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We derive nonparametric efficiency bounds for regular estimators of integrated
smooth transformations of instantaneous variances, in particular, integrated power
variance. We find that realized variance attains the efficiency bound for integrated
variance under both regular and irregular sampling schemes. For estimating higher
powers such as integrated quarticity, the block-based procedures of Mykland and
Zhang (2009) can get arbitrarily close to the nonparametric bounds, when observa-
tion times are equidistant. Moreover, the estimator in Jacod and Rosenbaum (2013),
whose efficiency was documented for the submodel assuming constant volatility, is
efficient also for nonconstant volatility paths. When the observation times are pos-
sibly random but predictable, we provide an estimator, similar to that of Kristensen
(2010), which can get arbitrarily close to the nonparametric bound. Finally, para-
metric information about the functional form of volatility leads to a lower efficiency
bound, unless the volatility process is piecewise constant.

1. INTRODUCTION

The availability of high-frequency data has led to the development of new esti-
mators of integrated volatility and their asymptotic properties (see Andersen and
Bollerslev (1998), Andersen et al. (2001, 2003), Barndorff-Nielsen and Shephard
(2001, 2002a,b), among many others). Inference from high-frequency data is not
only confined to integrated volatility. There is a strand of literature on estimating
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power variances, or other smooth transformations, based on the intraday price
data (see Barndorff-Nielsen and Shephard (2003, 2004), Jacod (2008), Mykland
and Zhang (2009), Kristensen (2010), and Jacod and Rosenbaum (2013) to name
just a few).

We focus in this paper on the issue of efficient estimation of integrated smooth
transformations of instantaneous variances from two perspectives. First, we
analyze the efficiency of estimators proposed in the literature and propose a new
estimator that can deal with unequally-spaced (random, but predictable) observa-
tion times. Secondly, from the perspective of modeling, we detail the efficiency
gains possible when a researcher is willing to make parametric assumptions on
the volatility path or, equivalently, we characterize which volatility specifications
are adaptive. For this, we analyze, in a concrete probabilistic setting, limiting
experiments concerning inference about integrated functions of volatility. To
be precise, for the derivation of the efficiency bounds, we consider returns,
conditionally on the realizations of both the volatility function and the sampling
times, to be normally distributed. This setting is deliberately much simpler
than the assumptions that are usually imposed in the literature about realized
quantities that often consider general Itô semimartingales, possibly contaminated
by some micro structure noise.

Our work complements two recent papers in various ways. First, Clément,
Delattre, and Gloter (2013) derive a locally asymptotically mixed normal
(LAMN) limiting experiment, assuming that volatility follows a diffusion
process. Their Proposition 2 is closely related to our Theorem 3.3, though
conceptually different. To be precise, we consider the pathwise properties of
volatility such that the model is locally asymptotically normal (LAN), i.e., we
consider the inference problem conditionally on the realized intraday path of
volatility. This does not mean that we assume volatility to be deterministic,
but the statistical experiments we consider are conditional on the realization
of the volatility path. This approach is also taken in Reiß (2011). We precisely
identify the pathwise properties needed for LAN and show that, for instance,
jumps in volatility are not excluded. Moreover, we do not need to assume that
the volatility process is a semimartingale. It might also entail, for instance,
some fractional Brownian motion component to accommodate long memory
in volatility (see, e.g., Comte and Renault (1998)). Although in their more
abstract results, Clément et al. (2013) allow for (deterministic) irregularly spaced
observation times, their discussion about the efficiency of existing estimators of
integrated power variance focuses on regularly spaced data only. We consider
even random, albeit predictable, irregularly spaced observation times. Moreover,
we also provide a new (nearly) efficient estimator in this case. Second, our paper
complements Reiß (2011) as that paper focuses on the limiting experiments
arising when prices are contaminated with (market micro structure) noise. This
turns out to lead to fundamentally different limiting experiments and, even, to
different optimal rates of convergence. In the absence of noise, Reiß (2011)’s
limit experiments are no longer valid. Moreover, the absence of noise leads to less
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restrictive assumptions on the sample paths of volatility, in particular, allowing
jumps. We discuss these links in more detail in the remainder of the paper.

The local asymptotic normality result we derive in our simple setting (which
allows us to explicitly analyze likelihood ratio processes of a fairly simple form)
leads to a well-defined optimality concept for asymptotic inference using the
so-called convolution theorem. As stated in Jacod and Rosenbaum (2013),
“. . . even for the simpler problem of estimating integrated volatility, the con-
cept of efficiency in the general nonparametric or semiparametric setting is not
well established so far”. Accordingly, they decide to generally call “efficient”
a procedure which is efficient in the usual sense for the submodel assuming a
time-invariant volatility, i.e., what they call a “toy” model where observations
are generated by a constant volatility Brownian motion. However, this simple
concept of efficiency is not sufficient for at least two reasons. First, if a non-
parametric estimator attains a bound induced by a parametric submodel, the non-
parametric estimator can indeed be called efficient, but only for data generating
processes that belong to this parametric submodel. One of the consequences of
our paper is that the Jacod and Rosenbaum (2013) estimator is even nonpara-
metrically efficient for nonconstant volatility paths, at least when the observation
times are equally spaced. Second, indeed, if the observation times are irregular,
like transactions times or times of quote changes, then these simple parametric
submodels may be misleading about nonparametric efficiency. Hayashi, Jacod,
and Yoshida (2011) give a counterexample considering the estimation of a sub-
model with time-invariant volatility with irregular sampling times. For this simple
model, the maximum likelihood estimator (MLE) is asymptotically efficient and
easy to compute as an average of squared returns divided by corresponding
durations. Unfortunately, this MLE formula does not even deliver a consistent
estimator of integrated variance if volatility is time varying and the sampling
times are irregular. In other words, the quasi-maximum likelihood estimation ap-
proach of Xiu (2010) with regularly sampled high-frequency data, based on a
quasi-likelihood method as if the volatility were constant, does not work with
irregular sampling. Our paper generalizes the counterexample of Hayashi et al.
(2011) by showing that even in the case of a parametric model defined by a piece-
wise constant volatility, the parametric efficiency bound for estimating integrated
powers of the volatility does not coincide with the nonparametric bound. It takes
an ad hoc assumption (namely, the specific power of volatility properly rescaled
according to the density of observation times being piecewise constant) in order
to obtain equality of the parametric and nonparametric efficiency bounds.

The present paper offers three important contributions. First of all, we extend
the analysis of efficiency of estimators for integrated transformations of instan-
taneous variance to the situation of irregularly spaced, random but predictable,
sampling times. It follows that, for integrated variance, realized variance remains
nonparametrically efficient in this case. Our results also show how the denseness
of observations throughout the day affects the possible precision of estimators.
We provide an estimator, similar to the one proposed in Kristensen (2010), that is
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nearly efficient also when observation times are irregularly spaced. The “near”
efficiency signifies that the limiting variance of our estimator can get arbitrarily
close to the nonparametric lower bound, just like the block-based procedure in
Mykland and Zhang (2009). We have not yet been able to derive a fully efficient
estimator when observation times are irregularly spaced in analogy to the one in
Jacod and Rosenbaum (2013) which is based on regularly sampled observation
times.

Second, we detail the pathwise properties of volatility needed to obtain our
LAN result. This is summarized in the new concept of (sample paths of) locally
bounded variance, a concept that does not rule out jumps in volatility and is sat-
isfied, e.g., by the sample paths of Brownian motion. We expect, though we were
unable to prove formally, that this condition is much more generally satisfied by
sample paths of (Brownian) semimartingales.

Third, we show for which volatility paths and parametric volatility specifica-
tions, the nonparametric and parametric lower bound coincide, i.e., when the non-
parametric model is adaptive. This is useful if in empirical work, one is willing
to take misspecification risk in return for efficiency gains. We show that these
gains indeed can be sizable. This has sometimes been overlooked in the literature,
in particular due to the fact that realized variance achieves the parametric lower
bound for constant volatility specifications (with and without regularly spaced
observations).

The rest of the paper is organized as follows. Section 2 introduces our model
setup and provides the local properties of volatility paths which are assumed for
our analysis. In particular, the functional parameter of interest is made more ex-
plicit to address the efficiency issue and the distribution of possibly random obser-
vation times is discussed. Section 2 states the set of maintained assumptions about
both the return process and the sampling scheme sufficient to derive our asymp-
totic results. In Section 3, we obtain our lower bounds for (smooth) functionals of
volatility and show, for equidistant data, when the nonparametric efficiency bound
is attained by existing estimators as those proposed by Mykland and Zhang (2009)
and Jacod and Rosenbaum (2013). In Section 4, we discuss an (nearly) efficient
estimator for integrated smooth functions of volatility, also when observations are
irregularly spaced in time. Subsequently, Section 5 shows in which circumstances
parametric volatility models lead to additional information that can be exploited
statistically, i.e., when MLE improves upon the nonparametric efficiency bound.
Finally, Section 6 concludes and the appendix gathers proofs together.

2. SETTING AND PATHWISE PROPERTIES

We are interested in the pathwise properties of a univariate (instantaneous vari-
ance) process σ 2 = {

σ 2(t) : 0 ≤ t ≤ 1
}
. All processes are assumed to be adapted

to a (given) filtered probability space
(
�,F,{Ft }0≤t≤1 ,P

)
. Inference about (the

paths of) σ 2 will be based on observations on a, say, log-price process S at
random sampling times ti,n . Section 2.1 introduces the properties required on
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these sampling times, while Section 2.2 discusses further assumptions on S.
In order to analyze the impact of the denseness of observations on efficiency
bounds, Section 2.3 introduces a process which is closely related to the quadratic
variation of time by Mykland and Zhang (2006).

2.1. The sampling scheme

At stage n, we consider a strictly increasing sequence of stopping times ti,n , with
i = 0,1, . . . , Nn and 0 = t0,n < t1,n < · · · < tNn ,n ≤ 1. The deterministic sequence
n = 1,2, . . . is used to index the experiments whose limit we will consider. Note
that Nn stands for the actual number of observations available at stage n, and
this number may be random. Also, even though the volatility process σ 2 is never
observed directly, we call, for now with some abuse of terminology, the times ti,n
“observation times”. In addition, the double array

(
ti,n
)

0≤i≤Nn ;n≥1 of stopping
times forms the “sampling scheme”.

We assume the mesh of the sampling scheme to converge to zero at some
deterministic rate and Nn/n to be bounded from above, almost surely. As the
sequence n is an index to define the asymptotic setup, we can always choose
Nn to be bounded by n. A standard assumption would be to assume the mesh
of the sampling scheme to converge to zero at rate n−1. However, we relax this
assumption in order to include, for instance, Poisson sampling with intensity of
the order O(n) for which Nn/n converges to 1 but the mesh can only be bounded
by O(log(n)/n).

Assumption 1. We suppose that the sampling scheme is a double array(
ti,n
)

0≤i≤Nn ;n≥1 of stopping times with respect to {Ft }0≤t≤1 such that

• 0 = t0,n < t1,n < · · · < tNn ,n ≤ 1;

• for all n, Nn ≤ n a.s.;

• √
n max

∣∣ti,n − ti−1,n
∣∣= oP(1), as n → ∞;

• n
∑n

i=1

(
ti,n − ti−1,n

)2 = OP (1) as n → ∞.

Moreover, we maintain the (restrictive) assumption that the stopping times are
strongly predictable. Obviously, this does cover the case of irregularly, but deter-
ministically, spaced observation times.

Assumption 2. The sampling scheme
(
ti,n
)

0≤i≤Nn ;n≥1 is {Ft }0≤t≤1-
predictable; that is ti,n is Fti−1,n measurable, for all i,n.

It is worth acknowledging that in the spirit of Assumption (C) in Hayashi et al.
(2011), it would be possible to relax Assumption 2 so that, conditionally on
Fti−1,n , ti,n is independent of the processes of interest. Allowing for genuinely en-
dogenous sampling times, albeit realistic for transaction times, much complicates
the specification of the conditional distribution of returns given the observation
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times. As extensively discussed by Li et al. (2014), it significantly changes the
asymptotic distribution of, e.g., realized volatility. A study of nonparametric effi-
ciency in this more general setting appears to be a daunting task, beyond the scope
of this paper.

The pathwise behavior of the volatility process σ of interest has to be restricted
by a regularity condition. To formalize this, we introduce the concept of locally
bounded variance.

