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Again the reader is invited to draw up a chart or use a computer to see if
any conclusions can be drawn or any further conjectures can be made. And
always remember, mathematics is an experimental science!
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95.26 Nice cubics
Introduction

A discussion with some other mathematics teachers raised the question
whether it is possible to find a 'nice' cubic, that is one which has three
rational zeros and two rational stationary points. The idea was to use it as
an exercise for students to find the zeros and stationary points without
having to substitute surds back into the cubic.

I was not aware of a solution without a repeated zero and my initial
reaction was that it was not possible with three distinct zeros, but then a
colleague managed to find one. So I decided to try and see if it was possible
to find all solutions.

To simplify the problem, by a suitable transformation we can assume
that one of the zeros is zero, the others are coprime integers and the cubic is
monic (i.e. with a leading coefficient of 1). So the cubic can be assumed to
be y = x(x - a)(x - b) = x3 - (a + b)x2 + abx where a and b are
coprime integers.

On differentiating and setting to zero, the stationary points are given by

3x2-2(a+b)x+ab=O, (1)

which has roots Ha + b ± ..j(a + bi - 3ab), which are rational if, and
only if, (a + b)2 - 3ab = a2 - ab + b2 is the square of a rational number
(hence the square of an integer as a and b are integers).

So we need to find integer solutions of

a2 _ ab + b2 = d2. (2)

Finding solutions
Such equations (solving polynomials in integers) are known as

Diophantine equations (after Diophantus whose work Fermat annotated with
his famous marginal note). A famous Diophantine equation is the
Pythagoras equation and one method of finding Pythagorean triples is to
factorise over the Gaussian integers, which are numbers of the form a + bi
where a and b are integers. To solve (2) we need to factorise in the ring of
Eisenstein integers, Z [w], which are numbers of the form p + qw where p
and q are integers and w is a complex cube root of one. Such structures are
rings of algebraic integers. An algebraic integer is a zero of a monic
polynomial with integer coefficients. Loosely speaking, a ring is an
algebraic structure with an arithmetic similar to Z.
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Note that w3 I, and w2 + io + I = O. Note also that a), w2 are
complex conjugates.

Now

a2
- ab + b2 = (a + bw)(a + bw2

) (3)

and we note that the factors are complex conjugates.
If (and that's a very big 'if!!) we can carry over our ideas of factorising

from the ordinary integers, Z, we need

±(a + bw) = (p + qW)2 (4)

where p and q are integers.
Certainly this condition is sufficient as, by taking conjugates, we will

also have ± (a + bw2) = {p + qw2)2 and hence

2 2 . 2 (p 2)2 (p2 2)2a - ab + b = (p + qw) + qw = - pq + q .
In fact condition (4) is also necessary, but that is far from trivial. In a
general ring of algebraic integers factorisation may not be unique. Even if it
is (as it is for the Eisenstein integers), there are some other details to be
ironed out. I will defer these issues to later.

Expanding and using w2 = -1 - w, we get

±(a + bw) = (P + qW)2 = i -l + w(2pq - l)·
So the solutions are given parametrically by

±a 2 2P - q

±b 2pq-l
where p and q are integers, which must be coprime otherwise a and b would
not be. The signs must be taken consistently.

It is convenient for the general problem to consider the distances
between the zeros 0, a and b, which are lal, Ibl and Ib - al. Now
±b = 2pq - q2 = I -(p - ql So let c = b - a and r = p - q and
we get the distances between the zeros as

lal Ii -ll
Ibl [p2 _ r21

lei Il- r21
wherep = q + r.

From the symmetry of the solution, and remembering that we want three
distinct zeros, we may assume p > q > r > 0 and the distances between
the zeros in pairs are then given by

2 2P - q
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2 2P - r

2 2q - r

where p = q + r, p > q > r > O.
Note that a common factor of q and r would divide p also, hence q and r

are coprime. Substituting into the roots of (1), we get that the stationary
points occur at x = qr and x = t (2q + r) (q + 2r) and the latter is equal
to l + qr + r2 - t (q - r)2 and so the stationary points occur at integer
values if, and only if, q - r is divisible by 3.

However, having solved the problem for coprime a and b, we can now
generate any solution by multiplying by some rational number. So
assuming the necessity of (4), we finally arrive at the following.

General solution/or nice cubics
Given a cubic with rational zeros a < f3 < y, its derivative has rational
zeros if, and only if, the differences between a, f3 and y (in pairs) are given
by:

),0l - l)
),(/ _ r2)

),(l - r2)

where), is rational, q and r are coprime integers, q > r > 0 and p = q + r.
The zeros of the derivative are a + qrl: and a + t (2q + r)(q + 2r) A.
For the cubic to have integer zeros, then a and ), must be integers and

then the derivative has integer zeros if, and only if, ), or q - r is divisible by 3.

