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Abstract

The recent proliferation of deformable plate tectonic modelling techniques has provided a new
direction in the study of plate tectonics with substantial implications for our understanding of
plate deformation and past kinematics. Such models account for intraplate deformation, yet are
highly variable in their inputs, capabilities and applications. The aim of this commentary is to
review recent contributions to this topic, and to consider future directions andmajor omissions.
Through this review it is apparent that the current published deformable models can be sub-
divided into those that as an input either: (1) solely use plate motions to drive deformation, or
(2) require stretching or beta factor. Deformable models are resolving some outstanding issues
with plate reconstructions, but major simplifications and modelling assumptions remain.
Primarily, obtaining model constraints on the spatio-temporal evolution of deformation is
an outstanding problem. Deformable plate models likely work best when the kinematics of
smaller plates are included. However, questions remain regarding how to define such blocks,
and their kinematic histories, whilst some work suggests that inclusion of such entities is
negated through quantitative restorations.

1. Introduction

Plate tectonics describes the movement of a number of rigid bodies making up the Earth’s
exterior with respect to one another (McKenzie & Parker, 1967; Morgan, 1968). These move-
ments can be described by the rotation about a fixed point, the Euler pole, forming the basis of
the kinematic description of plate tectonics (Greiner, 1999). Euler pole rotations of rigid plates
on a sphere can be used as the basis to perform palaeogeographic reconstructions and to com-
pare palaeomagnetic data from different continents (Greiner, 1999; Scotese, 2009). Since the
advent, and development, of plate tectonic theory, numerous plate tectonic models have been
developed (Seton et al. 2012; Matthews et al. 2016; Vérard, 2019). Each of these models,
however, comes with its own assumptions and simplifications depending on the data used
to construct the model, and also the purpose of the model (Peace et al. 2019).

Despite the proliferation of such models, plates, however, are clearly not rigid (Voight, 1974;
Lobkovsky, 2016; Mazzotti & Gueydan, 2018). Space geodesy facilitated Gordon and Stein
(1992) to build a present-day deforming plate model which estimated that c. 15 % of Earth’s
surface area today is deforming along diffuse deformation zones, which was later revised to
14 % (Kreemer et al. 2014). These observations confirm the necessity of accounting for intra-
plate deformation in plate reconstructions (Gurnis et al. 2018). Deformable plate models extend
the concept of intraplate deformation from present-day observations (e.g. Mazzotti and Adams,
2005) by accounting for intraplate deformation through geological time (Müller et al. 2019).
Thus, the definition of a plate tectonic model by Vérard (2019) can be extended to define
deformable plate models as any tool, or reconstruction of the past positions and kinematics
of continents, that allows for internal deformation of the plates. Unless deformation is
adequately accounted for when past locations of the continents are reconstructed, under-
and overfit is a prevalent problem (Zatman et al. 2001, 2005; Ady & Whittaker, 2019;
Müller et al. 2019; Fig. 1). Yet, accounting for this deformation, constraining its timing
(Stephenson et al. 2020) and realistically modelling and reconstructing it (Müller et al. 2019)
represents an ongoing challenge in the development of realistic and useful plate models
(Ady & Whittaker, 2019).

Irrespective of these challenges, the usefulness and applicability of suchmodels for explo-
ration on continental margins, and also for palaeogeographic, palaeooceanographic and
palaeoclimatic modeling, is widely recognized (Ady & Whittaker, 2019). The motivation
for building a plate motion model with distributed deformation includes understanding
the evolution of orogens and sedimentary basins: for example, quantifying stretching or
compression factors and crustal thickness changes through time (Müller et al. 2019). In
addition, some of the limitations of current plate tectonic models, and in particular those
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that do not account for deformation, are becoming apparent
(Peace & Welford, 2020). For example, in extensional tectonic
settings they may lead to problems in reconstructing conjugate
margins (Peace & Welford, 2020), and similar issues remain in
reconstructing other tectonic environments (Gion et al. 2017).
The aims of the present commentary are to: (1) review recent
contributions to deformable plate modelling, at both the global
and regional scales, and (2) consider the required future direc-
tions plus major omissions from models.

