
Homogeneous chaos basis adaptation for design optimization
under uncertainty: Application to the oil well
placement problem

CHARANRAJ THIMMISETTY,1 PANAGIOTIS TSILIFIS,2 AND ROGER GHANEM2

1Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California, USA
2Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California, USA

(RECEIVED December 19, 2016; ACCEPTED February 19, 2017)

Abstract

A new method is proposed for efficient optimization under uncertainty that addresses the curse of dimensionality as it per-
tains to the evaluation of probabilistic objectives and constraints. A basis adaptation strategy previously introduced by the
authors is integrated into a design optimization framework that construes the optimization cost function as the quantity of
interest and computes stochastic adapted bases as functions of design space parameters. With these adapted bases, the sto-
chastic integrations at each design point are evaluated as low-dimensional integrals (mostly one dimensional). The proposed
approach is demonstrated on a well-placement problem where the uncertainty is in the form of a stochastic process describ-
ing the permeability of the subsurface. An analysis of the method is carried out to better understand the effect of design
parameters on the smoothness of the adaptation isometry.

Keywords: Adapted Bases; Karhunen–Loeve Expansion; Optimization Under Uncertainty; Optimal Well Placement;
Polynomial Chaos Expansions

1. INTRODUCTION

Design optimization deals with exploring multiple instances
of a design with the aim of identifying the best among
them. In the presence of uncertainty, each of these instances
entails the exploration of several nominally equivalent reali-
zations intended to cover the range of anticipated scatter. In
cases of interest to the present study, this uncertainty and
the associated scatter are described as probabilistic measures
on parameters or environmental conditions associated with
each design instance. In the context of model-based optimiza-
tion, each instance of the design involves the evaluation of a
model, typically within a computational setting. Under condi-
tions of uncertainty, the model is probabilistic, and each
evaluation involves the exploration of the set of possible
events, thus considerably increasing the number of function
evaluations required to identify the optimal design. Clearly,
the characterization of the probability measure on parameter
space is a critical step in proceeding with any optimization
under uncertainty (OUU) problem. That step itself can be

cast as an iteration over a model, requiring the repetitive
evaluation of an objective function or a likelihood function.
This calibration or update step notwithstanding, the added
computational burden is a key challenge when introducing
uncertainty to a computational problem. For large-scale com-
putational models, this challenge is on the critical path of
credible model-supported decision making and design.

Typically, the objective function in an OUU problem is the
expectation of a quantity of interest (QoI), Q, with respect to
the probability measure of the random variables that describe
the uncertainty in the problem. This expectation could, for in-
stance, represent average performance, or the probability of
some particular event, often associated with failure. Monte
Carlo sampling techniques are standard tools for evaluating
these expectations, and several optimization procedures
have been integrated as sampling strategies resulting in algo-
rithms such as stochastic gradient descent (Bottou, 2010),
sample average approximation (Kleywegt, 2002), Robbins–
Monro (Robbins & Monro, 1951), the simultaneous perturba-
tion stochastic approximation (Spall, 1952), and random
search (Heyman & Sobel, 2003). Although adapted to spe-
cific problems, and generally more efficient than standard
sampling strategies, these algorithms can still be prohibitive
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for problems with large uncertainties or expensive function
evaluations. In addition to uncertainty in the objective
functions, uncertainty can also be present in the constraints.
In such chance-constrained problems, the task of verifying
the constraints incurs a significant computational burden,
and tolerances on satisfying probabilistic constraints must
be introduced. Robust optimization problems have been intro-
duced to alleviate the computational burden by replacing the
stochastic problem with a deterministic equivalent (Ben-Tal
et al., 2009). This equivalence often pertains to low-order sta-
tistics and may fail to capture extreme behavior, relevant in
many design situations.

