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SUMMARY

This paper presents an investigation into the utilisation
of sequential and parallel processing techniques for the
real-time simulation of a flexible manipulator system. A
finite dimensional simulation of the system is devcloped
using a finite difference approximation to the governing
dynamic equation of the manipulator. The developed
algorithm is implemented on a number of uni-processor
and multi-processor, homogeneous and heterogeneous,
parallel architectures. A comparison of the results of
these implementations is made and discussed, on the
basis of real-time processing requirements in  the
simulation and control of flexible manipulator systems.

KEYWORDS: Digital signal processing; Finite diffcrence
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1. INTRODUCTION

Flexible manipulator systems offer several advantages in
contrast to the traditional rigid ones. Thesc include faster
systcm response, lower cnergy consumption, requiring
relatively smaller actuators, less overall mass and, in
general, less overall cost. However, due to the
distributed nature of the governing equations describing
system dynamics, the control of flexible manipulators has
traditionally involved complex processes.'™ Moreover, (o
compensate for flexure cffects and thus yicld robust
control the design focuscs primarily on noncolocated
controllers.*” It is important initially to rccognise the
lexible nature of thce manipulator and construct a
mathematical model for the system that accounts for the
intcractions with actuators and payload. Such a model
can be constructed using partial differential cquations
(PDEs). A commonly used approach for solving a PDE
representing the dynamics of a manipulator, sometimes
referred to as the separation of variables method, is to
utilise a representation of the PDE, obtained through a
simplification process, by a finite set of ordinary
differential equations. Such a model, however, does not
always reprcsent the fine details of the system.” A
method in which the flexible manipulator is modelled as
a massless spring with a lumped mass at one end and
lumped rotary incrtia at the other end has previously
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been proposed.”® Unfortunately, the solution obtained
through this method is also not accurate and suffers from
similar problems as in the case of thc method of
separation of variables. The finite element (FE) method
has also been previously utilised to describe the flexible
behaviour of manipulators.”'" The computational com-
plexity and conscquent software coding involved in the
FE method is a major disadvantage of this technique.
However, as the FE method allows irregularities in the
structure and mixed boundary conditions to be handled,
the technique is found suitable in applications involving
irregular structures. In applications involving uniform
structurcs, such as the manipulator system considered
here, the finite difference (FD) method is found to be
more appropriate. Previous simulation studics of flexible
beam systems have demonstrated the relative simplicity
of the FD method as compared to the FE method."
Real-time simulation is important {rom a systcm design
and evaluation viewpoint. It provides a characterisation
of the system in the rcal sense as well as allows on-linc
cvaluation of controller designs in real-time. An
investigation into the real-time simulation of a (lexible
manipulator system is thus presented in this paper, on
the basis of FD methods, using scquential and parallel
processing techniques.

A real-time system is onc¢ that has to respond to
externally generated input stimuli within a finite and
specified period. Despite the vastly increased computing
powcr which is now available there can still be
limitations in computing capability of digital processors
in rcal-time control applications for two reasons: (a)
samplc times have become shorter as greater perlor-
mance demands are imposed on the system (b)
algorithms are becoming more complex as the develop-
ment of control theory leads to an undcrstanding of
methods for optimising system performance. To satisfy
these high performance demands, microprocessor tech-
nology has dcveloped at a rapid pace in recent years.
This is based on (i) processing speed, (ii) processing
ability, (iii) communication ability, and (iv) control
ability. However, many demanding complex signal
processing and control algorithms can not be satisfac-
torily realised with conventional uni-processor systems.
Alternative strategies where high-performance comput-
ing and parallel processing (PP) methods are employed,
could provide suitable solutions in such applications."”
Not much work has been reported on such methods in
the rcal-time simulation of flexible manipulator
systems.'*"?
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Parallel processing is a growing technology with the
potential to give virtually unlimited computational
power, provided that effcctive parallel soltware develop-
ment and application techniques and tools can be
produced to be able to take advantage of such potential.
The concept of PP on different problems or different
parts of the same problem is not new. Discussions of
parallel computing machines arc found in the literature
at least as far back as the 1920s.'® It is evidenced that
throughout the years, there has been a continuing
research effort to understand parallel computation.'”
Such effort has intensified dramatically in the last few
years involving various applications, including signal
processing, control, artificial intelligence, pattern recog-
nition, computer vision, computer aided design and
discrete event simulation.

In a conventional parallel system all the processing
clements (PEs) are identical. This architecture can be
described as homogencous. However, many control
algorithms are heterogeneous, as they usually have
varying computational requirements. The implementa-
tion of an algorithm on a homogeneous architecture is
constraining and can lead to inefficiencies because of the
mismatch between the hardware requirements and the
hardwarc resources. In contrast, a heterogeneous
architecture having PEs of different types and features
can provide a closer match with the varying hardware
requirements and, thus, lead to performance enhance-
ment. However, the relationship between algorithms and
heterogeneous architectures for real-time control systems
is not clearly understood." The mapping of algorithms
onto heterogeneous architectures is, therefore, especially
challenging. To exploit the heterogeneous naturc of the
hardware it is required to identify the heterogeneity of
the algorithm so that a close match be forged with the
hardware resources available.'”