2. Deformable plate modelling methods and approaches

Rigid plate models can result in overlap at restored divergent mar-
gins, and underfit at restored convergent margins (Fig. 1, after Ady
& Whittaker, 2019). To account for the internal deformation of
plates, a variety of deformable plate modelling approaches have
been developed. Recent works have provided highly insightful,
yet variable, deformable plate models for a variety of tectonic set-
tings (e.g. Cao et al. 2020). However, this is not an entirely new
approach and Dunbar and Sawyer (1987) were among the first
to attempt a quantitative approach to deriving non-rigid plate
reconstructions, followed by others (Srivastava & Verhoef, 1992;
Williams et al. 2011). A summary of the history of deformable plate
modelling is provided in Ady & Whittaker (2019). A recent
advancement has been the inclusion of this approach in open
source software such as GPlates (Gurnis et al. 2018; Müller et al.
2018), resulting in deformable plate models of many regions

(e.g. Cao et al. 2020) as well as globally (Müller et al. 2019). In addi-
tion, other groups have also developed their own deformable mod-
elling workflows (Smith et al. 2007; Kneller et al. 2012, 2013; Ady &
Whittaker, 2019).

One of the most prevalent of the deformable plate modelling
workflows is that of the Earthbyte Group that is built into the
GPlates software (after version 2.0) described in Gurnis et al.
(2018) (Fig. 2). As a platform GPlates has been used extensively
to produce both global (Matthews et al. 2016) and regional
(Phethean et al. 2016; Gac et al. 2020; Romagny et al. 2020)
rigid-plate models, as well as deformable ones (e.g. Peace et al.
2019; King et al. 2020). When constructing deformable models
in GPlates, the geometry and time-constrained existence (time
of appearance plus disappearance) of plate deformation zones
between portions of the plates considered rigid is defined
(Gurnis et al. 2018). The deforming regions combine extension,
compression and shearing that accommodate the relative motion
between rigid blocks (Gurnis et al. 2018). This allows users to
explore how strain rates, stretching and shortening factors, and
crustal thickness evolve through space and time within deforming
regions and interactively update the kinematics associated with
deformation to see how these parameters are influenced by alter-
native scenarios (Müller et al. 2019). It could be argued that the
main limitation of the GPlates deformable models is that deforma-
tion occurs in the context of rigid domains. However, previous
studies applying this methodology claim to produce independently
validated results (Welford et al. 2018).

(a) (b)

(c) (d)

Fig. 1. (Colour online) Comparison of plate tectonic restoration at divergent and convergent margins following the concepts outlined and depicted in Ady & Whittaker (2019). (a)
Progressive evolution of a divergent margin pair followed by (b) restoration of a divergent margin pair demonstrating the common overlap issue. (c) Progressive evolution of a
convergent margin followed by (d) restoration of a convergent margin demonstrating the underfit issue.
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Using the GPlates methodology, Müller et al. (2019) produced a
global Mesozoic–Cenozoic deforming plate motion model that
captures the progressive extension of all continental margins since
the initiation of Pangaea’s dispersal starting at ˜240 Ma. The
Müller et al. (2019) model includes major failed continental rifts
and compressional deformation. Müller et al. (2019) acknowl-
edge that their global model will likely form the starting point
for more regional models. The Müller et al. (2019) model
includes deforming zones for an area of ˜8 % of the Earth’s sur-
face in which distributed deformation of the lithosphere occurs.
However, Müller et al. (2019) note that this value is significantly
smaller than other estimates (e.g. the Kreemer et al. (2014) 14 %
estimate). Müller et al. (2019) state that the main reason for the
discrepancy is that they solely focus on deformation of
continental lithosphere, and therefore exclude large deforming
regions in ocean basins. In addition, the model of Müller et al.
(2019) also excludes deforming edges of overriding plates along
subduction zones, which form another significant portion of the
Kreemer et al. (2014) geodetic strain-rate model. The Müller

et al. (2019) model was applied by Ebbing et al. (2021) to provide
new insights into Gondwana’s dispersal, demonstrating the
applicability of such models.