Reservoir modeling and subsurface hydrology are two of
the areas where design optimization problems are of particu-
lar interest and where the computational model involved
is usually very expensive to solve as a result of the complex
multiphase/multicomponent physics of flow and transport
in porous media that give rise to coupled systems of equations
and the fine scale discretization of the domain that is imposed
on them. As such, the need for efficient methods in related de-
sign optimization problems is crucial, and an extended litera-
ture has been devoted to it. The objectives are typically to in-
fer subsurface properties such as permeability and porosity or
to optimize decision-making strategies such as oil production
and soil remediation. The design problem that often arises in
this case is that of determining the optimal locations to place
the wells in an oil reservoir or the boreholes in an aquifer such
that some oil production-related function or some informa-
tion-based criterion is maximized (Tsilifis et al., 2017). Var-
iations on the oil well placement problem using optimization
algorithms (Rian & Hage, 1994; Beckner & Song, 1995), in-
cluding uncertainty (Güyagüler & Horne, 2001; Güyagüler,
2002; Yeten et al., 2002; Bangerth et al., 2006), have ex-
plored well placement scenarios, details of the flow model,
or specifics of the cost function.

One way to cope with the computational challenges descri-
bed above is to replace the forward model with a cheap-to-
evaluate surrogate such as polynomial chaos (PCE; Eldred,
2009; Keshavarzzadeh et al., 2016) or Gaussian process (Bi-
lionis & Zabaras, 2013). Once such a surrogate is available,
the computational cost required to perform an optimization
algorithm is reduced dramatically; however. there is no free
lunch. Constructing the surrogate will often be an expensive
procedure and can become even prohibitive for high-dimen-
sional inputs. In this work, we develop an alternative frame-
work based on polynomial chaos expansions that reduces fur-
ther the cost of constructing the surrogate and therefore can be
applicable in higher dimensional settings where standard
nonintrusive methods would fail. The idea is based on con-
structing adapted polynomial chaos expansions that was first
introduced in Tipireddy and Ghanem (2014), which relies on
rotating the Gaussian input of the chaos expansion and con-
structing a reduced expansion dependent on only a few Gaus-
sian inputs, thus reducing the input dimension and requiring a
signicantly smaller number of forward evaluations for the
estimation of its coefficients. The novel contribution of the

present work is in considering the optimization objective
function as the QoI used in adaptation. In this manner, an
adaptation is constructed for each iteration in the design
space. This procedure permits the efficient evaluation of
probabilistic operations (expectations or probabilities of fail-
ure) at each design point. We note that the proposed formal-
ism is very different from sparse PCE procedures where a
subset of the initial random variables is used in representing
the solution. Substantial additional reduction is achieved in
the present work by seeking direction in the parameter space
along which the solution is concentrated. Typically, all of the
original components are active along these directions and will
thus contribute to the final solution.

The paper is structured as follows: Subsection 2.1
describes the design optimization objectives. In Subsection
2.2 we present the polynomial chaos properties and the basis
adaptation concept along with the computational algorithm
for its implementation. In Subsection 2.3 we describe how
the polynomial chaos basis adaptation framework can be ap-
plied in a design optimization problem and a computational
algorithm is also provided. In Section 3 we apply our method-
ology in a standard oil well placement problem that consists
of a two-dimensional oil reservoir with random permeability
where one production well and one injection well need to be
placed such that threshold above which the cummulative pro-
duction rate will be with a high confidence level, is maxi-
mized. Conclusions are presented in Section 4.

2. METHODOLOGY

2.1. Design optimization objectives

We present the general objective of the design optimization
problem under uncertainty that we are investigating. We con-
sider a scalar QoI Qðp,uÞ [ R that can be thought of as the
outcome of a physical model or a computer code that depends
on design parameters p [ Rn and some random parameters
u [ Rm that are defined on some probability space
(V, F, P) and follow some probability distribution that is as-
sumed to be known. Let FQðqÞ ¼ PðQðp, uÞ � qÞ be the
cummulative probability distribution of the quantity of inter-
est evaluated at p. It is a common task to seek the estimation
of the value qa that provides a one-sided confidence at level
a [ (0, 1) (typically small). Thus, denoting the cumulative
distribution function with FQ and the quantile with qa,

FQðqÞ ¼ PðQðp, uÞ � qÞ, qa ¼ F�1
Q ðaÞ, (1)

and the objective is to find qa such that Qðp, uÞ is above qa
with probability 1 2 a. Clearly, qa depends on p. Motivated
by this, we are interested in solving the optimization problem
of the form

p� ¼ arg max
p[X

JðpÞ, JðpÞ ¼ qa, (2)

