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Primary cementing of horizontal wells.
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We present results of three-dimensional computational simulations of horizontal eccentric
annular displacement flows as studied experimentally by Renteria & Frigaard (J. Fluid
Mech., vol. 905, 2020, A7). We show the simulations are able to effectively capture
detailed dispersive features of the flows, not resolved in simpler models. Top side flows,
slumping flows and narrow side residual layers are predicted reliably and we are able
to understand the main mechanisms that drive the flow into one of these classifications.
Both experiments and simulations agree in their classification of steady and unsteady
displacements. However, when the dispersion is properly resolved the concept of a
steady state displacement becomes questionable. We study the axial spreading of the
displacement front via one-dimensional simplifications, both advective and diffusive.
While these do not fully describe the flows, they give some estimates that are useful for
practical application.

Key words: interfacial flows (free surface), multiphase and particle-laden flows

1. Introduction

Primary cementing is used to seal every oil and gas well (Nelson & Guillot 2006), of
which there are many millions globally. In this operation a sequence of fluids is pumped
down the inside of a steel casing, to the bottom of a well, returning upwards in the annular
space between formation wall and exterior of the casing. The objective is to remove the
drilling fluid and other residue from the well, replacing it with a cement slurry, which
then hydrates and seals the well to prevent subsurface leakage. This paper focuses on the
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fluid mechanics of primary cementing, which mainly consists of a fluid–fluid displacement
flow along a narrow eccentric annular duct. This is a sequel to Renteria & Frigaard (2020)
(referred to as Part 1), in which we focused on results of scaled laboratory experiments.
Here, we compare experiments with three-dimensional (3-D) computations and use these
same computations to probe deeper into the flow structure.

The study considers only horizontal wells, which have been increasingly common over
the past 25 years. For example, in British Columbia, vertical wells accounted for >75 %
of wells drilled prior to 2000, but ≈95 % of wells drilled in the last decade have been
horizontal (Trudel et al. 2019). Unfortunately, many of these recent wells appear more
susceptible to leakage, which explains our interest. Methane is a powerful greenhouse
gas and leakage can lead to polluted aquifers, damaged subsurface ecosystems, methane
emissions and reduced well productivity. It is difficult to locate and expensive to fix. An
introduction to the primary cementing literature is given in Part 1.

The experiments in Renteria & Frigaard (2020) were performed in a clear acrylic
laboratory apparatus, using transparent (and dyed) fluids of differing densities and
viscosities. The annulus was uniformly eccentric and horizontal. Comparisons were made
with predictions from the theory developed by Carrasco-Teja et al. (2008) and with
simulations using the (laminar) model of Maleki & Frigaard (2017), which is a 2-D
gap-averaged (2DGA) model. Approximately 300 experiments were conducted. Two main
behaviours were observed: top side and slumping displacements, which refer to whether
the main displacement front advances along the top or bottom of the annulus. These flow
types are predicted well by the 2DGA model. The 2DGA approach was also reasonably
effective at predicting steady and unsteady displacements in the experiments.

However, other features of the experiments were not predicted as well. The main
discrepancy comes from gap averaging of the model, which is part of the Hele-Shaw
approach. This negates dispersion on the scale of the annular gap. Other secondary flows
may lead to dispersion in the 2DGA model. Dispersion was significant in many of the
experiments of Part 1. One indication of this fact is that, in most cases, the front velocities
determined from the experiments exceeded those of the model. Dispersion has also been
found in other experimental studies in near-horizontal annuli (Lund et al. 2018; Renteria
et al. 2019), where arrival times of displacing fluids at conductivity probes are notably
faster than 2DGA predictions and spreading of the front is more extensive.

The inability of these simpler models to reproduce the degree of dispersion is a
key motivation for the 3-D computational study in this paper. Simulations also allow
for independent parameter variations in a way that experiments sometimes do not.
Three-dimensional simulations of annular displacement flows were first developed in the
late 1990s but were too slow for practical usage (Szabo & Hassager 1997; Vefring et al.
1997). In recent years, interest has revived in these methods as open source and other
computational codes have become widely accessible and multi-processor computations
have made such calculations manageable at reasonable resolutions over increasingly long
annuli and even for non-Newtonian fluids, e.g. Kragset & Skadsem (2018), Etrati &
Frigaard (2019) and Skadsem et al. (2019). Those 3-D simulations that have been published
certainly expose flow features not present in Hele-Shaw models: inertial effects and flow
features on the scale of the annular gap. In particular, residual layers on the scale of the
annular gap are a reality (Allouche, Frigaard & Sona 2000; Zare, Roustaei & Frigaard
2017). When these layers outlast the displacement flow, the residual fluids form a potential
means for wellbore leakage (called wet micro-annuli or mud channels).

Thus, resolution of the annular-gap flows is essential. The 3-D challenge then comes
from the disparity in aspect ratios: gap width, circumference and length, if the mesh
scale is set by the annular-gap dimension. Furthermore, the time scale of flow also
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Displacement flows in horizontal annuli: computations

increases proportional to the length of annulus, making the computational cost severe.
Our experimental annulus has length to circumference ratio of ≈78 and circumference
to gap ratio of ≈26. As we will see below, we are able to simulate the experimental
displacement flows effectively. However, while the latter is representative, this scaled
length corresponds to 10–30 m of a real well dimension. In practice, cemented sections
of well are 100s or 1000s of metres in length. Therefore, although now able to simulate
useful lengths of well in three dimensions, we have a long way to go.

