

and ω∗
t can result from the vortex tilting of radial vorticity components into the tangential

direction.
The spanwise distributions of local LEV circulation (Γ ) and tangential vorticity (ω̂t) are

shown in figure 5(b). Here, ω̂t is calculated by integrating the tangential vorticity within
the LEV region. During the entire LEV formation, a linear increase of Γ along the span
is observed for all three Re, except for the wing tip region, where the interaction of LEV
and tip vortex breaks the linear trend. Moreover, the increase of Re leads to a stronger
Γ at a certain radius and instant (λ). At Re = 100 and 1500, the ω̂t also experiences
a linear increase along the span and then drops near the wing tip. An increase of Re
also enhances the strength of the tangential vorticity; however, no significant tangential
vorticity is observed within the LEV at Re = 10. Note that the tangential vorticity near the
tip can be negative during the LEV formation period (λ = 1.5 and 4), which is excluded
from figure 4(b). The similar behaviours of Γ and ω̂t at Re = 100 and 1500 further suggest
that radial vorticity and tangential vorticity may have coupled vorticity dynamics that are
relevant to LEV stability.

3.2. Radial vorticity transport
To further evaluate the contributions of various mechanisms to the LEV formation and
stability, a thorough analysis of radial vorticity transport is conducted. (A verification
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of this quantitative analysis is provided in the supplementary material.) The analysis
starts with an inspection of local convection and vortex tilting and stretching at different
spanwise sections at Re = 1500 and 100 (referred to as ‘sectional analysis’, §§ 3.2.1 and
3.2.2), followed by a spatial–temporal analysis of vorticity transport terms within the entire
Re range (§ 3.2.3, including viscous diffusion). Owing to the relatively simple structure
and low intensity of the LEV, no sectional analysis is conducted at Re = 10.

3.2.1. Sectional analysis at Re = 1500
The convections of radial vorticity due to tangential and vertical flow (Ct and Cy) are
observed after the onset of wing rotation, and their intensities increase until the steady
state (λ = 4). As shown in figure 6(a), the downstream convection of negative radial
vorticity (C(+)

t towards C(−)
t ) behind the leading edge feeds radial vorticity into the

LEV. In addition, the downward convection of negative radial vorticity (C(+)
y towards

C(−)
y ) behind the wing can further transport the LEV vorticity towards the trailing edge

(figure 6b). Together, these convections prevent the LEV from continuously growing
into the downstream direction and lead to its chord-aligned expansion. The downward
convection of radial vorticity is also relevant to the tip-vortex-induced downwash effect
(Birch & Dickinson 2001). For brevity, only steady-state Ct and Cy at λ = 4 are shown
here since the only quantitative difference is observed during their formations towards the
steady state. Note that these two vorticity convections become incoherent around the tip,
which introduces strong unsteadiness into the evaluation of local LEV.

While the downstream and downward convection of radial vorticity might explain the
primary source and drain of LEV vorticity, the saturation of LEV intensity should also
be attributed to other vorticity transport mechanisms that continuously remove the radial
vorticity of the LEV, leading to a dynamic equilibrium. One of the possible contributors
is the radial (spanwise) convection of radial vorticity (Cr), which is shown in figure 6(c–f )
for the LEV formation period. Two representative slices A and B are selected at 0.25b
and 0.5b, respectively, and a positive Cr (C(+)

r ) indicates tip-ward convection of negative
radial vorticity. It is found that a strong C(+)

r transports the radial vorticity towards the
tip during the entire LEV formation period. The region of this strong C(+)

r is initially
extended beyond the mid-span (red tube-shaped region, figure 6c, A-i and B-i) but tends
to be confined within the mid-span afterwards (figure 6d–f, A-i and B-i). Moreover, a
significant C(−)

r region is observed where the LEV contacts the wing surface (especially
around mid-span), indicating an enhancement of radial vorticity (blue region in figure 6c,
B-i). Therefore, the integral of total Cr at the steady state is characterized by a reduction of
radial vorticity near the wing root and a local enhancement around the mid-span (λ > 4).
The C(+)

r in the inboard region, e.g. 0.25b, is sustained under the steady state (figure
6d–f, A-i). Note that the chordwise C(+)

r region at a specific spanwise position is mostly
located in the downstream boundary of the LEV (behind the local C(−)

r region). The spatial
complexities of C(+)

r and C(−)
r in the LEV region are further elaborated in § 3.2.3. Note

that no significant tip-ward vorticity convection is observed in the unsteady LEV region,
i.e. outboard region beyond the mid-span, during the entire evolution.