C. Thimmisetty et al.266

https://doi.org/10.1017/S0890060417000166 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000166


where X , Rn is the domain of the design parameters (typi-
cally bounded). The dependence of qa on p comes through
the distribution FQ. For evaluation of the objective function
subject to minimization, knowledge of this distribution is re-
quired. In all but the simplest cases, it will not be possible to
compute FQ analytically and only an estimate of it will be
feasible. This could typically be estimated based on empiri-
cal procedures, for instance, a histogram obtained from
Monte Carlo (MC) sampling or similar sampling-based tech-
niques such as kernel density estimation (Scott, 2015). The
main drawback in these approaches is that the number of
MC estimates required for such estimations can be prohibi-
tive in terms of the computational resources necessary to
carry out such tasks. Among other characteristics that affect
the required number of samples are the complexity of the
computational model involved and the dimensionality and
the distribution of u. These both affect the structure of the
probability distribution that we seek to estimate. In the
case where the computational model involved is replaced
by a surrogate, the computational burden of MC sampling
does not necessarily disappear as the cost of actually con-
structing the surrogate can be equally high, if not higher.
Our ultimate goal in this work is to provide an alternative
methodology that attempts to reduce the cost of estimating
the distribution of FQ that is applicable in the case where
the model uncertainties can be written as functions of Gaus-
sian noise and the QoI admits a homogeneous chaos expan-
sion.

2.2. Polynomial chaos basis adaptation

2.2.1 Homogeneous chaos

In the previous paragraph, we introduced uncertainty in
our QoI through the random vector u whose distribution is
assumed known. In order to develop our methodology, it
is further necessary to assume that u can be written as a
function of d uncorrelated Gaussian variables j [ Rd and
write u ¼ gðjÞ. Note that d can be considered to be infinite,
but here we will only consider the finite case. Clearly Q will
then be also written as a function of the same Gaussian vari-
ables as Qðp, gðjÞÞ. For the sake of simplicity we will de-
note Qðp, jÞ, ignoring the dependence through g when there
is no confusion. One necessary condition for the above as-
sumption to hold is for u to have finite second moment
and be measurable with respect to the s-algebra FðjÞ, gen-
erated by j. Then, the Cameron–Martin theorem (Cameron
& Martin, 1947) ensures that u admits a representation of
the form

u ¼
Xp

jaj¼0
uaCaðjÞ, j ¼ 1, . . . , m, u, ua [ Rm, (3)

that is, mean-square convergent as p!1, a¼ (a1, . . . , ad),
jaj ¼

Pd
i¼1ai, and CaðjÞ are multidimensional Hermite

polynomials of order a defined as

CðjÞ ¼
Yd

i¼1

cai
ðjiÞ : (4)

Here, cai
ðjiÞ are the normalized one-dimensional Hermite

polynomials of order ai. Assuming that q has also finite
second moment, it is clear that a similar representation can
be obtained:

Qðp, jÞ ¼
Xp

jaj¼0
QaðpÞCaðjÞ: (5)

The total number P of terms in the expansion is given by

Pþ 1 ¼ ðd þ pÞ!
d!p!

: (6)

That the functions fCaga form an orthonormal basis on the
space of square integrable random variables L2ðV, FðjÞ, PÞ
gives a convenient expession for the coefficients

QaðpÞ ¼ kQðp,:Þ,Cal, (7)

which can be estimated using several techniques, the most
popular of which are Galerkin projections (Ghanem & Spa-
nos, 1991; Le Maı̂tre, 2002) and pseudo-spectral projections
(Reagan et al., 2003) that are based on numerical integration
using quadrature rules, known also as intrusive and nonintru-
sive approaches, respectively. In the application included in
this work, we will focus on the second approach, which al-
lows treating the computational model as a black box. Once
the coefficients QaðpÞ are estimated, one can reconstruct
the density function of Q through samples of j, as evaluation
of the polynomial series is easy and fast and one can proceed
in solving optimization problems of the form in Equation (2).
However, the number of evaluations required for estimation
of the coefficients grows exponentially fast as a function of
the dimensionality of j and quickly becomes prohibitive or
at least not cheaper, for the purpose of solving Equation
(2), than direct sampling using the forward model. One way
to address this issue, as we demonstrate in the next section,
is to adapt the Gaussian basis of the expansion in a fashion
that reduces the dimensionality and consequently requires
fewer evaluations.