One of the challenging aspects of PP, as compared to
sequential processing, is how to distribute the computa-
tional load across the PEs. This requires a consideration
of a number of issues, including the choice of algorithm,
the choice of processing topology, the relative computa-
tion and communication capabilitics of the processor
array and partitioning the algorithm into tasks and the
scheduling of these tasks.®” It is cssential to note that in
implementing an algorithm on a parallel computation
platform, a consideration of (i) the interconncction
scheme issues, (ii) the scheduling and mapping of the
algorithm on the architecture, and (iii) the mecchanism
for detecting parallelism and partitioning the algorithm
into modules or sub-tasks, will lead to a computational
speedup.”!

For microprocessors with widely different architec-
tures, performance measurements such as MIPS (million
instructions per second), MOPS (million operations per
second) and MFLOPS (million floating-point operations
per second) arc meaningless. Of more importance is to
rate the performance of a processor on the type of
program likcly to be encountered in a particular
application. The different microprocessors and their
different clock rates, memory cycle times cte. all confuse
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the issue of attempting to ratc the processors. In
particular, there is an inhcrent difficulty in sclecting
microprocessors in real-time signal processing and
control applications. The ideal performance of a
computing architecturc demands a perfect match
between processor capability and program behaviour,
Processor capability can be enhanced with Dbetter
hardware technology, innovative architectural features
and efficient resource management. From the hardwarc
point of view, current performance varies according to
whether the processor posscsses a pipeline facility, is
microcode/hardwired operated, has an internal cache or
internal RAM, has a built-in math co-processor, floating
point unit etc. Program behaviour, on the other hand, is
difficult to predict due to its heavy dependence on
application and run-time conditions. Other factors
affecting program behaviour include algorithm dcsign,
data structure, language efficiency, programmer skill and
compiler technology.”* The work reported in this
paper attempts (o investigate such issues within the
framework of sequential and parallel real-time simula-
tion of a flexible manipulator system.

An investigation into a comparative performance
evaluation of hardware and software resources of several
architectures in the real-time simulation of flexible robot
manipulators is presented in this paper. A single-link
flexible manipulator system incorporating hub inertia and
payload mass which can bend freedly in the horizontal
plane and is stll in vertical bending and torsion is
considered. A fourth-order PDE model of the system
obtained through the utilisation of the Lagrange
equation and the modal expansion method is considered.
A finite-dimensional simulation of the system is
developed using an FD discretisation of the dynamic
cquation of the manipulator. The algorithm thus
developed is implemented on a number of general-
purpose and special-purpose high-performance architee-
tures incorporating complex instruction set computer
(CISC) processors, reduced instruction set computer
(RISC) processors and digital signal processing (DSP)
devices. The hardware and software resources, capabi-
lities of the processors and characteristics of the
algorithm arc discussed to explore the matching between
the algorithm and the architectures. Finally, a com-
parison of the results of the implementations, on the
basis of real-time computation performance, is made to
establish merits of development of fast processing
methods in the real-time simulation of f{lexible
manipulator systems.

2. THE FLEXIBLE MANIPULATOR SYSTEM

A schematic representation of a single link flexible
manipulator system is shown in Figure 1, where, a
manipulator of length /, lincar mass density p, moment
of inertia 1,, hub inertia [,, carrying a payload of mass
M, with associated inertia [, is considered. A control
torque 7(r) is applied at the hub of the manipulator by an
actuator motor. The angular displacement of the link in
the (fixed) POQ—coordinates is denoted by 0(1). u
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Fig. 1. Schematic representation of the flexible manipulator
system.

represents the elastic deflection of the manipulator at a
distance x from the hub, measured in the moving
coordinates P'OQ’. The height of the link is assumed to
be much greater than its depth, thus, allowing the
manipulator to vibrate (be flexible) dominantly in the
horizontal direction (POQ-plane) and be stiff in vertical
bending and torsion.

2.1 System model
The flexible manipulator system is modelled as a
pinned-free flexible beam, incorporating an incrtia at the
hub and payload mass at the end-point. The model is
developed through the utilisation of Lagrange equation
and modal cxpansion mecthod.”™” To avoid the
difficulties arising due to time-varying length, the length
of the manipulator is assumed to be constant. Morcover,
shear deformation, rotary inertia and effect of axial force
are neglected.

For an angular displacement 8 and an elastic deflection
u the total displacement y(x, ) of a point along the
manipulator at a distance x from the pinned end can be
described as a function of both the rigid body motion
0(¢) and elastic deflection u(x, t);

y(x, t)y=x6(t) + ulx, t)

Thus, the net deflection at x is the sum of a rigid body
deflection and an elastic deflection. Note that the clastic
deflections of the manipulator arc assumed to be
confined to the horizontal planc only. This is achieved by
allowing the manipulator to be dominantly flexible to
horizontal dcflection. In gencral, the motion of a
manipulator will include elastic deflections in both the
vertical and horizontal planes. Motion in the vertical
plane due to gravity forces, for example, can causc
permanent elastic deflections. This effcct is ncglected
here as the manipulator is assumed to be dominantly
flexible in the horizontal plane. This can be ensured by
physical construction of the manipulator and by keeping
the payload within a certain range.

