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Futures Cross-Hedging with a Stationary Basis
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Abstract

When managing risk, frequently only imperfect hedging instruments are at hand. We show
how to optimally cross-hedge risk when the spread between the hedging instrument and the
risk is stationary. For linear risk positions we derive explicit formulas for the hedge error,
and for nonlinear positions we show how to obtain numerically efficient estimates. Finally,
we demonstrate that even in cases with no clear-cut decision concerning the stationarity of
the spread, it is better to allow for mean reversion of the spread rather than to neglect it.

I. Introduction

Reducing or even eliminating a particular risk is an important task in risk
management. However, often only imperfect hedging instruments are at hand,
leading to basis risk. This is, for instance, the case if the asset that is hedged
does not exactly coincide with the asset underlying the futures contract. A typical
example of such a case is an airline company that wants to protect itself against
changing kerosene prices. Since there is no liquid kerosene futures market, the
airline company may fall back on futures on less refined oil, such as crude oil,
for hedging its kerosene risk. This is a reasonable approach if the price evolutions
of kerosene and of crude oil are very similar. Graph A of Figure 1 illustrates the
close comovement of the 2 price series at the IntercontinentalExchange (ICE).

The correlation between the price changes is the crucial determinant of an
optimal cross-hedge. A common approach in the literature and in practice is to
obtain the optimal hedge ratio by using the most frequent returns or price in-
crements available, irrespective of the time to maturity. This is a valid approach
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FIGURE 1
Crude Oil Spot Price and Jet Kerosene Spot Price

Graph A of Figure 1 depicts the time evolution of the daily price of crude oil in US$/BBL (dashed line) and for jet kerosene
in US$/BBL (solid line) from Jan. 2, 1995, until June 30, 2010 (resulting in 4,043 observations). Graph B exhibits the scatter
plot of the corresponding daily log returns and shows that there is positive correlation among the 2 series, as mentioned
in the text (with a correlation coefficient of 0.52). Graph C depicts the time evolution of the spread of the log prices. Note
that crude oil is usually traded in units of barrel (i.e., a volume unit). In contrast, the trading unit of kerosene is the metric
ton (i.e., a weight unit). Although a common unit is not necessary for our analysis, we convert the price of kerosene per
metric ton to a price per barrel by assuming a density of kerosene of 810 Kg/m3 (at 20 centigrade and 1 atm). This means
a metric ton of kerosene has a volume of (1000/810) m3 or 1234.6 liter. A barrel of crude oil contains 158.987 liter so that
the ratio is 0.1288.
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if the correlation (between the returns or price increments) and the ratio of the
standard deviations are constant with respect to the sampling frequency, such as
for correlated (geometric) Brownian motions (BMs). However, in many cases the
correlation depends strongly on the selected time interval. For example, in our em-
pirical illustration the correlation of the daily log returns of kerosene and crude oil
is only 0.52, which seems unexpectedly low given the strong comovement in the
price series. The correlations of the weekly, monthly, and yearly log returns, in
contrast, are at 0.72, 0.84, and 0.98, respectively. Thus, the short-term correlation
is considerably lower than the long-term correlation, pointing toward a long-term
relationship with potential short-term deviations. This property is closely related
to the concept of cointegration. It dates back to Engle and Granger (1987) and
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Granger (1981) and assumes that a set of time series share a long-term relation-
ship with temporary deviations from this “equilibrium.” More precisely, consider
2 integrated time series (of order 1). They are cointegrated if a linear combination
of them is stationary. This is supported for our example in Figure 1, which shows
on Graph C a clear mean-reverting behavior of the spread between the logarithmic
prices of kerosene and crude oil. Note that we do not use an estimated cointegra-
tion vector but rather assume that the spread between the log prices is stationary.
This is more restrictive, but empirically supported by the p-value of the augmented
Dickey-Fuller (ADF) test (which is < 0.001), indicating that the null hypothesis
of a nonstationary spread is rejected.

From a fundamental point of view the spread of the kerosene and crude oil
prices is determined by the marginal costs of producing (the finer) kerosene out of
crude oil. Temporary deviations of the spread from the marginal costs may occur
due to a kerosene shortage or an oversupply. The speed with which the spread
reverts to a mean level essentially reflects how fast the market can compensate
the deviations. The common stochastic trend reflects shocks, such as a natural or
political crisis in the producing countries, that affect the price of crude oil and,
thus, also affect indirectly the price of kerosene due to the intensive and essential
use of crude oil in the production process for kerosene. The case of kerosene
and crude oil, however, is only one example for a pair of cointegrated processes,
and many studies point toward a cointegration relation between asset prices and
corresponding hedging instruments (see, e.g., Alexander (1999), Baillie (1989),
Brenner and Kroner (1995), Lien and Luo (1993), and Ng and Pirrong (1996) and
the references therein).

The long-term relationship between the kerosene price and the crude oil price
leads to the observed increasing correlation in our example, so that the optimal
hedge ratios are not constant, but depend on time to maturity. Intuitively, for
long-term hedges it is likely that the 2 assets are in their equilibrium relation-
ship, whereas in the short term the dynamics are dominated by noisy fluctuations
due to shortage or oversupply of kerosene. To account for a time-varying hedge
ratio, a possible strategy is to estimate the optimal hedge ratio for different matu-
rity times. However, this strategy is not consistent, as the objective function, for
example, the variance of the hedge error, is optimized within a 1-period model
(with different times to maturity). But the reestimation implies that this is a multi-
period strategy and therefore results in a suboptimal rule. This is also supported by
Lien (1992), who shows that even in a very simple model the multiperiod optimal
hedge ratio differs from the one obtained in a 1-period model.

Therefore, applying a 1-period model is imperfect, as it does not account for
a dynamic rebalance of the hedge. Howard and D’ Antonio (1991), Lien (1992),
(2004), and Lien and Luo (1993) were among the first to consider a discrete-time
multiperiod planning horizon of the agent with (at least partially) cointegrated
time series.!

! Another strand of the literature is based on the recursive estimation of the parameters or states
of a “dynamic” model. Among others, Baillie and Myers (1991), Brenner and Kroner (1995), and
Cecchetti, Cumby, and Figlewski (1988) consider bivariate generalized autoregressive conditional
heteroskedasticity ((G)ARCH) models to estimate the time-varying variances and covariances.
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A natural and self-evident generalization is to consider the possibility of
adjustments to the hedging position in continuous time. This has the additional
advantage that it is often possible to compute the standard deviation of the hedge
error for different hedging strategies in closed form, which seems to be impos-
sible for discrete-time models. The availability of the standard deviation of the
hedge error in turn makes it possible to assess the value of a hedging strategy.
Since portfolio risks are usually assessed daily, following a mark-to-market pro-
cedure, efficient risk calculation algorithms are needed in order to estimate the
risk quickly. Fast hedge error estimation algorithms are also needed for pricing.
If a derivative can only be cross-hedged, then a writer will ask for a premium
for the hedge error. In order to determine the risk premia, traders need to quickly
estimate expected hedge errors. Obviously, the most convenient support is given
by closed-form formulas.

The aim of this paper is to set up a model that allows a rigorous study of
the effect of a long-term relationship on optimal cross-hedging strategies and
at the same time allows an efficient calculation of the basis risk entailed by the
optimal cross-hedges. We choose a continuous-time line and reproduce the long-
term relationship of the prices by describing the spread as an Ornstein-Uhlenbeck
process, a Gaussian mean-reverting process, and by modeling the futures price as
a geometric BM (GBM). It is noteworthy that our model differs from the widely
studied models where both processes, the risk source and the hedging instrument,
are GBMs.2 In these models, here referred to as 2GBM models, the spread of
the log prices is not stationary, since the variance of the spread is proportional to
time. We further show that these models underhedge the risk when cointegration
is present (see Section V.A). Our model, in contrast, explicitly accounts for a sta-
tionary spread. Furthermore, it is easy to estimate, and it is still tractable enough to
allow for a quick calculation of the hedge error standard deviation under different
trading strategies. In particular, we are able to derive time-consistent strategies,
allowing for updating, which minimize the variance of the hedge error.

To this end, we first solve the optimization problem of finding the dynamic
strategy that minimizes the variance of the hedge error. In an abstract continuous
martingale setting of an incomplete market, variance-optimal hedging strategies
have been first described in Follmer and Sondermann (1986). We make use of
their method and transfer it to the specific case of cross-hedging risk with futures
contracts within our Markovian model. The optimal hedging strategy can be ex-
pressed in terms of the risk’s Greeks and a hedge ratio decaying with time to
maturity. Moreover, for linear risk positions, we are able to derive a closed-form
formula for the hedge error standard deviation.

The paper is structured as follows: Section II introduces our model and
presents some empirical evidence, while Section III briefly reviews hedging with

Although these models account for time variations in the distribution, the variance of the hedge is
still minimized within a 1-period model and with a fixed time to maturity.

2Such models are considered, for example, in Ankirchner and Heyne (2012), Duffie and
Richardson (1991), and Schweizer (1992), who derive cross-hedging strategies minimizing quadratic
objective functions, and in Ankirchner, Imkeller, and Dos Reis (2010), Davis (2006), Monoyios
(2004), and Musiela and Zariphopoulou (2004), who provide cross-hedging strategies maximizing
the hedger’s expected utility.
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futures contracts and derives the variance-optimal hedging strategy for our model.
Section IV develops the implied hedge errors within our model for linear and
nonlinear positions, and Section V compares the hedge errors between differ-
ent models and (suboptimal) hedging strategies, emphasizing the importance of
allowing for a stationary spread. An extension of our model to account for stochas-
tic volatility is given in Section VI. Section VII concludes, while Appendix A
contains some empirical results and Appendix B provides the proofs.