This paper focuses on a detailed comparison of 3-D computations with our earlier
experiments. In § 2 we present an overview of the methods used here. Section 3 covers
the results. We first give a visual classification of the flows, comparing with the same
classification of the experiments in Part 1. The simulations are then used to look in
depth at top side and slumping flows (§ 3.1.1), and the phenomenon of residual fluid
left behind in the narrowest part of the annulus (§ 3.1.2). In § 3.2 we explore steady
and unsteady displacement flows, showing that the simulations produce near-identical
classifications to our experiments. We then explore the effects of eccentricity and viscosity
ratio on the transition between top side and slumping flows (§ 3.3). In § 3.4 we explore
1-D characterizations of the spreading displacement front, via dispersive and diffusive
mechanisms. The paper ends with a brief discussion and conclusions.

2. Methodology

As explained in § 1, the main aim of this paper is to explore eccentric annular displacement
flows of 2 Newtonian fluids using 3-D simulation. To this end, we rely strongly on the
experimental results from Part 1, both to validate the code output and to guide us in terms
of the dominant phenomena. The 3-D simulations then have many advantages in terms
of the flow variables computed, parameter ranges are readily accessible and there is the
ability to explore beyond what is measured experimentally.

Dimensional analysis of the miscible displacement flow of 2 Newtonian fluids along a
uniformly eccentric horizontal annulus shows that there are 7 different non-dimensional
parameters involved. The problem is substantially simplified in the case of small gap to
circumference aspect ratio δ (i.e. a narrow gap), and where advection dominates molecular
diffusion (large Péclet number, Pe). This situation is represented in the model and analysis
of Carrasco-Teja et al. (2008), which simplifies to a manageable 3 parameters in the case
of 2 Newtonian fluids: (b, e, μ̂2/μ̂1).

The buoyancy number, b = (ρ̂2 − ρ̂1)ĝd̂2/(μ̂1Ŵ0) represents the balance of buoyant
and viscous stresses over the scale of the annular gap: b > 0, corresponds to a heavier
fluid displacing a lighter one and vice versa. Fluid 2 displaces fluid 1. The densities are
ρ̂1 and ρ̂2, their viscosities are μ̂1 and μ̂2, ĝ is the gravitational acceleration and Ŵ0
is the mean displacement velocity. The inner and outer radii are r̂i and r̂o, respectively,
with the mean half-gap d̂ = (r̂o − r̂i)/2. The eccentricity is defined as e = �r̂/(r̂o − r̂i),
where �r̂ is the vertical difference between the centre of the outer and inner pipes,
so that the eccentricity can also take negative values: e ∈ [−1, 1]. Nevertheless, in
horizontal wellbores the weight of the pipe pulls downwards creating typically the widest
gap at the top of the annulus (e > 0). The parameter μ̂2/μ̂1 is simply the viscosity
ratio.

In laboratory experiments and many field situations the aspect ratio is small, but not
asymptotically so. The Reynolds number (Re) is not small. The 3-parameter simplification
of Carrasco-Teja et al. (2008) is thus compromised by inertial effects as δRe ∼ 1. In Part 1
we therefore included Re in our experimental parameter space. Our experiments have fixed
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Parameter Values/range

e = �r̂/(r̂o − r̂i) −0.07, 0.46, 0.73
b = (ρ̂2 − ρ̂1)ĝd̂2/(μ̂1Ŵ0) [−529, 996]
μ̂2/μ̂1 [0.09, 11.56]
Re = ρ̂1Ŵ0d̂/μ̂1 [2.6, 817]

Table 1. Dimensionless parameter ranges of our experimental study.

geometry, δ = (r̂o − r̂i)/[π(r̂o + r̂i)], and since the flows are still shear dominated, this
4-parameter description is probably sufficient.

2.1. The experiments of Part 1
About 300 experiments were performed, with parameters in the ranges indicated in
table 1. The main quantitative measurement is visual. An arrangement of 3 mirrors is
used in order to bring the bottom, back and top views of the annulus to the camera’s focal
plane. Ink is used to mark the displacing fluid. The pixel intensity in the images recorded
is scaled and interpreted as an approximate (depth-averaged) fluid concentration of fluid 2;
say C(x̂, ŷ, t̂), with (x̂, ŷ) representing the plane of the side image of the annulus. These are
then further processed to give information to compare with the computations. Full details
of the experiments are given in Renteria & Frigaard (2020).

2.2. Computational model
The governing equations for the displacement flow are the Navier–Stokes equations. In
primary cementing the fluids are often (but not always) miscible and this was also the
case in our experiments. We model the two fluids with a volumetric concentration C of
the displacing fluid. The flows are laminar and molecular diffusion is small relative to
advective transport, so that the Péclet number, Pe � 107 typically. Thus, we model the
flows using a volume-of-fluid (VoF) method. The field equations are

ρ̂

(
∂û
∂ t̂

+ û · ∇̂û
)

= −∇̂p̂ + ∇̂ · τ̂ + ρ̂ĝ, (2.1)

∇̂ · û = 0, (2.2)

∂C
∂ t̂

+ û · ∇̂C = 0. (2.3)

In (2.1)–(2.3), and elsewhere, the ˆ accent denotes a dimensional variable. The density and
stress tensor (τ̂ ) are defined using the properties of each fluid and linear interpolation with
respect to C.