At the regional scale, Peace et al. (2019) applied the GPlates
deformable modelling workflow to the southern North Atlantic
region by constructing a number of plate tectonicmodels and com-
paring the resultant crustal thicknesses with independently derived
crustal thickness models from gravity inversion. This showed how
resultant deformation from different plate models can be com-
pared systematically. Similarly, Welford et al. (2018) applied the
GPlates methodology to Baffin Bay showing that external model
boundaries need to be a sufficient distance from the eventual loca-
tion of break-up to prevent edge effects. King et al. (2020) studied
the Galicia Bank on the Iberian margin and demonstrate that the
GPlates methodology can be used to study structural inheritance.
Gurnis et al. (2019) used the GPlates deformable plate modelling
methodology to study the Puysegur Trench, New Zealand, and
similarly Liu et al. (2021) used the GPlates deformable model
workflow to study the subduction of the Pacific plate in East

Fig. 2. (Colour online) Schematic depiction of
the GPlates deformable plate tectonic modelling
workflow followed by comparison with indepen-
dent regional constraints modified after Peace
et al. (2019) and King et al. (2020) based onmeth-
ods described in Gurnis et al. (2018). Panel 1
shows themodel inputs (deformable boundaries
and optional interior features) required to con-
struct a topological network. ECC= edge of
continental crust, and COB = continent–ocean
boundary. Panel 2 demonstrates the resultant
triangulation mesh created after a topological
network is constructed in GPlates. Panel 3 dis-
plays a crustal thickness model created using
the deformable mesh constructed in panel 2.
Panel 4 demonstrates the need to assess the val-
idity of crustal thickness models created in
GPlates against independent observations such
as estimates from gravity inversion and observa-
tions from seismic data as in Welford et al. (2018).
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Asia. Recently, Cao et al. (2020) applied this modelling workflow to
the South China Block. The intraplate deformation in South China
is closely related to the subduction of the Izanagi and Pacific plates.
Thus, Cao et al. (2020) demonstrate the applicability at settings
that include a compressional phase. Zhu et al. (2021) built a
deformable plate model using GPlates of the Bohai Bay Basin in
North China which is claimed to have implications for the entire
East Asia region, demonstrating how insightful such reconstruc-
tions can be.

An alternative approach to deformable plate tectonic modelling
has been developed and applied by Ady & Whittaker (2019)
(Fig. 3). They produced a model for the entire North Atlantic
region to study structural inheritance, and as an aid to exploration
on the continental margins. Amongst other items, the inputs for
the Ady & Whittaker (2019) model include a map of total beta
(total beta= initial crustal thickness / final crustal thickness) in
the model inputs. The map of total beta in the Ady & Whittaker
(2019) workflow is calculated from crustal thickness obtained
through gravity inversion and, where available, seismic data. A pal-
inspastic deformation model guided by plate-derived Euler flow-
lines is then made in which deformation is iteratively restored.
As with the GPlates models, the Ady & Whittaker (2019) models
assume pure shear deformation and suggest that this is an adequate
approximation at the scale of their study. Assumption of pure shear
deformation in rift systems is not universally applicable, as many
rifts have been shown not to obey symmetrical thinning (Becker
et al. 2014; Peace et al. 2016).

Both the GPlates method (Gurnis et al. 2018) and the Ady &
Whittaker (2019) method require that continent–ocean boun-
daries (COBs) are accurately defined both spatially and tempo-
rally. Peace et al. (2019) found that the timing and location of
break-up plays a significant role in the resultant deformation.
However, challenges in defining COBs and break-up ages have
been noted (Eagles et al. 2015), presenting a problem for plate
reconstructions. Ady & Whittaker (2019) suggest that most of
the issues with COBs pointed out by Eagles et al. (2015) are
unlikely to occur when COBs are picked consistently for the

specific purpose of plate kinematic modelling. Nonetheless, it
is clear this aspect of all plate models requires caution, particu-
larly as the highly variable structure of passive margins is well
documented (e.g. Biari et al. 2021).