To explain the behaviours of tip-ward vorticity convection, the evolution of spanwise
flow, Fpre and Fcor, on two representative slices is discussed here (figure 6c–f , iii and iv).
The Fpre and Fcor are examined here as possible driving forces of spanwise flow, whereas
the contribution of centrifugal acceleration is ignored. This is because the centrifugal
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Figure 6. Convection of radial vorticity at Re = 1500: (a) steady-state tangential convection (Ct),
(b) steady-state vertical convection (Cy), and (c–f ) evolution of spanwise convection (Cr). The radial velocity
(ur), pressure gradient (Fpre) and Coriolis acceleration (Fcor) on two representative cylindrical slices A and B
(0.25b and 0.5b) are shown in panels i to iv, with the vortical region circled by Q = 1. Here, Ĉr is the integral
of Cr within the LEV region.
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acceleration is weaker than the pressure gradient and Coriolis acceleration and remains
constant within the cylindrical slice at 0.25b or 0.5b. In addition, since the strong spanwise
flow is mostly located above the upper surface of the wing (figure 6c–f, A-ii), the Fpre
and Fcor, instead of the centrifugal acceleration, are more likely to be responsible for the
formation of spanwise flow. It can be observed that a strong spanwise flow exists within
the LEV at 0.25b (figure 6c–f, A-ii) and extends into the wake and covers the entire dorsal
surface of the wing at 0.5b (figure 6c–f, B-ii).

Moreover, an apparent tip-ward pressure gradient (Fpre) exists near the downstream edge
of the LEV at 0.25b (figure 6c–f, A-iii), overlapped with regions of the local spanwise
flow. However, the Fpre inside the LEV is reversed at 0.5b and the local tip-ward Fpre
region becomes dispersed behind the LEV (figure 6c–f, B-iii). The contribution of Fcor
in the formation of spanwise flow is significantly weaker than that of Fpre, although the
tip-ward Fcor region shows a good agreement with the local tip-ward spanwise flow at
both 0.25b and 0.5b (figure 6c–f, A-iv and B-iv). Comparing the regions of C(+)

r and
Fpre, it is remarkable that C(+)

r regions can be well predicted by those of tip-ward Fpre

at both 0.25b and 0.5b, which suggests that the reduction of C(+)
r around the mid-span

(beyond which LEV becomes less stable) can be attributed to the lack of tip-ward pressure
gradient. Therefore, despite the fact that the tip-ward spanwise flow is usually considered
as a source of tip-ward vorticity convection (Ellington et al. 1996; Wu & Sun 2004), our
result suggests that the tip-ward vorticity convection is strongly related to the establishment
of tip-ward pressure gradient.

Apart from convections of radial vorticity, the vortex tilting and stretching also
contribute to the LEV stability. We examined the vortex tilting and stretching at two
representative slices at Re = 1500 (figure 7, slices A and B), including a decomposition
into four components (panels i to iv showing Tt→r, Ty→r, PVTr and Sr, respectively).
The integrals of vortex tilting and stretching within the LEV region are plotted over the
span (i.e. T̂t→r, P̂VTr and Ŝr). The overall contribution of vortex tilting and stretching
can balance the LEV vorticity around the mid-span (first column in figure 7b–d). When
separating into individual components, the Tt→r and PVTr are dominated by their positive
subterms (T(+)

t→r and PVT(+)
r ) in the LEV region and consistently remove LEV vorticity

within the mid-span (second and fourth columns in figure 7b–d).
Among all vortex tilting and stretching in the radial direction, Tt→r has the strongest