2.2.2. Basis adaptation

Let A : Rd ! Rd be an isometry on Rd, or equivalently, an
orthogonal matrix (AAT ¼ Id) and define h ¼ Aj. It follows
(Janson, 1999) that the components of h are also uncorrelated
standard Gaussian variables that span the same Gaussian
Hilbert space with j and generate the same s-algebra FðjÞ;
therefore, a polynomial chaos expansion of any element
Q [ L2ðV, FðjÞ, PÞ can be taken with respect to the new

Homogenous chaos basis adadptation for design optimization 267

https://doi.org/10.1017/S0890060417000166 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000166


germ h as

QAðp,hÞ ¼
Xp

b,b¼0
QA

b ðpÞcA
b ðjÞ, (8)

where we use the superscript on QA and QA
b to indicate that the

new basis has been obtained after applying rotation A on j and
cA
b ðjÞ ¼ cbðAjÞ. Then, we have that QAðp,hÞ ¼ Qðp, jÞ al-

most surely and the coefficients of the new expansion can be
written in terms of fQaðpÞjpja¼0g as

QA
b ðpÞ ¼

Xp

jaj¼0
QaðpÞkca, cA

b l: (9)

We have kca,cA
b l ¼ 0 for jaj = jbj, while for jaj ¼ jbj the

inner products can be computed explicitly (Tsilifis & Ghansem,
2016). The motivation behind applying a change of basis as de-
scribed above is that, by choosing an appropriate matrix A, the
new expansion can concentrate the dominant effects of the ori-
ginal expansion to fewer coefficients of QA and thus provide
sparse representations depending on only a few components
of h ¼ ðh1, . . . ,hdÞ, say, hd0

¼ ðh1, . . . ,hd0
Þ with d0 , d,

and therefore, we can discard terms of the adapted expansion
via projection (see Tipieddy & Ghanem, 2014; Tsifilis &
Ghanem, 2016, for details as well as several popular choices
of A). If we let J p,d ¼ jaj ¼ ða1, . . . ,adÞ : jaj � jpj be
the set of d-dimensional multi-indices of order up to P and
take any J p0,d0 for some p0 , p, d0 , d, which implies
that J p0,d0 , J p,d, then for given A, the reduced decom-
position

QAðp,hd0
Þ ¼

X
b[J p0 ,d0

QA
b ðpÞcbðhd0

Þ (10)

approaches

QAðp,hÞ ¼½0pt� almost surely
Qðp, jÞ

as p0 ! p and d0 ! d. One then can carefully choose p0, d0

such the reduced decomposition in Eq. (10) can be sufficiently
close to Qðp, jÞ.

Obtaining this expression requires the estimation of QA
b ðpÞ,

b [ J p0,d0 . In practice, using Eq. (9) does not deliver us from
the computational cost of obtaining a full polynomial chaos
expansion because the coefficients QaðpÞ are required. In-
stead, once an isometry A is chosen, one can compute
the coefficients QA

b ðpÞ of the adapted lower dimensional ex-
pansion by following a nonintrusive implementation as de-
scribed in Tipireddy and Ghanem (2014). The computational
benefits of doing so is that for d0 ¼ d, the number of quadra-
ture points required for a nonintrusive estimation of the coeffi-
cients QA

b ðpÞ is much smaller than that of the original expan-
sion while the adapted expansion serves as an accurate
estimate of our QoI. The details of the procedure are summa-
rized in Algorithm 1.

Throughout this paper we restrict ourselves with obtaining
A by using the Gaussian adaptation. This consists of first es-
timating the coefficients fQ1ig

d
i¼1 of the first-order polyno-

mials fc1i
ðjiÞgd

i¼1, where 1i ¼ (0, . . . , 1, . . . , 0), that is,
the multi-index with 1 at location i and 0 everywhere else.
This is achieved using a low-level quadrature rule with very
few points. Next, we define the vector Q1 ¼ ½Q11 , . . . , Q1d �,
and we set the first row of A, denoted with A1�, to be

A1� ¼
Q1

jjQ1jj
: (11)

The matrix A can then be completed by performing a Gram–
Schmidt procedure.