Physically, (2.3) may be interpreted as the large Pèclet number limit of a miscible
flow. In practice there is always smearing of the interface computationally in VoF as
intermediate values of C are explicitly used for partially filled cells. Although VoF
is effective in controlling numerical diffusion, intermediate values can be advected
by secondary flows and dispersed. It is possible to include a diffusion term on the
right-hand side of (2.3), but for practical mesh sizes this has little effect on the results
unless Pe is approximately 2 orders smaller than the physical values. On the other
hand, phenomenologically speaking, significant dispersion is observed in experiments and
capturing these effect depends primarily on faithful resolution of the velocity field, rather
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Length per section l̂ 1.2 m
Total length Ẑ 4.8 m
Gap width (concentric) r̂0 − r̂i 0.00476 m
Circumferential scale (π/2)(r̂0 − r̂i) 0.06 m
Radial to circumferential ratio δ = (r̂0 − r̂i)/(r̂0 + r̂i)π 0.038
Longitudinal to circumferential ratio Ẑ/(π/2)(r̂0 + r̂i) 78
Eccentricity e [−1, 1]

Table 2. Apparatus dimensions.

Ẑ

ĝ

�r̂
r̂c

r̂i

x̂, Ŵ
ẑ, V̂

ŷ, Û

û =  (0,0,0) ∂û/∂x̂ = 0

Ŵ  = Ŵ0, C = 1

Figure 1. Schematic of the displacement flow domain.

than the precise mechanism by which intermediate C is generated at a displacement front.
As we see later, dispersive effects appear to be captured well in our results.

Equations (2.1)–(2.3) are solved in a uniform eccentric annular domain with identical
dimensions to the experiments of Renteria & Frigaard (2020), see table 2 for apparatus
dimensions. For boundary conditions we impose no slip on the walls. At the inlet a
uniform velocity profile is prescribed. At the outlet, zero-gradient boundary conditions
are applied (fully developed flow); see figure 1. The entire domain is initially filled with
fluid 1 (concentration C = 0), and the inlet concentration C = 1 is imposed for t̂ > 0.

2.2.1. Discretization and mesh convergence
A finite volume method is used to discretize the Navier–Stokes equations and the VoF
method is used to track C. We have used OpenFOAM (http://www.openfoam.com) both
to discretize and solve for the flow. The solver used is based on the twoLiquidMixingFoam
case in the OpenFOAM library. The volume of a fluid in a cell is computed as CVcell,
where Vcell is the volume of the cell. To study convergence we solve a displacement flow
in a 3-D eccentric annulus using different mesh sizes. Figure 2 shows the results for a heavy
fluid displacing a light fluid with (e, Re, b, μ̂2/μ̂1) = (0.73, 341.9, 60.31, 1.45). The mesh
sizes are: 10 × 80 × 200 (mesh 1), 12 × 96 × 240 (mesh 2), 15 × 120 × 300 (mesh 3),
20 × 160 × 400 (mesh 4), each in the r̂, θ and x̂ directions, respectively. The mesh is
refined near the walls to better resolve thin wall layers. In figure 2(a) the displacement
front is represented only by the iso-surface C = 0.5. Effectively we see the side view of
the projected 3-D iso-surface C = 0.5. Within the blue shaded region, C ≥ 0.5. At the top
and bottom of the annulus the transparent blue shading is overlaid on a grey background.
In figure 2(c,d), the results show good agreement and only marginal improvement after
mesh 2. In all computations below, we use the same mesh density as mesh 2.

2.2.2. Example flow
Figure 3 presents an example of a computed flow. The position of the displacement front
is shown in figure 3(a), represented only by the iso-surface C = 0.5, here, after 5 s. In this
example, buoyancy is small and the annulus has a moderate eccentricity. Consequently,
the balance of forces results in the front propagating along the top side of the annulus.
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ŷ
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Figure 2. The mesh size study of a displacement flow in an eccentric annulus with (e, Re, b, μ̂2/μ̂1) =
(0.73, 341.9, 60.31, 1.45). Parameters taken from one experiment. (a) The displacement flow: blue shaded
region represents the iso-surface C = 0.5 at t̂ = 15 s. (b) Four different mesh sizes of, mesh 1: 10 ×
80 × 200, mesh 2: 12 × 96 × 240, mesh 3: 15 × 120 × 300, mesh 4: 20 × 160 × 400 in r̂, θ, x̂ directions.
(c) Concentration variation across wide annular gap (shown by a red dashed line in (a)) at x̂ = 1.2 m for
different mesh sizes. (d) Axial velocity profile across wide annular gap at x̂ = 1.2 m for different mesh sizes.

Although figure 3(a) may appear as a simple spreading displacement front that might be
modelled as a 1-D flow, e.g. via asymptotic methods as in Carrasco-Teja et al. (2008), the
flow has many relevant 3-D features.