DEFINITION 1. Let f be a real-valued cadlag function on the interval [0,1].
We say that f is of locally {Ft }0≤t≤1-bounded variance if, for any sampling
scheme

(
ti,n
)

0≤i≤Nn ;n≥1 satisfying Assumptions 1 and 2,

max
n∈N

{ Nn∑
i=1

V
(

f |ti,nti−1,n

)}
(2.1)

is almost surely bounded, where

V
(

f |ti,nti−1,n

)
= 1

ti,n − ti−1,n

∫ ti,n

ti−1,n

(
f (u)− 1

ti,n − ti−1,n

∫ ti,n

ti−1,n

f (v)dv

)2

du. (2.2)

Throughout the paper, we assume that the sample paths of σ 2 are of locally
{Ft }0≤t≤1-bounded variance. Observe that Lemma A.1 and the observation that

V( f |ti,nti−1,n
) equals V( f (U )) when U is uniformly distributed over (ti−1,n, ti,n],

implies that then also the sample paths of σ−2 are of locally bounded variance.
As this assumption is key to the asymptotic theory developed in the next sections,
it is worth analyzing whether the condition holds for paths of often-used volatility
processes.

First of all, note that if f and g are of locally {Ft }0≤t≤1-bounded variance, so
are their sum and scalar products. The functions of locally {Ft }0≤t≤1-bounded
variance thus form a vector space. Second, we have the bound, for 0 ≤ i ≤ Nn ,

V
(

f |ti,nti−1,n

)
≤ 1

4

[
max

ti−1,n≤u≤ti,n
f (u)− min

ti−1,n≤u≤ti,n
f (u)

]2

, (2.3)

so that

Nn∑
i=1

V
(

f |ti,nti−1,n

)
≤ 1

4

Nn∑
i=1

[
max

ti−1,n≤u≤ti,n
f (u)− min

ti−1,n≤u≤ti,n
f (u)

]2

. (2.4)

As a result, monotonic functions f are of locally {Ft }0≤t≤1-bounded variance
and, hence, so are functions of finite variation. In particular, our analysis does not
rule out jumps in volatility. For functions not of finite variation, the analysis is
more subtle but diffusions are not excluded; see Appendix A for details.
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2.2. Functional parameter and model

Inference about (functionals of) the path of σ 2 will be based on observations of a
process S = {S(t) : 0 ≤ t ≤ 1}, which can be thought of as a log-price process, at
the sampling times

(
ti,n
)

0≤i≤Nn ;n≥1. We throughout assume that S is {Ft }0≤t≤1-
adapted. In this section, we formalize the underlying data generating mechanism
for the derivation of the efficiency bound. Essentially, we consider returns, con-
ditionally on both the realizations of the volatility and the sampling times, to be
normally distributed. We stress that our kernel-based estimator in Section 4 does
not require Gaussianity of the returns.

Assumption 3. Suppose that Ri,n := log
{

Sti,n /Sti−1,n

}
is the log-return over the

time interval (ti−1,n, ti,n]. Then, conditionally on Fti−1,n , Ri,n is distributed as

N
([

μ(ti−1,n, ti,n)+γ (ti−1,n, ti,n)σ 2(ti−1,n, ti,n)
]
�ti,n,σ 2(ti−1,n, ti,n)�ti,n

)
, (2.5)

where μ(ti−1,n, ti,n), σ 2(ti−1,n, ti,n), and γ (ti−1,n, ti,n) are bounded and Fti−1,n -
measurable.

It is worth stressing that for our LAN result it is not needed that investors know
quantities as μ(ti−1,n, ti,n), σ 2(ti−1,n, ti,n), or �ti,n at time ti−1,n . They may see
the volatility (and the subsequent times of trades) as stochastic and their condi-
tional variance at time ti−1,n of the return Ri,n can be computed as the projection
of the above moments on the σ -field subset of Fti−1,n that describes the investors’
information at time ti−1,n . The sequence of σ -fields Fti−1,n , i = 1, . . . , Nn is a
modeling tool for the sake of specifying a statistical model and should not neces-
sarily be interpreted in terms of investors’ information. Note that, precisely con-
trary to the limiting approximations discussed in Reiß (2011), we exclude possible
(micro structure) contamination of observed returns. As explained in the introduc-
tion, the resulting limiting experiments are materially different.

We assume that the information brought by asset returns is exogenous in the
following sense.

Assumption 4. The filtration {Ft }0≤t≤1 is the natural one of
{(S(t), Z(t)) : 0 ≤ t ≤ 1}, where {Z(t) : 0 ≤ t ≤ 1} is a (possibly multivari-
ate) stochastic process of exogenous variables such that, given F0 and Nn , the
joint conditional density of {(S(t), Z(t)) : 0 ≤ t ≤ 1} can be written

p
({

Zti,n

}
1≤i≤Nn

) Nn∏
i=1

p
(
Ri,n|Fti−1,n

)
. (2.6)

Remark 2.1. Assumption 4 requires non-causality (in the Sims sense) from
the return process (Ri,n)1≤i≤Nn to the (Zti,n )1≤i≤Nn . Otherwise, the condition-
ing information in p(Ri,n|Fti−1,n ) should also involve future values Ztj,n , j > i .
We also preclude instantaneous causality in order to erase the contemporaneous
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value Zti,n in the conditioning information that defines the probability distribution
of Ri,n . Up to discussions regarding initial values, Sims’ non-causality is known
to be equivalent to Granger non-causality. In other words, we basically assume
that returns do not Granger-cause state variables, like stochastic volatility.

It is generally convenient to study the return variance as an integral over
the corresponding event interval of the so-called spot volatility process σ 2 =
{σ(t) : 0 ≤ t ≤ 1}, so that:

σ 2(ti−1,n, ti,n)
[
ti,n − ti−1,n

]=
∫ ti,n

ti−1,n

σ 2(u)du. (2.7)

In other words, σ 2(ti−1,n, ti,n) is the arithmetic mean of the function σ 2 over
the interval (ti−1,n, ti,n]. This situation occurs, for instance, when the returns are
generated from log-prices St satisfying the differential equation

dlog St = at dt +σ(t)dWt , (2.8)

for some appropriate drift at and Brownian motion Wt .
We introduce the following notations and assumption. Let D[0,1] denote the

set of real-valued cadlag functions on the interval [0,1] and let D+[0,1] be the
subset of functions that take strictly positive values only. Both spaces are equipped
with the supremum norm ‖·‖. Assumption 5 will not be imposed in the limiting
results of our kernel-based estimator in Section 4.

Assumption 5. The parameter space � is the set of all elements σ 2 in D+[0,1]
such that σ 2 is bounded away from zero and of locally {Ft }0≤t≤1-bounded
variance.

2.3. On the denseness of events

In order to analyze the consequences of irregularly spaced event times, we intro-
duce a process representing effectively the time change induced by the observa-
tion times ti,n . We define

Tn(u) = 1

n

n∑
i=1

1

ti,n − ti−1,n

[
u ∧ ti,n −u ∧ ti−1,n

]
, 0 ≤ u ≤ 1. (2.9)

Observe that the function Tn is piecewise linear and increases over each time in-
terval (ti−1,n, ti,n] exactly an amount 1/n. As a result Tn(ti,n) = i/n, i = 0, . . . ,n.
Thus, at the observation times u = ti,n , Tn(u) coincides with the empirical distri-
bution function of these observation times. For regularly spaced data ti,n = i/n
and Tn(u) = u. The function Tn is also closely related to what Mykland and
Zhang (2006) call the quadratic variation of time; a relation that we will make
precise below. Also, note that the sum in (2.9) is taken to i = n, and not, as be-
fore, to i = Nn . This is an abuse of notation that we will maintain throughout the
remainder of the paper and is warranted in view of (A.3).
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We impose the following additional assumption on the observation times ti,n .

Assumption 6. The function Tn as defined in (2.9) converges almost surely to
a distribution function T on [0,1] in the topology of weak convergence. That is,
for any function f ∈ D[0,1],∫ 1

u=0
f (u)dTn(u) →

∫ 1

u=0
f (u)dT (u),

almost surely, as n → ∞. Moreover, T admits a strictly positive and bounded
density T ′ and T ′

n → T , almost surely.

Remark 2.2. Assumption 6 has a few strong consequences. As the limit T
is continuous, the functions Tn monotone, and [0,1] compact, the convergence
of Tn to T is uniform (see Buchanan and Hildebrandt (1908)). Consequently,
again using the continuity of T , the quantile functions T −1

n also converge weakly,
pointwise, and, by the same argument, uniformly to T −1.

It is informative to relate Assumption 6 to the concept of asymptotic quadratic
variation of time (AQVT) as in Mykland and Zhang (2006). Observe

T ′
n(u) = [

n
(
ti,n − ti−1,n

)]−1 for ti−1,n < u < ti,n .

Consequently, for u ∈ [0,1],

Hn(u) :=
∫ u

0

1

T ′
n(z)

dz = n
∑

ti,n≤u

(
ti,n − ti−1,n

)2 +n
(
ti∗+1,n − ti∗,n

)(
u − ti∗,n

)
,

where ti∗,n ≤ u ≤ ti∗+1,n . In general, convergence of Tn and Hn cannot be related,
but, under appropriate additional smoothness, one would have

H(u) := lim
n→∞ Hn(u) = lim

n→∞

∫ u

0

1

T ′
n(z)

dz, (2.10)

and thus H ′(u) = 1/T ′(u). We represent the denseness of events in terms of Tn

and T , rather than Hn and H , as this notion arises naturally in the study of the
likelihood ratios in the next section. Following Mykland and Zhang (2012), it is
easy to check that H ′(u) ≡ 1 (or, equivalently, T ′(u) ≡ 1) if and only if

Nn∑
i=1

(
ti,n − ti−1,n − 1

n

)2

= oP (1).

We call such a sampling scheme (asymptotically) regular.

3. LOWER BOUNDS FOR INTEGRATED FUNCTIONS OF VARIANCE

As indicated in the introduction, we base our optimality criteria on the Hájek-Le
Cam theory of convergence of experiments. We refer to, e.g., van der Vaart (2000)
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for details. We show in this section that appropriately parametrized local versions
of the model described in Assumptions 1–6 converge, as n tends to infinity, to a
Gaussian shift experiment, i.e., our experiment is locally asymptotically normal
(see van der Vaart (2000), Section 7). Using by now standard arguments, the least-
favorable of these parametric submodels describes the lower bound for estimating
functionals of the volatility path, see Section 3.

As is to be expected, realized variance plays a key role in the analysis. The idea
of estimating volatility of returns over a fixed interval as the sum of squared real-
izations given the availability of sufficiently high sampling frequency was noted
already in Merton (1980). More recently, realized variance measures constructed
from intraday data have been exploited by Taylor and Xu (1997) and Andersen,
Bollerslev, and Lange (1999), among others. We define the realized variance pro-
cess as

RVn(u) =
n∑

i=1

R2
i,n I

{
ti,n ≤ u

}
, 0 ≤ u ≤ 1. (3.1)

Observe that RVn(1) coincides with the standard definition of realized variance,
but we need this process version below to clarify the role of unequally spaced
time points ti,n later. It turns out that in the local asymptotic normality result,
another process plays an important role. We define the duration-weighted realized
variance process as

RV ∗
n (u) = 1

n

n∑
i=1

R2
i,n(

ti,n − ti−1,n
)2 [u ∧ ti,n −u ∧ ti−1,n

]
, 0 ≤ u ≤ 1. (3.2)

Note that RV ∗
n is a piecewise linear process that increases by an amount of

R2
i,n/[n

(
ti,n − ti−1,n

)
] over the interval (ti−1,n, ti,n]. We could have used a piece-

wise constant definition, similar to the definition of the realized variance process
RV , but the continuity induced by the linear interpolation turns out to be mathe-
matically convenient.

We first provide a joint functional central limit result for the realized variance
RVn and the duration-weighted realized variance RV ∗

n above. A proof is again
provided in the appendix. As our nearly efficient estimator in Section 4 takes this
result as input, we formulate it here as a condition. Thus, once more, our estimator
is valid under much more general conditions than Assumptions 1–6. In particular,
it does not rely on returns being normally distributed.

Condition 1. The processes

√
n

[
RVn(u)−

∫ u

v=0
σ 2(v)dv

]
(3.3)

and

√
n

[
RV ∗

n (u)−
∫ u

v=0
σ 2(v)dTn(v)

]
(3.4)
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jointly converge to
√

2
∫ u
v=0 σ 2(v)T ′(v)−1/2dW (v) and√

2
∫ u
v=0 σ 2(v)T ′(v)+1/2dW (v), respectively, where W denotes a standard

Brownian motion. The convergence is weak in (D[0,1],‖·‖).
LEMMA 3.1. Under Assumptions 1–6, Condition 1 holds.

As mentioned before, the nonparametric analysis where σ 2 denotes a functional
parameter is, in line with classical reasoning, reduced by considering parametric
submodels and, then (see Theorem 3.3), considering the least-favorable among
them. Thus, fix σ 2

0 ∈ D+[0,1] and define local alternatives for h ∈ D[0,1], with
‖h‖ ≤ 1, by

σ−2
α/

√
n
(u) = σ−2

0 (u)

[
1+ α√

n
h(u)

]
, α ∈ (−1,1). (3.5)

We write shorthand P(n)
α for the probability measure induced by R1n, . . . , Rnn un-

der σ 2
α/

√
n
, i.e., P(n)

α = P(n)

σ 2
α/

√
n

.