2.3. Design optimization using adapted polynomial
chaos

The adaptation framework described in the previous para-
graph can be implemented in order to obtain cheap surrogates
of the QoI at different locations p, which can then be used
for estimation of FQ and its inverse. The optimization prob-
lem described in Section 2.1 can then be approached as fol-
lows: first, one needs to employ an optimization algorithm
to be used for maximization of JðpÞ. At each iteration k, the
adapted chaos expansion of the QoI needs to be computed
at design parameters pk, for a dimension value d0 that
achieves a satisfactory level of accuracy. Then FQ can be
estimated with MC sampling, and F�1

Q ð�Þ can be evaluated
at a, thus giving the values of the objective function JðpÞ.
The choice of d0 is not known a priori, and it needs to
be identified. On way to do this is to simply start by con-
structing a one-dimensional adapted expansion and then
increase the dimension until some relative error of the con-
secutive adaptations falls below some threshold. Because

Algorithm 1: Nonintrusive implementation

Input : Matrix A, adapted expansion dimension d0 , d,
quadrature coefficients {h(r)

d0
}s

r=1 and their
weights {wr}s

r=1 corresponding to d0-
dimensional, s-point quadrature rule.

Step 1 : Complete the vectors h(r)
d0

to d-dimensional h(r):

h r( ) = h(r)
d0

0

( )
,

where 0 is (d 2 d0)-dimensional vector.

Step 2 : Compute j(r) ¼ ATh(r) for r ¼ 1, . . . , s.

Step 3 : Evaluate QoI at {j(r)}s
r=1 to obtain {Q(p, j(r))}s

r ¼ 1.

Step 4 : Estimate the coefficients Qb(p), b [ J p0,d0 as

Qb p
( )

≈
∑s

r=1
Q p, j(r)
( )

cb(h(r)
d0

)wr .
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the number of evaluations required increases exponentially
as a function of the dimension, the evaluations required to
compute all adaptations up to dimension d0 will be still
much smaller than those required for the d-dimensional one
as long as d0 remains significanly smaller than d. Algorithm
2 displays the pseudocode with all the steps required for one
evaluation of JðpÞ.

The outside loop, where d0 is being incremented, may
seem to present an additional workload beyond standard
OUU procedures. It is noted, however, that for values of d0

well below the value of d, the computational burden associated
with evaluations for dimensions up to and including d0 is still
a fraction of the cost for an evaluation at dimension d. While
the numerical value of the tolerance, 1, can be selected to be-
come smaller as d0 is approached, in the present paper we fix
1 to a predetermined value of 0.05.

3. APPLICATION: OIL WELL PLACEMENT
PROBLEM

3.1. The oil reservoir model

To show the computational efficiency of the proposed
method, we consider a multiphase flow in a petroleum reser-
voir. The governing equations of the corresponding physics
describing black oil flow through a heterogeneous porous me-

dium are the following (Chen et al., 2008):

@

@t

frWs

Bw
Sw

� �
þr �

rWs

Bw
~uw

� �
� qW ¼ 0,

@

@t

frOs

Bo
So

� �
þr �

rOs

Bo
~uo

� �
� qO ¼ 0,

@

@t
f

RsorGs

Bo
So þ

rGs

Bg
Sg

� �� �
þr�

RsorGs

Bo
uo þ

rGs

Bg
ug

� �

� qG ¼ 0: (12)

where f denotes the porosity; Sa,ma, pa, Ba, ras
, and qa are

the saturation, viscosity, pressure, formation volume factor,
density, and volumetric rate at each phase a (water, gas,
and oil); Rso is the gas solubility; uw, ug, and uo are the respec-
tive Darcy velocities obtained by solving Darcy’s law for
each phase

ua ¼ �
krakðx,vÞ

ma

(rpa � ragrz)

a ¼ o, w, g, x [ G, v [ V, (13)