Figures 3(b) and 3(c) show secondary flows near the interface at t̂ = 5 s. The grey scale
shows the concentration of the fluids, the darker fluid is the displacing fluid. The flow is
approximately symmetric at small b, so we show the azimuthal velocity vectors on the left
side of the cross-section and streamlines coloured by the strength of the axial vorticity
on the right side. We have a 3-D secondary flow that adjusts concentrations locally: the
flow is downwards (wide to narrow) within the displacing fluid and upwards (narrow to
wide) within the displaced fluid, close to the walls. In other words, the dominant axial
flow drives a secondary flow that squeezes the displaced fluids around the residual layers.
We see that the darker fluid advances in the middle of the gap on the wide side. We also
note the appearance of 2 strong vortices near the interface and close to the top, due to the
squeezing flow. The secondary flows seem to vanish below the front and as we approach
the narrow side. The magnitude of the secondary flow is <0.2 % of the mean flow and the
vorticity is also small. Figure 3(d) shows a ‘spike’ of displacing fluid on the narrow side
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Ŵ/Ŵ0
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Figure 3. Displacement flow near the interface for (e, Re, b, μ̂2/μ̂1) = (0.46, 701.49, 0.16, 0.943) at t̂ = 5 s.
(a) Iso-surface for C = 0.5 is shown by the blue shaded region. Normalized velocity vectors (Û, V̂)/Ŵ0 and
streamlines coloured by vorticity magnitude: (b) at x̂ = 2 m and (c) x̂ = 2.5 m; the colour bars represent
normalized velocity and vorticity magnitude. The displacing and displaced fluids are presented by black and
white colours. (d) Concentrations in a vertical plane along the narrow side. Vectors show the normalized
velocity Ŵ/Ŵ0 and colour bar presents normalized velocity magnitude.

within the gap; see also Malekmohammadi et al. (2010). The spike illustrates the gap-scale
dispersion discussed in Part 1.

3. Results

Using the methods outlined in § 2.2 we have simulated the same experimental conditions
as in Renteria & Frigaard (2020), plus additional simulations to give a more detailed
look into specific parametric effects. Below we present first a visual classification of
our results, akin to that in Part 1. We use the simulations to look in detail at the typical
features of the main flow types §§ 3.1.1 and 3.1.2. In § 3.2 we explore steady and unsteady
displacement flows, showing that the simulations produce near-identical classifications
to our experiments. We then explore the effects of eccentricity and viscosity ratio on
the transition between top side and slumping flows (§ 3.3). Finally we return in § 3.4 to
the question of whether we might isolate and estimate the effects of dispersion and bulk
diffusive spreading of the averaged displacement front, within a 1-D model.

3.1. Visual classification of the main flow types
As discussed in Carrasco-Teja et al. (2008) and Renteria & Frigaard (2020), much
of horizontal cementing displacement mechanics is dominated by competition between

915 A83-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

15
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.158


P. Sarmadi, A. Renteria and I.A. Frigaard

100 200 300 400 500 600 700 800 900 1000

10 20 30 40 50 60 70 80 90 100

–10 –8 –6 –4 –2 0 2 4 6 8 10

–100 –90 –80 –70 –60 –50 –40 –30 –20 –10

–550

1.0

0.5e
0

1.0

0.5e
0

1.0

0.5e
0

1.0

0.5e
0

1.0

0.5e
0

–500

Top side classification Slumping calssification
Experiment
3D model

Experiment
3D model

–450 –400 –350 –300 –250 –200 –150 –100

b

Figure 4. Classification of displacements using fully developed flow behaviour. Buoyancy number b, increases
from top to bottom in the series of figures. Each parameter set is classified as top side or slumping, for both
experiment and simulation (see legend). Thus, a + over a diamond, or a × over a circle indicate predictive
agreement between experiment and simulation.

eccentricity and buoyancy. For large density differences the displacing fluid tends towards
the bottom or top of the annulus, according to the sign of b. Similarly, the flow moves
fastest in the widest part of the annulus advecting the concentration. Thus, we observe that
displacements move preferentially to the top of the annulus, or slump to the bottom.

We have classified all simulations visually according to this observed behaviour, i.e.
as top side or slumping displacements, as in Renteria & Frigaard (2020). We base this
classification on the long-time fully developed flow, i.e. from later/downstream in the
simulations (experiments). For |b| � 1 the flows adopt their long-time behaviours very
quickly but there are a number of flows for which front moves from top to bottom (or vice
versa) as a result of the initial flow development. Others too are quite dispersive and harder
to classify early in the simulation. The inconsistent and dispersive behaviours were also
found in the experiments of Renteria & Frigaard (2020) at early times. Figure 4 shows the
results of classifying the displacement flows. Overall we find good consistency between
experiments and simulations except at regime boundaries. At these regime boundaries, for
the large e > 0 we find the model slumps for b values for which the experiment is classified
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as top; for negative e the model favour the top when the experiment slumps. These both
suggest that the experiment is more sensitive to eccentricity than the simulation, i.e. within
this transitional range of b.

In the context of the well, our annulus is relatively short. However, flow development
still takes a significant length of the annulus, e.g. measured in terms of gap width. Whereas
our flow set-up is specifically designed for laminar displacement flows, many of our
flows still have Re ∼ 102 and so are far from Stokesian. It is thus interesting to view
our results in the context of single phase flows. Single phase flows in concentric annuli
are much studied, experimentally and theoretically. Narrow concentric annuli have similar
flow characteristics to the plane Poiseuille flow. However, eccentricity induces significant
differences in terms of stability, flow development etc. Recent studies by Tavoularis and
co-workers (Piot & Tavoularis 2011; Choueiri & Tavoularis 2014, 2015) have shown
that for moderate eccentricities laminar flows are only found for Re � 1100 and that
eccentricity induces quasi-periodic vortical instabilities. Thus, the conventional picture
of a stable laminar duct flow with moderate entry lengths etc. may not represent the
underlying flow in our experiments and simulations. Perhaps it is not surprising to find
that length to circumference ratios of ∼ 102 are needed for our flows to settle to their
long-time characteristic behaviours.