[I. The Continuous-Time Model with a Stationary Spread

As always in modeling real-world phenomena, there is a trade-off between
the accuracy of a model and its tractability. We therefore illustrate the implications
of a stationary spread between the futures price and the price of an illiquid asset
by assuming a simplified and tractable model, which is presented in Section II.A.
This approach allows us not only to derive optimal hedging strategies and their
implied hedge errors (see Section III), but also to obtain the transition density
in closed form, so that the model can be estimated straightforwardly via the
efficient maximum likelihood method. An empirical illustration is provided in
Section IL.B.

A. Model Specification

Let I = (I,),~, denote the price process of an illiquid asset, and suppose
that an economic agent aims at hedging a position i(I7), where A : R — R is
a measurable payoff function and 7 > 0 is a fixed-time horizon. Furthermore,
we assume that there exists a liquidly traded futures contract with price process
X=(X:),>(> Which evolves according to the stochastic differential equation (SDE)

(1) dX, = pXdt+oxX, dw®, X, = x,

with volatility ox > 0 and constant drift rate 1 € R. The process W) :(W,(X) )e>0
is a BM on a stochastic basis with probability measure P. We denote the spread
of the log prices, in the following simply referred to as the log spread, by

S, = log(X;) —log(l).

Although the nonstationarity of the log spread seems to be a plausible assumption
for certain asset classes (e.g., for stock prices), there also exist relevant examples
for stationary log spreads, as shown in the Introduction and the mentioned articles.
We therefore propose to account for cointegration by first modeling the log spread
as a stationary process and then derive the implied dynamics of the illiquid asset.

More precisely, we assume that the log spread follows an (Gaussian)
Ornstein-Uhlenbeck process, which is the continuous-time analogue of the sta-
tionary discrete-time Ist-order autoregressive process. Under this assumption the
log spread solves the mean-reverting SDE

@) ds, = f@(m—S,)dt+aS(det(X)+p_dW,L), So = s
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where W+ = (W,J-)t> 0 is a BM independent of WXk > (0 is the mean-reversion
speed, and p € [—T, 1] is the correlation. The log spread’s volatility o is as-
sumed to be nonnegative. Moreover, we define p = /1 — p? and use, for ease of

exposition, the shorthand notation
s X) | -
Wt( ) = th( ) + thJ_

for the BM driving the log spread. Note that for x | O the Ornstein-Uhlenbeck
process becomes more and more persistent and in the limit a (scaled and shifted)
BM that is correlated with the BM of the futures price process.

The dynamics of X and S determine the dynamics of the illiquid asset price,
as I, = X,e™5, t > 0. A straightforward calculation, appealing to Itd’s formula,
shows that the dynamics of 7 satisfy

1
dl, = I, <20§ —k(m—8)+u— pasax> dt+I,a,dW,(1),

where 0, = /0% — 2posoy + o and W) = (W,(I)),Zo is a BM defined by W,(I) =

((ox — pos)WX — posWt) /oy, t > 0.
Note that the correlation p;x between the BMs driving / and X is given by

1
3) prx = — (ox — pos),
ar
which is nonnegative if and only if ox > poy. For fixed parameters p and oy, we
can write pry as a function of oy:
Ox — pPOs

2 2
\/O’X — 2posox + o5

4 PIX (U s)

It can be shown that p;x (o) is strictly decreasing in og, and hence invertible on
R,. For a proof of the following result, see Appendix B.

Lemma 1. Let ox > 0 and p € (—1,1). Then the mapping R, > o5 — pix(0os) is
strictly decreasing. Moreover, the log spread’s volatility o satisfies

/1 _ 2
) os = ox — :
PV 1= pix +prxy/1 = p?

Observe that (log X;, Sy, log I;) is a 3-dimensional Gaussian process. Further-
more, it possesses a closed-form transition density, and hence efficient maximum
likelihood estimation becomes feasible. Indeed, a straightforward calculation
shows that the triple (log X;, S;, log I;) satisfies

log X; Xo X
S[ SQ == N
log I Iy xe ™’

log x + (u — %;‘) t
~ N se "4 m (1l —e ") , 2|,
2

log x + (u — %) t—se " —m(l —e ")
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where
to)z( L’ias (l — ef'{') la,z( - pLﬂ:X (1 — eim)
2
s pdﬁdg (1 _ e—m) %f(l _ e—z:er) Pdivg (1 — ety — %(l _ e—Zm)
1oy — pTXIS (1 — ™ ") LIXIS(] _ ) 10} — 2@% (1—e")
7%(1 ) +% (1 _ e—zm)

and NV (m, V) denotes the normal distribution with mean vector m and covariance
matrix V.

As we first specify the dynamics of the futures contract as a GBM and the log
spread as an Ornstein-Uhlenbeck process, the price of the futures contract leads
the risk price. For example, if the futures price is subject to a (demand or supply)
shock, the risk price follows and reduces the distance to the futures price. This
asymmetric behavior is in line with empirical findings, as there is strong evidence
that futures prices lead the spot prices (e.g., see Chan (1992), Kawaller, Koch, and
Koch (1987), and Stoll and Whaley (1990)). Note that most studies investigate
the relationship between a stock index and the corresponding futures contract.
However, their main argument of less frequent trading in the spot market and
differences in transaction costs is also valid in our setup. Both lead to asymmetric
access to information, which in turn results in asymmetric behavior of the spread.
Therefore, for the applications we have in mind, it seems natural to model the
futures and the spread first, and then to derive the spot dynamics endogenously.
Moreover, it is also possible to specify the relation in the reverse direction, that is,
to derive the dynamics of the futures price process based on the dynamics of the
risk process and the log spread. One can then proceed in a similar manner.

The model introduced has some similarities with Gaussian commodity spot
models (e.g., as in Schwartz (1997) or with the more general model provided
in Casassus and Collin-Dufresne (2005)). In these models the triple of futures
log price, spot log price, and log spread is a 3-dimensional Gaussian process,
too. These spot models, however, have different aims (e.g., they can be used for
pricing long-term forward commitments on the same commodity). Any forward
position can be hedged by using 1 interest rate derivative and 2 short-term futures
contracts. This means that the latter models are complete, and hence the model
dynamics under the risk-neutral measure have to be calibrated to current futures
and derivative prices.

The main aim of our model instead is to analyze the hedge error entailed
when cross-hedging risk exposures with futures written on a correlated, but dif-
ferent risk source. Our model includes a nonhedgeable risk factor, the spread,
leading to incompleteness. We work under the physical measure, since this is the
only measure under which the hedge errors characteristics are relevant for risk
management. Moreover, in a cross-hedging situation a calibration is not always
possible (e.g., if there are no liquid kerosene futures).

B. An Empirical lllustration

Here we illustrate the estimation of the model by reconsidering the exam-
ple of kerosene and crude oil. We use daily data of the spot kerosene price and

ssaud Aissanun abpuguied Aq auluo payslignd $550002 L0601ZZ005/£101°0L/B10"10p//:sdny


https://doi.org/10.1017/S0022109012000555

1368 Journal of Financial and Quantitative Analysis

the price of different crude oil futures contracts. The maturity of the futures con-
tracts ranges from Jan. 2009 until Oct. 2010, resulting in 21 (overlapping) time
series.

In a 1st step we check via the ADF test to see whether the log spread of the
kerosene spot price and the corresponding crude oil futures price is stationary.
Table Al in Appendix A reports the results for the different futures contracts. For
most of the pairs, we reject the null of a nonstationary log spread at any reasonable
level. Of course, as one would expect for a statistical test, the procedure does
not suggest the existence of a long-term relationship for every pair even if it is
present. For these cases the model uncertainty is obvious, and in Section V.A
we examine how the application of an optimal hedging strategy influences the
hedging performance if the strategy is derived under our model but is applied to
the 2GBM model, and vice versa.

Table Al in Appendix A also presents the estimation result for our data sets.
To concentrate on 1 asset in the remaining part of the paper, we use 1 representa-
tive contract with moderate, not extreme, parameter values, especially for x and p.
We choose the contract with maturity in Aug. 2009. The number of observations
at which both assets, the futures contract and the spot kerosene, are traded is 885.
Figure 2 shows the time evolution of these 2 price series. Obviously, the price
evolutions are very similar, which is also supported by the time-series plot of the
log spread of the log prices (depicted in Graph C).

In the next sections we derive the variance-optimal hedge, the corresponding
variance of the hedge error, and derive quantitative and qualitative statements in
terms of the structural parameters.