intensity and occurs within the entire half-span from the root (T̂t→r in figure 7a–d).
The contribution of PVTr remains consistent along the entire span but at a considerably
lower magnitude (P̂VTr in figure 7a–d). Moreover, PVTr exhibits low spatial–temporal
variations, indicating that it is a consistent mechanism removing LEV vorticity during both
the formation period and steady state. In contrast, the evolution of Sr is more complex. The
Ŝr at 0.25b indicates a vortex stretching (enhancement) of radial vorticity during the LEV
formation (A-iv in figure 7a–d) whereas a strong vortex compression (removal) of radial
vorticity is observed around the mid-span during λ = 4–6 (B-iv in figure 7b–d). From the
Ŝr in figure 7, the peak of vortex compression is generated around the wing tip at λ = 1.5
and then moves towards the mid-span until the steady state. This inward movement of Ŝr
peak can compensate for the local reduction of tip-ward vorticity convection (figure 6d–f ),
and thus helps to remove the local LEV vorticity.

From above, Tt→r is one of the most important contributors to LEV stability at
Re = 1500. On the other hand, the vortex tilting from radial vorticity into the tangential
direction (Tr→t), as indicated by the 3-D LEV structure in figure 5(a), contributes to the
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Figure 7. Vortex tilting and stretching in the radial direction at Re = 1500: (a) λ = 1.5, (b) λ = 4, (c) λ = 5
and (d) λ = 6. The representative slices A and B are defined in figure 6. Here, T̂t→r , P̂VTr and Ŝr are the
integrals of Tt→r , PVTr and Sr within the LEV region.

development of tangential vorticity. Thus, the tangential vorticity transport terms within
the LEV are examined. Here, the convection of tangential vorticity is omitted and only
the tangential components of vortex tilting in (2.7), including Tr→t, Ty→t and PVTt, are
discussed. Since the tangential vorticity within the LEV is mostly positive (figure 8a),
positive values of Tr→t, Ty→t and PVTt, i.e. T(+)

r→t, T(+)
y→t and PVT(+)

t , indicate an increase
of local tangential vorticity. As shown in figure 8(a), T(+)

r→t and PVT(+)
t tend to enhance

the tangential vorticity in the inboard region. In the outboard region, PVT(+)
t is the main

source that enhances local tangential vorticity. According to the derivation of Werner
et al. (2019), the PVTt is mathematically related to the vertical gradient of radial Coriolis
acceleration. Thus, the radial Coriolis acceleration is found to be strongly related to the
increase of tangential vorticity.

According to the T(+)
t→r and T(+)

r→t shown in figures 7 and 8, there exists a conversion
between radial vorticity and tangential vorticity within the mid-span, resembling a
negative feedback loop that stabilizes the vorticity in both directions. When the local radial
vorticity (tip-ward) accumulates, the local tangential vorticity also increases via induced
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Figure 8. The balance of radial and tangential vorticity at Re = 1500. (a) Vortex tilting in the evolution of
tangential vorticity and (b) a schematic of primary stabilizing mechanisms (SMs) in the stable LEV region.
The isosurfaces are drawn by ω∗

t = 2 and Q = 2.

vortex tilting (T(+)
r→t). This further enhances the vortex tilting of tangential vorticity into

the positive radial direction (T(+)
t→r), which is opposite to the radial vorticity in the LEV.

This conversion functions as a negative feedback loop that attenuates the increase of local
tip-ward radial vorticity, leading to a dynamic equilibrium, i.e. a steady state. Therefore,
it is likely that the stable LEV in the inboard region can be mainly attributed to this
mechanism, which we name as ‘radial–tangential vorticity balance’ (RTVB). In summary,
the stable LEV in the inboard region at Re = 1500 is mainly led by three stabilizing
mechanisms (SMs), including tip-ward vorticity convection, RTVB and planetary vorticity
tilting (figure 8b). In terms of the intensity of these SMs, the RTVB contributes most to
the inboard LEV stability (see T(+)

t→r in figure 7). It should be noted that the tangential
tilting of planetary vorticity, which is related to the radial Coriolis acceleration, is one
of the main sources of tangential vorticity, and therefore also contributes towards the
LEV stability, albeit indirectly, via the RTVB mechanism. The RTVB and the PVTr are
sustained within the entire stable LEV region whereas the tip-ward vorticity convection
becomes diminished around the mid-span at the steady state (figure 6). The local reduction
of tip-ward vorticity convection around mid-span is compensated by the increase of vortex
compression of radial vorticity (figure 7).