The dynamic equations of motion of thc manipulator
can be obtained using the Hamilton’s extended
principle™ with the associated kinetic, potential and
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dissipated energies of the system. This yiclds the dynamic
equation of motion of the manipulator as™*

Sy, 1) 8y, 1)
p T HEI S = (1) (1)

where, £ is Young’s modulus, / is the second (area)
moment of incrtia and 7(x, ¢) is the applied torque. The
product EI represents the flexural rigidity of the
manipulator. The associated boundary conditions, at the
hub and end-point of the manipulator, and the initial
conditions arc given by

(0, 1) =0,

0> ay(0, 1) 3%y (0, 1)

T ~ EI = 1(t
Tarr ox PR
oy, ¢t a*v(l t
w, 2D b0,

ot 0x” (2)

0% oyl t *y(l, t
R ICR) ey L ACTO
of Jx ox

y(x, 0)y=0,

ay(x, 0

(y(fc, )y
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The fourth order PDE in equation (1) with the
associated boundary and initial conditions in cquation (2)
describe the dynamic equations of motion of the flexible
manipulator system.

2.2 Simulation algorithm

The PDE in equation (1) describing the dynamics of the
flexible manipulator system is of a hyperbolic type and
can be classilied as a boundary valuc problem. This can
be solved using an FD method. This involves obtaining a
set of cquivalent diflerence equations dcfined by the
central  FD  quotients to replace the PDE. The
manipulator length and movement time arc cach divided
into suitable number of sections of cqual length
represented by Ax (x = iAx) and Ar (r = jAt), respectively
(i=0,1,...,n;,j=0,1,...,m). A difference equation,
corresponding to each point of the grid is, thus,
developed. The known boundary conditions are then
utilised to eliminate the displacements of the fictitious
points outside the defined interval. In this manner, the
displacement, y, ., of section i of the manipulator at
time step j + 1 can, thus, be obtained as®'

Vijii= —¢lyi 2ty by Tyl
A
tay; =yt /—’ (i, j) (3)

where, a=2—6¢c, b=4c, ¢=EI(Ar)’/p(Ax)'. Using
matrix notation, cquation (3) can be written in a compact
form as

Y =AY,; =Y., +BF 4)

where Y, represents the displacement of grid points
i=1,...,n of thc manipulator at time step k =j + 1, j,

7—1, A is a constant n X »n matrix entrics of which
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depend on the flexible manipulator specification and the
number of sections the manipulator is divided into, F is
an n X 1 matrix known as the forcing matrix and B is a
scalar constant related to the time step Ar and mass per
unit length, p, of the {lexible manipulator;

_YI,,'+1
Yo,
Yi,/’+l = 2':” l
_YH,_H 1
Yui
Y, = y?'j
_.yn,/'
Y1
y ,.
Yiy./'*'l 2:, 1
_ _yn,/' 1 .
m, m, my; 0 0 - 0 0
b a b —C 0 - 0 0
-¢ b a b —C 0 0
A=| S
0 0O ... -c b a b -
0 0 ... O my, mo my; my
B () 0 . 0 1233 Moy Moz Moy B
B=(A0)/p, F'=[2(1,/), 72, /), ..., ©(n, )]

The clement values m,, m,, ms, My, ..., My, IN Matrix
A depend on the boundary conditions of the
manipulator. Equation (4) gives, as a general solution of
the PDE, the displacement of scction i of the
manipulator at time step j+ 1 that can be implemented
on a digital processor easily. Note in cquation (4) that
the displacement of the hub-end of the manipulator
(i =0) has not been included, as this is already known
from the boundary conditions in cquation (2). For the
algorithm to be stable the iterative procedure in equation
(3) for every grid-point is to converge to a solution. A
necessary and sullicient condition for the algorithm to be
stable is given by 0 < ¢ =0.25."

Real-time simulation

3. HARDWARE

The hardware utilised comprises three general-purpose
processors  namely, an Intel 80386DX (40 MHz)
(386DX), an Intcl 80486DX2 (50 MHz) (486DX) and a
Texas Instruments TMS390S10 SAPRC processor, three
special-purpose parallel PEs namely, an Inmos T805 (T8)
transputer, an Intel 80860 (i860) RISC processor and a
Texas Instruments TMS320C40 (C40) DSP device and
four different heterogeneous and homogeneous parallel
architectures incorporating the parallel PEs. In general,
the naturc of any parallel architecture reflects the nature
of its PEs and the algorithms. Therefore, to compare the
performance of the parallel architectures, it is cssential to
explore the features of the PEs and the parallcl
architectures. Table I shows some of the comparative
features of the uni-processor architectures utilised. Other
features of these with those of the parallel architectures
are described below.