THEOREM 3.2. Under Assumptions 1–6, the experiment
{
P

(n)
α : α ∈ (−1,1)

}
is asymptotically normal with

log
dP(n)

α

dP0
= −α

2

∫ 1

0
σ−2

0 (u)h(u)d
√

n

[
RV ∗

n (u)−
∫ u

v=0
σ 2

0 (v)dTn(v)

]
(3.6)

−α2

4

∫ 1

u=0
h2(u)dT (u).

The Fisher information is given by 1
2

∫ 1
u=0 h2(u)dT (u). In particular, the proba-

bility measures P(n)
α and P(n)

0 are contiguous.

For more details on local asymptotic normality results as in Theorem 3.2, we
refer the reader to van der Vaart (2000). In the following section, we will use
it to establish lower bounds on the precision of regular estimators for integrals
of smooth transformations of instantaneous variances, in the absence of micro
structure noise.

Assume now that we are interested in estimating the following generalized ver-
sion of the standard integrated volatility

ψg

(
σ 2
)

=
∫ 1

0
g(u,σ 2(u))ω(u)du, (3.7)

where ω is a known weighting function on [0,1] and g : [0,1]×R→R is a known
time-dependent transformation. This setup includes most standard measures.

(i) For ω(u) ≡ 1 and g(u,σ 2(u)) = σ 2p(u) we have the so-called “power varia-
tion” as studied in particular by Jacod (2008). These power variations are popular
in particular to assess the asymptotic variance of estimators of power variation of
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lower order. For instance, quarticity (p = 2) is informative about the asymptotic
variance of realized variance (p = 1). A nonflat weighting function ω may be
necessary to accommodate the effect of irregular sampling.

(ii) For ω(u) ≡ 1 and g(u,σ 2(u)) = exp
(−sσ 2(u)

)
for some given s ∈R+, we

have the empirical Laplace transform function of the volatility process. A consis-
tent asymptotically (mixed) normal estimator of the Laplace transform has been
provided by Todorov and Tauchen (2012). Li, Tauchen, and Todorov (2013) sub-
sequently use this estimator to estimate the volatility occupation time correspond-
ing to g(u,σ 2(u)) = 1]0,x](σ

2(u)) for some given x ∈ R+. However, this latter
example will not be covered here since, in order to compute Cramér-Rao effi-
ciency bounds, we always assume that g(u,σ 2) is a continuously differentiable
function of the underlying spot variance σ 2.

(iii) Time-dependent transformations of volatility g(u,σ 2(u)) may be relevant
when computing implied volatilities from option prices. These option prices typ-
ically depend not only on the underlying spot volatility but also on the time to
maturity.

Along the paths induced by σ 2
α/

√
n

defined in (3.5) we have

ψg

(
σ 2

α/
√

n

)
=
∫ 1

0
g

(
u,σ 2

0 (u)

(
1+ α√

n
h(u)

)−1
)

ω(u)du

= ψg

(
σ 2

0

)
− α√

n

∫ 1

0

∂g

∂σ 2

(
u,σ 2

0 (u)
)
σ 2

0 (u)h(u)ω(u)du +o

(
1√
n

)
,

as n → ∞. This expansion is valid uniformly in h for ‖h‖ ≤ 1 if g fulfills the
following assumption.

Assumption 7. g
(
u,σ 2

)
is continuous in u and continuously differentiable

in σ 2.

As a result of the above expansion, the Fréchet derivative of our parameter of
interest ψg

(
σ 2
)

with respect to α/
√

n) is given by

−
∫ 1

0

∂g

∂σ 2

(
u,σ 2

0 (u)
)
σ 2

0 (u)h(u)ω(u)du.

We can now proceed as usual and derive the nonparametric lower bound for
estimating ψg

(
σ 2
)

as the largest bound obtained in the parametric models
indexed by h.

More precisely, given h, we apply the Convolution Theorem as, for instance,
stated in Bickel et al. (1993) Theorem 2.3.1. Consider a regular1 estimator ψ̂

(n)
g

for ψg
(
σ 2
)

in the sense that, under P(n)
α ,

√
n
(
ψ̂(n)

g −ψg

(
σ 2

α/
√

n

))
→L N (0,V ). (3.8)
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Then, we know that V is at least equal to the squared derivative of ψg
(
σ 2
)

(with
respect to α) times the inverse of the Fisher information, thus

V ≥
(∫ 1

0
∂g
∂σ 2

(
u,σ 2

0 (u)
)
σ 2

0 (u)h(u)ω(u)du
)2

∫ 1
0 h2(u)dT (u)/2

. (3.9)

We thus have the following nonparametric bound.

THEOREM 3.3. Under Assumptions 1–7, any regular estimator for ψg
(
σ 2
)

as defined in (3.7) based on observations on the grid ti,n, i = 1, . . . ,n, has, under

P
(n)

σ 2
0

, a limiting variance of at least

V (g) = 2
∫ 1

0

(
∂g

∂σ 2

(
u,σ 2

0 (u)
))2

σ 4
0 (u)

ω2(u)

T ′(u)
du (3.10)

Proof. The least-favorable submodel is obtained by choosing h in the local
alternatives (3.5) such that the parametric lower bound (3.9) is maximized. From
Cauchy-Schwarz, we know that this happens for

h(u) ∝
∂g
∂σ 2

(
u,σ 2

0 (u)
)
σ 2

0 (u)ω(u)

T ′(u)
.

Plugging this least-favorable h into (3.9) gives the result. n

In order to discuss the relationship between Theorem 3.3 and the extant lit-
erature, we examine flat weights (ω(u) ≡ 1) and discuss two separate cases:
first (asymptotically) regular sampling (T ′(u) ≡ 1) and, second, general sampling
schemes (arbitrary T ′).

3.1. Regular sampling without weighting

When the sampling times are regular and ω(u) ≡ 1, the efficiency bound (3.10)
reduces to

V (g) = 2
∫ 1

0

(
∂g

∂σ 2

(
u,σ 2

0 (u)
))2

σ 4
0 (u)du. (3.11)

This formula is a univariate version of formula (30) in Clément et al. (2013) for
the case g(u,σ 2) = g(σ 2). Recall, however, that Clément et al. (2013) derive this
bound from a LAMN property, assuming that σ is generated by an Itô process,
independent of the Brownian motion defining the return innovations. The validity
of Theorem 3.3 is more general. If one wants to see σ as a stochastic process,
independent of the leading Brownian motion, it can be any process whose sample
paths are almost surely of locally bounded variance.

As far as the time-independency g(u,σ 2) = g(σ 2) is concerned, it is worth
considering both examples above.
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Example 1
Power variation: The case of power variation is obtained using gp(σ

2) = σ 2p

and leads to the nonparametric lower bound

V (gp) = 2p2
∫ 1

0
σ

4p
0 (u)du. (3.12)

Practical implications of this result have been known at least since Mykland and
Zhang (2009). For p = 1, that is for the estimation of integrated variance, em-
pirical quadratic variation is an (asymptotically) efficient estimator. Note that this
instance precisely corresponds to linear g and, hence, smoothing operations and
the transformation g commute.

By contrast, for p > 1, the realized power variation does not deliver an efficient
estimator. Indeed, Mykland and Zhang (2009) also study

ψ̂gp = 1

E |N (0,1)|2p

n∑
i=1

(
ti,n − ti−1,n

)1−p
∣∣∣R2

i,n

∣∣∣p (3.13)

and give, under somewhat different conditions, the limiting variance2

V|N (0,1)|2p(
E|N (0,1)|2p

)2
∫ 1

u=0
σ

4p
0 (u)du. (3.14)

But it can easily be shown that the coefficient in front of the integral exceeds
2p2 if (and only if) p > 1. For instance, for p = 2 (integrated quarticity), the
coefficient equals 10.67, while the lower bound is 2p2 = 8— an ARE of only
75%. This inefficiency is also noted in Jacod and Rosenbaum (2013).

Mykland and Zhang (2009) also provide a block-based estimator for integrated
powers of volatility whose limiting variance, for large block size (and still equally
spaced data) is arbitrarily close to the efficiency bound (see their formula (63)).
Even though Mykland and Zhang (2009) do not formally derive an efficiency
bound, they give a clear intuition of the reason why their block-based estimator
is nearly efficient. Within each block, one computes the maximum likelihood es-
timator of the variance of returns seen as approximately homoskedastic within
the blocks. Then the sum across blocks of power p of these estimators delivers
a smaller asymptotic variance than the naive estimator ψ̂gp when both block size
and number of blocks go to infinity. In this sense, their estimator is nearly ef-
ficient in the sense of Section 4 below. Recently, Jacod and Rosenbaum (2013)
introduced an estimator that also has a limiting variance (3.10). Indeed, consider
their Theorem 3.2 with the notation d = 1, t = 1, s = u, g(c) = cp, ss = σ 2(u).
Then, their limiting variance (3.12) leads to

∫ 1

u=0
pσ

2(p−1)
0 (u)pσ

2(p−1)
0 (u)2σ 4(u)du = 2p2

∫ 1

u=0
σ

4p
0 (u)du,
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which equals (3.10) when observation times are regular, i.e., T ′ = 1. Jacod and
Rosenbaum (2013) note that their estimator is efficient at, what they call, the con-
stant volatility toy model, i.e., σ(u) = σ . We show that their estimator achieves the
efficiency bound also at nonconstant volatility within our nonparametric model.

Example 2
Laplace transform: Consider, for some given s ∈ R+, the transformation
gs(σ

2) = exp
(−sσ 2

)
which leads to the efficiency bound

V (gs) = 2s2
∫ 1

0
exp

(
−2sσ 2

0 (u)
)
σ 4

0 (u)du. (3.15)

Todorov and Tauchen (2012) estimate ψgs

(
σ 2
)

with ω(u) ≡ 1) by the realized
Laplace transform

ψ̂gs =
n∑

i=1

(
ti,n − ti−1,n

)
cos

(√
2s

Ri,n√
ti,n − ti−1,n

)
, (3.16)

which gives them (see their Theorem 1 with u = v), the asymptotic variance

V = 2
∫ 1

0
exp

(
−2sσ 2(u)

)[exp
(
sσ 2(u)

)− exp
(−sσ 2(u)

)
2

]2

du. (3.17)

Using the series expansion

exp(x)− exp(−x)

2
= x

⎡
⎣1+

∞∑
j=1

x2 j

(2 j +1)!

⎤
⎦ ,

we find

V = 2s2
∫ 1

0
exp

(
−2sσ 2(u)

)
σ 4

0 (u)

⎡
⎣1+

∞∑
j=1

(
sσ 2(u)

)2 j

(2 j +1)!

⎤
⎦

2

du.

As all terms in the series are nonnegative, the realized Laplace transform does
not attain the efficiency bound for estimation of the Laplace transform ψgs

(
σ 2
)

(unless s = 0), although in applications the difference may be small. In Section 4,
we provide a nearly efficient estimator which is also applicable in this case.

Even though they only address the efficiency issue “in the toy model” of
i.i.d. homoskedastic normal returns (constant volatility σ ), Jacod and Rosenbaum
(2013) give a general statement about inefficiency of naive sample counterparts
like realized power variation or the realized Laplace transform. They explain that
efficiency requires in general to use “estimators for the spot volatility and ap-
proximating the integral ψg

(
σ 2
)

by Rieman sums, in which the spot volatility
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is replaced by its estimator”. As they rightly mention, this idea can be seen as a
generalization of the block-based estimation idea in Mykland and Zhang (2009).
It should be added that in earlier work, Kristensen (2010) had a germane idea by
plugging in a kernel-based estimator of spot volatility. Both Jacod and Rosenbaum
(2013), with a block-based approach, and Kristensen (2010), with a kernel-based
approach, get asymptotic variances that attain the efficiency bound, even though
they do not present them as the efficiency bound. Also, these papers do not con-
sider the effect of irregular sampling. We turn to this issue now.

3.2. Irregular sampling without weighting

With a flat weighting function but possibly irregular sampling, we get the effi-
ciency bound

V (g) = 2
∫ 1

0

(
∂g

∂σ 2

(
u,σ 2

0 (u)
))2 σ 4

0 (u)

T ′(u)
du (3.18)

that is new in the literature. In the particular case of integrated volatility (g1(σ
2) =

σ 2), the efficiency bound above corresponds to the asymptotic variance of real-
ized variance, first derived by Barndorff-Nielsen and Shephard (2002a), at least
when H ′(u) = 1/T ′(u), a.e. This is a confirmation of the aforementioned intuition
about the linearity of the transformation g1, that allows commutation of integra-
tion and smoothing operations. This efficiency result must be contrasted with two
seemingly opposite claims in the literature.