FIGURE 2
Crude Oil Futures Price and Jet Kerosene Spot Price

Graph A of Figure 2 depicts the time evolution of the daily price of the crude oil futures with maturity in Aug. 2009 in U.S.
dollars per barrel (US$/BBL) (dashed line) and for spot jet kerosene in US$/BBL (solid line) from Feb. 27, 2006, until July 16,
2009 (resulting in 885 observations). The structure of this figure is the same as Figure 1. Graph B exhibits the scatter plot
of the daily returns. Graph C depicts the time evolution of the spread of the log prices. Note that the units have been
normalized, just as in Figure 1.
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FIGURE 2 (continued)
Crude Oil Futures Price and Jet Kerosene Spot Price
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[ll.  Optimal Variance Hedging with Futures Contracts

Suppose that a hedger sets up a portfolio consisting of futures contracts
and cash positions, in order to hedge the risk position /(I7). In the following,
we denote by &; the number of futures contracts held in the portfolio at time .
We assume that any futures position strategy § = (& )e[o,7] is nonanticipating
(i.e., at any time, it incorporates only information publicly available). In math-
ematical terms, this means that ¢ is progressively measurable with respect to
(F.)i>0, the filtration generated by the BMs (W®), Wl)T and completed with
the P-null sets of the basis.

If the futures price changes by AX, from one trading day to the next, the
hedger’s margin account is adjusted by AX; per futures contract. The cash position
in the hedging portfolio is changed accordingly, entailing a portfolio value change
due to variation margins of AVMAR = ¢ AX,.

The total value of the hedging portfolio is denoted by V = (Vf)te[O,T]'
Given an interest rate r, the cash position contributes to the portfolio by
rV,dt, hence the total value satisfies the continuous-time self-financing
condition

(6) dVv, = &dX, +rV,dt.

Equation (6) is linear. Therefore, given an initial portfolio value of V) = v, the
portfolio process has the explicit representation

t
7 V, = €" <v+/ e‘”&d&),
0

see, for example, Chap. 5.6 in Karatzas and Shreve (1991).
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Consider a self-financing hedge portfolio with futures position &, at time ¢.
The conditional hedge error of the portfolio at time ¢ € [0, T] is then given by

®) Gi(&,v)

E (e"(T_’)h(IT)U-',) _v,
t
e <E (e Th(I7)|F) —v —/ fse”dXS> .
0

Cr(&,v) will also be referred to as the realized hedge error. Note that if C,(&,v)
is negative, the combined value of the risk and the hedge portfolio is expected to
end up with a plus.

To determine the variance-optimal strategy within our model, that is, the
strategy minimizing the variance of the realized hedge error, we suppose that X
is a martingale. This is a plausible assumption, since X is a futures price pro-
cess. Moreover, the empirical analysis of crude oil futures prices shows that the
estimated drift parameter is close to O for all contract months and statistically
insignificant for most assets (see Table Al in Appendix A). In addition, as the es-
timation of the drift is notoriously challenging and very often highly speculative,
it can easily distort the main aim of hedging, which is the reduction of risk. We
therefore discuss here the martingale case in depth and postpone the discussion of
the more general case to Section VI.

Assuming that X is a martingale means that ¢ = 0 and d X; = oxX,d W,(X).
Then equation (8) implies that the discounted conditional hedge error is also a
martingale. By applying a representation theorem from stochastic analysis, the
martingale e "7 IE (h(Ir)|F;) can be written as a stochastic integral process of the
form

t
) TR (I F) = e TE(h(I7)) + / a, dw)
0
1
+/ byd Wi, t € [0,7],
0

where a and b are progressively measurable and square-integrable processes (see,
e.g., Chap. 3.4 in Karatzas and Shreve (1991)). The 1st stochastic integral on the
right-hand side (RHS) is hedgeable, since it is driven by the same BM as the
futures X. More precisely, following the strategy

ae’

(10) § =

O')(Xt7

the gain from the futures position up to time # satisfies
t 1
e mdX, = / a; dWX,
0 0

The 2nd integral in equation (9) is orthogonal to W), and hence completely
nonhedgeable with X. This implies that the strategy £* minimizes the variance of
the realized hedge error (see Thm. 1 in Féllmer and Sondermann (1986), where
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this argument has been employed for the Ist time). Moreover, the conditional
hedge error satisfies

t
Glet) = e [beawt B () - e

0
Profiting from the Markov property of the processes I and S, we may express
a and b in terms of sensitivities of the expected risk with respect to the futures and
the log spread values. More precisely, let

U(t,x,s) = e "TIE (h (X}’xe_STm)> ,

where X" and S"* are the solutions of equation (1) resp. equation (2) on [r, 7] with
initial conditions X;* = x resp. S;”* = 5. We will refer to 1 as the value function. If
h is Lipschitz continuous and its weak derivative i’ is Lebesgue-almost every-
where differentiable, then v is continuously differentiable with respect to x and s,
and

D Yt x,s) = %1/)(t,x,s) = efr(T”)]E(h’( X' oS )thfsw)

For details see Lemma 4.8. in Ankirchner and Heyne (2012), where a similar state-
ment is shown. Notice that 57’ /0s = e~*(T=") _and hence by the same reasoning

0
(12) %(f,xvs) = al/’(fyxys)

_ —r(T z)E (h/ ( X —S ) th -8y —n(T—t))
0
7”(T7’)xai/)(t, X, ).
The pair (X, S)T is a 2-dimensional SDE, driven by (W®), WJ-)T via the diffu-

sion matrix
2(){’ S) _ (O'X.x _O ) )

= —e€

pos  pos
With Ito’s formula we obtain that the processes a and b, appearing in the martin-
gale representation (9), are given by

a ot T wx(tv Xi, SI)
<b[> = e b)) (Xn St) <'(/}s(t, X[, Sz) .
From equations (10) and (12) we can deduce the following result describing the

variance-optimal hedge in terms of the futures delta and the minimal hedge error
in terms of the log spread delta.

Theorem 1. The variance-optimal futures position in the hedging portfolio is given
by

1
(13) ft* = [1 - SPeH(TI)} ¢x(t7XtaSt)
ox

and entails a realized hedge error of

T
(14)  Cr(e*,v) = ]E(h(IT))—e’T< .y /0 e”gszps(t,xt,s,)dw}).
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Observe that the optimal hedge £* is the delta of the position’s expectation,
dampened by the hedge ratio defined by
fT—i) = 1-

ags

= pe” Kk(T—t) )

Ox
The factor essentially equals 1 if the product of time to maturity 7—¢ and reversion
speed x is large. In this case, the log spread is expected to return to its mean
reversion level before maturity, and hence the position should be fully hedged with
the futures. As maturity approaches, the short-term fluctuations have an increasing
impact on the terminal hedge performance, making the hedge ratio converge to

(15) ho= ot

Ox
Indeed, due to equation (3), we have limz_ jo[1—(o5pe "I~ /oy )|=1—(05p/
ox) = h. We remark that /4, defined in equation (15), is sometimes referred to as
the minimum-variance hedge ratio (see, e.g., Chap. 3.4 in Hull (2008)).

Observe that if & is equal to 0, which essentially means that there is no mean
reversion, then the log spread is not stationary and its variance increases linearly
with time. The hedge ratio is not dampened and it coincides with 4. In this case
the strategy £* is equal to the optimal strategy in a model where both X and I are
modeled as GBMs (see Section V. A for more details).

In formula (13) the optimal hedge is expressed in terms of the delta with
respect to the futures price. In order to obtain a representation in terms of the
delta with respect to the illiquid asset price I, we first define ¢(t,y,s) = e~ "7
E (h(I""")), where I"”* is the solution of the SDE for the illiquid asset on [z, 7],
with initial values I;”** = y and S;"* = s. Note that (¢, x, s) = ¢(t,e*x, s), and
in particular, 1,(,x,5) = e *p,(t,e*x,s). Thus, the optimal hedge may be
rewritten as

(16) & = e [1 - OSP‘/’_H(T_t)] oy (t, 11, Sy).-

Ox
If the log spread is positive, then the illiquid asset price is expected to rise relative
to the futures price. This explains why in equation (16) the delta is reduced by
the factor e=5. Conversely, if the log spread is negative, then the illiquid asset is
expected to fall relative to the futures price. In this the case the delta is augmented
by the factor =5,

Finally, we remark that the hedge ratio remains the same if the hedger uses an
option on the futures for hedging the risk exposure i(I7). We denote the option’s
delta at time ¢ by A(r,x), given a futures price of X; = x. The dynamics of the
option price P(t,X;) satisfy d P(t,X;) = rP(t,X;) dt + A(z,X,) d X;, and the value
of a self-financing portfolio containing &, options at time ¢ is given by

t
a7 V, = €" (Vo + / e ¢ A(s, X;) dXs) )
0
The variance-minimizing option position can be shown to be equal to

O'Spen(Tz)] %(I, X, St) '

(18) gz* = |:1 - oy A([,X,)
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Suppose that a nonlinear position of kerosene is hedged with an option, writ-
ten on crude oil futures, having a similar payoff profile. Then the ratio of deltas
¥o(t, Xy, Sy) JA(2, X;) is usually stable, and hence the hedging portfolio does not
need to be rebalanced as strongly as when using futures for hedging.

IV. Standard Deviation of the Hedge Error

Having derived the variance-optimal strategy and the corresponding hedge
error (see Theorem 1), we now aim at computing the implied standard deviation
of the hedge error. This allows us to quantify the risk associated with the optimal
strategy, which is important for risk management and performance evaluation of
the hedging strategy. We therefore derive analytic and semianalytic formulas for
the standard deviation of the hedge error when minimizing the variance of risk
exposures within our model. As in the previous section, we assume that the hedger
does not have any directional view concerning the futures. This means that the
futures price X is a martingale with dynamics d X; = oxX, d W,.