3.2.2. Sectional analysis at Re = 100
As Re decreases to 100, the stable LEV region is extended towards the wing tip while
the conical LEV structure becomes less compact (figure 5a). Meanwhile, the strength
of most vorticity transport terms (except PVTr) is reduced. As shown in figure 9, the
tangential convection and the vertical convection (Ct and Cy) resemble their counterparts
at Re = 1500, whereas the 3-D structures become more stable (figure 9a,b). Moreover, the
tip-ward vorticity convection is also present (outlined by the positive Cr, i.e. C(+)

r , in figure
9c–e) and therefore contributes to LEV stability at Re = 100. However, while the C(+)

r
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region extends beyond the mid-span during LEV formation, it becomes more confined
towards 0.25b at the steady state (figure 9e). Moreover, the spanwise flow (tip-ward)
covers most of the dorsal wing surface at Re = 100, which is not well overlapped with
the LEV region (figure 9c–e, A-ii and B-ii). Note that an apparent tip-ward spanwise flow
is formed at the mid-span whereas less local tip-ward vorticity convection is observed
(figure 9c–e). Similar to the Re = 1500 case, the C(+)

r region can also be mostly predicted
by that of tip-ward pressure gradient (Fpre) at Re = 100. For the generation of spanwise
flow, the contributions of Fpre and radial Coriolis acceleration (Fcor) are comparable.
Since the tip-ward Fcor region shows a good agreement with tip-ward spanwise flow, it
can be inferred that the spanwise flow at Re = 100 is mainly driven by radial Coriolis
acceleration, the mechanism of which is akin to the Ekman pump as described by Lentink
& Dickinson (2009).

The evolution of vortex tilting and stretching is further examined at Re = 100 (figure 10).
Note that the results at λ = 0.5 are insignificant and are not shown here. As Re decreases
to 100, T(+)

t→r and PVT(+)
r become the two dominant vorticity transport mechanisms

that contribute to LEV stability (figure 10b,c). Unlike the Re = 1500 case, the intensity
of PVT(+)

r is now stronger than that of T(+)
t→r within the LEV (shown by T̂t→r and

P̂VTr). The LEV vorticity at 0.25b is mainly removed by PVT(+)
r while both T(+)

t→r and
PVT(+)

r contribute to LEV stability at 0.5b. When comparing P̂VTr at Re = 100 and 1500
(figures 7 and 10), it is found that the intensity and spanwise distribution of P̂VTr remain
almost identical as Re decreases, indicating that the contribution of PVTr in LEV stability
is almost Re-independent.

To further examine the Re dependence of the RTVB mechanism, the temporal variation
of tangential vorticity and the contribution of vortex tilting at Re = 100 are shown in
figure 11. Since the vortex stretching becomes negligible at Re = 100 (figure 10), no
discussion on vortex stretching is presented here. It is shown that the vortex tilting from
radial vorticity into the tangential direction (T(+)

r→t) exists in the entire LEV region during
its formation (λ < 2) and stabilizes within the inboard region at the steady state. Together
with the strong T(+)

t→r shown in figure 10, it can be seen that the RTVB mechanism also
contributes to the LEV stability at Re = 100. Moreover, the PVTt, which is related to the
radial Coriolis acceleration, contributes consistently towards the development of tangential
vorticity at both Re = 100 and 1500. In summary, as Re decreases to 100, the three SMs
illustrated in figure 8(b) still all contribute to the inboard LEV stability, but with varied
relative magnitudes. The tip-ward vorticity convection (SM1) and the RTVB (SM2) are
significantly reduced in strength at Re = 100, while the intensity and distribution of the
radial tilting of planetary vorticity (SM3) are almost Re-independent between Re = 100
and 1500.

3.2.3. Discussion on the spatial distribution of spanwise convection and vortex
stretching

According to our sectional analysis, the overall integrals of Tt→r and PVTr are dominated
by, and therefore can be represented by, their positive subterms T(+)

t→r and PVT(+)
r .