First, Hayashi et al. (2011) claim (see their p. 1206) that “the realized volatil-
ity is asymptotically efficient only when the sampling scheme is asymptotically a
regular sampling”, that is T ′(u) ≡ 1. However, our result proves the semiparamet-
ric efficiency of realized variance, even with irregular sampling. This seemingly
contradictory result comes from the fact that Hayashi et al. (2011) define effi-
ciency through the toy parametric model σ 2(u) ≡ σ 2, constant. Their remark thus
means that the model with irregular sampling is not adaptive; see Section 5 for a
more comprehensive discussion.

Second, similar to the situation when the sampling times are regular, p = 1 is
obviously the only case for which ψgp is efficiently estimated by its naive sam-
ple counterpart. While Mykland and Zhang (2009) study the estimation of power
variation only under regular sampling scheme, they refer to Mykland and Zhang
(2012) for an extension to irregular sampling. Mykland and Zhang (2012) do dis-
cuss the interaction between the block-based estimation strategy and the irregular
sampling scheme, but they do not provide explicitly the semiparametric efficiency
bound or the way to reach it.

4. A NEARLY EFFICIENT ESTIMATOR

The advantage of a LAN result as in Theorem 3.2 is that it indicates ways to
construct efficient estimators. More precisely, the likelihood expansion, which in
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our analysis is based on the RV ∗ process, provides an asymptotically sufficient
statistic for the parameter of interest, i.e., the path of σ 2. Hence, it is natural to
base estimators on RV ∗, a route we will follow in this section. This will lead
to, what we call, a nearly efficient estimator. That is, we will base our estimator
on a fixed smoothing kernel K (to be introduced formally below). The estimator
then is nearly efficient in the sense that its limiting variance can get arbitrarily
close to the nonparametric lower bound (3.10), by taking a kernel K close to
the point mass at zero. In this sense, the Mykland and Zhang (2009) estimator is
also nearly efficient, while Jacod and Rosenbaum (2013) provide explicit conver-
gence rates for their smoothing parameter to achieve simultaneous convergence,
i.e., (full) efficiency. However, note that in both cases (near) efficiency is reached
only with asymptotically regular sampling schemes—the case where the two se-
quences RVn and RV ∗

n are asymptotically equivalent. Our near efficiency result
below will be more general since it applies to irregular, even random (albeit pre-
dictable), observation times. The trick is to base estimation on a smoothed version
of the process RV ∗

n .
To get the main intuition, it is worth starting with the kernel-based estimator

put forward by Kristensen (2010). That paper introduces a kernel-based estimator
of spot volatility

σ̂ 2(u) =
n∑

i=1

kh(ti,n −u)R2
i,n =

∫ 1

0
kh(v −u)dRVn(v) (4.19)

kh(v) = 1

h
k(v/h),

∫ +∞

−∞
k(v)dv = 1.

Kristensen (2010) uses standard realized variation RV , instead of RV ∗, but, as
mentioned before, the two are asymptotically equivalent under a regular sampling
scheme. Kristensen (2010) shows that, under some regularity conditions (includ-
ing continuous differentiability of the kernel function k)

sup
a≤u≤1−a

∣∣∣σ̂ 2(u)−σ 2(u)
∣∣∣= OP (hm)+ OP (log(n)/

√
nh), (4.20)

as h ↓ 0, a ↓ 0, and a/h → 0, where the spot volatility function σ is assumed
to be m times differentiable. We use Kristensen (2010)’s intuition and define a
smoothed version of realized variance, which is pathwise differentiable, as

RV S
n (u) =

∫ 1

v=0
K (u − v)dRV ∗

n (v), 0 ≤ u ≤ 1, (4.21)

where K satisfies the following condition.

Assumption 8. The kernel K is a nonnegative real-valued function on [−1,1]
which is twice continuously differentiable with K ′ and K ′′ bounded.
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One can take, for instance, K as the cumulative distribution function of a prob-
ability distribution whose density corresponds to the function k defined in (4.19)
and assume it to be continuously differentiable. In particular, we will keep the
intuition that, with regular sampling and a probability distribution converging to-
wards point mass at zero (irrespective of its definition through the density function
k or through the cumulative distribution function K ), we would have σ̂ 2(u) close
to σ 2(u) and, for the same reason, RV S

n (u) close to RV ∗
n (u). It is then natural to

extend also Kristensen (2010)’s idea of a plug-in estimator for ψg
(
σ 2
)
, defined

(up to a local bias correction) as

ψ̂g =
∫ 1

0
g(u, σ̂ 2(u))du. (4.22)

In our notation, this would give under regular sampling

ψ̂g(K |reg) =
∫ 1

0
g(u, RV S′

n (u))du. (4.23)

However, this estimator would not be efficient in general with irregular sampling.
To see that, it is worth recalling that, as stressed by Hayashi et al. (2011), see their
p. 1205, the maximum likelihood estimator of σ 2, in the toy parametric model
σ 2(u) ≡ σ 2 constant, is

1

Nn

n∑
i=1

R2
i,n

ti,n − ti−1,n
. (4.24)

This suggests that in the plug-in estimator (4.22), the instantaneous variance
should be divided by the corresponding time increment, that is multiplied by
T ′

n(u). This is precisely what RV ∗
n , or rather its smoothed version RV S

n (u), does.
Hence, we propose the following estimator.

ψ̂g(K ) :=
∫ 1

u=0
g

(
u,

RV S′
n (u)

T ′
n(u)

)
du. (4.25)

As already explained, we are not able, under our weak assumptions, to provide
an analysis along the lines of Kristensen (2010). He proves, still under regular
sampling, that his estimator (4.22), with a convenient bandwidth sequence hn

converging to zero and a convenient bias correction, is consistent and asymptot-
ically normal with a variance that coincides with our efficiency bound V (g). By
contrast, our approach amounts to first considering the limiting behavior of the es-
timator (4.26) for fixed kernel K (Theorem 4.1 below). Then, in the second stage
(Proposition 4.1 below) we derive the asymptotic behavior of the bias and vari-
ance of our estimator when the kernel itself converges weakly to the point mass
at zero, that is

K (u) → K 0(u) for all u �= 0 with K 0(u) = 1{[0,∞)}(u).
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It is important to stress that the validity of these two results is (much) more
general than the setup presented in this paper to derive the efficiency bound: It
is only Condition 1 that is needed, not the sufficient conditions as provided in
Lemma 3.1.

THEOREM 4.1. Under Condition 1 and Assumption 7–8, we have, under P(n)

σ 2
0

,

√
n
(
ψ̂g(K )−ψg

(
σ 2

0 |K ,Tn

))

→L

√
2
∫ 1

u=0

∂g

∂σ 2

(
u,T ′(u)−1

∫ 1

w=0
K ′(u −w)σ 2

0 (w)dT (w)

)

× T ′(u)−1
∫ 1

w=0
K ′(u −w)σ 2

0 (w)T ′(w)1/2dW (w)du, (4.26)

where

ψg

(
σ 2|K ,T

)
=
∫ 1

u=0
g

(
u,−T ′(u)−1

∫ 1

w=0
T ′(w)σ 2(w)dK (u −w)

)
du. (4.27)

Theorem 4.1 gives the limiting behavior for fixed kernel K . However, to
get a consistent estimator of the true unknown value of ψg

(
σ 2

0

)
, we need to

consider estimators computed with a kernel K close to K 0. Thus, we consider,
subsequently, sequences Kn such that limn→∞ Kn(u) = K 0(u), for all u �= 0.
With some abuse of terminology, we will say that the sequence Kn converges
weakly to the point mass at zero. Our near efficiency result is then formalized in
the following proposition.

PROPOSITION 4.1. The limit ψg
(
σ 2|K ,T

)
defined in (4.27) satisfies

ψg

(
σ 2

0 |K ,T
)

→ ψg

(
σ 2

0

)
, (4.28)

as K converges weakly to the point mass at zero. Moreover, the limiting variance
of (4.26) equals

2
∫ 1

w=0

[∫ 1

u=0
T ′(u)−1 ∂g

∂σ 2

(
u,T ′(u)−1

∫ 1

v=0
K ′(u − v)σ 2

0 (v)dT (v)

)
dK (u −w)

]2

×σ 4
0 (w)T ′(w)dw

→ 2
∫ 1

w=0

(
∂g

∂σ 2

(
w,σ 2

0 (w)
))2 σ 4

0 (w)

T ′(w)
dw, (4.29)

as K converges weakly to the point mass at zero.

In view of the above proposition, we call our estimator nearly efficient: the
limiting distribution for given kernel K can get arbitrarily close to the lower
bound. This is, clearly, a weaker result than the estimator provided in Jacod
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and Rosenbaum (2013). However, we obtain it within a framework allowing for
random, though predictable, irregularly spaced observation times. This compli-
cates the analysis significantly as also can be seen from a closer inspection of
Theorem 4.1 where the centering in the central limit theorem is at ψg

(
σ 2

0 |K ,Tn
)
,

i.e., using the observation times represented by Tn . It will, in general, not be the
case that ψg

(
σ 2

0 |K ,T
)

and ψg
(
σ 2

0 |K ,Tn
)

differ in the order of oP (n−1/2) only,
unless K tends to the point mass at zero at an appropriate rate. We leave such a
construction for further research.

5. ON PARAMETRIC INFORMATION ABOUT THE VOLATILITY
PROCESS

The lower bound in Theorem 3.3 constitutes the nonparametric lower bound
for estimating integrated functions of variance. In this section, we focus on the
example of power variation, namely gp(σ

2) = σ 2p and the simplified notation

ψgp = ∫ 1
0 σ

2p
0 (u)du. Instead of considering a nonparametric lower bound, practi-

tioners may prefer to specify a parametric functional for σ 2(u). In this section, we
study the effect of imposing such parametric information about the time-variation
of σ 2, that is, when σ 2(u) = σ 2(u|θ) for some (sufficiently smooth) parametriza-
tion θ �→ σ 2(·|θ). We will show, at odds with what is sometimes considered com-
mon wisdom in this setting, that there are gains from such added information and
these efficiency gains can be large.

The case of assuming constant volatility, that is σ 2(u|θ) = θ > 0 for u ∈ [0,1],
has been studied extensively in Xiu (2010) and Jacod and Rosenbaum (2013).
When observations are equally spaced, and still ignoring market microstructure
noise, the Gaussian QMLE estimator for θ equals RVn(1). As a result, its limiting
variance equals 2

∫ 1
0 σ 4

0 (u)du = 2θ2
0 and thus the parametric and nonparametric

lower bounds coincide.
The results above, in particular that the parametric and nonparametric bounds

for estimating integrated variance are equal when volatility is constant, should not
be interpreted as that no inference gains are possible if parametric information
about the form of the volatility process is available. When such information is
available, the MLE estimator, and thus the QMLE estimator, may have a variance
strictly smaller than 2

∫ 1
0 σ 4

0 (u)du under data generating processes for which the
true underlying volatility σ 2

0 is not constant.
Consider a general parametric model σ 2(·|θ) which is assumed to be suffi-

ciently smooth such that the induced maximum-likelihood estimator satisfies the
standard asymptotic expansion

√
n
(
θ̂ (n) − θ0

)
= −1

2
√

n

n∑
i=1

⎡
⎣ R2

i,n(
ti,n − ti−1,n

)2
/
∫ ti,n

ti−1,n
σ−2(u|θ0)du

−1

⎤
⎦

× I (θ0)
−1 ∂

∂θ
logσ 2 (ti−1,n|θ0

)+oP(1), (5.1)
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under P(n)

σ 2(·|θ0)
, with Fisher information

I (θ) = 1

2

∫ 1

u=0

(
∂

∂θ
logσ 2(u|θ)

)(
∂

∂θ ′ logσ 2(u|θ)

)
dT (u). (5.2)

Consequently, the implied estimator for ψp(θ) = ∫ 1
0 σ 2p(u|θ)du has

limiting variance ψ̇p(θ0)
′ I (θ0)

−1ψ̇p(θ0), under P
(n)

σ 2(·|θ0)
, with ψ̇p(θ) =

p
∫ 1

0 σ 2p(u|θ) ∂
∂θ logσ 2(u|θ)du. We now have the following result.

THEOREM 5.1. Let � be an open subset of Rk . Consider a parametric model
{σ 2(·|θ) : θ ∈ �} for which ψp(θ) is differentiable and the maximum-likelihood
estimator satisfies (5.1)–(5.2). Then we have the following.

(i) The limiting variance of the maximum likelihood estimator is at
most (3.10).