3.1 General-purpose processors
Among the general-purpose processors, the 386DX is a
CISC processor, posscssing a 32-bit data bus and 32
address lines, allowing to address up to 4 gigabytcs of
physical mcmory. Morcover, the chip can handle up to
16 terabytes of virtual memory. It incorporates 16 bytes
of pre-fetch cachc memory. This special on board
mcmory arca is uscd to store the next few instructions
of the program the chip is exccuting. This small cache
helps the 386 run more smoothly, with less waiting as
code is retrieved from system memory. The virtual mode
facility of the 386 processor gives freedom in running
DOS programs. This mode enables a single 386
microprocessor to divide its memory into many virtual
machines, each machine as a separate 8086 microproces-
sor. This implies that the 386 has a multitasking facility.
The processor, however, does not have any internal or
external math co-processor and floating point unit
facility. Moreover, it does not have internal cache or
internal memory.™

The 486DX is a general-purpose CISC processor.
From a software standpoint, the 486 is distinguished from

Table 1. Comparative features of the processors

Processors 386DX 486D X2 SPARC T&8OS i860 C40
Manufacturer Intel Intel Texas Inst. Inmos Intcl Texas Inst.
Type 32-bit 32-bit 32-bit 32-bit 64-bit 32-bit
CISC CISC RISC RISC RISC DSP
Clock 40 MHz 50 MHz. 50 MHz 25 MHz 40 MHz 40 MHz
speed
Internal None 8 kbytes cache 4 kbytes 8 kbytes data 8 kbytes data &
Cache/RAM (unified) RAM & 4 kbytes 512 bytes
instruction instruction
MIPS/MFLOP 12 MIPS 54 MIPS 20 MIPS, 40 MIPS, 80(1) 275 MOPS &
S/MQOPS 2.4 & 60(2) 40 MFLOPS
MFLOPS MFLOPS
Transistors 275,000 1,200,000 — Over one million —

(1): Single precision.
(2): Double precision.
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the 386 by one flag, one exception, two page-tablc entry
bits, six instructions, and nine control register bits. The
hardwarc of the 486, however, differs substantially from
the 386 and the changes mean more speed. Most
important of these changes are streamlined hardwarce
design, tighter silicon design rules, integral math
co-processor, instruction pipelining, built-in  {loating
point unit and internal memory cache. The streamlined
hardware design (particularly its pipelining) means that
the 486 can process faster than a 386 microprocessor
when the two are operating at the same clock speed.
Thus, a 33 MHz 486 is faster than a 33 MHz 386. In most
applications, the 486 is about twice as fast as a 386 at the
same clock rate. Becausc of its improved internal design,
the 486 reduces the number of clock cycles for most
instructions. The 486 incorporates all the necessary
coprocessor circuitry on the same slice of silicon. This
internal coprocessor nearly doubles the performance of
the processor.

SPARC is an acronym for Scalable Processor
ARChitecture. Despite its independence from hardware
implementation, the “scalable” part of the SPARC name
refers to chip technology, specifically to the size of the
smallest lines on the chip. The simple design of SPARC
cnables the chip design rules to be tightened casily
(making the lines smaller) as fabrication technology
improves. The result is a chip with finer details and a
more compact layout that enables faster operation. The
Texas Instruments TMS390S10 is a RISC processor,
possessing individual floating-point unit, integer unit and
memory management unit (MMU) with 50 MHz clock
speed and on-chip data and instruction cache. This is a
processor within multi-tasking SUN system for which the
performance at any time depends on the number of
users.

3.2 Parallel processing elements

The transputer is a high-performance microprocessor
designed to facilitate inter-process and inter-processor
communication and is targeted at the efficient exploita-
tion of very large scale integration (VLSI) technology.
The most important featurc of the transputer is its
external links which enables it to be used as a building
block in the construction of low cost, high-performance
multiprocessing systems. Communication takes place (via
these links) only between pairs of devices and is
distributed throughout the system, thus, overcoming the
classic  Von Neumann bottle-necck which is often
encountered in  bus-based systems. The particular
technology used for the construction of data bus
effectively dictates an upper bound on the number of
communications in these systems, whereas in a
transputer based system, further processors can be added
indefinitcly. The transputer family consists of several
types of VLSI devices including the 16-bit T212, T225,
the 32-bit T414, T425 and the floating-point T800, T8O
and T9000 processors. Among these the T805 is a
general-purpose medium-grained 32-bit Inmos parallel
PE with 25 MHz clock spced, yielding up to 20 MIPS
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performance, 4 kbytes on-chip RAM and is capable of
4.3MFLOPS. The T8 is a RISC processor possessing an
on-board 64-bit floating-point unit and four serial
communication links. The links operate at speeds of
20 Mbits/sec, achieving data rates of up to
1.7 Mbytes/scc uni-directionally or 2.3 Mbytes/sec bi-
directionally. Most importantly, the links allow a single
transputer to be uscd as a node among any number of
similar devices to form a powerful PP system.**

The i860 is a high-pcerformance 64-bit vector processor
with 40 MHz clock speed, a peak integer performance of
40 MIPS, 8 kbytes data cache and 4kbytes instruction
cache and is capable of 80 MFLOPS. The Intel i860 has
been designed for numerically and vector intensive
applications.” In particular, its high throughput is
achieved from a combination of RISC design techniques,
pipeline processing units, wide data paths and large
on-chip caches. On a single chip the architecturc
supports integer, floating point and graphics operations
and incorporates memory-management unit, data cache
and instruction cache. All external or intcrnal address
buses arc 32-bit wide, and the external data path or
internal data bus is 64-bits wide. However, the internal
RISC intcger ALU is only 32 bits wide. The instruction
cache transfcrs 64 bits per clock cycle, equivalent to
320 Mbytes/scc  at 40 MHz. The i860 executes 82
instructions, including 42 RISC integer, 24 {loating-point,
10 graphics and 6 assembler pscudo operations. All the
instructions arc¢ executed in one cycle, which cquals
25 nsec for a 40 MHz clock rate.”® The i860 is an idcal
candidate for integration into highly parallel computcr
cnvironments with high computational pcrformance,
modularity and low rcal-estate requirements.