3.1.1. Slumping and top side flow types in more detail
We now look in more detail at comparisons between experiment and simulation for the
main types of flow identified. In making that comparison we note that the images of the
experiments in Renteria & Frigaard (2020) are taken from side, top or bottom views (using
a mirror system). To relate this to the 3-D simulation, we note that the pixel value on each
image is effectively a line average of intensity values, which are related to the lighting
(some reflection) and the dye concentration of the intervening fluids. We interpret each
image therefore as either a height or depth average of the underlying fluid concentrations.
We thus apply the same height or depth averaging to the 3-D concentration fields computed
in our simulations.

Figure 5 shows a comparison of simulation and experiment for a slumping flow:
experiment 103 with (e, Re, b, μ̂2/μ̂1) = (0.46, 52.80, 444.18, 11.41). We show front and
side views at 2 times during the flow: near the start and near the end of the displacement.
It is evident that overall the comparison is very good. We need to be a little cautious with
interpreting the greyscale range quantitatively, due to the complications with imaging of
these experiment as discussed at length in Renteria & Frigaard (2020). Nevertheless, the
overall features are the same. Note that the grey scale vertical stripes in figure 5(d,h) signify
where the experiment is physically supported from the bottom.

Dispersion is visible in both experiment and simulation, at both entry and exit sections.
To the eye it appears that the experimental dispersion is larger. This may be the case
and has been found in similar pipe flow experiments and simulations conducted (Etrati
& Frigaard 2018), where one cause was initial mixing due to the opening of the gate
valve. Comparison at the second downstream position is also good, though the front
arrives earlier than the simulation. We will see that the front velocities in both simulation
and experiment are faster than the mean velocity. Although dispersion has increased, the
underlying slump does not appear to have extended significantly in length, i.e. comparing
figures 5(a,c) and 5(e,g). Although this flow has a rather large b, driving the slumping, it
also has a high viscosity ratio, μ̂2/μ̂1 = 11.41, which may help stabilize the front. We also
note a sinuous pattern of lower concentration fluid on the narrow lower side of the annulus
(figure 5f ) and a slight front asymmetry at the bottom, in figure 5( f,h).
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Figure 5. Example of slumping flow with (e, Re, b, μ̂2/μ̂1) = (0.46, 52.80, 444.18, 11.41) EXP 103 at
t̂ = 29 s: (a) depth-averaged front view, and (b) height-averaged bottom view. Dashed black line shows
C̄ = 0.5. (c,d) Are pictures from the experiment showing the front and bottom views, respectively. At t̂ = 200
s: (e) depth-averaged front view, and ( f ) height-averaged top view. Dashed black line shows C̄ = 0.5. (g,h) Are
pictures from the experiment showing the front and bottom views, respectively at t̂ = 169 s.

Figure 6(a) shows the height-averaged concentration profiles C̄y(x̂, t̂) at successive times
during the simulation. We see that these curves have a steadily propagating frontal part
and a part nearer to C̄y ≈ 1 that denotes the residual fluid not effectively displaced, at the
top of the annulus for a slumping flow. From differentiating between successive curves
in figure 6(a) we can determine a front velocity Ŵf , which varies with both C̄y and time.
At later times in the displacement, as already observed, the front in figure 6(a) appears to
advance at steady speed at each C̄y, i.e. Ŵf → Ŵf (C̄y) at long times. This fully developed
front velocity is plotted in figure 6(b), normalized with the mean velocity. Over the range
C̄y ∈ [0, 0.9] we see only a small variation in Ŵf (C̄y): effectively a steady propagation at
just above the mean velocity.

Figure 7 explores experiment 103 in more detail at t̂ = 125 s. Figure 7(a) shows the
iso-surface C = 0.5, which illustrates the slump. We also observe the displacing fluid
has advanced forward into the displaced fluid in the form of a small ‘spike’, at the
bottom. Considering an axial section along the narrow annulus, the geometry is channel
like and pressure driven. Thus, the spikes are a natural feature of dispersion between 2
miscible fluids, within the annular gap. These features are also visible in experiments
(Malekmohammadi et al. 2010). To some extent these are visible at other azimuthal
positions, but secondary flows also act to disperse this feature azimuthally, i.e. wide and
narrow sides of the annulus are symmetry planes geometrically (although as we see the
flow is not fully symmetric).

The rest of figure 7 presents the secondary flows within cross-sections at distances
positioned upstream and downstream of the front. The grey scale presents the axial velocity
strength, Ŵ/Ŵ0 − 1, the contours are streamlines of the flow in each (x, y)-plane and
these contours are coloured with the local magnitude of the axial component of vorticity.
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Figure 6. For (e, Re, b, μ̂2/μ̂1) = (0.46, 52.80, 444.18, 11.41), EXP 103. (a) Height-averaged concentration
evolution in time (C̄y(x̂, t̂)) and (b) dimensionless fully developed front velocities (Ŵf /Ŵ0) for different
height-averaged concentrations (C̄y).