where ra and kra are the respective mass density and relative
permeabilities of each a phase, g is the magnitude of the grav-
itational acceleration, z is the depth, and kðxÞ is the intrinsic
permeability. The relative permeabilities kra are functions of
saturation, and their values generally lie between 0 and
1. They are obtained either experimentally or by using ana-
lytical expressions such as the Corey (1994) and Stone
(1970, 1973) models. In the above equations, fluid injection
wells and production wells are represented by point sources
and sinks whenever they are present (Peaceman, 2000).
Uncertainty is introduced in our model by considering the ab-
solute permeabilities kðxÞ to be log-normally distributed, that
is, log kðxÞ : NðmðxÞ, Cðx, xÞÞ for all x. Here we use the SPE-
10 data set (Christie & Blunt, 2001), which is discretized in a
60�220�85 regular Cartesian grid with real range being 600
�2200�170 (ft.)3. We treat the 85 layers as different realiza-
tions of our two-dimensional domain to construct our sample
mean and sample covariance matrix to be used as our mðxÞ
and Cðx, x0Þ, respectively. Next we parameterize our random
field by considering a Karhunen–Loeve expansion of kðxÞ as

kðxÞ ¼ mðxÞ þ
X20

i¼1

ffiffiffiffi
li

p
fiðxÞji, (14)

truncated up to 20 terms. The mean and variance of the gen-
erated log-permeability field are shown in Figure 1, and two
sample realizations drawn from the distribution are shown in
Figure 2. The permeability values used in our simulations are
measured in milidarcy. We should note that the specific na-
ture of the distribution is not relevant for the applicability
of the proposed method. Under general conditions on their
moments, most data-driven distrbutions can be represented
as polynomials of Gaussian random variables.

Algorithm 2: Evaluation of J(p).

Input : Design parameters p, quadrature coefficients
{j(r)}s

r=1 and their weights {wr}s
r=1 corresponding

to d-dimensional, s-point quadrature rule.

Step 1 : Evaluate QoI at {j(r)}s
r=1 to obtain {Q(p, j(r))}s

r=1
and estimate coefficients Q1i(p)}d

i=1

Q1i(p) ≈
∑s

r=1
Q(p, j(r))j(r)i wr

Step 2 : Construct A.
Initialize: Set d0 ¼ 1.
repeat

Obtain quadrature coefficients {h(r)
d0
}s

r=1 and their
weights {wr}s

r=1

Perform Algorithm 1

Estimate the density function of Q(p, hd0 )

Generate enough realizations of Q(p, j(r)) to estimate
q0.05

d0 ¼ d0 + 1

until relative change in q0.05 is less than 1
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3.2. Oil production as a QoI

The quantity of interest Qðp,uÞ considered in this example is
taken to be the cumulative oil production over T¼ 2000 days,
where the design parameters p ¼ ðxi

1, xi
2, xp

1, xp
2Þ are the loca-

tions ðxi
1, xi

2Þ and ðxp
1, xp

2Þ of one injection and one production
well, respectively, and u is taken here to be the random per-
meability field. The cumulative production is defined as

Qðp,uÞ ¼
ð

E

ð
T

uoðp, uÞ � dE dt, (15)

where uoðp, uÞ is the Darcy velocity of the oil phase, E is the
cross-sectional area of the wellbore, and E ¼ En̂ is the vector

area, where n̂ is the unit vector normal to the area. The objec-
tive function that we are interested in maximizing is

JðpÞ ¼ qa ¼ F�1
Q ðaÞ: (16)

3.3. Optimization results

Because the objective function considered here is complex in
nature and its theoretical properties are not known, it can exhibit
nonconvex behavior. In order to avoid exploring only an area
around the local minimum, we start our convex optimization al-
gorithm with an initial guess obtained from the brute force grid
parameter study. For this study, the parameter space p is di-
vided into four evenly spaced zones ðxi

1g ¼ f0, 200, 400, 600g,

Fig. 1. Mean (left) and variance (right) of the log-pemeability field.