The C40 is a high-performance Texas Instruments
32-bit DSP processor with 40 MHz clock specd, 8 kbytes
on-chip RAM, 512 bytcs on-chip cache and is capable of
275MOPS and 40MFLOPS. This DSP processor
possesses six parallel high speed communication links for
inter-processor communication with 20 Mbytes/sec asyn-
chronous transfer ratc at each port and e¢leven
operations/cycle throughput. In contrast, it possesscs two
identical external data and address buses supporting
shared memory systems and high data rate, single-cycle
transfers. Tt has separate intcrnal program, data, and
DMA coprocessor buscs for support of massive
concurrent I/O of program and data throughput, thereby
maximising sustained CPU performance.**-"’

3.3 Homogeneous architectures

The homogencous architectures considered include a
network ol T8 and a network of C40s. The
homogeneous architecture of T8s comprises a network of
T&s resident on a Transtech TMBO8 motherboard. The
root T8 incorporates 2 Mbytes of local memory, with the
rest of the T8s each having 1 Mbyte. The serial links of
the processors arc used for communication with one
another. A pipeline topology is utilised for this
architecture. This is shown in Figure 2. This topology has
been utilised as it is simple to realise. Morcover, it
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Fig. 2. Operational configuration of the homogeneous archit-
ecture incorporating a network of T8s.

reflects the structure of the algorithm considered in this
study.

The homogeneous architecture of C40s comprises a
network of C40s resident on a Transtech TDM410
motherboard and a TMBO8 motherboard incorporating a
T8 as a root processor. The T8 possesses 1 Mbyte local
memory and communicates with the TDM410 (C40s
network) via a link adapter using scrial-to-parallcl
communication links. The C40s, on thc other hand,
communicate with each other via parallel communication
links. Each C40 processor possesses 3 Mbytes DRAM
and 1 Mbyte SRAM. A pipeline topology is utilised for
this architecture. Figure 3 shows the topology of the
homogeneous architecture of C40s. The T8 in the
network is used as the rool processor providing an
interface between the host and the first C40. The
topology was chosen on the basis of the algorithm
structure, which is simple to realise and is well reflected
as a lincar form.”

3.4 Heterogeneous architectures
Two heterogencous parallel architectures, namely, an
integrated 1860 and T8 systcm and an integrated C40 and
T8 system, are considered in this study. The i860 + T8
architecturc compriscs a TMB16 motherboard and a
TTM110 board incorporating a T8 and an i860. The
TTM110 board also posscsscs 16 Mbytes of shared
memory accessible by both the i860 and the T8, and
4 Mbytes of privatc memory accessible only by the T8.
The operational configuration of the architecture 1is
shown in Figurc 4. The 1860 and the T8 processors
communicate with each other via the shared memory.

The operational configuration of the C40+ T8
architecture is shown in Figure 5 in which the T8 is used
both as the root processor providing an interface with the
host, and as an active PE. The C40 and the T8
communicate with cach other via serial-to-parallel or
parallel-to-serial links.

Note in the above that the SPARC, 486DX and

Fig. 3. Operational configuration of the homogeneous archit-
ecture incorporating a nctwork of C40s.
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T8

Fig. 4. Operational configuration of the
architecture incorporating an i860 and a T8.

heterogencous

386DX arc not commonly used in real-time implementa-
tions. These are utilised here, however, for bench-
marking and comparison of various features with the
DSP and transputer-based architectures. Moreover, note
that, wherever indicated, the host is utilised for
developing and downloading programmes. Thus, the host
does not take part in the real-time implementation
process.

4. SOFTWARE SUPPORT

Softwarc support is needed for the development of
cfficient programs in high-level languages. The ideal
performance of a computer system demands a perfect
match between machine capability and program be-
haviour. Program performance is the turnaround time,
which includes disk and memory access, input and output
activitics, compilation time, operating system overhead
and CPU time. To shorten the turnaround time, one can
reduce all these time factors.” Minimising the run-time
memory management within the program and sclecting

Fig. 5. Operational

configuration of the
architecture incorporating a C40 and a 'T8.

heterogeneous
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an elficient compiler for a specific computation demand,
could enhance the performance.

Compilers have a significant impact on the perfor-
mance of the system. This is not to say that any
particular high-level language dominates another. Most
languages have advantages in certain computational
domains. The compiler itself is critical to the
performance of the system, since thc mechanism for
taking a high-level description of the application and
transforming it into hardware dependent machine
language differs from one compiler to another.
Identifying the foremost compiler for the application in
hand is, therefore, especially challenging duc to
unpredictable run-time behaviour of the compilers and
memory management capability.