The blue lines show the iso-line C = 0.5, the position of the interface. Just upstream of the
front (figure 7b) we see the displacement is near complete and is also nearly symmetric (i.e.
left–right, L–R). The displacing fluid is significantly more viscous and only thin residual
wall layers of fluid 1 are still present. Upstream in figure 7(c) we see that the layers extend
deep into annular cross-section. The denser fluid is pushed downwards in the centre and
these layers are driven to drain upwards along both inner and outer walls. Thus we see the
associated streamlines driving the secondary flow upwards on each wall.

On approaching the top in figure 7(b), the streamlines bend over. There are 2 zones of
strong vorticity attached to the inner wall near the top, apparently near the end of the inner
wall layer. Slightly further downstream (figure 7c) the strongest vorticity is found lower in
the flow, associated more clearly with the wall layers. There is an interesting streamline
pattern near the top of the annulus. We note that streamline spirals imply accelerating
or decelerating flow in the axial component. These are associated with the observed
spike, just upstream. We shall see similar structures later other buoyancy-dominated
displacement flows.

Further downstream (figure 7d,e), there are present only lower concentrations of
displacing fluid, dispersed ahead of the front. We see recirculatory streamlines extending
up towards the top of the annulus. The largest vorticity is generated lower in the annulus
where we have significant concentration gradients close to the wall. A secondary effect, at
mid-height, seems to be associated with the largest changes in annular-gap width causing
moderate vorticity. The spiral structures near the top of the annulus have vanished.

The relative strength of the secondary flow to the mean flow is defined by the ratio
of the maximum of the azimuthal flow rate to the imposed inlet flow rate, max(Q̂θ /Q̂0).
This gives meaning to the streamlines in the sequence figure 7(b–e). It is interesting that
the secondary flow is significantly larger in figure 7(b), for which our explanation is as
follows. We note that the secondary flow appears to be driven by the wall layers. These
experience both a static pressure differential and viscous drag from the displacing fluid. In
figure 7(b) where the height of fluid 2 is largest the driving pressure is also largest. Equally,
the larger viscosity of fluid 2 focuses velocity gradients more within the less viscous fluid.
We note that at the bottom of the annulus, where fluid 2 appears displaced at the walls,
there is very little secondary flow.
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Figure 7. Azimuthal flow near the interface for (e, Re, b, μ̂2/μ̂1) = (0.46, 52.80, 444.18, 11.41), EXP 103
at t̂ = 125 s. (a) Iso-surface for C = 0.5, streamlines at: (b) x̂ = 2.5 m, (c) x̂ = 2.75 m, (d) x̂ = 3 m and
(e) x̂ = 3.25 m. Streamlines are coloured by vorticity (ωx). Blue line shows the iso-line of C = 0.5 and grey
scale represents Ŵ/Ŵ0 − 1.

We now explore the structure of a typical top side displacement: experiment 208
with (e, Re, b, μ̂2/μ̂1) = (−0.07, 73.51, −38.17, 0.84). Figure 8 shows a comparison
of experiment and simulation at 2 times during the displacement. At the earlier time
figure 8(a–d) shows a good resemblance between simulation and experiment. There is
some discrepancy between the bottom views, e.g. the experiment is less symmetric. In
figure 8(b), the height-averaged concentration is resolved to high resolution and we see
the thin layers of displacing fluid visible on both sides of the annulus. the same resolution
is not possible with the experimental images (figure 8d), due to optical limitations. For
experimental images, low contrast in concentration coincides with a low contrast in pixel
intensity, i.e. the measurement is not absolute. The later images (figure 8e–h) explore the
top view, where we can better see the advancing front.

Figure 9 shows evolution of the depth-averaged concentration and computation of the
front velocity. Note that, in figure 9(a), the residual displaced fluid here, as C̄y ≈ 1, denotes
fluid remaining in the lower part of the annulus. Evolution towards a steady advective
front is again evident here, but now we have a much wider variation of Ŵf , i.e. due to

915 A83-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

15
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.158


Displacement flows in horizontal annuli: computations
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Figure 8. Example of top side flow with (e, Re, b, μ̂2/μ̂1) = (−0.07, 73.51, −38.17, 0.84), EXP 208 at
t̂ = 24 s: (a) depth-averaged front view, and (b) height-averaged bottom view. Dashed black line shows
C̄ = 0.5. (c,d) Are pictures from the experiment showing front and bottom views, respectively. At t̂ = 103
s: (e) depth-averaged front view, and ( f ) height-averaged top view. Dashed black line shows C̄ = 0.5. (g,h) Are
pictures from the experiment showing front and bottom views, respectively.
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Figure 9. For (e, Re, b, μ̂2/μ̂1) = (−0.07, 73.51, −38.17, 0.84), EXP 208. (a) Height-averaged concentration
evolution in time (C̄y(x̂, t̂)) and (b) dimensionless fully developed front velocities (Ŵf /Ŵ0) for different
height-averaged concentrations (C̄y).

the extended slope of the front in figure 9(a). Compared to the slump experiment we
can deduce that the front will spread more. Later we will use the calculated Ŵf (C̄y) to
characterize the displacement flows as steady or unsteady. Since this example has slightly
negative e, the top side propagation is due to the moderate negative buoyancy b.