(Integrals of T(−)
t→r and PVT(−)

r are available in the supplementary material). However,
the spanwise convection and vortex stretching have more complex spatial distributions
with positive and negative subterms occupying distinct regions within the LEV. Thus,
here we express Ĉr and Ŝr as the sum of two sub-integrals, i.e. Ĉr = Ĉ+

r + Ĉ−
r , where
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Figure 9. Convection of radial vorticity at Re = 100: (a) steady-state Ct, (b) steady-state Cy and
(c–e) evolution of Cr. Details about the various panels can be found in figure 6.

Ĉ+
r and Ĉ−

r denote the integrals of positive and negative subterms of Cr within the
LEV. As shown in figure 12(a), the Ĉ+

r peaks are located at around 25 % span at the
steady state (region I) while the Ĉ−

r peaks are shifted towards the mid-span (region II).
Moreover, the Ĉ−

r peaks are stronger than those of Ĉ+
r , thus leading to the negative

sign of total Ĉr shown in figure 6. According to the 3-D structures in figure 12(a) and
representative slices in figure 6(c–f ), the C(+)

r is mostly located behind the C(−)
r and

near the downstream boundary of the LEV. This indicates that the radial vorticity can
maintain a better attachment near the leading edge since the C(−)

r region is closer to the
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Figure 10. Vortex tilting and stretching in the radial direction at Re = 100: (a) λ = 1, (b) λ = 2 and
(c) λ = 4. The representative slices A and B are defined in figure 9.

λ = 0.5O

y
–er
ey
et

Rotation

λ = 1 λ = 2 λ = 4
Tilted –ωr

∗

PVTt

PVTt
(+)

T y→t
(+) T r→t

(+)

Figure 11. Vortex tilting in the evolution of tangential vorticity at Re = 100. The isosurface is drawn by
ω∗

t = 1.

wing surface. Note that the Ĉ+
r and Ĉ−

r experience a similar behaviour at Re = 100 (shown
in the supplementary material).

In figure 12(b), the separation of Ŝ+
r and Ŝ−

r shows that the steady-state Sr are dominated
by positive subterms (compression) beyond the mid-span, although there can be multiple
peaks of Ŝ+

r at λ = 6. The Ŝ+
r is developed from the wing tip and then spreads towards

the inboard region (see region I of 3-D structures). In contrast, the steady-state Sr in
the inboard region mainly results in a vortex stretching effect, which enhances the local
radial vorticity (region II). According to the representative slices in figure 8, the mid-span
S(+)

r is located around the core of the LEV whereas the local S(−)
r is at the top of the

LEV (and with a weaker intensity). Therefore, the contribution of Sr in LEV stability at
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Figure 12. Positive and negative subterms of spanwise convection and vortex stretching in the LEV region at
Re = 1500: (a) spanwise convection and (b) vortex stretching.

Re = 1500 depends on the spanwise location, and a switch from vortex stretching to vortex
compression occurs around the mid-span.

3.2.4. Mechanisms contributing to LEV stability: a spatial–temporal analysis
The spatial–temporal variation of primary vorticity convection and vortex tilting and
stretching terms at varying Re is summarized in figure 13. Five representative slices are
presented to demonstrate the spatial variation along the span, and the integrals of positive
subterms in Cr, Tt→r, PVTr and Sr, i.e. Ĉ+

r , T̂+
t→r, P̂VT+

r and Ŝ+
r , are considered here.

First, it is evident that the radial tilting of planetary vorticity (P̂VT+
r ) not only is almost

Re-independent (when Re is higher than 100) but also has the least spatial (spanwise)
and temporal variations when fully developed (figure 13c). In contrast, tip-ward vorticity
convection (Ĉ+

r ) is mostly confined within the mid-span and becomes stronger when
Re > 1000 (figure 13a). Note that the strong Ĉ+

r at 0.9b is attributed to the interaction
with the tip vortex. At Re > 1000, Ĉ+

r beyond the mid-span (at the steady state) is absent
while vortex compression (Ŝ+

r in figure 13d) assists in stabilizing the local LEV. Once the
Re is below 100, the Ĉ+

r and Ŝ+
r are both negligible.