Some examples

r q p q2_,z r-,z r - q2 qr t(2q + r)(q + 2r)

1 2 3 3 5 8 2 2j

1 3 4 8 7 15 3 ¥
2 3 5 5 16 21 6 ~
1 4 5 15 9 24 4 18

So, looking at the first row, any cubic (with rational zeros) with gaps of 3
between two adjacent zeros and 5 between the other adjacent zeros (and
hence 8 between the non-adjacent zeros) will have stationary points with
rational x-coordinates. An example is given by x(x - 3)(x - 8), which has
stationary points at x = 2 and x = 2f.

For the third row, for example, if we take the zeros of the cubic as -4,
12 and 17 (which have pairwise gaps of 5, 16 and 21), we find the stationary
points are atx = -4 + 6 and x = -4 + ~ = ¥.
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Unique factorisation, primes. irreducibles, associates and units
The preceding solution certainly provides an infinite supply of nice

cubics, but to establish that there are no further solutions, we need to
consider equations (3) and (4) in more detail. This can get quite technical,
so I will use three Lemmas, whose proofs I will defer to the appendix which
readers can omit if they wish. The general theory I refer to in this section
and the appendix is gleaned from [1].

In the set of ordinary integers, 71., we have uniqueness of factorisation
into primes apart from order. When we move into rings of algebraic
integers such as 71. [ro], we need to exercise a bit of care as this is not
necessarily the case.

For example, consider 71.[ yC5] = {a + bN : a, b E 71.}. We can
factorise 6 in two ways, as 2 x 3 or as (1 + M(1 - M and none of
these factors can be factorised any further (without using ±l) (see [1, p.
89]).

The definition of a prime in 71. can take two forms:
either p = ab ~ a = ±p or b = ±p
or p I ab ~ p I a or p I b.

Note the symbol I means 'is a divisor of, or more simply 'divides'.
In 71. these definitions are equivalent, but in more general rings they are

not. The first says that p is irreducible; the second says that p is prime.
Every prime is irreducible, but it is not necessarily the case that every
irreducible is a prime. If factorisation into irreducibles is possible, then
factorisation is unique if, and only if, every irreducible is prime. (See [1,
pp. 78, 95-96].)

For our purposes we have the following result.

Lemma 1: 71. [ro] is a unique factorisation domain.

However we also we need to consider the presence of units. A unit is a
divisor of 1. In 71. units are not really an issue as the only units are ±I and
these are traditionally omitted in factorisations. Related to these we have
associates. We say that u and v are associates if u = sv where e is a unit.
In 71., u and v are associates if u = ±v.

Uniqueness of factorisation is unique only up to associates and units.
For example, even in 71., 10=(2)(5)=(-2)(-5)=(1)(2)(5)

= (-1)(-2)(5), but clearly these are equivalent. The numbers I and -1 are
units, -2 and 2 are associates and -5 and 5 are associates.

In 71. we can get round this by excluding negative numbers and 1, but in
a more general ring of algebraic integers this may not be possible as there
may be other units and if we are dealing with complex numbers we cannot
make a sensible definition of positive.
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So if a + bta and a + bw2 have no common factors (other than units)
then from (3) we can deduce a modified version of (4):

±(a + bw) = E(s + tW)2

where e is a unit and s, t are integers.
We now need:

Lemma 2: In 7L[w] the only units are ±1, ±w, ±w2.

So (4) becomes ± (a + bw) = oJ (p + qW)2 where j = 0, I or 2. The
case j = 0 we have already dealt with. The other two cases are equivalent
to this as w2(s + tW)2 = (sw + tw2f = (p + ~W)2 where p = -t, q = s - t
and w(s + tW)2 = (W2)2(s + tW)2 = (sw2 + t) = (p + qw)2 where p = t - s,
q = -so

However another issue is that if a and b are coprime integers then
a + bw and a + bw2 may have a common factor which is not a unit. We
need the following result.

Lemma 3: If a and b are coprime in 7Lthen any common divisor of a + bw
and a + bw2 in 7L[w] is either a unit or an associate of I - w.

So to finish our solution we need to consider the equation

± (a + bw) = (I - w) (p + qW)2.

Taking conjugates we get ±(a + bw2) = (I - w2)(P + qw2)2 and multiplying
gives a2 - ab + b2 = 3 (p2 - pq + l)2 but 3 is not the square of an
integer and hence we get no further solutions.

Appendix: Proofs of the lemmas
To prove the lemmas, it is helpful to introduce the concept of the norm

of an element of 7L[w]. We define the norm of a + bw by

N(a + bw) = (a + bw)(a + bw2).

Note that also N(a + bw) = a2 - ab + b2 = la + bwl2 and so the nonn
of every non-zero element is a positive integer.

Now by the properties of modulus we have N(uv) = N(u)N(v).
Hence we can deduce the two useful properties:

l. u I vin7L[w] ~ N(u) I N(v)in7L,
2. u is a unit ~ N (u) = l.