We aim at computing the standard deviation of the hedge error when cross-
hedging the position A(I7) following the strategy £* of equation (13). Note that the
standard deviation of Cr(£*,v) coincides with the standard deviation of

etp fOT e "osy(t, X;, S;) d Wi, The Itd isometry for stochastic integrals implies

T
(19) std(Cr(€%,v)) = e’Tﬁas\// e 2R (Y2(1,X,,S;)) d .
0

In general, there is no closed-form expression for the formula for the integral
in equation (19). For linear positions, however, we may explicitly calculate the
variance, since the futures and the spread are lognormally distributed. Besides,
for positions corresponding to plain vanilla options, the log spread delta 1), has an
explicit representation, and thus allows for an efficient Monte Carlo simulation of
the error (19). We proceed by discussing both cases separately.

A. Linear Positions

In this subsection we derive an analytic formula for the hedge error variance
when cross-hedging a linear position. This is the most relevant case, since most
of the risk positions of industrial companies are linear. Think, for instance, of an
airline being exposed to a short position of kerosene.

Suppose that the payoff function 4 is given by A(y) = cy, with ¢ € R. In
this case the delta of the value function with respect to the futures price satisfies

Ue(t,x,5)=e"T-IE (cX?le_SlfA) (see equation (11)). Thus, with equation (12),
we get
9 —k(T—1) . ,—r(T—1) t,1 —s*
8—¢(l,x, s5) = —e xe E (CXT’ e 1 > .
s

In the following we do not only need to compute the expectation of the product
X;le’ST’ , but also the expectation of the product of higher moments of the log
spread and the illiquid asset. We therefore provide the following lemma.
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Lemma 2. Leta € R and b € R, ; then
E (e*"sﬁ)"v (X?’x)b) = A(a,b,x,s,1),

where A(a, b, x, s, 1) is defined by
1
(20) A(a,b,x,s,t) = x"exp [—Zo)z(t (b—b*) —ase™™
1 —Kt
—a|m+bpoxos— (1 —e )
K

1,51 o
+EQZU§E (1 — e 2 t):| .

With this at hand, the standard deviation (19) simplifies to

T
(1) std(Cr(€*,v)) = |C|pgs\// e 2(T-0E (X?A%(1,1,1,8,,T — 1)) dt.
0
From this we are able to derive the following explicit formula for the hedge error

variance.

Theorem 2. The variance-optimal cross-hedge of a linear position c/r entails a
hedge error with standard deviation

(22) sd(Cr) = o5v/1 — pPxexp <(m —s)e " —m— poxasl (1 — 227'”) + azi (1 — Zefnr))
K 4k

T 1 1
X |c] \//0 exp <72n(T — 1) +0okt — ZPUXUSEE*N(T*” + Ugﬂe*“”*’)) dr.

The integral in expression (22) can be computed in a straightforward manner
using standard numerical quadratures algorithms.

When analyzing the dependence of the hedge error on the different model
parameters, it is convenient to rewrite the hedge error formula (22) as

(23) std(Cr) = || USMxexp ((m— s)e ~T — m)

T
x [/ exp (—ZH(T —0)+ a)z(t) exp <—2paxgs (1 e r(I=n_ 2e*”7)
0 K

1
2
s —26(T—1) _ r,—KT
+2H <l+e 2e ))dt]

The hedge error (22) can be approximated with simplified formulas. For long
maturities, that is, large 7, the factor exp ((m —s5)e " — m) approximately co-
incides with e~". Moreover,

2 2
oyT —2kT oxT
T _ _ 2 e x —e e'x
fo e 26(T t)+a'Xtdt

2 27
28+ 0% 2K+ 0y

and hence for long maturities:

_ i%) 02T
Std(CT) ~ |C|x€_m0'5 /1 . pze( POSOx+ /N e x .

2K+ 0y
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Observe that the hedge error increases exponentially with time to maturity. How-
ever, the volatility squared o% is usually low (see Table Al in Appendix A), and
thus the hedge error increases approximately linearly, with slope 0% /2, in the 1st
several years (compare with Graph A in Figure 3).

For short maturities, that is, small 7, the factor exp ((m — s)e*'””T — m) ap-
proximately coincides with e~*. Besides, by linearly approximating exponentials

FIGURE 3
Sensitivity of the Hedge Error

Figure 3 shows the sensitivity of the standard deviation of the hedge error with respect to the time to maturity (in Graph A)
and with respect to the parameters of the model (Graphs B—F). In each graph, only the parameter indicated on the abscissa
is varied, while the others remain fixed at the estimates from the futures contract with maturity in Aug. 2009
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with the Taylor expansion up to the 1st order, we have

efa}z(T _ 672NT

Q
=

T 2k(T—1)+oat _
Jo e Irexdr = 2
2K + oy

Therefore, we get the approximation for short maturities:

std(Cr) ~ |c|osy/1 — pPxe*VT.

Note that the hedge error increases with order T” for short maturities (see Graph A
in Figure 3).

The kink in Figure 3 is determined by how fast the Ornstein-Uhlenbeck pro-
cess describing the log spread attains its stationary distribution. The variance of
the log spread at time 7, as a function of time to maturity 7" — ¢, is given by
02(1 — e2#(T=0) /(2k). The hedge error is roughly proportional to the variance
of the log spread.

The hedge error vanishes as the variance of the stationary log spread distri-
bution, 0 /(2k), converges to 0. Moreover, it is straightforward to show

24) limstd(Cr) = le|xe ™ T /1— p2V/esiT — 1.
K. ox

Of course, not only the impact of the time to maturity to the hedge error
is of interest, but also the influence of the model’s parameters. Figure 3 high-
lights the sensitivity of the standard deviation of the hedge error toward changes
in the parameters. The figure depicts the resulting standard deviation by changing
one parameter and keeping the others constant. The fixed parameters are set to
the estimates of the futures contract with maturity in Aug. 2009. Graph C shows
the decreasing standard deviation in the mean reversion speed «. This comes as
no surprise, as a larger x results in a faster return to the long-term relationship.
The reverse U-shaped behavior with respect to the correlation p (in Graph D)
highlights the change from the incomplete market setting for |p| < 1 to the com-
plete market setting for |p| = 1. With increasing instantaneous variance of the log
spread and the futures price process (os and o), the variance of the hedge error
also increases (shown in Graphs E and F).

B. Nonlinear Positions

In practice, the case of nonlinear risk positions is also relevant. For instance,
consider the very illiquid German natural gas futures markets. Due to illiquid-
ity, gas traders frequently use futures of neighboring countries for hedging pur-
poses. So, if operators of German gas power plants protect themselves against
changing gas prices by buying Dutch gas on the futures market (e.g., natural
gas futures of the Dutch market, Title Transfer Facility (TTF)), the basis risk is
due to a geographical spread in commodity prices that arises from different trad-
ing places for the same underlying. In this case, TTF contracts serve as proxies
that are cointegrated with the natural gas prices in the German market area. The
profit margin of a gas power plant is essentially determined by the spark spread
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(i.e., the spread between the electricity price per megawatt-hours (MWh) and the
price of the amount of gas the plant needs to produce 1 MWh of electricity).
Electricity will only be produced if the profit margin exceeds the operating costs.
A gas power plant can thus be seen as a call option, a highly nonlinear position,
on the spark spread. We therefore also consider here the hedging of nonlinear risk
positions.

When it comes to hedging nonlinear risk positions, the problem is that in
general there are no explicit formulas available for the standard deviation of the
hedge error. We explain here how a swift simulation analysis can be used to obtain
the hedge error characteristics for standard options.

The simulation-based hedge error analysis basically works as follows: First
simulate N independent paths of the futures price and the log spread. Then cal-
culate the performance of the hedging portfolio along any simulation path and
subtract it from the risk position 4(I7). The collection of hedge errors obtained
in this way may be analyzed with respect to the empirical standard deviation,
median, and other statistical characteristics.

In order to calculate the portfolio value along any simulation path, one needs
to compute the portfolio position and hence the delta at any time discretization
point. As we show here, for plain vanilla options there are analytic formulas for
the deltas, thus allowing one to quickly calculate the portfolio performance for ev-
ery simulation path. Indeed, the deltas resemble the deltas for plain vanilla options
in the Black-Scholes (1973) model. As an example, we provide the relevant for-
mulas for a European call option with strike K (i.e., & is given by h(y) = (y— K)*).

First observe that the value function v for call options is given by

Y(t,x,5) = E((UF™ —K)*Y).
From the proof of Lemma 2 it can be seen that I;"* = ¢ =57 X5* can be written as
I = xexp (—;o,z((T — 1) —se "0 _ (l — e"(T’))> exp(oN),
where N is a standard normal variable and o2 is given by
o> = 03T —1)— ZpO'Xasé (1 — e_"(T_')) + aéi (1 — e_z“(T_’)) :

2K
We get

(25) (1, x,s)

= 41271— /oo (xef%(f)z((Tft)fse_”’(T_')7m(lfe_"“(r_’))+oy B K)+efy/2 dy.
\% — 00

In analogy to the standard Black-Scholes (1973) case, we define the functions
d,(t,x,s)and d_(t,x,s) as

1 K 1
d.(t,x, S) = pu |:10g (x) + EU)zf(T -1+ R (1 — e_”(T_l))]

and d_(t,x,s) = d.(t,x,s) — 0.
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Note that the integrand of the integral in equation (25) equals O if
y < d.(t,x,s), and hence

1 i 1
P(t,x,s) = xexp (—zaf((T—t)—se (=) —m(l—e < ’)) +202>

X P(d_(t,x,8)) — KP(d,(t,x,5)),
where @ denotes the cumulative distribution function of the standard normal dis-
tribution. The above explicit representation of ¢(z,x, s) yields
_ 1, —(T—1) —w-n), ! 2
Ue(t,x,8) = exp( 2UX(T 1) — se m(l e ) +50
X [D(d_(t,x,5)) +p(d_(t,x,5))0d_(t,x,5)]
— Kp(d.(1,x,5))0:dy (1, %, 5),

where O0,d. (t,x,5) = Oxd_(t,x,5) = 1/(0x).