The Re effect on the radial tilting of tangential vorticity (shown by T̂+
t→r) is strong

and there is a steep reduction of intensity as Re decreases from 500 to 100 (figure 13b).
The main T̂+

t→r region is mostly located within the mid-span at Re > 1000. The RTVB
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Figure 13. The effects of Re on the spatial–temporal evolution of vorticity convection, vortex tilting and
stretching that contribute to LEV stability: (a) Ĉ+

r , (b) T̂+
t→r , (c) P̂VT+

r and (d) Ŝ+
r .

illustrated in figure 8 is related to this strong T̂+
t→r. Consequently, the inboard LEV

stability of revolving wings at Re > 1000 can be mainly attributed to the tip-ward vorticity
convection, RTVB and the radial tilting of planetary vorticity, despite the fact that the
vortex compression also contributes to LEV stability near mid-span. For Re around 100,
the radial tilting of planetary vorticity and RTVB become the two main mechanisms.

As Re further decreases to 10, the effects of vorticity convection and vortex tilting and
stretching in LEV formation and stability become negligible (which can be inferred from
figure 13), indicating that the vorticity generated from the leading edge remains close to the
rim. Therefore, the 3-D LEV structure at Re = 10 is closely aligned with the leading edge
and no conversion of radial vorticity and tangential vorticity is observed (figure 5a). In our
following discussion, it is found that viscous diffusion (D in (2.9)) regulates the increase of
radial vorticity within the LEV at Re = 10. The positive viscous diffusion within the LEV
region is integrated (D̂ in figure 14a) and a linear increase of D̂ over the span is observed at
both Re = 10 and 100. The viscous diffusion in the LEV region is reduced as Re increases
and becomes almost negligible at Re > 1000. According to a spatial–temporal analysis of
integrated viscous diffusion within the LEV, i.e. D̃ (figure 14b), the contribution of viscous
diffusion in LEV stability is comparable to the PVTr and RTVB when Re is about 200 (the
legends of figures 13 and 14 are identical). For revolving wings with Re < 200, the viscous
diffusion starts to dominate the evolution of radial vorticity. Since other vorticity transport
mechanisms are almost negligible at Re = 10, the conical LEV structure at this Re level
is maintained under the balance of vorticity shedding from the leading edge and viscous
diffusion. Note that the D̃ can experience a transient overshoot at the end of acceleration
(λ = 0.5) at Re < 100, as shown by the star in figure 14(b).

3.3. Re effects on the mechanisms of LEV stability
Based on the above analyses, the primary mechanisms of LEV stability are strongly
Re-dependent. For a revolving wing at extremely low Re, e.g. Re = 10, no vorticity
convection, vortex tilting and stretching are observed over the LEV formation.
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Figure 14. The effects of Re on viscous diffusion within the LEV region: (a) spanwise distribution and
(b) spatial–temporal analysis. The plain line in figure 13(b) shows the contour line at D̃ = 2.5.

The vorticity generated at the leading edge accumulates around the rim and is regulated
by strong viscous diffusion, thus leading to a stable LEV. The contribution of viscous
diffusion on LEV stability is dominant until Re increases to 200 (figure 14b), when
vortex tilting becomes comparable (figure 13b,c). The vortex tilting includes the tilting
of planetary vorticity (PVTr) and the tilting of tangential vorticity into the radial direction
(Tt→r). The PVTr was first proposed by Werner et al. (2019, 2020) and a close relationship
between PVTr and tangential Coriolis acceleration was elucidated in their work. The Tt→r
together with the tilting from radial vorticity into the tangential direction (Tr→t) establish
a dynamic two-step balance between radial vorticity and tangential vorticity, i.e. RTVB.
This novel mechanism resembles a negative feedback loop with the two-step balance as
the feedback path that regulates the LEV vorticity. Notably, both Tt→r and Tr→t stem from
the nature of revolving motion, since the former contains the tangential gradient of radial
velocity (∂u∗

r /∂t) and the latter contains the radial gradient of tangential velocity (∂u∗
t /∂r),

respectively. The first step in conversion of RTVB (or the first step of the analogous
feedback path) refers to the tilting of negative radial vorticity into the positive tangential
direction, while the second step refers to the tilting of positive tangential vorticity back
into the positive radial vorticity, and therefore forms a negative feedback path. As a result,
any increase of local radial vorticity in the LEV can be regulated, at least partially, by this
feedback loop.