I will prove Lemmas 2 and 3 first.
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Lemma 2: In 7L [w] the only units are ±I, ±w, ±w2•

Proof
Since 1 = (1)(1) = (-1)(-1) = (w)(w2) = (-w)(-w2) the stated elements

are all units. Conversely, if a + btu is a unit, then N(a + bw) = 1
~ a2 - aj3 + 132 = 1 ~ 3 (a - 13)2 + (a + j3i = 4.

The integer solutions of this are either a - 13 = ± I, a + 13 = ± 1
(where the signs can be chosen independently) or a - 13 = 0, a + 13 = ±2.

Solving these gives a = ±I, 13 = 0 or a = 0, 13 = ±I or a = 13 = ±I,
giving the possible units as ±I, ±w and ± (1 + w) = ~W2.

Lemma 3: If a and b are coprime in 7L then any common divisor of a + bt»
and a + bw2 in 7L [w] is either a unit or an associate of 1 - to.

Proof
Let u = a + boi, v = a + bw2 and suppose A I u and A I v.
Then A I (u - v) = wb(1 - w)andA I (wv - w2u) = wa(l - w).
Now N(wa(1 - w)) = N(w)N(a)N(1 - w) = (1)(a2)(3) = 3a2 and

similarly N (wb (1 - w)) = 3b2•

So N (A) divides both 3a2 and 3b2• But N (A) is a positive integer so
must be 1 or 3 as a and b are coprime.

If N (A) = 1 then, from the proof of lemma 2, A is a unit.
If N(A) = 3, let A = a + j3w. Then a2 - aj3 + 132 = 3 and so

3(a - 13)2 + (a + 13)2 = 12. The integer solutions of this are either
a - 13 = ±2, a + 13 = 0 or a - 13 = ± I, a + 13 = ±3 (where the signs can be
chosen independently). Solving for a, 13 gives the following solutions for A:

± (I - w), ± (2 + w), ± (I + 2w).

But these are all associates of 1 - w as can be seen by multiplying it by
each of the six units.

Lemma I: 7L [w] is a unique factorisation domain.

Proof
I will prove that 7L [w] is a Euclidean domain and by a standard piece of

ring theory, this means that it will also be a unique factorisation domain (see
[I, pp. 98-99]).

We need the definition of a Euclidean domain. It is an integral domain
(i.e. a commutative ring with a multiplicative identity and no zero divisors)
with a Euclidean function, cp, which is a function from the non-zero
elements of the domain to N with the following two properties:

1.

2.
Given non-zero a, b, then a I b ~ cp(a) OS;;; cp(b).

Given non-zero a, b, there exist q and r such that a
and either r = 0 or cp(r) OS;;; cp(b).

qb + r
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Informally this says that we can divide and get a remainder of a smaller
'size' than the divisor.

For 7!..[w], we can use the norm as the Euclidean function. Now
a I b => N (a) I N (b) => N (a) c N (b), so the first property is satisfied.
For the second property, given non-zero a and b in 7!..[w], let
Q = g = QI + Q2W in C where QI and Q2 are rational. Then take ql and
qz to be the nearest integers to Q, and Q2 respectively.

So we have IQI - qll ..;; t and IQ2 - q21 ..;; t, and
a = bQ = b(q, + q2W) + b(Q, - q,) + b(Q2 - q2)W.

Let q = q, + q2W and r = a - bq = b (QI - qd + b (Q2 - q2) w.
Then a = qb + r and

N (r) b2 [(QI - ql)2 - (Q, - ql)(Q2 - q2) + (Q2 - q2)2]

..;; b2[(W + (!)(!) + (!)2]

< b2 = N(b).
So 7!..[w] is a Euclidean domain and hence a unique factorisation domain.
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95.27 Symmetric rational expressions in polynomial
sequences

Introduction
A recent Gazette article [1] considered the notion of symmetric rational

functions in the variables XI> X2, ..• ,Xn• In this note we obtain some
interesting results for the case in which these variables are specialised to
finite sequences defined by polynomials. For the sake of clarity, we
recapitulate some of the key definitions and results given in [1].

A rational function in the variables x" X2, ..• Xn is called symmetric if it
is left unchanged by any permutation of these variables. It is well known
that any symmetric rational function may be written in terms of elementary
symmetric polynomials. In fact, in [1] this result is proved for the special
cases n = 2 and n = 3. The elementary symmetric polynomial ek.n is
defined to be the sum of all possible products of k distinct elements from the
set x" X2, ••. , Xn•

Let f (x) be a polynomial function. In this note the variables
XI> X2, ••• , Xn are specialised by setting Xk = f (k), k = 1, 2, ... , n. We
use Sk.n to denote the elementary symmetric expression consisting of the
sum of all possible products of k terms with distinct arguments from the
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