In signal processing and control applications, it is
especially important to sclect a suitable programming
language that supports highly numerical computations.
For instance, the Occam compiler is more straight
forward for parallel processing, although it is not efficient
in numerical calculations.™ Such features are impor-
tant to consider in the selection of a compiler for a
particular application. The algorithm considered was
coded in high-level languages consisting of Inmos ANSI
C, 3L Parallel C and Borland C as appropriate for the
hardware used. Among these the ANSI C and Parallel C
programming languages support PP. In the process of
implementing the algorithm on different platforms, the
coding of the algorithm was kept to a similar form with
the different compilers.

5. PRACTICAL ISSUES IN REAL-TIME
PARALLEL PROCESSING

Application goals of PP for implementing real-time
signal processing and control algorithms must satisfy
critical time constraints associated with sampling
intervals. When contemplating the implementation of
algorithms and associated software on PP systems, it is
cssential to organisc the algorithm to realise the
maximum benefits of parallelism. This has scveral
associated problems, as discussed below.

Parallelism is benelicial when it successfully yields
higher performance with reasonable hardware and
software cost. Whether parallclism is worthwhile
depends on the application. There will always be many
applications which are satisfied by a uni-processor
implementation. Before adopting a PP solution, it must
be clear that it possesses some featurc that cannot be
provided by a single processor.

The most widcly accepted measure used to evaluate
the performance of a parallel system is speedup. Speedup
(Sy) is delined as the ratio of the execution time (7;) on
a single processor to the execution time (7y) on N
Processors;

Sv=T/Ty

The theoretical maximum spcedup that can be achicved
with a parallel architecture of N identical processors
working concurrently on a problem is N. This is known
as the ““ideal speedup”. In practice, the speedup is much
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less, since some processors are idle at times due to
conflicts over memory access, communication delays,
algorithm inefficiency and mapping for exploiting the
natural concurrency in a computing problem.*” But, in
some cascs, the speedup can be obtained above the ideal
speedup, due to anomalies in programming, compilation
and architecture usage. For example, a single-processor
system may storc all its data off-chip, whereas the
multi-processor system may store all its data on-chip,
leading to an unpredicted increase in performance.

Another useful measure in evaluating the performance
of a parallel system is efficiency (Ey). This can be
defined as

Exn = (Sy/N) X 100% = (T,/NTy) X 100%

Efficiency can be interpreted as providing an indication
of the avcrage utilisation of the N processors, expressed
as a pcreentage. Furthermore, this mcasure allows a
uniform comparison of the various speedups obtained
from systems containing a different number of
processors. It has also been illustrated that the value of
cfficiency is directly related to the granularity of the
system.*

Inter-processor communication between PEs is one of
the important issues on which the real-time performance
of a number of parallel architectures can be compared
and the suitability of an algorithm evaluated. When
several processors arc required to work co-operatively on
a singlc task, one cxpects a frequent exchange of data
among sub-tasks that comprise the main task. The
amount of data, the frequency with which they are
transmitted, the speed of their transmission, and the
route that they take are all significant in affecting the
inter-processor communication within the architecture.
The first two factors depend on the algorithm itsclf and
how well it has been partitioned. The remaining two
factors depend on the hardware. These further, depend
on the inter-connection strategy, whether tightly coupled
or loosely coupled. Any cvaluation of the performance of
the inter-connection must be, to a certain extent,
quantitative. However, once a few candidate networks
have been tentatively sclected, detailed (and cxpensive)
evaluation including simulation can be carried out and
the best onc selected for the proposed application.”!

There arc three different problems to be considered in
implementing signal-processing and control algorithms
on PP systems; (1) identifying parallclism in the
algorithm, (2) partitioning the algorithm into sub-tasks,
and (3) allocating the tasks to processors. Thesc include
inter-processor communication, granularity of the algo-
rithm and the hardware and regularity of the algorithm.
Hardware granularity is a ratio of computational
performance over communication performance of each
processor  within  the architecturc.  Similarly, task
granularity is the ratio of computational demand over
communication demand of the task. Performance
benefits of parallel architectures strongly depend on
these ratios.*'*

Task granularity can also be viewed in terms of
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computation timc per task. When this is large, it is a
coarsc-grained task implementation. When it is small, it
is a finc-grained task implementation. Although large
grains may ignorc potential parallclism, partitioning a
problem into the finest possible granularity docs not
necessarily lead to the fastest solution, as maximum
parallelism also has maximum overhead, particularly due
to increased communication requirements. Therefore,
when partitioning the application across PEs, it is
essential to choose an algorithm granularity that balances
useful parallel computation against communication and
other overheads.”

Regularity is a term used to describe the degree of
uniformity in the cxccution thrcad of the computation.
Many algorithms can be cexpresscd by matrix computa-
tions. This leads to the so-called regular iterative (RI)
type of algorithms due to their very regular structure. In
implementing this type ol algorithms, a vector processor
will, principally, be expected to perform better.
Moreover, if a large amount of data is to be handled, the
performance will be further enhanced il the processor
has more internal data cache, instruction cache and/or a
built-in  math coprocessor. In implementing these
algorithms on a PP platform, the tasks could be
distributed uniformly among the PEs. However, this may
require a large amount of communication between the
processors and can therefore be detrimental to the
performance of the computing platform in both
homogeneous and heterogeneous architectures.