Another major issue remains, in that plate movements for
the Mesozoic are largely defined by reconstructions of the oce-
anic domain (Seton et al. 2012). As such, a common obstacle
encountered during deformable plate tectonic modelling is
availability of constraints. Deformation within continental
domains often occurs during time periods when reliable plate
kinematic constraints are scarce (King et al. 2020). The con-
straints on deformation in the continental domains are harder
to obtain and less reliable compared to those from the oceanic
domains such as datable (and globally correlatable) oceanic
magnetic anomalies and fracture zones (Peace et al. 2019).
Constraints on the deformation within continental domains
can be derived from analysing rift styles, fault geometry, pre-
served continental fragments and the timing of deformation
through stratigraphic evidence observed in seismic sections and
well data (Peace et al. 2019). The limiting factor on deformable
plate models is thus not the computational or methodological
restrictions; rather, it is the need to obtain adequate constraints
on timing and kinematics of deformation events. As the constraints
on continental deformation are much poorer, modelling multiple
scenarios is suggested (Peace & Welford, 2020).

3. Inclusion or omission of microcontinental fragments in
plate models

It is well known that in rifts a number of different types of relatively
undeformed regions of continental material may prevail despite
surrounding deformation (Peron-Pinvidic & Manatschal, 2010;
Foulger et al. 2020; Schiffer et al. 2019; Neuharth et al. 2021).
The genetic origin of such entities may vary (Whittaker et al.
2016), as well as their size and degree of internal deformation,
and they may be referred to as microplates, continental fragments,
terranes, blocks, or by combinations of these or other terms

(a) (b) (c)

Fig. 3. (Colour online) Schematic demonstration of deformable restoration of a conjugate margin pair using an iterative palinspastic methodology as described in Ady &
Whittaker (2019). T1–T3 refer to the time-steps in such an iterative methodology. (a) Present-day (0 Ma) cross-section through a post-break-up hyperextended conjugate margin
pair showing total beta trending to ∞ due to hyperextension (Hyp. Ext.). (b) Active rifting stage showing the restored beta factor increasing towards the centre of the rift. (c)
Restored cross-section to pre-rift configuration with inferred pre-existing structures and total beta equal to 1. The concepts in this figure are modified from Ady &Whittaker (2019)
who show the Norwegian – East Greenland conjugate margin pair (e.g. Peron-Pinvidic et al., 2012), including the Jan Mayen Microcontinent (e.g. Schiffer et al. 2019). The example
shown here, however, does not contain a microcontinent and shows relatively symmetrical rifting.
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(Peron-Pinvidic & Manatschal, 2010). Here the term ‘continental
fragments’ is used for consistency, but no preference over other
comparable terms is implied. Previous work shows how the inclu-
sion or omission of continental fragments in a model can pro-
foundly influence plate models (Peace & Welford, 2020). As
such, another theme in recent plate tectonic models is the defin-
ing of smaller regions that move independently. For example, in
the Southern North Atlantic, Nirrengarten et al. (2018) defined a
number of microcontinental fragments that, like the major plates,
also have kinematics described by Euler poles. Likewise, Gion
et al. (2017) reconstructed the Eurekan orogeny as a number
of independent entities, each with its own Euler pole. These types
of reconstructions address some of the same challenges that
deformable models are attempting to solve. Moreover, models
have been developed that include both independent smaller
plates and deformable regions (Peace et al. 2019).

However, questions remain regarding how small it is possible to
go when defining individual plates. For example, could it ever be
feasible that individual fault blocks are defined in plate models with
their own Euler pole? The reality is that everything in an actively
deforming region can undergo variable degrees of deformation.
Even the microcontinental fragments in models such as that of
Nirrengarten et al. (2018) have likely undergone some amount of
internal deformation (e.g. rift-related deformation on the Flemish
Cap), and as such the unresolved question of where to draw the line
between deforming and undeforming regions remains.

The necessity of including microcontinental fragments to pro-
duce a better fit has been questioned by Ady & Whittaker (2019)
who argue that their quantitative restoration methodology pro-
vides an alternative to their inclusion. In the Ady & Whittaker
(2019) model, only five independent plates for the entire North
Atlantic region are defined, demonstrating that adequate deform-
able models can be produced without smaller plates. However, it
has also been suggested that models that include both microcon-
tinental fragments and a deformable modelling workflow are likely
to give the most realistic reconstruction of deformation (Peace
et al. 2019). It is thus clear that further investigation into the inclu-
sion/omission of microcontinental fragments is necessary.