Fig. 2. Sample realizations of the log-permeability field.
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xi
2g ¼ f0, 733:3, 1466:7, 2200g, xp

1g ¼ f0, 200, 400, 600g,
xp

2g ¼ f0, 733:3, 1466:7, 2200gÞ, and the objective function
is evaluated at the corresponding grid design points pg ¼
ðxi

1g � xi
2g � xp

1g � xp
2gÞ. The values of the objective function

evaluated at the 256 grid design points pg are shown in Figure 3,

highlighting with red, the ones that give oil production above
100 with probability 0.93. The possible locations of the wells
where JðxÞ are evaluated and the location of the well combina-
tions resulting in maximum qa are shown in Figure 4 (left and
middle). The largest value of the objective function corre-

Fig. 3. Values of qa at the 256 design points. The values with red “W” are above 100.

Fig. 4. Left: Injection and production well locations generating 256 possible combinations. Middle: 8 pairs of well locations resulting in
qa . 100. Right: Pairs of well locations produced by running limited memory Broyden–Fletcher–Goldfarb–Shanno optimization.
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sponds to the design point (0, 146.67, 60, 146.67), which we
use as the initial guess to run the limited memory Broyden–
Fletcher–Goldfarb–Shanno algorithm (Byrd et al., 1995) that
can perform bound constrained optimization, in order to find
the optimal design point. The well locations generated from
iterations of the algorithm and the resulting optimal design lo-
cation of the injection and production wells (I and P labels, re-
spectively) are shown in the Figure 4 (right). Figure 5 shows the
water and oil saturation on the 2000th day at the optimal design
point corresponding to the mean permeability field, and Fig-
ure 6 shows a sample realization of the water and oil saturation
on the same day and at the same design point.

Finally, in order to perform a comparison of the computa-
tional needs of our approach with possible alternatives, it is
necessary to look at the dimensionality of the adapted expan-
sions used in the evaluations of the objective function.
Figure 7 shows the histogram with the dimension of the adap-
ted expansions used in the estimation of FQ (.) at all design
points. We see that the dimensionality of the h components
necessary for accurate estimation of FQ (.) does not exceed
7, and no more than 30 design points require dimension larger
than 3. Furthermore, Figure 8 depicts the contribution of each
ji to h1, . . . h7 at one of the design configuration where the
dimension of the adapted dimension is 7. These contributions

Fig. 5. Realization of the oil saturation and water saturation on the 2000th day at the optimal design point using mean permeability.

Fig. 6. Sample realization of the oil and water saturation on the 2000th day at the optimal design point.
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are obtained as the respective rows of the adaptation matrix A.
This figure reveals that all 20 js are contributing to the adap-
ted dimensions, showing that the quantity of interest depends
on all 20 dimensions in the j space. A polynomial order of 3
in the reduced dimension d0 is pursued in all subsequent cal-
culations. The number of quadrature points, and consequently
the number of forward evaluations required for the estimation
of the coefficients of the adapted expansions of order 3 for
different dimensionality of hd0

, is shown in Table 1. Smolyak
sparse quadrature rule at Level 2 is used for estimation of mul-
tidimensional integrals.

3.4. Variability of the isometry A

In this subsection, we investigate the dependence of the iso-
metry A on the design p, and write AðpÞ. This dependence

is clearly a result of the dependence of the coefficients
qaðpÞ of qðp, jÞ on p and particularly the ones corresponding
to the first-order Hermite polynomials that are used in the first
row of A. We perform a simple test that aims to provide some
further insight on how A varies as a function of p. The moti-
vation for doing so is that if this relation is known a priori to
the experimenter, then the computation cost involved in the
algorithms described above, which is related to the evaluation
of A, could be omitted, thus resulting in even more efficient
implentation. The idea is simply that AðpÞ, or at least its first
row A1, which is defined in Eq. (11), is often a smooth func-
tion of p, and therefore, we should be able to estimate it; for
instance, we could evaluate A1 at several points and then ap-
ply some interpolation scheme. A brief theoretical discussion

Fig. 7. Dimension of the adapted chaos expansions used in all 256 design points.

Fig. 8. Contribution of each j1 to h1, . . . , h.