The analytic and semianalytic formulas for the hedge error allow the effi-
cient computation and the comparison of the hedge error variance for different,
potentially usable liquid futures contracts. Up to now, however, we assume that
we hedge within the correct model (with a stationary log spread). Although, sta-
tistical tests may help to decide whether the log spread is stationary or not, there is
always the risk of hedging within the wrong model, and a relevant question arises:
How sensitive is the hedge error with respect to the model choice? We address
this question in the next section.

V. The Performance of Suboptimal Hedging Strategies

So far we have assumed that we know with certainty that the price of the illig-
uid asset and the price of the liquid futures contract are cointegrated and evolve
according to our model. However, it may happen that a statistical test leads to a
wrong conclusion or different tests lead to different implications. In other words,
we face model uncertainty.

In Section V.A we consider a 2GBM model and derive the hedge error
obtained by using the optimal strategy from our model. Furthermore, we analyze
the impact of applying the optimal hedging strategy from the 2GBM model to our
model. We then proceed by comparing the optimal dynamic hedge with its optimal
static counterpart. In practice, traders often hedge linear positions statically, hold-
ing a position in futures that corresponds to the size of the risk. By fully hedging
the risk, they intuitively reflect that the hedge ratio essentially equals 1 whenever
time to maturity is long. In Section V.B we first derive the optimal static hedging
strategy and compare it with the hedging strategy £*, which allows for portfolio
regrouping.

A. The Costs of Ignoring a Long-Term Relationship or Falsely Assuming
a Long-Term Relationship

We next introduce a simple model where both X and I are GBMs and hence
are not cointegrated, and the log spread does not have a stationary distribution.
We will refer to this model as the 2GBM model.
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In both models, the futures price is assumed to satisfy the dynamics
dX, = oxX, dw®,
but in contrast to the model with a stationary log spread, discussed in the previous

sections, the 2GBM model assumes that the illiquid asset price process is also a
GBM with dynamics

dl, = UIIt(pIXsz(X)"'p_IXthJ_)‘

In this model the variance-minimizing hedging strategy for European options with
payoff function /4 is known to have the simple form

ol

(26) Cz = pPix T/Jy(f» II)’

oxX;

where (t,y) = e ""=E (h(Iy")). For a derivation of equation (26), we refer
to Hulley and McWalter (2008) (see also Ankirchner and Heyne (2012) for a
derivation in a slightly more general setting using backward stochastic differential
equations (BSDEs)).

The optimal cross-hedge within the 2GBM model (26) is essentially de-
termined by the cross-correlation. If an airline company used a 2GBM model
estimated with daily data to hedge kerosene short positions, then it would con-
siderably underhedge its kerosene risk, thus facing unnecessarily high variations
in costs. But, by how much does the hedge error increase if we use the wrong
model? We next quantify the risk by calculating the hedge error when using the
optimal strategy ¢ of the 2GBM model while the log prices are cointegrated and
evolve according to the dynamics of our model.

We restrict our analysis to linear positions of the form cly. As before, we
denote the realized hedge error by

T
CT = clr — erT (V +/ efrscs ng> .
0

The following proposition provides the hedge error variance for strategy (26)
under our model with cointegration and under the 2GBM model.

Proposition 1. Hedging the linear position ¢/ with the strategy ( entails a hedge
error in the cointegration model with variance

V(CT) = cZ {A(2727X07S0a T) _A2(17 17X07S05 T)
T
- 2/ PIxO1 (O’X — pO’Se_K(T_r)) B;dl‘
0

T
+/ p%xa,zA(z,z,Xo,So,z)dz},
0
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where B, is given by
2 2 1 —kT — kKt —r(T—1) —kT — kKt
B, = Xyexp|(oxt— —osoxp (3726‘ — 2e +e > — S0 (e +e )
K
X exp(iog <2 — 2T _ g2ty e n(T—D) 26_"‘(7“)) —m(2—e " — e_m)).
4k

Under the correct model, the 2GBM model, the minimal variance of the realized
hedge error is given by

@7 V(Cr) = &2 (1-pk) (e”ff— 1).

Proposition 1 allows us to analyze the ignorance of a long-term relation-
ship with respect to the variance of the hedge error. Of course the variance of
the optimal strategy &* given by equation (13) is less than the standard error
using the strategy ¢ from the 2GBM model given by equation (26). Graphs A
and B of Figure 4 compare the performance of the 2 strategies.> When following
the strategy (, the risk position is underhedged, yielding the hedge error (dashed
line) to grow continually with time to maturity. The hedge error does not flatten
as strongly as when following strategy £*, whose corresponding hedge error is
depicted by the solid line. For very short maturities, the mean reversion has little

FIGURE 4
Suboptimal Hedging Strategies

Graph A of Figure 4 shows the standard deviation of the hedge error under cointegration using the optimal strategy
(solid line) and the strategy from the 2GBM model (dashed line). Graph C shows the standard deviation under the
2GBM model using the optimal strategy (solid line) and the strategy from the cointegrated model (dashed lines) for
K € {2.2450, 0.8365, 0.0927}, from top to bottom, respectively. Graphs B and D depict the ratio of the standard deviation
of these strategies, respectively.
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(continued on next page)

3Note that we use the estimated parameters obtained for the Aug. 2009 crude oil futures contract
(see Table Al in Appendix A) and that the correlation pjx can be expressed in terms of the structural
parameters of our model (see equation (4)).
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FIGURE 4 (continued)
Suboptimal Hedging Strategies
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time to develop, and hence the hedge error entailed by ( is similar to the hedge
error of £*. For long maturities, however, ( is considerably outperformed by £*,
leading, for example, to a more than 3 times higher error standard deviation over
a 2-year hedging period.

Since by definition there is no strategy with a smaller variance than the
variance-optimal strategy, the proportion of a 3 times larger value is strongly con-
vincing. To fairly compare our model with the 2GBM model, we also consider
the inverse case, that is, we study the hedge error of the optimal strategy from the
model with the stationary log spread, £*, when there is no cointegration. To this
end, we have to derive the resulting hedge error in the 2GBM model, which is
given in the next proposition.

Proposition 2. Hedging the linear position c/; with the strategy ¢*, see formula
(13), entails a hedge error in the 2GBM model with variance

T
(28) V(Cr) = ¢ {B(O,Z, T)—Bz(O,l,T)—Z/ op [1—25,%“(“)]
0 X

X A(1,1,1,0,T — t)UXB<l e HTN | ymR(TD), t)dt

T 2
+/ {1 - Uspe“(Tﬁ] A%(1,1,1,0,T — 1)
0 Ox

X O')Z(B (2 — 2erI=1) pe=r(T—1) t) dt} ,
where B(a, b, ) is given by
(29)  B(a,b,) = E(XI))

1
= X4Ibexp <2t [o%(a® — a) + 2aboxop + o7 (b* — b)]) .
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Note that now not all parameters are identified. This is in contrast to the
previous scenario, where we investigated the impact of ignoring a long-term re-
lationship. As the log spread is not stationary in the 2GBM model, the parameter
k is implicitly set to 0. However, to provide a realistic comparison, we estimate
the implied distribution of & in the following way: We simulate 10,000 sample
paths from the 2GBM model with 7' = 885 observations. Based on these time
series, we estimate our model leading to the distribution of &. For the graphical
illustration, we use the corresponding 10%, 50%, and 90% quantiles leading to
0.0927, 0.8365, and 2.2450, respectively. The dashed lines in Graph C of Figure 4
show the hedge error standard deviation for these different mean reversion speeds,
when the real prices behave as in the 2GBM model but the risk is hedged accord-
ing to the cointegration model optimal strategy £*. As a benchmark, the graph also
depicts the genuine minimal error standard deviation (solid line) implied by the
optimal strategy . The smaller the mean reversion speed, the smaller the hedge
error. Moreover, the hedge error converges to the minimal hedge error as the mean
reversion speed converges to 0, showing that the cointegration model embeds the
2GBM model.

In many real-world applications, it may not be obvious that there is a long-
term relationship between the hedging instrument and the risk to be hedged. Com-
paring Graphs A and C of Figure 4, we conclude that in ambiguous situations it
is nevertheless better to use a model allowing for a stationary spread rather than
using a simpler model that does not. The error implied by mistakenly assuming
a stationary log spread is significantly smaller than the error made by mistakenly
assuming that the hedging instrument is not cointegrated with the risk.

B. The Costs of Using a Static Hedge

In practice, linear positions are often only statically hedged, even though the
variance-minimizing hedge is not constant. In the numerical example below, we
compare the standard deviations of static and dynamic hedges of a linear position,
and address the question by how much the dynamic variance-minimizing strategy
outperforms the static one.

For that purpose we need to derive the optimal static hedge position a € R
that minimizes the variance

T
Cr(a) = clp—e™ <v+/ e”adX,) .
0

With this at hand, we can calculate the minimal error standard deviation that can
be achieved by hedging statically with futures.