(ii) Equality holds in case σ 2p(·|θ)/T ′(u) is piecewise constant with at most
k = dim(θ) different values, i.e., in case we can partition [0,1] into subsets
A1, . . . , Ak such that

σ 2p (u|θ)

T ′(u)
=

k∑
j=1

exp(d(θ))j I{u∈Aj}, (5.3)

for some C1-diffeomorphism d : � → R
k .

Proof. In order to prove (i), fix θ ∈ � and project σ 2p(u|θ)/T ′(u) on the
space spanned by the elements of ∂

∂θ logσ 2(u|θ), i.e., write σ 2p(u|θ)/T ′(u) =
β ′ ∂

∂θ logσ 2(u|θ)+η(u) where
∫ 1

u=0 η(u) ∂
∂θ logσ 2(u|θ)dT (u) = 0. Plugging this

decomposition in the limiting variance of the maximum likelihood estimator
yields

ψ̇p(θ0)
′ I (θ0)

−1ψ̇p(θ0) = 2p2
∫ 1

0

σ 2p(u|θ)

T ′(u)

∂

∂θ ′ logσ 2(u|θ)dT (u)

×
[∫ 1

u=0

(
∂

∂θ
logσ 2(u|θ)

)(
∂

∂θ ′ logσ 2(u|θ)

)
dT (u)

]−1

×
∫ 1

0

σ 2p(u|θ)

T ′(u)

∂

∂θ
logσ 2(u|θ)dT (u)

= 4p2β ′ I (θ)β ≤ 4p2β ′ I (θ)β +2p2
∫ 1

u=0
η2(u)dT (u)

= 2p2
∫ 1

u=0

(
σ 2p(u)

T ′(u)

)2

dT (u) = 2p2
∫ 1

u=0

σ 4p(u)

T ′(u)
du.
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Concerning Part (ii), note that equality holds if and only if η = 0, that is, if and
only if σ 2p(u|θ)/T ′(u) = β ′ ∂

∂θ logσ 2(u|θ) = (
p−1β

)′ ∂
∂θ log

(
σ 2p(u|θ)/T ′(u)

)
for some β ∈ Rk (possibly dependent on θ , but not on u). Clearly, (5.3) indeed
provides a sufficient condition for equality of both bounds by taking p−1β =[

∂
∂θ ′ d(θ)

]−1
exp(d(θ)), where the exponential is applied componentwise. n

The above theorem has an interesting implication, even for equally-spaced
data, i.e., T ′(u) = 1 for all u ∈ [0,1]. Then, the above theorem implies that for
piecewise constant parametrizations of the volatility function σ (still with at most
k = dim(θ) different values) the parametric and nonparametric lower bounds co-
incide. In that case, for p = 1, we thus have that realized variance is even a para-
metrically efficient estimator of integrated variance.

However, for other (not piecewise constant) parametric specifications, this is
not true. For example, consider the situation where a researcher would specify
σ 2(u|θ) = exp(θ1 + θ2u), u ∈ [0,1], still with equally spaced data. Figure 1 shows
the ratio of the nonparametric and the parametric lower bounds for estimating
integrated power variance for p = 1, 2, and 3 in the simple case where θ1 = 0
and −5 ≤ θ2 ≤ 5. Focusing on estimating integrated variance, the inference gain
from the information on the parametric form of the volatility function exceeds
15% when θ2 = 5. Moreover, the gain from information goes up considerably as
p increases. For example, the ratio of the nonparametric and the parametric lower
bounds is as much as 1.71 for estimating integrated quarticity (p = 2) and 2.30

FIGURE 1. The ratio of nonparametric and parametric lower bounds for estimating inte-
grated powers of variance where σ 2(u|θ) = exp(θ1 + θ2u), u ∈ [0,1], with equally spaced
data, i.e., T ′(u) = 1. This figure considers the powers p = 1,2, and 3 with θ1 = 0 and
−5 ≤ θ2 ≤ 5.
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for estimating integrated third power variance (p = 3) when θ2 = 5. These values
are both theoretically and practically significant.

Clearly, the appropriateness of specifying a parametric model for the time-
evolution of intraday volatility is generally an empirical question, with the classi-
cal trade-off between possible misspecification and efficiency.

6. CONCLUSIONS

The results in the present paper complement those of Reiß (2011) by focusing on
nonparametric lower bounds for integrated powers of volatility, in the absence of
market microstructure noise. In line with Clément et al. (2013), we find locally
and asymptotically normal limiting experiments at rate

√
n, i.e., the limiting ex-

periments with and without microstructure noise are materially different. Unlike
Clément et al. (2013), we focus on the pathwise properties of the volatility process
that are needed to obtain this limit. Using these results, we establish the (near) ef-
ficiency of the estimator put forward in Mykland and Zhang (2009). Moreover,
we demonstrate the efficiency of the Jacod and Rosenbaum (2013) estimator, also
at nonconstant volatility within the nonparametric model.

Second, we detail the role of random, though predictable, unequally spaced
observation times. We establish precisely how these affect the efficiency bounds.
For integrated variance, classical realized variance is efficient, also under these
irregular sampling schemes. For higher powers, we provide an estimator that is
nearly efficient, i.e., whose limiting variance can get arbitrarily close to the non-
parametric lower bound.

Finally, we provide a simple condition under which there are no gains from
assuming a parametric specification of the volatility function. This is important
as, in applied work, one may prefer the risk of misspecification of a parametric
form over the loss of efficiency of fully nonparametric procedures. We show that,
with the exception of some very particular volatility functions in relation to the
observation scheme, significant efficiency gains are possible in general.

NOTES

1. Regularity is needed to exclude pointwise superefficient estimators. Its definition does not nec-
essarily require a Gaussian limiting distribution, but for our setting this situation suffices.

2. The link between their and our notation is T = 1, r = 2p, and H(u) = ∫ u
v=0 T ′(v)−1dv .
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APPENDIX

A. Some lemmas and details on Locally Bounded Variance

We start with a lemma that bounds the variance of the inverse of positive random variables.

LEMMA A.1. Let X ≥ c > 0, then V{X−1} ≤ c−4V ar{X}.

Proof. We have the following inequalities:

V

{
1

X

}
≤ E

(
1

X
− 1

E{X}
)2

≤ c−4E(X −E{X})2 ,

as, for x, y > c, |x−1 − y−1| ≤ |x − y|/c2 since the derivative of x �→ x−1 is bounded
by c−2. n

The bound (2.4) relates the assumption of locally bounded variance for the sample paths
of a stochastic process to its quadratic variation. We know that if {X (t) : 0 ≤ t ≤ 1} is a
semimartingale, then its quadratic variation is defined as the probability limit

P lim
n→∞

Nn∑
i=1

[
X (ti,n)− X (ti−1,n)

]2 = 〈X, X〉1 , (A.1)

see, e.g., Protter (1995), Theorem II.22. It is a common assumption to consider the volatil-
ity process to be a semimartingale or, even smoother, a fractional Brownian motion. Thus,
at least for convenient sampling schemes with

[
max

ti−1,n≤u≤ti,n
X (u)− min

ti−1,n≤u≤ti,n
X (u)

]2
= [

X (ti,n)− X (ti−1,n)
]2

,

the existence of quadratic variation may ensure the convergence in probability of an up-

per bound of
∑Nn

i=1 V
(
X |ti,nti−1,n

)
. However, convergence in probability does not ensure the

required almost sure boundedness of
∑Nn

i=1 V
(
X |ti,nti−1,n

)
. For instance, it is known that if

Xt∈[0,1] is a Brownian motion, sup
∑Nn

i=1

[
X (ti,n)− X (ti−1,n)

]2, where the supremum is
computed over all possible conformable sampling schemes, is almost surely infinite (see,
e.g., the remark below Definition I(2.3) in Revuz and Yor (1991)). One way to circumvent
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the above issue would be to ensure that the convergence in (A.1) is not only in probabil-
ity but also almost surely. Almost sure convergence would hold if {X (t) : 0 ≤ t ≤ 1} is a
Brownian motion and we consider sequences of sampling schemes that are refining in the
sense that

{
ti,n : i = 1, . . . , Nn

}⊂ {
ti,n+1 : i = 1, . . . , Nn+1

}
, (A.2)

see Protter (1995), Theorem I.28. Nevertheless, fortunately, for a process X that is an
{Ft }0≤t≤1-Brownian motion in the sense of Definition III(2.20) in Revuz and Yor (1991),
we can show directly that it is of locally {Ft }0≤t≤1-bounded variance by applying a con-

venient law of large numbers to an upper bound of the process V
(
X |ti,nti−1,n

)
.

PROPOSITION A.1. If the process X = {X (t) : 0 ≤ t ≤ 1} is a {Ft }0≤t≤1-Brownian
motion, its sample paths are almost surely of locally {Ft }0≤t≤1-bounded variance.

Proof. First, note that we can assume without loss of generality that Nn = n. Indeed, if
Nn < n, we can always complete the sampling scheme as follows

i ≥ Nn ⇒ ti+1,n = ti,n, (A.3)

so that, for any f ,

Nn∑
i=1

V
(

f |ti,nti−1,n

)
=

n∑
i=1

V
(

f |ti,nti−1,n

)
. (A.4)

Moreover, the sampling scheme extended by A.3 still fulfills Assumptions 1 and 2.
We use the following lemma.

LEMMA A.2. If X = {X (t) : 0 ≤ t ≤ 1} is a {Ft }0≤t≤1-Brownian motion and the sam-
pling scheme

(
ti,n
)
0≤i≤n satisfies Assumption 2, then we can write

V
(

X |ti,nti−1,n

)
= (

ti,n − ti−1,n
)

V

(
Z (i)

n

∣∣∣1
0

)
, (A.5)

where Z (i), i = 1, . . . ,n, are independent standard Brownian motions on [0,1], with Z (i)
n

independent of Fti−1,n .

Proof. The only nontrivial case is when �ti,n = ti,n − ti−1,n > 0. In that case, define

Z (i)
n by

Z (i)
n (s) = X (ti−1,n + s�ti,n)− X (ti−1,n)√

�ti,n
, 0 ≤ s ≤ 1.

Now, note that since X = {X (t) : 0 ≤ t ≤ 1} is a {Ft }0≤t≤1-Brownian motion and

the sampling scheme
(
ti,n
)
0≤i≤n;n≥1 is {Ft }0≤t≤1-measurable, Z (i)

n , i = 1, . . . ,n, are

https://doi.org/10.1017/S0266466616000013 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000013


EFFICIENT VOLATILITY ESTIMATION 465

independent stochastic processes on [0,1]. The fact that the Z (i)
n ’s are standard Brown-

ian motions follows from the self-similarity property of Wiener processes as well as from
the fact that �ti,n is known at time ti−1,n .

Now, observe that since V
(

f |ti,nti−1,n

)
equals V( f (U )) with U uniformly distributed over

[ti−1,n, ti,n], we find

V
(

f |ti,nti−1,n

)
=
∫ 1

0
f (ti−1,n + s�ti,n)2ds −

[∫ 1

0
f (ti−1,n + s�ti,n)ds

]2

.

Then,

V
(

X |ti,nti−1,n

)
=
∫ 1

0

[
Xti−1,n +√�ti,n Z (i)

n (s)
]2

ds −
[∫ 1

0
Xti−1,n +√�ti,n Z (i)

n (s)ds

]2

= X2
ti−1,n

+�ti,n

∫ 1

0
Z (i)

n (s)2ds +2Xti−1,n

√
�ti,n

∫ 1

0
Z (i)

n (s)ds

− X2
ti−1,n

−�ti,n

[∫ 1

0
Z (i)

n (s)ds

]2

−2Xti−1,n

√
�ti,n

∫ 1

0
Z (i)

n (s)ds

= �ti,n

⎧⎨
⎩
∫ 1

0
Z (i)

n (s)2ds −
[∫ 1

0
Z (i)

n (s)ds

]2
⎫⎬
⎭

= �ti,nV

(
Z (i)

n

∣∣∣1
0

)
.

n

We continue the proof of Proposition A.1. It is sufficient to prove that

n∑
i=1

�ti,nV

(
Z (i)

n

∣∣∣1
0

)

is almost surely bounded. From Cauchy–Schwarz, this follows as both

n
n∑

i=1

(
�ti,n

)2 and n−1
n∑

i=1

V

(
Z (i)

n

∣∣∣1
0

)2

are bounded almost surely by Assumption 1 and a standard strong law of large numbers. n

Reiß (2011) imposes smoothness conditions on the sample paths of volatility in terms
of Hölder balls. Note that if for some α > 0, supu �=v | f (u)− f (v)|/ |u − v|α ≤ R, we have
from (2.3)

V
(

f |ti,nti−1,n

)
≤ 1

4
sup

ti−1,n≤u �=v≤ti,n
[ f (u)− f (v)]2 ≤ 1

4
R2 (�ti,n

)2α
.