For scenarios at higher Re, e.g. Re = 1000, the contribution of viscous diffusion in
LEV stability is negligible, while vortex tilting, as well as tip-ward vorticity convection
and vortex compression, are the main mechanisms that contribute to LEV stability.
The intensity of Tt→r is significantly enhanced as Re increases and contributes most
to removing the LEV vorticity (figure 13b). The second important mechanism for LEV
stability at Re = 1000 is the tip-ward vorticity convection (C(+)

r ), which is also intensified
but shrinks in its region towards the wing root as Re increases to 1000 (figure 13a).
The region of C(+)

r does not overlap well with the spanwise flow region; however, it
does overlap well with regions of strong tip-ward pressure gradient (figures 6 and 9).
Although the tip-ward vorticity convection becomes almost absent around the mid-span
at the steady state, a local peak of vortex compression in this region can alternatively help
in removing the local LEV vorticity (figure 13d). In addition, except for viscous diffusion,
the PVTr contributes the least to the LEV stability at Re > 1000. This is because Tt→r

and C(+)
r become more dominant at a higher Re, while the contributions of PVTr remain

approximately unchanged.
Our findings support previous studies that emphasize the importance of tip-ward

vorticity convection (Ellington et al. 1996; Wu & Sun 2004; Shyy & Liu 2007; Lentink
& Dickinson 2009) and planetary vorticity tilting (Werner et al. 2019) in LEV stability.
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Also, Jardin (2017) points out that the LEV is stabilized under viscous effects at Re < 200,
which is also supported by our findings. It should be noted that the AR and root cutoff are
fixed in our research. According to Lentink & Dickinson (2009) and Jardin & Colonius
(2018), variations of AR and root cutoff can shift the stable LEV region and therefore
potentially alter the underlying vorticity dynamics. This will be the focus of our subsequent
research.

4. Conclusions

The effects of Reynolds number (Re) on leading-edge vortex (LEV) formation dynamics
and stability in revolving wings are numerically studied with Re varying from 10 to 5000.
The aspect ratio and the angle of attack of the wing are fixed at 45◦ and a constant
angular acceleration is prescribed within the first 0.5 chord lengths of travel at the radius
of gyration, followed by a constant speed revolving. An in-house solver is employed to
simulate the unsteady flow, which is further analysed via the vorticity transport equation
in a co-rotating frame.

Our results show that, as Re decreases from 1000 to 10, the critical chord length of travel
for the formation of steady-state LEV and its intensity are both reduced. For revolving
wings with Re < 100, the LEV, which is mainly regulated by viscous diffusion, is attached
to the wing edges instead of moving into the wake. The contribution of viscous diffusion in
stabilizing LEV becomes negligible at Re > 200 when vortex tilting becomes the primary
contributor to LEV stability.

The vortex tilting includes two major mechanisms, i.e. the planetary vorticity tilting
and the tilting from tangential vorticity to radial vorticity. The latter, together with the
tilting from radial vorticity to tangential vorticity, introduces a dynamic two-step balance
of vorticity in both directions, which is considered as a novel mechanism, named as the
radial–tangential vorticity balance (RTVB). As Re further increases above 1000, apart
from vortex tilting, tip-ward vorticity convection and vortex compression also contribute
to stabilizing local LEV within the mid-span. The effective region of tip-ward vorticity
convection, which overlaps well with those of tip-ward pressure gradient, first exceeds
the mid-span during LEV formation and then shrinks towards the wing root at steady
state. Although the intensity of RTVB and tip-ward vorticity convection both increase
with Re, the planetary vorticity tilting has relatively small variation, therefore having a
Re-independent contribution to LEV stability.

Our findings support previous hypotheses on LEV stability with the addition of a novel
mechanism of vortex tilting. This work also presents a comprehensive assessment of
the spatial–temporal contributions of these mechanisms to LEV stability, and their Re
dependence. Together, this work provides novel insights towards the LEV formation and
stability on low-Re revolving wings.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.950.
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