Proposition 3. The optimal static hedging position & in futures contracts that min-
imizes the variance of the hedge error is given by
T T —rt T —rt
Cov (CIT,e Iy e dX,) . E (IT Iy e dXt)
r

3B0) a = - = ce” -
V(e fy edx,) GRE (fy e=2x7 di)
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with corresponding variance

@ [E (1 foTe—"dx,)r

G V(Cr(@) = E(CHa) = V() - )
oy 0 € 2.6

The expectation in the denominator is given by

2

T Xo (o2—21)T _ ) e 2
E (/ e X2 dl> _ ] G (e L), ifoxs2r
0

X%T, if o3 = 2r.

For the expectation in the numerator we have, assuming 0% > r,

T
(32) E (IT / e—”dx,)
0

2
X3 g (e@'i—r)T _ 1) : if p=0,

XBAMEEZ T (A(T) — My(T)),  if p#0,

ag(fr

a%e(@ 7 (|ploxas)”
i

o2 —r 1 oz —r 1 k
(o (B2 L) 2 (B2 L)),

2

oy —r

X
M(T) = g<a§r>r(|f’|"x05> i
K

2 2
oy — T 1 oy — I 1 _
XG( £ +17|p|UXU5> _7< X +1,*|p|0'xo'56 nT))a
K K K K

‘L% (1 B 672HT) _ Posox (1 . efnT).

4K K

o

K/17

MT) = —Spe™ T —m(1 —e 1) +

Here ~(s,x) = fg y*~le™¥dy denotes the incomplete gamma function. Further-
more, we have

V(IT) = A(Z,Z,X(),S(),T) 7A2(1a17X07S07T)7
where A is as in equation (20).

Remark 1. Note that the assumption 0% > r in Proposition 3 is only needed in
order to get a closed expression with respect to the incomplete gamma function.
In case 0% < r, the defining integral of the incomplete gamma function explodes
around 0. In this case equation (32) still holds if we replace y with the upper
incomplete gamma function (s, x) = — fx > y*~le=dy. In any case, regardless of
o% > r, formula (32) holds when we replace A, (T)—A,(T) with fOT e (g2 —

poxose #T=1 )e*””’f‘”fwﬂ)/” dr.
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Proposition 4. The expressions for the optimal static hedge ¢ (30) and for the
corresponding variance (31) from Proposition 3 hold also in the 2GBM case. For
the involved expectations we have

T X3 ((o’z—Zr)T_ ) e 2
0

X2T, if 02 = 2r,
and
T X1, -Lxoxo1 (pixoxor—r)T __ 1 if
E (IT/ 6”er> = 00 ooy —r (e ) » if pxoxor # 1,
0 XQI()p[xO')(O']T, if PixOx0p =T.
Furthermore,

V) = P (a’?T . 1) .

Using the expressions for the standard deviation of the hedge error from
Theorem 2 and Proposition 3, we can compare the risks entailed by both strate-
gies. Graph A of Figure 5 depicts the standard deviation of the static and dynamic
variance-minimizing hedge against time to maturity. Graph B shows the increase
of the standard deviation if one confines with the static hedge. The increase in
the variability by more than 10% for positions hedged over a period of 1 year in-
dicates that the hedge should be dynamically adjusted. The figure is again based
on the estimated parameter values obtained for the Aug. 2009 crude oil futures
contract (see Table Al in Appendix A).

FIGURE 5
Static versus Dynamic Hedging

Graph A of Figure 5 shows the standard deviation of the static (dashed line) versus the dynamic hedge error (solid line).
Graph B depicts the ratio. As we have to assume a constant interest rate for the computation of the variance of the static
hedge error, we fix it at r = 0.02.
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VI. Including Directional Views and Stochastic Volatility

In this section we extend the model introduced in Section II by allowing for
stochastic volatility of the futures and the log spread. We assume that the volatility
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of both processes are proportional to a Cox-Ingersoll-Ross (1985) process. The
futures dynamics thus coincide with the dynamics of the risky asset in the Heston
(1993) model.

Let (W', W2, W?) be a 3-dimensional BM and suppose that the futures price
process X and its volatility v = (1), evolve according to the SDE

(33) dX, = pu(t,v)X,dt+ /v X, dW},
(34) dvy, = B —wv)dt+o,/v(p1dW' +p, dW}),

where p; € [—1,1], o1 =/1 — p3, 3,9, 0, > 0, and p: R? — R is measurable.
As before, let S, = log(X;) — log(I;). Assume that the log spread’s volatility is
proportional to v, and that S solves the mean-reverting SDE

(35) dS, = k(m—S)dt+os\/v; (pdW' +pndW; +pndW,;),
So = s.

Since we include a directional view in the dynamics of the futures price, we
cannot directly invoke the method used in Section III for the derivation of the
variance-optimal hedge. When the trading instruments are assumed to be trended,
and hence are not martingales, then it is very difficult to determine variance-
optimal hedging strategy. There are, however, other quadratic optimality criteria
that considerably simplify the calculation of hedging strategies. A very intriguing
type of hedging strategy is the so-called locally risk-minimizing hedging strate-
gies. These are variance-optimal strategies with respect to a particular martingale
measure, usually referred to as the minimal martingale measure. For an overview
on quadratic hedging approaches, we refer to Schweizer (2008).

In our extended model the minimal martingale measure Q is given by

do r 17
d—g = exp(/o w(t,y)dW,le/o wz(t,y)dt),

where w(t, 1) = pu(t, 1)/ /7y is the market price of risk.*

One can proceed as in Section III for the derivation of the local risk-
minimizing hedge (i.e., the variance-optimal hedge relative to Q). The value func-
tion of h(Ir) is defined by

(36) Gltxv,s) = e TR (h(Xpre ).
With the same assumptions on /, one can show that the local risk-minimizing
hedge is given by

Oy P

1

(37) é\t - d)x(t7Xtan7ST) 1 - O.Spe_’i(T_t):I + wv(taXthSl)'

4 A sufficient condition for this to be a proper measure of change is the following growth condition
onw. ForA,B > 0and § € [0, ], we assume |w(t,x)| < A+ Bx®, x > 0.
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Observe that the local risk-minimizing hedge is now a weighted sum of the delta
and vega of the risk position’s expectation under the minimal martingale mea-
sure @ Clearly, the term involving the vega of the position appears due to the
additional nontradable risk induced by the stochastic volatility, which also needs
to be cross-hedged.

A similar analysis as in the previous sections (e.g., estimation of model
parameters, derivation of hedge errors, and their respective standard deviations)
is somewhat more involved. However, one can profit from the affine model struc-
ture and express the value function and its gradient in terms of generalized Ricatti
equations. Fourier inversion methods then yield semi-explicit formulas for opti-
mal strategies, which are amenable to swift simulation analysis.

VIl. Conclusion and Outlook

Hedging is essential for controlling and managing risk, and it is an important
area of research. In this paper we show that a long-term relationship between
the risk and the hedging instrument has important implications for the optimal
hedging strategy and, thus, also for the hedge error. In particular, we propose a
model that explicitly takes into account such a long-term relationship. We derive
the variance-optimal cross-hedge strategy and provide the variance of the hedge
error in terms of the model’s parameters. We demonstrate the practical relevance
of incorporating the long-term relationship through an empirical example, where
we find a long-term relationship between most crude oil futures contracts and the
spot kerosene price. Interestingly, the model is also consistent with the commonly
observed behavior of commodity traders, who use for cross hedges a hedge ratio
of 100% instead of a hedge ratio dampened by the cross-correlation between the
risk and the hedging instrument, which is implied by models with only correlated
BMs. Furthermore, we show that even for cases where the decision concerning the
stationarity of the log spread is not obvious, it is better to allow for a long-term
relationship rather than to neglect it.

The model can be extended toward several directions to provide more real-
istic dynamics for asset prices. The consideration of jumps in the price process
seems to be an especially interesting extension. However, several specifications
are plausible, and a careful empirical investigation is needed. On an ad hoc basis
it is, for example, not clear whether the price processes jump together and how
the jump sizes are related. These aspects will have significant impact on the prop-
erties of the hedge error, and we plan to investigate these questions in more detail
in future research.

Appendix A. Empirical Results

Table Al shows the number of observations (column 2), the p-value of the aug-
mented Dickey-Fuller (ADF) test (column 3), and the estimation result for different crude
oil futures contracts and their corresponding spot kerosene prices.
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TABLE A1
Estimates

Column 1 of Table A1 presents the maturity date of the contract, column 2 gives the number of observations, and column 3
reports the p-value of the augmented Dickey-Fuller (ADF) test for the null of nonstationarity. The * (**, ***) indicates the
rejection of nonstationarity at the 10% (5%, 1%) level. The remaining columns show the parameter estimates, with the
corresponding asymptotic standard errors given in parentheses.