As a result, in view of Assumption 1, f is of locally bounded variance for α ≥ 1/2 (apply,
e.g., the Cauchy–Schwarz inequality and use

∑
(�ti,n)2 = OP (n−1)). Reiß (2011) needs
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α ≥ (1+√
5)/4 ≈ 0.81 in his main Theorem 6.2. This, again, shows that the analysis with

and without (microstructure) noise, leads to materially different limiting experiments.
Given these considerations, we consider throughout that the assumption of a process

being almost surely of locally {Ft }0≤t≤1-bounded variance is not overly restrictive. How-
ever, besides the cases discussed above, whether paths of general semimartingales are of
locally bounded variance is still an open problem.

We also provide an auxiliary lemma to bound certain expressions that can be interpreted
as expectations and arise in the various proofs.

LEMMA A.3. Let X and Y be two strictly positive random variables bounded from
above by M. Then, we have the following bounds

0 ≤ E{X}−
(

E
{

X−1
})−1 ≤ M

√
V{X}V

{
X−1

}
, (A.6)

0 ≤ E
{

X2
}

−
(

E
{

X−1
})−2 ≤ V{X}+2M2

√
V{X}V

{
X−1

}
, (A.7)∣∣∣(E{XY })2 − (E{X})2 E

{
Y 2
}∣∣∣≤ 4M2

√
V{X}V{Y }+ M2V{Y } . (A.8)

Proof. The left-hand side inequality of (A.6) is well known. For the right-hand side
observe

0 ≥ 1−E{X}E
{

X−1
}

= Cov
{

X, X−1
}
.

As the harmonic mean of X is bounded by M , (A.6) follows from Cauchy–Schwarz.
To prove (A.7), write

E
{

X2
}
−
(

E
{

X−1
})−2 = V{X}+

(
E{X}+

(
E
{

X−1
})−1

)(
E{X}−

(
E
{

X−1
})−1

)
.

Finally, concerning (A.8), observe∣∣∣(E{XY })2 − (E{X})2 E
{

Y 2
}∣∣∣

=
∣∣∣(Cov{X,Y })2 +2E{X}E{Y }Cov{X,Y }− (E{X})2 V{Y }

∣∣∣
≤ |Cov{X,Y } [Cov{X,Y }+2E{X}E{Y }]|+ M2V{Y }
≤ 2M2 (V{X}V{Y })1/2 + M2V{Y } . n

B. Proofs

B.1. An asymptotically equivalent model. The specification (2.7) is classical in applica-
tions, but inconvenient for the likelihood calculations underlying the proof of the LAN
property. We, therefore, introduce here an alternative volatility specification, using har-
monic means instead of arithmetic means, and show that both define asymptotically the
same statistical experiments.

Thus, consider the alternative specification

1

σ 2(ti−1,n, ti,n)
= 1

ti,n − ti−1,n

∫ ti,n

ti−1,n

σ−2(u)du. (B.1)
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In this case, we write

σ 2(ti−1,n, ti,n) = Hσ (ti−1,n, ti,n)

:=
[

1

ti,n − ti−1,n

∫ ti,n

ti−1,n

σ−2(u)du

]−1

.

This specification differs from the arithmetic mean specification considered in (2.7)

σ 2(ti−1,n, ti,n) = 1

ti,n − ti−1,n

∫ ti,n

ti−1,n

σ 2(u)du = Aσ (ti−1,n, ti,n).

The same functional parameter σ 2 will, in general, not produce the same value for the
arithmetic and harmonic means. It is well known that the arithmetic mean Aσ (ti−1,n, ti,n)

and the harmonic mean Hσ (ti−1,n, ti,n) coincide only if the function σ 2 is constant over
the interval (ti−1,n, ti,n]. However, as the length of each observation interval (ti−1,n, ti,n]
becomes asymptotically negligible, one may hope that a model defined in terms of the
harmonic means Hσ (ti−1,n, ti,n) is equivalent to the financially more meaningful model
defined in terms of the arithmetic means Aσ (ti−1,n, ti,n). Of course, this takes some
smoothness on the volatility function σ . We formalize this in Proposition B.1 below using
precisely the smoothness condition of locally bounded variance for σ 2.

Recall that cadlag functions on a compact set like [0,1] are bounded, so that, under
Assumption 5, both σ 2 and σ−2 will be bounded away from zero and infinity. Hence, for
all σ 2 ∈ �,

0 < mσ := inf
0≤u≤1

{
σ 2(u),σ−2(u)

}
≤ Mσ := sup

0≤u≤1

{
σ 2(u),σ−2(u)

}
< +∞.

This allows us to uniformly control the difference between arithmetic and harmonic means
of σ 2. The proof of the following result is immediate from Lemma A.3.

LEMMA B.1. For all σ 2 ∈ �, we have

0 ≤ Aσ (ti−1,n, ti,n)− Hσ (ti−1,n, ti,n) ≤ Mσ

√
V
(

σ 2
∣∣ti,n
ti−1,n

)√
V
(

σ−2
∣∣ti,n
ti−1,n

)
.

Lemma B.1 allows us to study the asymptotic equivalence of the two following statistical
experiments in the sense of Le Cam (1986).

Experiment 1. Suppose that observed returns satisfy Assumption 3 with, for
i = 1, . . . , Nn,

σ 2(ti−1,n, ti,n) = Aσ (ti−1,n, ti,n), (B.2)

for some σ 2 ∈ �.

Experiment 2. Suppose that observed returns satisfy Assumption 3 with, for
i = 1, . . . , Nn,

σ 2(ti−1,n, ti,n) = Hσ (ti−1,n, ti,n), (B.3)

for some σ 2 ∈ �.
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Observe that the Experiments 1 and 2 have the same parameter space �. We establish
asymptotic equivalence by showing below that Le Cam’s deficiency pseudodistance be-
tween the Gaussian experiments converges to zero (almost surely in the sampling times),
when n → ∞. Since we deal with Gaussian distributions, it is convenient to use the known
fact (see, e.g., Nussbaum (1996), Formula (12)) that Le Cam’s squared pseudodistance
is bounded by four times the value of the squared Hellinger distance between the corre-
sponding densities. In order to show that this Hellinger distance converges to zero, we use
Assumption 4 to conclude (see, e.g., Lemma 2.4. in Nussbaum (1996)) that the squared
Hellinger distance between Experiments 1 and 2 is bounded by

2
Nn∑

i=1

D2
(

P A
σ,i,n ; P H

σ,i,n

)
,

where P A
σ,i,n and P H

σ,i,n are, respectively, the normal probability distribution with vari-
ance Aσ (ti−1,n, ti,n)�ti,n and that with variance Hσ (ti−1,n, ti,n)�ti,n and the means as in
Assumption 3. Here, D2(P A

σ,i,n ; P H
σ,i,n) stands for the squared Hellinger distance between

P A
σ,i,n and P H

σ,i,n , conditionally on the observation times.
It turns out that the squared Hellinger distance between two normal distributions

N (μ1,σ 2
1 ) and N (μ2,σ 2

2 ) is easily computed (see, e.g., Brown and Low (1996)) as

D2
(

N
(
μ1,σ 2

1

)
, N
(
μ2,σ 2

2

))
= 2

⎧⎨
⎩1−

[
2σ1σ2

σ 2
1 +σ 2

2

]1/2

exp

⎡
⎣− (μ1 −μ2)2

4
(
σ 2

1 +σ 2
2

)
⎤
⎦
⎫⎬
⎭ . (B.4)

We now have the following result.

PROPOSITION B.1. Under Assumptions 1–5, the statistical Experiments 1 and 2 are
asymptotically equivalent in the sense that, almost surely,

lim
n→∞

Nn∑
i=1

D2
(

P A
σ,i,n ; P H

σ,i,n

)
= 0.

Proof. From (B.4) we have

D2
(

P A
σ,i,n ; P H

σ,i,n

)
= 2

⎧⎨
⎩1−

[
2σi1σi2

σ 2
i1 +σ 2

i2

]1/2

exp

⎡
⎣− (μi1 −μi2)2

4
(
σ 2

i1 +σ 2
i2

)
⎤
⎦
⎫⎬
⎭ ,

where

σ 2
i1 = Aσ (ti−1,n, ti,n),

σ 2
i2 = Hσ (ti−1,n, ti,n),

(μi1 −μi2)2 = γ 2(ti−1,n, ti,n)
(
σ 2

i1 −σ 2
i2

)2
�ti,n .

We rewrite

2σi1σi2

σ 2
i1 +σ 2

i2

= 1− (σi1 −σi2)2

σ 2
i1 +σ 2

i2

= 1−
(
σ 2

i1 −σ 2
i2

)2

(
σ 2

i1 +σ 2
i2

)
(σi1 +σi2)2

,
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and define

εi,n :=
(
σ 2

i1 −σ 2
i2

)2

σ 2
i1 +σ 2

i2

,

so that

D2
(

P A
σ,i,n ; P H

σ,i,n

)
= 2

{
1−

[
1− εi,n

(σi1 +σi2)2

]1/2
exp

[
−γ 2(ti−1,n, ti,n)�ti,n

4
εi,n

]}
.

Observe that the derivative of the map εi,n �→ D2
(

P A
σ,i,n ; P H

σ,i,n

)
, for given σi1, σi2, and

γ , is∣∣∣∣ ∂

∂εi,n
D2
(

P A
σ,i,n ; P H

σ,i,n

)∣∣∣∣
=
∣∣∣∣∣
[

1− εi,n

(σi1 +σi2)2

]−1/2

(σi1 +σi2)
−2 +2

[
1− εi,n

(σi1 +σi2)2

]1/2 γ 2(ti−1,n, ti,n)�ti,n
4

∣∣∣∣∣
× exp

[
−γ 2(ti−1,n, ti,n)�ti,n

4
εi,n

]

≤
[

1− εi,n

(σi1 +σi2)2

]−1

(σi1 +σi2)
−2 + γ 2(ti−1,n, ti,n)�ti,n

2

= 1

(σi1 +σi2)2 − εi,n
+ γ 2(ti−1,n, ti,n)�ti,n

2
,

and thus is bounded by, say, K as (σi1 +σi2)2 − εi,n = 2σi1σi2 +4σ 2
i1σ 2

i2/
(
σ 2

i1 +σ 2
i2

)
≥

2mσ and γ is bounded by Assumption 3.
Thus, by the mean-value theorem,

Nn∑
i=1

D2
(

P A
σ,i,n ; P H

σ,i,n

)
≤ K

Nn∑
i=1

εi,n

≤ 1

2mσ
max

1≤i≤Nn

∣∣∣σ 2
i1 −σ 2

i2

∣∣∣ Nn∑
i=1

∣∣∣σ 2
i1 −σ 2

i2

∣∣∣ .
But we also know

∣∣∣σ 2
i1 −σ 2

i2

∣∣∣= ∣∣Aσ (ti−1,n, ti,n)− Hσ (ti−1,n, ti,n)
∣∣≤ Mσ

√
V
(
σ 2
∣∣ti,n
ti−1,n

)√
V
(
σ−2

∣∣ti,n
ti−1,n

)
,

so that by the assumption of locally bounded variance we obtain

Nn∑
i=1

D2
(

P A
σ,i,n ; P H

σ,i,n

)
≤ K

Nn∑
i=1

εi,n → 0, a.s. n

Proposition B.1 establishes the asymptotic equivalence of using the arithmetic or har-
monic average of spot variance in the description of our experiment.
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B.2. Proof of Lemma 3.1. First, we verify that the centering proposed in (3.3) and (3.4)
is indeed appropriate. Observe, using (A.6),

sup
0≤u≤1

√
n

∣∣∣∣∣∣
∑

ti,n≤u

Eσ 2
0

{
R2

i,n

∣∣∣Fti−1,n

}
−
∫ u

v=0
σ 2

0 (v)dv

∣∣∣∣∣∣
≤ √

n
n∑

i=1

⎡
⎣μ(ti−1,n, ti,n)+γ (ti−1,n, ti,n)

1(
ti,n − ti−1,n

)−1 ∫ ti,n
ti−1,n

σ−2
0 (v)dv

⎤
⎦

2 (
ti,n − ti−1,n

)2

+ (ti,n − ti−1,n
)⎡⎣(ti,n − ti−1,n

)−1
∫ ti,n

ti−1,n

σ 2
0 (v)dv − 1(

ti,n − ti−1,n
)−1 ∫ ti,n

ti−1,n
σ−2

0 (v)dv

⎤
⎦ .