To investigate the performance of the computing
platforms in thc rcal-time implementation of the
algorithm considered in this study, the features discussed
above arc considered in the process of partitioning the
algorithm so that the capabilities of the parallel hardware
platforms are efficiently exploited and the load
distribution is balanced so as to minimisc inter-processor
communications.

6. IMPLEMENTATIONS AND RESULTS

In the experimental investigations to [ollow an
aluminium type f{lexible manipulator of physical charac-
teristics shown in Table II was considered. In
implementing the algorithm, the manipulator was divided
into 19 sections and a sample time of Ar =0.218 ms was
utilised. To investigate the real-time performance of the
simulation algorithm, a bang-bang torque of amplitude
0.1 Nm was utilised.

Table I1. Paramcters of the flexible manipulator.

Paramcter value
Length 960 mm

Depth 3.2004 mm
Height 19.230 mm

Area of cross section 6.1544 X 10 *'m”
Mass density per volume 2710 kgm
Young’s Modulus 7.11 x 10"

5.1924 X 10 "'m?
5.86 % 10 * kgm®
0.0495 kgm?

Area moment of inertia
Hub inertia
Manipulator incrtia
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6.1 Inter-processor communication

Inter-processor communication in a PP network is an
important factor in dctermining the real-time perfor-
mance of the network in implementing an algorithm.
The inter-processor communication techniques involved
are (a) C40-C40: parallel communication, (b) T8-T8:
serial communication, (c) i860-T8: shared memory
communication and (d) T8-C40: parallel to scrial
communication.

To investigate the performance of the inter-processor
communication links, a 4000-point floating-type data was
used. The communication time in sending the data from
one processor to another and receiving it back was
mecasured with the various communication links involved
in the parallel architectures. In cases ol the C40 to T8
and the C40 to C40 communications, the speed of single
lines of communication was also measured by using
bi-directional data transmission in each of the 4000
iterations. This was realised by altering the direction of
data transmission for sending and receciving data at each
iteration. The performance of inter-processor com-
munication links is shown in Figure 6. It is noted that
among these the C40-C40 double-line parallel com-
munication is the fastest, whereas the T8-C40 single-line
serial-to-parallel communication is the slowest. Among
the double-line communications, the C40-C40 link 1is
found to be 10 times faster than the T8-T8 serial
communication, 14.89 times faster than the T8-1860
sharcd-memory communication and 17.56 times faster
than the T8-C40 scrial-to-parallel communication.
Among the single-line communications, on the other
hand, the C40-C40 parallel communication is found to be
1.23 times faster than the T8-C40 scrial-to-parallel
communication. It is evident that as compared to scrial
communication, parallel communication offers a substan-
tial advantage. The relatively slower performance of the
single line of communication is due to the utilisation of a
single bi-directional line of communication in which, in
addition to the sequential nature of the process of
sending and receiving data, extra time is required for
altering the direction of the link (data flow). Morcover,
there 1s an initialisation delay for each communication
performed which for small amounts of data becomes
relatively a significant proportion of the communication
time. In shared-memory communication, additional time
is required in accessing and/or writing into the shared
memory. In scrial-to-parallel communication, on the
other hand, an additional pcnalty is paid during the
transformation of data from scrial to parallel and vice
versa.

6.2 Simulation algorithm

The simulation algorithm considered here is of the RI
typc. In implementing such an algorithm, a sequential
veetor processor will, principally, be expected to perform
better and [faster than any other processor. Morcover,
since a large amount of data is to be handled for
computation in this algorithm, the performance will
further be enhanced if the processor has more intcrnal
data cache, instruction cache and/or a built-in math
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Fig. 6. Speed of inter-processor communication links: (1) single-line; (2) double-line.

coprocessor. In implementing the algorithm on a PP
platform, the tasks could be distributed uniformly among
the PEs. However, this will require a large amount of
communication between the PEs. To calculate the
deflection of any one segment of the flexible arm, for
instance, information on the deflection of two backward
and two lorward segments will be required. Thus, each
PE will need to send two and receive two data points in
cvery iteration. This heavy communication time can,
thercfore, be a detriment to the performance of the
computing platform in both homogencous and heteroge-
neous architectures.

To cvaluate the performance of the computing
platforms, the algorithm was implemented as a
scquential process on uni-processor based architectures.
In case of the multi-processor based architectures, on the
other hand, the algorithm was partitioned and distributed
uniformly among the PEs taking account of the

communication load. Thus, with architectures in-
corporating two PEs the algorithm was partitioned by
allocating ten sections (1-10) to one of the PEs and the
remaining ninc scctions to the other PE. In case of
architectures incorporating three PEs, it was found that
the communication time required with the sccond
(middic) PE was equivalent to the computation time of
about two sections. Thus, to obtain c¢nhanced perfor-
mance, the algorithm was partitioned by allocating seven
sections (1-7) to the first PE, five scctions (8-12) to the
second PE and the remaining seven sections (13-19) to
the third PE. The real-time performance of the
uni-processor and multi-processor computing domains,
thus obtained, are shown in Figures 7 and 8, respectively.
The required real-time (Regqrd R/T) indicates the actual
time needed to implement the algorithm. This is given by
the product of the sample time Ar and the total number
of iterations.