Figure 10 looks at the detail of the secondary flow. In figure 10(a) we again see
the dispersive spike, now within the annular gap at the top, plus the more pronounced
extension of the displacement front, compared to figure 7(a). Cross-sectional slices are
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Figure 10. Azimuthal flow near the interface for (e, Re, b, μ̂2/μ̂1) = (−0.07, 73.51, −38.17, 0.84), EXP 208
at t̂ = 100 s. (a) Iso-surface for C = 0.5, streamlines at: (b) x̂ = 3 m, (c) x̂ = 3.5 m, (d) x̂ = 4 m and (e) x̂ = 4.5
m. Streamlines are coloured by vorticity (ωx). Blue line shows the iso-line of C = 0.5 and grey scale represents
Ŵ/Ŵ0 − 1.

presented in figure 10(b–e), showing mild asymmetry. Compared to the slumping example,
the main differences are a reduced value of |b| and slightly negative e. We first observe
that the strength of secondary flow is significantly reduced, presumably due to b. The
largest vorticity is again generated within the draining wall layers, but now note that fluid
2 is draining from top to bottom. Thus, as the displacement tip penetrates (figure 10e)
high vorticity arises near the top at the outer wall. As the front widens the fluid layers
are pushed downwards (figure 10d,c,b) and around the walls. From the grey scale axial
velocity, we can see that the displacing fluid moves predominantly in the centre of the gap,
upwards to the top of the annulus. Again recirculatory streamline patterns are associated
with the spike at the top of the annulus.

3.1.2. Narrow side residual layers
Narrow side residual mud channels occur frequently in primary cementing, where the
casing is poorly centralized. Explanations common in the industry involve a comparison
of the drilling mud yield stress and axial pressure gradient. However, in Part 1 we
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Figure 11. For (e, Re, b, μ̂2/μ̂1) = (0.73, 251.75, 57.78, 1.29), EXP 48. (a) Depth-averaged concentration
front view at t̂ = 7.5 s and (b) height-averaged concentration bottom view at t̂ = 7.5 s. (c) Depth-averaged
concentration front view at t̂ = 35 s and (d) height-averaged concentration bottom view at t̂ = 35 s.

have seen that residual layers occur also for Newtonian fluids and that these are a
dynamically evolving feature of these flows. While this does not negate the contribution
of a yield stress to static residual mud channels, it is likely that the dynamics
of the channel formation shares many features. Figure 11 shows simulation results
for (e, Re, b, μ̂2/μ̂1) = (0.73, 251.75, 57.78, 1.29). Figure 11(a,c) shows the averaged
concentration front view at t̂ = 7.5, 35 s. The front slumps to the bottom and the top
of the front is just above the bottom of the annulus. Bottom views in first section and last
section of the annulus at the same times are shown in figures 11(b) and 11(d). We see there
is a thin layer along the bottom side of the annulus which is slowly displaced as the main
front advances. The residual layer is asymmetric and appears unstable due to the density
unstable configuration.

Figure 12 shows the slumping flow of figure 11 in more detail at t̂ = 7.5, 35 s. It presents
the secondary flows within cross-sections at distances positioned upstream of the front.
Two strong vortices are found lower in the flow, associated more with pushing the lighter
fluids upwards along the walls, i.e. similar to that we have seen in other slumping flows.
Although we see recirculatory streamlines in wide gap, the largest vorticity is generated at
the interfaces of the wall layers, presumably due to buoyancy gradients. We barely see any
recirculatory streamlines in the narrow gap and downstream of the flow, the residual layer
can be clearly seen forming in figure 12(b,d).

An interesting feature of this flow (and others observed/computed) is that the flow loses
its left–right symmetry; both for primary and secondary flows. One possibility is that this is
due to the unstable density configuration, i.e. the residual fluid is less dense than that above
it. However, we note that the velocities are very small in the narrow side of the annulus
and the main energy of the flow is along the wider top side. Intuitively, we might expect
purely density driven instabilities to occur on a longer time scale and exhibit fingering
patterns azimuthally, but have not seen these. We also note that the wide side flows are
quite asymmetric, the Reynolds number is significant and due to the eccentricity the top
side is no longer a ‘narrow’ duct. Thus, we postulate that we are seeing an inertial effect in
the flow, where the main flow couples to the secondary flows in the wide side (observe e.g.
the recirculatory streamlines on the wide side in figure 12, and these asymmetric azimuthal
flows imprint the waviness of the residual layer at the bottom. Buoyancy may still play a
role here. Firstly, the residual wall layers are drained upwards along the walls, and these
currents may help trigger the asymmetry. Secondly, as seen in figure 11 the front advances
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Ŵ/Ŵ0
 – 1

(b)(a)

(c) (d )
ω x

Figure 12. Azimuthal flow near the interface for (e, Re, b, μ̂2/μ̂1) = (0.73, 251.75, 57.78, 1.29), EXP 48.
Streamlines at: (a) t̂ = 7.5 s, x̂ = 0.9 m, (b) t̂ = 7.5 s, x̂ = 1.1 m, (c) t̂ = 35 s, x̂ = 4.3 m and (d) t̂ = 35 s, x̂ =
4.5 m. Streamlines are coloured by vorticity (ωx). Blue line shows the iso-line of C = 0.5 and grey scale
represents Ŵ/Ŵ0 − 1.

off bottom, signifying a competition between buoyant slumping and the fast flows on the
wide side: we can imagine that this balance is unstable.