No. of
Contract Obs. ADF o ox og K m p
2010-10 1,147 0.0888* 0.0751 0.2768 0.2871 2.5548 —0.1661 0.3401
(0.1302) (0.0059) (0.0060) (1.0976) (0.0534) (0.0260)
2010-09 1,147 0.0750* 0.0742 0.2795 0.2877 2.7131 —0.1687 0.3475
(0.1324) (0.0059) (0.0060) (1.1078) (0.0515) (0.0260)
2010-08 1,145 0.0631* 0.0763 0.2823 0.2886 2.8890 —0.1693 0.3550
(0.1361) (0.0059) (0.0061) (1.1728) (0.0492) (0.0258)
2010-07 1,123 0.0555* 0.0778 0.2855 0.2908 3.0632 —0.1731 0.3646
(0.1348) (0.0061) (0.0062) (1.1704) (0.0473) (0.0259)
2010-06 1,375 0.0310** 0.1703 0.2758 0.2993 2.5899 —0.1946 0.3404
(0.1209) (0.0053) (0.0058) (1.1150) (0.0493) (0.0241)
2010-05 1,080 0.0436™ 0.1114 0.2901 0.2942 3.5046 —0.1752 0.3771
(0.1405) (0.0064) (0.0064) (1.2913) (0.0410) (0.0262)
2010-04 1,058 0.0326** 0.0906 0.2954 0.2970 3.8040 —0.1808 0.3867
(0.1453) (0.0065) (0.0065) (1.3324) (0.0390) (0.0262)
2010-03 1,035 0.0250** 0.0737 0.3002 0.3006 41174 —0.1836 0.3990
(0.1494) (0.0066) (0.0067) (1.4241) (0.0371) (0.0262)
2010-02 1,015 0.0193** 0.0906 0.3035 0.3020 45175 —0.1866 0.4043
(0.1518) (0.0068) (0.0069) (1.6076) (0.0332) (0.0263)
2010-01 994 0.0126** 0.0789 0.3098 0.3045 4.9939 —0.1916 0.4178
(0.1551) (0.0070) (0.0069) (1.3783) (0.0312) (0.0262)
2009-12 1,245 0.0097*** 0.1852 0.2979 0.3114 3.8232 —0.2137 0.3892
(0.1345) (0.0060) (0.0064) (1.2755) (0.0374) (0.0241)
2009-11 950 0.0046"** 0.0860 0.3197 0.3108 6.3841 —0.1994 0.4415
(0.1564) (0.0073) (0.0072) (2.0112) (0.0238) (0.0261)
2009-10 928 0.0029*** 0.0603 0.3229 0.3135 7.0739 —0.2032 0.4532
(0.1687) (0.0075) (0.0074) (1.9253) (0.0231) (0.0261)
2009-09 906 0.0014*** 0.0819 0.3275 0.3178 8.0814 —0.2061 0.4677
(0.1738) (0.0077) (0.0076) (2.1057) (0.0208) (0.0260)
2009-08 885 < 0.0010"** 0.0430 0.3321 0.3223 9.5437 —0.2120 0.4806
(0.1807) (0.0079) (0.0078) (2.2822) (0.0178) (0.0259)
2009-07 862 < 0.0010*** 0.0743 0.3388 0.3275 11.56957 —0.2166 0.5011
(0.1828) (0.0082) (0.0080) (2.5298) (0.0153) (0.0256)
2009-06 1,114 < 0.0010"** 0.1416 0.3191 0.3298 6.6833 —0.2404 0.4579
(0.1498) (0.0068) (0.0072) (1.7074) (0.0233) (0.0239)
2009-05 819 < 0.0010"** —0.0114 0.3516 0.3407 15.7614 —0.2274 0.5364
(0.1953) (0.0086) (0.0086) (2.9919) (0.0111) (0.0250)
2009-04 797 < 0.0010"** —0.0655 0.3513 0.3429 15.9689 —0.2307 0.5594
(0.1973) (0.0088) (0.0087) (3.0523) (0.0103) (0.0245)
2009-03 775 < 0.0010*** —0.0672 0.3436 0.3351 15.0723 —0.2362 0.5631
(0.1953) (0.0086) (0.0086) (2.8192) (0.0135) (0.0244)
2009-02 755 < 0.0010"** —0.0694 0.3469 0.3257 12,1794 —0.2411 0.5815
(0.2005) (0.0089) (0.0085) (2.4786) (0.0146) (0.0242)
2009-01 733 0.0021*** —0.0802 0.3306 0.3053 10.9528 —0.2398 0.5742

(0.1966) (0.0086) (0.0081) (2.4631) (0.0160) (0.0247)

Appendix B. Proofs

Proof of Lemma 1. By distinguishing the cases p > 0 and p < 0, one can show that
Opix/0os < 0, and that the partial derivative is strictly smaller than 0 if o5 > 0. Thus,

pix is strictly decreasing in os. From the definition of p;x we have piy = (ox — pos)® /
(0,2( — 2posox + a§), which leads to the quadratic equation in o

(B-1) (p%X - p2) 0% + 2pox (1 — p?x) o5 — 0% (1 - p?x) - o
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If p # pux, then equation (B-1) has 2 solutions. First,

—p/1—pi £ 1—p?
os = ax\/lfp%X p\/ P;x p;X\/ id .
Pix — P

Since piy — p* = (px/1 = p* + p/T = p3) (px/1 — p> — py/T = ply), this further

yields
o oxv/1 — p? ( ! >
s = oxy\/1—py )
p\/1 = pix £ pixy/1— p?

If pix > p, then only one of the roots guarantees that og > 0, and we obtain equation (5).
If pix = p, then equation (B-1) has a unique solution, given by os = ox/(2p). The inverse
function of formula (4) is continuous on p’l(]&). Therefore, equation (5) must also hold
true for px < p. O

Proof of Lemma 2. Since S\ = se™" + m(1 — e™*") + fot e " os(pd W, + pd W),
we get

t
= ¥ exp (—gait — ase” ™ — am(l — e_m) +/ (bO’X — paase_”(’_“)> d WL,)
0

1
X exp (—/ (ap‘agef"(“”))de) )
0

We calculate the variances of the independent normal variables given by the integrals in
the last 2 factors. We have

! : 2 2 2 1
/ (bax — paosef'i( 7”)) dt = b oyt —2abpoxos— (1 — 67”’)
o K

1

2 2 2 2kt
+ — (1= )
apoSZ ( e

t 2 1
/ (aﬁasefn(tﬂ‘)) dr = d*ploi— (1 - 672”’) .
0 2K

We use this to derive

E (efas?’s(xl(),x)h)

and

x*exp (—%0')2(? —ase "™ —am (1 — efm))

1
x E (exp </ (bax — paasefn(tf")) qu))
0
t
x E <exp <—/ (ap’ase_”('_“)) de))
0

= Xexp (—ga)z(t —ase ™ —am (1 — efm))

X exp % (bza;z(t - Zabpo'xo'sl (1—e™)
K

1 —2k
+a2pza§ﬂ(l —e? ')>]

1 1 _
X exp |5 (azp'zaéﬂ (1 —e 2”’))] ,

from which the result follows. O
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Proof of Theorem 2. Recall that from equation (21) we have

.
(B2)  V(Cr(E,y) = czpzag/ e KT-NR (X,zAz(l,l,l,S,,Tft)>dz.
0

By the definition of A, we have
(B-3) E (X?Az(l, 1,1,8,T - z))
= exp <—2 (m+ paxas%) (1 — eiﬂ(T*t)) + Ufi (1 - 672”(T7')>>
xE (X,2 exp (—ZS,EN(T*'))) ,
and again using the definition of A we get
E (th exp (72S,€7R(T7[))) = A (2«27””7’),2@7 s, t)

_ 1
= Xexp |:0')2([ —2s¢ T =2 (m + 2p0’x0'37)
K

% (e—r:(T—t) _ e—nT) ]
2 1 —2r(T—1) —2rT
X exp 203% e —e .

Combining the last equation with equation (B-3), we further obtain
(B-4) JE(X?AZ(l,Ll,S,,T—z))

—k 1 —R(T— —r
= ¥ exp (a;z(t —2s¢ T — 2poxos— (l +e "T70 _ 2 T))
K

X exp <—2m <l — e_”T) + Uﬁi (1 —2¢7 " +e_2'€(T_')>> .

The previous calculations yield, by combination of equations (B-2) and (B-4), expression
(22). O

Proof of Proposition 1. Since I is a GBM in the 2GBM model, the value function
1) associated with the linear position A(x) = cx is given by ¥(z,y) = e "¢y, There-
fore, iy(t,y) = ¢ "¢, and the realized error variance in Model 1, following strategy
&= plxall,e”(rft)c/ (oxX,), satisfies

T
Cr = cly—e’ (v+/ efrTCPIXUIIdeSX)) )
0

and consequently we have

T T
V(Cr) = e % (Ir) — 2¢% Cov (IT,/ p1xa11,dW,(X)) +c¢E </ p,zxalzlrzdt> .
0 0
Note that V (I7) = A(2,2, Xo, So, T) — A*(1, 1, Xo, So, T), and observe further that

T T
IE< / p,zxa,zlfd;) = / P01 A(2,2, Xo, So, 1) d 1.
0 0
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It remains to calculate the covariance above. To that effect, we recall the decomposition

(B-5) of Ir from the proof of Proposition 3 and borrow the respective notation to write
fOT oo, dW = fOT ool dW™ + fOT pxorli(ox — pose™"T=") d 1. Consequently,

r T
Cov (IT7/ pxoil,d W,(X)) — XoeA(T)EQ (/ pixorl; (Jx — PUse*N(Tft)) dl‘)
o 0

T
= Xoe)\(r) / PIXOI (Ux — pUseiﬁ(Tit)) E? (I)dt
0

T
/ PIxO] (O’x — po'sein(Tir)) E (ITI,) dr.
0

In order to calculate E (I71;), we proceed as in Lemma 2. We decompose I71; into

T
Irl;, = Xg exp (/ [ax(l + ly<;) — asp (eiN(Tf“) + ef"(’fu)]ugt)] d Wf)
0
T
X exp (7/ osp (e_”(T_“) + e_“(’_“)lugt) qul)
0

1 T
X exp (_E / or(1+ Lu<i) du) exp (—So (e*NT +e ) —m(2 - o—rT _ e ).
0
The variances of the stochastic integrals are given by

T
/ a'>2((1 +2u<i + lu<s) — 2050x%p [eim(T*u) + lu< (267”(’7”) + ein(T*u))}
0

2
+ U§p2 (efn(Tfu) + efn(tfu) lugr) du

and

2
_];)T ng_z (efﬁ(Tfu) + e*ﬁ(ffu) 1u§t) du.