204

184

164

144

Time (sec)
=
5

6.181

17.233

i860 C40 T8

Fig. 7. Execution times of the uni-processor architectures in implementing the algorithm.
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Fig. 8. Execution times of the multi-processor architectures in implementing the algorithm.

It is noted in Figures 7 and 8 that the superscalar i860
RISC processor has performed the fastest and the
386DX machine the slowest of the processors used. The
algorithm, as noted carlier, is mainly of a matrix based
computational type for which the powerful vector
processing resources of the i860 arc cxploited and
utiliscd to achieve the shortest execution time among the
uni-processor architecturcs and with the 1860 + T8 among
the multi-processor architectures. The C40 docs not have
such vector processing resources making it about 6.39
times slower than the i860. This implies that the C40 is
not performing well in a situation where the algorithm is
matrix type and where extensive run time memory
management is involved. A single transputer, on the
other hand, has performed about 7.36 times slower than
the i860.

The SPARC processor and the 486DX appear to have
achieved similar performances, the SPARC being slightly
faster due to its RISC processor. Both these processors
have performed better than a C40 and a T8. The 386DX
performance was the slowest of all the processors. This,
as compared to the 486DX machine, is mainly due to the
floating point operations which are cvaluated in software
rather than using dedicated hardware since this processor
does not have maths coprocessor. Morcover, it does not
have cache or internal memory making it slower to
handle calculation of large amounts of data.

Among the multi-processor architectures, the main
factor influencing the C40+ T8 network to perform
slightly slower than the network of two C40s is the scrial
to parallel communication link utilised and the slower
computation performance of the T8 in this architecture.
Due to the shared memory communication overhead and
incorporation of the slower (T8) processor, the 1860 + T8
architecturc has achieved longer execution time than a
single i860 processor. The performance of the 1860 + T8
as compared to the C40 + T8 and the two C40s, however,
is significantly better. It is noted in Figures 7 and 8, that,
all the architectures except the 386DX has achieved the
required real-time performance.
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A comparison of the execution times of the T8 and
C40 based homogencous architectures in Figure 8 reveals
that the C40 networks have achieved better perfor-
mances than the T8 nctworks. Due to an increase in the
communication overheads, the performance achicved
with three T8s is lower than that with two T8s. In
contrast, the performance achieved with three C40s is
slightly better than that with two C40s. This is due to the
high spced parallel communication links of the C40s
network. These can further be demonstrated in terms of
speedup and cfficicncy of the architectures.

The corresponding speedup and efliciency of the
execution time for the network of T8s is shown in Table
III. As discussed carlicr, although an increase in the
number of transputers leads to a decrease in the
execution time, but the reduction is not linear
throughout. This implics that, with an incrcasc in the
number of PEs or transformation of the algorithm from
course-grain to finc-grains, the communication demand
increases. This is further evidenced in Table IIT which
shows a non-linear speedup and efficiency. This could be
duc to the nature of the algorithm as compared to the
capabilities of this hardwarc which appears not to cope
well with the communication overhead and run-time
memory management problem.

Table 1V shows the corresponding speedup and
eflicicncy of the network of C40s in implementing the
algorithm. It is noted that thc cxccution time speedup
and cfficicncy achieved with the nctwork of C40s is not
linear. As compared to the network of TS8s, the network
ol C40s has achicved better performance. However, due
to a mismatch between the nature of the algorithm with

Table 1. Speedup and efficiency of the network of T8s in
implementing the simulation algorithm.

Number of T8s Two Three
Speedup 1.268 1.104
Efficiency 63.4% 36.8%
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Table IV. Speedup and efficiency of the network of C40s in
implementing the simulation algorithm.

Number of C40s Two Three
Speedup 1.390 1.523
Efficicncy 69.5% 50.8%

the architecture, communication overhead and run-time
memory management problem, the network of C40s has
not achieved an outstanding speedup and efficiency.

7. CONCLUSION
An invesligation into the real-time performance evalua-
tion of a number of general-purpose and special-purpose
uni-processor and multi-processor parallel architectures
in implementing an FD simulation algorithm of a flexible
manipulator system has been presented. The inter-
processor communication speed for four different
homogencous and heterogencous  architectures have
been investigated and presented. Partitioning and
mapping, granularity and regularity of the algorithm
have been discussed for better load distribution among
the PEs in parallel architectures. A comparison of the
results of the implementations has been made revealing
the capabilities of the architectures and their suitability
in the efficient implementation of the algorithm.
Real-time performance has been achieved with all the
architectures except with the 386DX. Special features,
such as vector processing resources in an 1860 vector
processor, have been cxploited to result in relatively
better performance with the 1860 and the 1860+ T8
among the uni-processor and the multi-processor
architectures respectively in implementing the algorithm.
For PP, pcrformance mcasurcs such as MIPS and
MFLOPS of the PEs arc mecaningless. Of more
importance is to rate the performance of an architecture
with its PEs on the type of program likely to be
cncountered in a typical application. It has been
demonstrated that there is gencerally a mismatch between
the hardware requirements of an algorithm and the
hardware resources of the architecture leading to a
disparity in their relative performance. Therefore, to
fully exploit the architectures close match needs to be
forged between the algorithm and the underlying
hardware, with due consideration of the suitable
programming language for the application, and issues
such as algorithmic regularity and granularity.
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