We show that both terms in the summation above converges to zero. The second term can
be bounded, using (A.6) once more, as

√
n max

i=1,...,n

∣∣ti,n − ti−1,n
∣∣∥∥∥σ 2

0

∥∥∥ n∑
i=1

(
V

(
σ 2

0

∣∣∣ti,n
ti−1,n

)
V

(
σ−2

0

∣∣∣ti,n
ti−1,n

))1/2
,

which converges to zero in view of Assumption 1, the Cauchy–Schwarz inequality, and
Assumption 5. Concerning the first term, recall that μ, γ , and σ 2

0 are all bounded. Hence
it suffices to study

√
n

n∑
i=1

(
ti,n − ti−1,n

)2
, (B.5)

which also converges to zero in the view of Assumption 1.
With respect to RV ∗, we note that without loss of generality we may study the slightly

redefined version

RV ∗
n (u) =

n∑
i=1

R2
i,n

n
(
ti,n − ti−1,n

) I
{
ti,n ≤ u

}
, (B.6)

which differs at most R2
i,n/

[
n
(
ti,n − ti−1,n

)] = OP(1/n) from (3.2). For this version we
find, again using Lemma A.3,

sup
0≤u≤1

√
n

∣∣∣∣∣∣
∑

ti,n≤u

1

n
(
ti,n − ti−1,n

)Eσ 2
0

{
R2

i,n

∣∣∣Fti−1,n

}
−
∫ u

v=0
σ 2

0 (v)dTn(v)

∣∣∣∣∣∣
≤ 1√

n

n∑
i=1

⎡
⎣μ(ti−1,n, ti,n)+γ (ti−1,n, ti,n)

1(
ti,n − ti−1,n

)−1 ∫ ti,n
ti−1,n

σ−2
0 (v)dv

⎤
⎦

2 (
ti,n − ti−1,n

)

+
⎡
⎣(ti,n − ti−1,n

)−1
∫ ti,n

ti−1,n

σ 2
0 (v)dv − 1(

ti,n − ti−1,n
)−1 ∫ ti,n

ti−1,n
σ−2

0 (v)dv

⎤
⎦ .
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Again, we show that both terms converge to zero. The second term can be bounded, in
view of (A.6), by

1√
n

∥∥∥σ 2
0

∥∥∥ n∑
i=1

(
V

(
σ 2

0

∣∣∣ti,n
ti−1,n

)
V

(
σ−2

0

∣∣∣ti,n
ti−1,n

))1/2
, (B.7)

which converges to zero in view of Assumption 5. For the first term, it is sufficient to
consider

√
n max

i=1,...,n

∣∣ti,n − ti−1,n
∣∣ , (B.8)

which converges to zero in view of Assumption 1.
Using the above results, we can now prove the claim by an application of Theo-

rem VIII.3.33 in Jacod and Shiryaev (2002) to the exactly centered versions of the bivariate
process (RVn, RV ∗

n ). In the notation of Jacod and Shiryaev (2002), we have k = i , t = u,

and σ n
t = nTn(u) [recall ti,n = T −1

n (i/n)] and we consider the martingale difference se-
quence

Un
i = √

n

[
1[

n
(
ti,n − ti−1,n

)]−1

](
R2

i,n −Eσ 2
0

{
R2

i,n

∣∣∣Fti−1,n

})

= √
n

[
1[

n
(
ti,n − ti−1,n

)]−1

] (
ti,n − ti−1,n

)2∫ ti,n
v=ti−1,n

σ−2
0 (v)dv

(
Z2

i,n −1
)
, (B.9)

with Zi,n i.i.d. standard normal. For the required Lindeberg condition, note that for 0 <

M ≤ inf0≤u≤1 σ−2
0 (u) we have

∣∣Un
i

∣∣≤ ∣∣∣∣
[√

n
(
ti,n − ti−1,n

)
1/

√
n

]∣∣∣∣
∣∣∣Z2

i,n −1
∣∣∣

M
=
√

n
(
ti,n − ti−1,n

)2 +1/n

∣∣∣Z2
i,n −1

∣∣∣
M

.

Thus, for all ε > 0,

∑
ti,n≤u

Eσ 2
0

{ ∣∣U n
i

∣∣2 I{|U n
i |>ε}

∣∣∣Fti−1,n

}

≤
n∑

i=1

n
(
ti,n − ti−1,n

)2 +1/n

M2
E

⎧⎨
⎩
(

Z2
i,n −1

)2
I{√

n(ti,n−ti−1,n)
2+1/n

∣∣∣Z2
i,n−1

∣∣∣>Mε

}
⎫⎬
⎭

≤ max
i=1,...,n

E

⎧⎨
⎩
(

Z2
i,n −1

)2
I{√

n(ti,n−ti−1,n)
2+1/n

∣∣∣Z2
i,n−1

∣∣∣>Mε

}
⎫⎬
⎭

n∑
i=1

n
(
ti,n − ti−1,n

)2 +1/n

M2
, (B.10)

which converges to zero in view of Assumption 6 and the fact that the mapping x �→
E
{
(Z2

i,n −1)2 I{√x |Z2
i,n−1|>Mε}

}
is continuous at x = 0.
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Finally, the quadratic variation of the limiting Gaussian process follows from the law of
large numbers by∑
ti,n≤u

Eσ 2
0

{
Un

i Un′
i

∣∣Fti−1,n

}
(B.11)

= 2
∑

ti,n≤u

n

[
1

[
n(ti,n − ti−1,n)

]−1[
n(ti,n − ti−1,n)

]−1 [n(ti,n − ti−1,n)]−2

]⎛⎝ (
ti,n − ti−1,n

)2∫ ti,n
v=ti−1,n

σ−2
0 (v)dv

⎞
⎠

2

= 2
∑

ti,n≤u

[
n(ti,n − ti−1,n) 1

1
[
n(ti,n − ti−1,n)

]−1

]∫ ti,n

v=ti−1,n

σ 4
0 (v)dv

+2
∑

ti,n≤u

[
n(ti,n − ti−1,n) 1

1
[
n(ti,n − ti−1,n)

]−1

]
(ti,n − ti−1,n)

×
⎛
⎝[ 1

ti,n − ti−1,n

∫ ti,n

v=ti−1,n

σ−2
0 (v)dv

]−2

− 1

ti,n − ti−1,n

∫ ti,n

v=ti−1,n

σ 4
0 (v)dv

⎞
⎠

= 2
∑

ti,n≤u

∫ ti,n

v=ti−1,n

σ 4
0 (v)d

[
T −1

n (v) v
v Tn(v)

]
+oP (1)

→ 2
∫ u

v=0
σ 4

0 (v)d

[
T −1(v) v

v T (v)

]
,

where the oP (1)-term follows from (A.7) combined with Assumption 5 and where the final
convergence follows from the weak convergence condition in Assumption 6.

B.3. Proof of Theorem 3.2. The proof consists of showing that the likelihood ratio satis-
fies the appropriate quadratic expansion. First, observe

ti,n − ti−1,n

σ 2
α/

√
n
(ti−1,n, ti,n)

= ti,n − ti−1,n

σ 2
0 (ti−1,n, ti,n)

+ α√
n

∫ ti,n

ti−1,n

σ−2
0 (u)h(u)du. (B.12)

Now, the log-likelihood ratio of P(n)
α with respect to P(n)

0 is, in view of Assumption 3 and 4,
given by

log
dP(n)

α

dP(n)
0

= 1

2

n∑
i=1

log
σ 2

0 (ti−1,n, ti,n)

σ 2
α/

√
n
(ti−1,n, ti,n)

+1

2

n∑
i=1

[
Ri,n − [μ(ti−1,n, ti,n)+γ (ti−1,n, ti,n)σ 2

0 (ti−1,n, ti,n)
](

ti,n − ti−1,n
)]2

σ 2
0 (ti−1,n, ti,n)

(
ti,n − ti−1,n

)

−1

2

n∑
i=1

[
Ri,n −

[
μ(ti−1,n, ti,n)+γ (ti−1,n, ti,n)σ 2

α/
√

n
(ti−1,n, ti,n)

](
ti,n − ti−1,n

)]2

σ 2
α/

√
n
(ti−1,n, ti,n)

(
ti,n − ti−1,n

)
= 1

2

n∑
i=1

log
σ 2

0 (ti−1,n, ti,n)

σ 2
α/

√
n
(ti−1,n, ti,n)
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−1

2

n∑
i=1

R2
i,n

ti,n − ti−1,n

[
1

σ 2
α/

√
n
(ti−1,n, ti,n)

− 1

σ 2
0 (ti−1,n, ti,n)

]

+
n∑

i=1

Ri,nμ(ti−1,n, ti,n)

[
1

σ 2
α/

√
n
(ti−1,n, ti,n)

− 1

σ 2
0 (ti−1,n, ti,n)

]

+1

2

n∑
i=1

μ(ti−1,n, ti,n)2 (ti,n − ti−1,n
)[ 1

σ 2
0 (ti−1,n, ti,n)

− 1

σ 2
α/

√
n
(ti−1,n, ti,n)

]

+1

2

n∑
i=1

γ (ti−1,n, ti,n)2 (ti,n − ti−1,n
)[

σ 2
0 (ti−1,n, ti,n)−σ 2

α/
√

n(ti−1,n, ti,n)
]

= 1

2

n∑
i=1

log

⎡
⎣1+ α√

n

∫ ti,n
ti−1,n

σ−2
0 (u)h(u)du∫ ti,n

ti−1,n
σ−2

0 (u)du

⎤
⎦

− α

2
√

n

n∑
i=1

R2
i,n

(ti,n − ti−1,n)2

∫ ti,n

ti−1,n

σ−2
0 (u)h(u)du +un

= −α

2

∫ 1

0
σ−2

0 (u)h(u)d
√

n

[
RV ∗

n (u)−
∫ u

v=0
σ 2

0 (v)dTn(v)

]

−α2

4

∫ 1

u=0
h2(u)dT (u)+un + rn, (B.13)

with

un =
n∑

i=1

Ri,nμ(ti−1,n, ti,n)

⎡
⎣ 1

σ 2
α/

√
n
(ti−1,n, ti,n)

− 1

σ 2
0 (ti−1,n, ti,n)

⎤
⎦

+1

2

n∑
i=1

μ(ti−1,n, ti,n)2 (ti,n − ti−1,n
)⎡⎣ 1

σ 2
0 (ti−1,n, ti,n)

− 1

σ 2
α/

√
n
(ti−1,n, ti,n)

⎤
⎦

+1

2

n∑
i=1

γ (ti−1,n, ti,n)2 (ti,n − ti−1,n
)[

σ 2
0 (ti−1,n, ti,n)−σ 2

α/
√

n(ti−1,n, ti,n)
]
,

and

rn = 1

2

n∑
i=1

log

⎡
⎣1+ α√

n

∫ ti,n
ti−1,n

σ−2
0 (u)h(u)du∫ ti,n

ti−1,n
σ−2

0 (u)du

⎤
⎦ (B.14)

−α

2

√
n
∫ 1

0
h(u)dTn(u)+ α2

4

∫ 1

u=0
h2(u)dT (u).

We need to show that each term in un and rn converges to zero.
The first term of un can be bounded, using the Cauchy–Schwarz inequality, by

⎛
⎝ 1√

n

⎡
⎣√

n
n∑

i=1

R2
i,n

n
(
ti,n − ti−1,n

)
⎤
⎦
⎞
⎠

1/2
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×
⎛
⎜⎝ n∑

i=1

μ(ti−1,n, ti,n)2α2

⎡
⎣
∫ ti,n

ti−1,n
σ−2

0 (u)h(u)du(
ti,n − ti−1,n

)
⎤
⎦

2 (
ti,n − ti−1,n

)⎞⎟⎠
1/2

,

which converges to zero as
√

n
∑n

i=1 R2
i,n/

(
n
(
ti,n − ti−1,n

))
is OP (1) by Lemma 3.1 and

μ and σ−2
0 are bounded.

The (absolute value of the) second term of un can be bounded by

1

2
√

n

n∑
i=1

∣∣∣∣∣μ(ti−1,n, ti,n)2α

∫ ti,n

ti−1,n

σ−2
0 (u)h(u)du

∣∣∣∣∣
which converges to zero as μ is bounded and

∑n
i=1

∫ ti,n
ti−1,n

σ−2
0 (u)h(u)du =∫ 1

0 σ−2
0 (u)h(u)du.

The third term of un can be bounded using |x−1 − y−1| ≤ c−2|x − y| for x ≥ c, y ≥ c,
and c > 0. Indeed, for n sufficiently large, both σ 2

0 (ti−1,n, ti,n) and σ 2
α/

√
n
(ti−1,n, ti,n) are

larger than c = 1
2 min0≤u≤1 σ 2

0 (u). Thus, we can bound the third term of un by

1

2
c−2

n∑
i=1

γ (ti−1,n, ti,n)2 (ti,n − ti−1,n
) ∣∣∣∣∣∣

1

σ 2
0 (ti−1,n, ti,n)

− 1

σ 2
α/

√
n
(ti−1,n, ti,n)

∣∣∣∣∣∣ ,

and we may proceed as for the second term of un .