Another substantial and outstanding issue is how the con-
straints on the kinematics of continental fragments are derived.
It has been suggested that through detailed mapping of structures
in deformed regions the kinematics of continental fragments may
be elucidated (King et al. 2020). However, even with the most
detailed mapping, resolving deformation histories is problematic
and many scenarios must be considered to give any level of vali-
dation to a model (Peace et al. 2019).

4. A classification system for deformable plate models:
two fundamentally different types?

It is clear that not all deformable plate models are the same in terms
of their capabilities, inputs and outputs. Ady & Whittaker (2019)
propose a classification systemwith rigid, dynamic and deformable
plate models, as well as subcategories. The Ady &Whittaker (2019)
classification provides a good overview of the types of models.
However, an alternative method of categorizing deformable mod-
els is through the required inputs, and specifically whether a model
uses a beta/thinning factor as a model input or as a result. For
example the Ady &Whittaker (2019) deformable model uses grav-
ity inversion to derive crustal thickness which is then used to cal-
culate beta factors. An iterative approach is then used to restore
deformation. On the other hand, the GPlates methodology

calculates a beta or stretching factor based on the relative move-
ments of plates. Each of these approaches has different uses.
The Ady &Whittaker (2019) method likely more accurately repro-
duces deformation, but as deformation is not purely driven by the
plate motions this method cannot be used to compare different
plate models as easily as the GPlates method. The GPlates method,
on the other hand, can be used as a validation tool for rigid plate
models, as the fact that deformation is only driven by rigid plates
allows kinematic models to be evaluated. Specifically, comparison
of the resultant crustal geometries produced through different
models with independent estimates can be made (Welford et al.
2018). The question, however, remains of how best to validate
the reconstructions depicted in deformable plate models.

5. Conclusions and future directions

Plate tectonic models have provided the backbone to which many
other aspects of geoscience have been tied (Vérard, 2019), and
deformable plate models represent a rapidly evolving area of this
field (Ady &Whittaker, 2019). Plate models that account for defor-
mation have undoubtably changed our approach to reconstructing
and visualizing the past motions of the continents. However,
important methodological variations exist. One of the most impor-
tant variations is whether one of either beta factor, stretching factor
or present-day crustal thickness is used as a model input, or
whether deformation is solely driven by surrounding rigid regions.
Related to this aspect, it is imperative to ensure that no circularity
exists between model inputs and validation criteria. In addition,
whether microcontinental fragments are included or omitted rep-
resents a substantial difference. Irrespective of model type, how-
ever, the primary limiting factor on deformable plate models is
neither the computational nor methodological restrictions; rather,
it is the need to obtain adequate constraints on timing and kin-
ematics of deformation.

The majority of recently published deformable plate models
have focused on extensional tectonic settings (e.g. King et al.
2020), likely due to the use of plate models as exploration tools
on highly prospective continental margins, but also perhaps
because the application of deformable model techniques to other
settings (such as orogens) is harder. Future, work should focus
on extending the deformable plate modelling concepts further into
convergent plate tectonic reconstructions.

Future deformable plate models will likely seek to link
deep-Earth processes with crustal deformation (Yoshida, 2010,
2013; Coltice et al. 2019), as well as include erosion and subsidence,
and have a greater emphasis on application to non-extensional
settings. In addition, despite substantial recent developments
(Merdith et al. 2019, 2020), the issue of realistic and well-
constrained plate reconstructions beyond the latest supercontinent
cycle is outstanding. With deep-time reconstructions (i.e. beyond
the latest supercontinental cycle) reliable constraints for deform-
able plate models are harder to obtain and should be the focus
of future work. When reliable deformation constraints are unavail-
able, the approach of modelling multiple evolutionary scenarios is
likely best. In addition, ongoing issues with the plate-mantle refer-
ence frame that underpins both rigid and deformable models are
recognized (Müller et al. 2019). Finally, the application of deform-
able modelling approaches to palaeoclimatic and palaeoceano-
graphic studies can clearly be extended. For example, more
realistic deformation models could provide constraints on ocean
gateway opening and connectivity between ocean basins and
resultant climatic feedbacks.
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