Hence, taking expectation yields

E(Irl) = Xiexp

X (% /T [U)Z(Zugz —2050xp [ein(Tﬂ‘) + Lu<: (267&07") * eiﬁ(Tf"))” du)
0

T
X exp o? (872N(T7u) +287N(T+r72u)1u§t +e*2n(17u)lugr) du)
0

-

xexp (—=So (e +e™) —m(2 — 7T — 7)) .

The result follows by a simple calculation. O
Proof of Proposition 2. Recall from equation (13) that &= [1 - aspef"‘(Tf’) /crx] e(t, Xi,
S,), with (1, x,5) = e " TIE (h(x;*e—sr'” )).

Hence, for h(y) =cy we get 1:(1, x, 5) =ce TR (X;lefsrt"‘) =A(1,1,1,s5,T—1).
Thus, the realized error variance in the 2GBM model, following the strategy above, satisfies
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T
Cr = clp—eT (V+C/ e {l — ?pe_”(r_’)} A(1,1,1,8,T —1) dX,> .
0 X

Consequently, setting v = ce™""E (Ir), we have

T
V(Cr) = AV (Ir) -2 Cov (IT,/ {1—ﬁpe*“(”)]A(1,1,1,5,,T—t)axx,dw,(x>>
0 ox
T os 2
+*E / [lf—pe_“(T_[)] A2(1,1,1,8,T — f)opX>de | .
0 ox

It is straightforward to see that B(a, b, t) defined as B(a, b, 1)=E (X,I/), with X and / as in

the 2GBM model, fulfills equation (29). Hence, V (I7) = B(0,2,T) — B*(0, 1, T). Observe
that we may, via Fubini’s theorem, write the expectation in the last term in the variance of
Cr above as

2
I [1 f ﬂpe**‘(“’)} AX(1,1,1,0,T — 1)o3E (exp (72S,27”(T7’)) X?) dr.

ox

In order to further simplify, recall that S; = log(X;) — log(/;). Thus,

9, —k(T—t —k(T—t
]E(exp (_2Stefn(T7t)> th) _ IE(X,Z 20— R(T )Itk (1 ))

B (2 — 2 R(T=0 =R, t) ,

which combined with the previous integral yields the last term in expression (28). In order
to simplify the remaining term in the variance of Cr, we apply the standard trick of a change
of measure, here with dQ = (Ir/lo) d P, Fubini’s Theorem, and reversing the measure
change to obtain

I ap [1 - g—;pe*””*’)} A(1,1,1,0,T — 1)oxE (IT exp (fs,e*““*’)) X,) dr.
Finally, using S; = log(X;) — log(I;) and the independent increments of a BM, we get
E (IT exp (_Stefn(Tft)) X,) - F (ITIf—n(r_r)th,e—n(r_r))

,—r(T—1) _,—r(T—1)
- E (I’l+e X,l e

T ] T
Xexp(/ U[dWi—E/ a,zdu>>
t t

= B(1 e e,

which, together with the previous integral, yields the middle term in expression (28) and
thus finishes the proof. O

Proof of Proposition 3. The variance of the hedge error does not depend on the initial
capital v, and hence we may assume that e’ v = ¢E (Ir). Holding the constant position a
between 0 and T then entails the hedge error

T
Cr(a) = clr —E(clr) — ae’T/ e "dX,
0

and since X; is a martingale, we have E (Cr(a)) = 0. Hence, the variance of Cr(a) is
given by
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E (c%(a)) = FE ((Ir _E (IT))Z) — 2ace™E ((IT —E(Ir)) /OT e dx,)

T 2
+d2"E ((/ eir’dX,) >
0

= JE ((IT -E (IT))Z) —2aceE (IT /O ! e dX,)

T
+d"E (/ e_z"’a)zthzdt) .
0

The optimal ¢ that minimizes the variance of the hedge error is given by

L E(m g erax,)
ok (fOT e~21X2d t)

= ce

For the variance of the corresponding hedge error, we have
2
Cov (clr, e fOT e " dX,)
A% (e’T fOT et dX,)
2
& [E (1 ) e ax;)]

oiE (fOT e 21X2d t)

E(C%(a)) = V() —

= sz (IT) —

The expectation in the denominator is given by

T T
]E(/ e*z”x,zd;> /e*Z” IE(X,Z) e
0 0 ——
:Xgexp(o)%t)

2
% (e“’}zfz'” - 1) . ifod 4 2r,

0'}2(—2r
X3T, if 0% = 2r.

The computations for the expectation in the numerator are somewhat more involved. Using
the explicit expressions for Sy and X7, we may decompose /7 into

(B-5) Ir = Xre " = XDy,
where Dy is the value at time 7 of the process D defined by, for all ¢ € [0, T},

t 1 1 2
D: = exp (/ (ax — pasef'i(Tﬂ')) dWlEX) — E/ (O'X — pa'sef"(Tf")) du)
0 0
! —k(T—u) € 1 ! 2 2 —2r(T—u)
X exp f/ pose dw, — 5/ p ose du |,
0 0

and A(T) is a constant given by

2 T )
—Spe” T —m (1 - e_“T) _ s / (O’x - pase_“(T—u)) du
0
1 T
+ 5/ plose > dy
0
2

—Soe " —m (1 — eiKT) + Z—S (1 — eizKT) — PIsIX (1 — eiKT) .
K K

A(T)
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Note that D is a strictly positive martingale and satisfies Novikov’s condition. Therefore
we can define a probability measure Q via

dQ9 = DrdP.

Under Q the processes W& and W, forall t € [0, T],

t
W,(X) = W,(X) —/ (O'X —page_r"(T—")) du,
0

t
w* W+ / p'asef'i(Tfu) du
0
are independent BMs. The dynamics of X, rewritten in terms of W, satisfy
er = ox (O’X — pO's@iK(T?r)) Xtdl+0')(X7dW,(X).
Observe that the expectation of X, with respect to Q is given by

t
E2 (X)) = Xoexp </ ox (O’X - pgse*H(Tﬂt)> du)
0

Xo exp (a,z(t + PoXos ef'iT) exp (77,00)(@ ein(Tf')) .
K K

Now the expectation term in the numerator can be written as

T T
(B-6) (IT/ e*"dx,) = Xpe*MEC (/ e’”dX,)
0 0

T
= Xpe™ / e "oy (ox — pose”"T"V)E? (X,)dt
0

POXOS ,— KT
Xgex(r)af LIS ¢

T
2_ _ _ _ PoxIs ,~k(T—1)
></ el (of — poxose T ) em T ¢ dr.
0

=A

For p = 0, we are done. For p # 0, we continue by substituting u = |p|oxose 7" /x,
which leads to an explicit expression for the above integral A in terms of the incomplete

gamma function (s, x) = [ y' " 'e " dy.

2 Liploxas

o—r ,
) — ox=r 1
—IT pP|Ox0s X 2 _
A = 7% lploxas u—~ (ox —ku)e "—du
K Ku
Liploxase=nT
2 Liploxos
o—r
0_26(0')2(—;‘)T (| ‘O‘ o )—Jr ~ o2 _r
X P|lOX0s X — 1 —u
= 5 u ~ e "du
X"
K "

Liploxose=rT

o}—r Llploxas

2
2 _ Ox0s " ox—r _
_e(ax r)T<|p‘ X 6> / U e udu
K
Liploxoge=rT
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2
oy —r

a,z(e(";?”')T (|ploxos) ™ G or—r 1 or —r 1 T
— ¥ , —lploxos ) —~ , = lploxose
1—Zxr K K K K

K e
=A(T)
_ Jei-nr (\p\axas)f%(’y (0;} —r, 1, \p|oxag) ., <O')2( —r, 1, |ploxose™ T >>
K K K K K
=A,(T)
Plugging this into equation (B-6) gives
r —rt 2 \(T)+22XTS =T
E IT/ cdX,) = Xie 2T NN(T) = Mo(T)).
0

The expression for the V (Ir) is straightforward. O

Proof of Proposition 4. The expressions for ¢ and the corresponding variance V (Cr(d))
are model independent and therefore the same as in Proposition 3. In both models X is a
GBM, and hence we again have

2

r -, ( (o3 =207 _ 1) if 02 4 2
E (/ eian,zdt) _ 22 \© if ox # 2r
0

X1 if 0% =2r
For the expectation in the numerator we get
]E (IT f()T e_”dX,) = E (fOT e_”d<1,X>,) = fOT e_”plxaxm]E (IIX,)d[.

Straightforward computations give E (XI,) = Xoloe”*°¥?"", which plugged into the above
expressions gives the desired result. The expression for the V (I7) is straightforward. O
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