Now, let’s concentrate on rn . Using ‖h‖ ≤ 1 and
∣∣∣log(1+ x)− x + x2/2

∣∣∣ < |x |3 for

|x | < 1/2, we have, for n ≥ 4,

|rn | ≤ α

2
√

n

n∑
i=1

∣∣∣∣∣∣
∫ ti,n

ti−1,n
σ−2

0 (u)h(u)du∫ ti,n
ti−1,n

σ−2
0 (u)du

− 1

ti,n − ti−1,n

∫ ti,n

ti−1,n

h(u)du

∣∣∣∣∣∣
+α2

4n

n∑
i=1

∣∣∣∣∣∣∣
⎛
⎝
∫ ti,n

ti−1,n
σ−2

0 (u)h(u)du∫ ti,n
ti−1,n

σ−2
0 (u)du

⎞
⎠

2

−n
∫ ti,n

ti−1,n

h2(u)dTn(u)

∣∣∣∣∣∣∣
+α2

4

∣∣∣∣∣
∫ 1

0
h2(u)d[Tn − T ](u)

∣∣∣∣∣
+ α3

2n
√

n

n∑
i=1

∣∣∣∣∣∣
∫ ti,n

ti−1,n
σ−2

0 (u)h(u)du∫ ti,n
ti−1,n

σ−2
0 (u)du

∣∣∣∣∣∣
3

. (B.15)

We need to show that each of these four remainder terms converge to zero. For the last term,
this is obvious as each element in the sum is bounded by 1 since ‖h‖ ≤ 1. Convergence of
the third term follows from the weak convergence in Assumption 6. The second term can
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be bounded, using (A.8), as

α2

4n

∥∥∥σ 2
0

∥∥∥ n∑
i=1

∣∣∣∣∣∣
((

ti,n − ti−1,n
)−1

∫ ti,n

ti−1,n

σ−2
0 (u)h(u)du

)2

−
((

ti,n − ti−1,n
)−1

∫ ti,n

ti−1,n

σ−2
0 (u)du

)2 (
ti,n − ti−1,n

)−1
∫ ti,n

ti−1,n

h2(u)du

∣∣∣∣∣∣
≤ α2

n

∥∥∥σ 2
0

∥∥∥3 n∑
i=1

V

(
σ−2

∣∣∣ti,n
ti−1,n

)1/2
V
(

h|ti,nti−1,n

)1/2

+ α2

4n

∥∥∥σ 2
0

∥∥∥3 n∑
i=1

V
(

h|ti,nti−1,n

)

≤ α2
∥∥∥σ 2

0

∥∥∥3

√√√√ 1

n

n∑
i=1

V
(

σ−2
∣∣ti,n
ti−1,n

) 1

n

n∑
i=1

V
(

h|ti,nti−1,n

)

+ α2

4n

∥∥∥σ 2
0

∥∥∥3 n∑
i=1

V
(

h|ti,nti−1,n

)
,

which converges to zero by Assumption 3 and since

1

n

n∑
i=1

V
(

h|ti,nti−1,n

)
≤ max

i=1,...,n
V
(

h|ti,nti−1,n

)
→ 0, (B.16)

due to the fact that h is cadlag on [0,1] and maxi=1,...,n
(
ti,n − ti−1,n

)→ 0.
Finally, for the first term in (B.15), observe

α

2
√

n

n∑
i=1

∣∣∣∣∣∣
∫ ti,n

ti−1,n
σ−2

0 (u)h(u)du∫ ti,n
ti−1,n

σ−2
0 (u)du

− 1

ti,n − ti−1,n

∫ ti,n

ti−1,n

h(u)du

∣∣∣∣∣∣
= α

2
√

n

n∑
i=1

∣∣∣∣∣∣
∫ ti,n

ti−1,n

[
σ−2

0 (u)− 1
ti,n−ti−1,n

∫ ti,n
ti−1,n

σ−2
0 (v)dv

]
h(u)du∫ ti,n

ti−1,n
σ−2

0 (u)du

∣∣∣∣∣∣
≤ α

2
√

n

∥∥∥σ 2
0

∥∥∥ n∑
i=1

V

(
σ−2

∣∣∣ti,n
ti−1,n

)1/2
V
(

h|ti,nti−1,n

)1/2

≤
[

max
i=1,...,n

V
(

h|ti,nti−1,n

)1/2
]

α

2

∥∥∥σ 2
0

∥∥∥
⎡
⎣ n∑

i=1

V

(
σ−2

∣∣∣ti,n
ti−1,n

)⎤⎦
1/2

→ 0,

in view of (B.16).
To complete the proof of this LAN result, observe, using Lemma 3.1,

− 1

2

∫ 1

u=0
σ−2

0 (u)h(u)d
√

n

[
RV ∗

n (u)−
∫ u

v=0
σ 2

0 (v)dTn(v)

]

→L − 1√
2

∫ 1

u=0
h(u)

√
T ′(u)dW (u) ∼ N

(
0,

1

2

∫ 1

u=0
h2(u)dT (u)

)
.
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The stated contiguity is a well-known consequence of Le Cam’s first lemma, see, e.g., van
der Vaart (2000), Lemma 6.4.

B.4. Proof of Theorem 4.1. We start this proof with a lemma that describes the limiting
behavior of the derivative of the smoothed realized variance RV S

n .

LEMMA B.2. Under Assumption 8, we have

RV S′
n (u) = K ′(u −1)RV ∗

n (1)+
∫ 1

v=0
K ′′(u − v)RV ∗

n (v)dv. (B.17)

Moreover, under Condition 1 and Assumption 7–8, we have the following convergence of

the process RV S′
n , under P(n)

σ 2
0

,

√
n

[
RV S′

n (u)−
∫ 1

w=0
K ′(u −w)σ 2

0 (w)dTn(w)

]

→L
√

2
∫ 1

w=0
K ′(u −w)σ 2

0 (w)T ′(w)1/2dW (w). (B.18)

Proof. First, note that in the remainder of this appendix, we, with some abuse of no-
tation, specify a process using its value at time u. All statements should be read as weak
convergence in D[0,1] with respect to the Skorohod topology.

Relation (B.17) follows directly from partial integration and RV ∗
n (0) = 0. Rela-

tion (B.18) follows by applying the continuous mapping theorem to f �→ K ′(·−1) f (1)+∫ 1
v=0 K ′′(·− v) f (v)dv (which is linear and bounded in view of the boundedness of both

K ′ and K ′′). More precisely, from Condition 1,

√
n

[
RV S′

n (u)−
∫ 1

w=0
K ′(u −w)σ 2

0 (w)dTn(w)

]

= √
n

[
RV S′

n (u)− K ′(u −1)

∫ 1

v=0
σ 2

0 (v)dTn(v)−
∫ 1

w=0

∫ 1

v=w
K ′′(u − v)dvσ 2

0 (w)dTn(w)

]

= √
n

[
RV S′

n (u)− K ′(u −1)

∫ 1

v=0
σ 2

0 (v)dTn(v)−
∫ 1

v=0
K ′′(u − v)

∫ v

w=0
σ 2

0 (w)dTn(w)dv

]

→L

√
2K ′(u −1)

∫ 1

v=0
σ 2

0 (v)T ′(v)1/2dW (v)

+√
2
∫ 1

v=0
K ′′(u − v)

∫ v

w=0
σ 2

0 (w)T ′(w)1/2dW (w)dv

= √
2K ′(u −1)

∫ 1

v=0
σ 2

0 (v)T ′(v)1/2dW (v)

+√
2
∫ 1

w=0

∫ 1

v=w
K ′′(u − v)dvσ 2

0 (w)T ′(w)1/2dW (w)

= √
2
∫ 1

w=0
K ′(u −w)σ 2

0 (w)T ′(w)1/2dW (w). n
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In view of Lemma B.2 and the almost sure convergence of T ′
n in Assumption 6

√
n

[
T ′

n(u)−1 RV S′
n (u)− T ′

n(u)−1
∫ 1

w=0
K ′(u −w)σ 2

0 (w)dTn(w)

]

→L
√

2T ′(u)−1
∫ 1

w=0
K ′(u −w)σ 2

0 (w)T ′(w)1/2dW (w).

Hence, applying the delta method for the transformation (u, x(u)) �→ g(u, x(u)), we find

√
n

[
g
(

u,T ′
n(u)−1 RV S′

n (u)
)

− g

(
u,T ′

n(u)−1
∫ 1

w=0
K ′(u −w)σ 2

0 (w)dTn(w)

)]

→L
√

2
∂g

∂σ 2

(
u,T ′(u)−1

∫ 1

w=0
K ′(u −w)σ 2

0 (w)dT (w)

)

× T ′(u)−1
∫ 1

w=0
K ′(u −w)σ 2

0 (w)T ′(w)1/2dW (w).

Applying the continuous mapping theorem to the bounded linear functional x(·) �→∫ 1
u=0 x(u)du leads to (4.26).

B.5. Proof of Proposition 4.1. If K converges weakly to the distribution function
I{· ≥ 0}, we have that

∫ 1

w=0
T ′(w)σ 2

0 (w)dK (u −w),

converges pointwise to

∫ 1

w=0
T ′(w)σ 2

0 (w)dI (u −w ≥ 0) = −T ′(u)σ 2
0 (u).

Consequently, from the bounded convergence theorem (recall that T ′ is bounded away
from zero and that T ′, σ 2

0 , g, and K ′ are bounded), we find that

∫ 1

u=0
g

(
u,−T ′(u)−1

∫ 1

w=0
T ′(w)σ 2

0 (w)dK (u −w)

)
du

converges to

∫ 1

u=0
g
(

u,σ 2
0 (u)

)
du = ψg

(
σ 2

0

)
.

Let g(2) denote the derivative with respect to the second argument of g, i.e.,
g(2)(u,σ 2) = ∂g

∂σ 2 (u,σ 2). Concerning the limiting distribution, observe that we can
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rewrite it as

√
2
∫ 1

u=0
g(2)

(
u,T ′(u)−1

∫ 1

v=0
K ′(u − v)σ 2

0 (v)dT (v)

)

× T ′(u)−1
∫ 1

w=0
K ′(u −w)σ 2

0 (w)T ′(w)1/2dW (w)du

= √
2
∫ 1

w=0

∫ 1

u=0
T ′(u)−1g(2)

(
u,T ′(u)−1

∫ 1

v=0
K ′(u − v)σ 2

0 (v)dT (v)

)
dK (u −w)

×σ 2
0 (w)T ′(w)1/2dW (w),

from which the variance (4.29) follows. The convergence of the limiting variance when K
converges weakly to point mass at zero, follows as above. In particular, we have∫ 1

v=0
K ′(u − v)σ 2

0 (v)dT (v) → −σ 2
0 (u)T ′(u),

pointwise in u. Hence, we also have the pointwise convergence

g(2)

(
u,T ′(u)−1

∫ 1

v=0
K ′(u − v)σ 2

0 (v)dT (v)

)
→ g(2)

(
u,σ 2

0 (u)
)
.

Now, observe that

∫ 1

u=0
T ′(u)−1g(2)

(
u,T ′(u)−1

∫ 1

v=0
K ′(u − v)σ 2

0 (v)dT (v)

)
dK (u −w)

−
∫ 1

u=0
T ′(u)−1g(2)

(
u,σ 2

0 (u)
)

dI{u −w ≥ 0}

=
∫ 1

u=0
T ′(u)−1g(2)

(
u,T ′(u)−1

∫ 1

v=0
K ′(u − v)σ 2

0 (v)dT (v)

)
d[K (u −w)− I{u −w ≥ 0}]

+
∫ 1

u=0
T ′(u)−1

[
g(2)

(
u,T ′(u)−1

∫ 1

v=0
K ′(u − v)σ 2

0 (v)dT (v)

)
− g(2)

(
u,σ 2

0 (u)
)]

dI{u −w ≥ 0}

converges to zero, pointwise in w. Indeed, this follows as the integrand in the first term on
the right-hand side is bounded (and the weak convergence of K ), while for the second term
on the right-hand side we can, again, apply the dominated convergence theorem. Thus, we
have established, pointwise in w,

∫ 1

u=0
T ′(u)−1g(2)

(
u,T ′(u)−1

∫ 1

v=0
K ′(u − v)σ 2

0 (v)dT (v)

)
dK (u −w)

→
∫ 1

u=0
T ′(u)−1g(2)

(
u,σ 2

0 (u)
)

dI{u −w ≥ 0}

= T ′(w)−1g(2)
(
w,σ 2

0 (w)
)
,

as K converges weakly to pointmass at zero. Now, the convergence in (4.29) follows from
another application of the bounded convergence theorem.

https://doi.org/10.1017/S0266466616000013 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000013