Table 1. Number of forward
evaluations required for
estimation of d-dimensional
adapted chaos expansions for d ¼
1, . . . , 7, with polynomial order
¼ 3 and level 2 Smolyak
quadrature

Dimension No. Quadrat. Points

1 9
2 45
3 117
4 233
5 401
6 629
7 925
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on the smoothness of the entries of A can also be found in
(Tsifiis & Ghanem, 2016), where it is shown that if QaðpÞ
are square integrable functions of p, then the covariance ker-
nels of his define Hilbert–Schmidt operators. Here, we only
demonstrate that in our example this claim is true and the en-
tries of A1 or some properties of them could be estimated.
Further development of interpolation or estimating proce-
dures is beyond the scope of the present paper.

To simplify the dependence on p, we fix the location of the
injection well in our example to be at the point (1, 2200) and
thus p ¼ ðxp

1, xp
2Þ becomes two dimensional. We compute the

Gaussian part qaðpÞ, jaj ¼ 1 at 256 locations as shown in

Figure 8 (right), and from that we find the angles

f ¼ arccosðA1�ðpoÞ � A1�ðpÞÞ, (17)

that is, the angles between the row A1�(p) and A1�ðpoÞ for
po ¼ ð600, 1Þ and all other p. There are shown in Figure 9
(left). We observe that the angle between the first rows of
the rotations AðpÞ and AðpoÞ is increasing as the production
well moves to the upper area of the domain, that is, it ap-
proaches the injection well.

3.5. Effect of the confidence level on the optimal
design

In this section we are interested in the effect of the confidence
level (12a) on the design. For this study, similarly to Section
3.3 the parameter space p is divided into four evenly
spaced zones ðxi

1g ¼ f0, 200, 400, 600g, xi
2g ¼ f0, 733:3,

1466:7, 2200g, xp
1g ¼ f0, 200, 400, 600g, xp

2g ¼ f0, 733:3,
1466:7, 2200gÞ, and the objective function is evaluated at the
corresponding grid design points pg¼ðxi

1g�xi
2g�xp

1g�xp
2gÞ.

Each of the grid points designated as design number 1,
2, . . . , 256. The values of the objective function evaluated
at the 256 grid points for different confidence levels 30, 35,
40, . . . , 95. For each confidence level, the optimal design
is picked where the objective function is maximum. Figure 10
(left) shows how the optimal design (here its index number)
changes for different value of the confidence level. We ob-
serve that there are essentially only three possible optimal de-
signs along the whole confidence level spectrum. The pro-
duction and injection wells (fPi, Iigi¼1;2;3) for these three
optimal designs are shown in Figure 10 (right). Here, the op-
timal design one, two, and three corresponds to confidence
levels 0.2 to 0.4, 0.45 to 0.65 and 0.70 to 0.95, respectively.
Figure 11 (left) shows the quantile values qa obtained at the

Fig. 9. Spatial distribution of rotation angle for a fixed injection well, as a
function of the production well.

Fig. 10. Confidence level versus the optimal design number (left) and the locations of the optimal designs on the domain (right).
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optimal design point as a function of the confidence level, and
Figure 11 (right) shows the probability density functions of
qa for the three optimal designs. It is worth mentioning
here that the support and the shape of the probability density
functions indicates that although a low confidence level will
result most likely in a low minimum production qa, there is
still a positive probability that a large value (up to around
4000) of oil production might be achieved. As the confidence
level increases, the support of the probability density function
shrinks, indicating a lower upper bound for qa that, however,
can be achieved with higher probability, and thus the mini-
mum oil production is steadily increasing while the associ-
ated risk is decreasing.

4. CONCLUSIONS

We presented a polynomial chaos based approach to design
optimization that makes use of the basis adaptation capabil-
ities of the PCE in order to obtain highly efficient reduced ex-
pansions that offer an alternative to design optimization prob-
lems for a special case of objective functions that consist of
failure probabilities and thus require full knowledge of the
density function of the QoI. We applied our methodology
to the oil well placement problem with an expensive-to-solve
reservoir model, and our numerical results indicate that our
approach can provide solutions that dramatically decrease
the computational cost that would be required by computing
a polynomial chaos expansion on the initial basis. Much is
left to be explored and understood in this novel direction in
design optimization under uncertainty based on stochastic ex-
pansions, including the behavior of the rotation matrix as a
function of the design parameters as well possible construc-
tions of the rotation matrix other than the Gaussian adaptation
that is used here.
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