Figure 13 shows results for a flow with (e, Re, b, μ̂2/μ̂1) = (0.46, 805.69, 5.37, 1.08).
Figures 13(a), 13(b), 13(c) and 13(d) show respectively: the averaged concentration front
view, bottom view, front view of the first section of annulus and front view of the first
section of the experiment, at t̂ = 5 s. The front slumps towards the bottom but the top of
the front is found just above the bottom of the annulus, again signifying competition. The
tip of the front is dispersive due to small density difference, near-identical viscosities and
high Re. We see that there is a thin layer trapped in bottom side of the annulus which
is slowly displaced as the main front advances. The residual layer is asymmetric and
is unstable/wavy, as it is generated at the front. Compared to the previous example, the
eccentricity is more modest, the value of b is fairly insignificant and the Reynolds number
increased. The most wavy part of the residual layer is near the front and we see that this
decays upstream. For the flow of figure 13 there is no distinct stratification of the fluids
in the upper part of the annulus (instead a very dispersive front). Thus, common inertial
wave-like instability mechanisms such as Kelvin–Helmholtz may be discounted.

Figures 13(e), 13( f ) and 13(g) show the averaged concentration front view, bottom view,
and front view of the second section of annulus at t̂ = 7 s. We can clearly observe the
slumping dispersive flow similar to t̂ = 5 s. The corresponding experimental result did
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Figure 13. For (e, Re, b, μ̂2/μ̂1) = (0.46, 805.69, 5.37, 1.08), EXP 165. At t = 5 s: (a) depth-averaged
concentration front view, (b) height-averaged concentration bottom view, (c) height-averaged concentration
bottom view of annulus first section and (d) shows the bottom view picture from the experiment. At
t = 7 s: (e) depth-averaged concentration front view, ( f ) height-averaged concentration bottom view and
(g) height-averaged concentration bottom view of annulus second section. At t = 15 s: (i) depth-averaged
concentration front view, ( j) height-averaged concentration bottom view and (k) shows the bottom view picture
from the experiment. Black dashed line shows C̄y = 0.5.

not clearly show a residual channel in this last section of the annulus. Figures 13(h) and
13(i), show the averaged concentration front view and bottom view of the entire annulus
at t̂ = 15 s. Figure 13( j,k) shows the front view of the last section, for simulation and
experiment, also at t̂ = 15 s. The front cannot be easily identified as the flow is highly
dispersive. The unstable wavy residual layer, extends along almost half of the total length.

3.2. Steady and unsteady flows
A key descriptor of primary cementing displacement flows is whether the displacement
is ‘steady’ or ‘unsteady’. In an idealized setting, a steady displacement means that the
front advances steadily along the annulus, at the same (mean pumping) speed at all
points around the annulus. This state is well defined and predictable in reduced models
of the displacement (Pelipenko & Frigaard 2004a,b; Carrasco-Teja et al. 2008), where one
can even find analytical solutions in special circumstances. For a Newtonian–Newtonian
displacement the solutions depend only on b, e, μ̂2/μ̂1 and the annulus inclination (fixed
here). In Renteria & Frigaard (2020) we have seen that horizontal displacements are
rarely this ‘clean’: gap-scale and azimuthal dispersive secondary flows smear the interface
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Figure 14. Steady/unsteady classifications for slumping displacements according to the threshold. Comparison
between experimental data (filled symbols) and the corresponding 3-D simulations (larger white symbols). The
colour bar represents the viscosity ratio (μ̂2/μ̂1) of the experiment.

and imaging artefacts both limit the range of C̄y reliably measurable and make front
velocity calculations vulnerable to errors. Consequently, in Renteria & Frigaard (2020)
we used threshold values of Ŵf (C̄y) lying well within the reliably measurable range of our
experimental system and classified steady flows by the threshold

Ŵf (C̄y = 0.3) − Ŵf (C̄y = 0.7) ≤ 0.1Ŵ0, (3.1)

and unsteady flows otherwise.
As we have seen in our simulations, we are able to capture very similar secondary

flows as in the experiments. Additionally, having eliminated imaging issues, we are able to
differentiate the displacement height-averaged concentration profiles to calculate Ŵf (C̄y)

at higher resolution than in the experiments and over the full range of C̄y. Thus, a different
criterion than (3.1) could be adopted. However, that is not the aim here. Instead, we wish
to first verify that the simulations reproduce the experiments to the degree to which they
have already been classified. If so, in many ways the simulations are a better tool for a
deeper and more detailed investigation of the flow structure.

Figure 14 compares classification of the 3-D simulations using (3.1) compared to the
same classification of the experiments from Part 1. Note that, in Part 1, this classification
was applied only to slumping flows and only to a subset of the experiments for which the
image quality was sufficiently high. The top side displacements are in general unsteady
as there is no limiting mechanism. We see that the results are in a close agreement except
two cases with large eccentricity e = 0.73. In addition, all the cases with high value of
viscosity ratio (μ̂2/μ̂1 ≥ 10) are classified as steady.

The following results, in figures 15–17 present steady and unsteady displacement
flows arising from different balances and mechanisms, exploring transitional regimes.
Figure 15(a) shows the height-averaged concentration C̄y at successive times
for (e, Re, b, μ̂2/μ̂1) = (−0.07, 304.55, 69.08, 1.50), experiment 309. Each curve is
computed from the concentration map at a given time and thus suggests the shape
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Figure 15. For (e, Re, b, μ̂2/μ̂1) = (−0.07, 304.55, 69.08, 1.50), EXP 309. (a) Height-averaged
concentration evolution in time (C̄y(x̂, t̂)) and (b) dimensionless fully developed front velocities (Ŵf /Ŵ0) for
different height-averaged concentrations (C̄y).

of the front. In this case, both the marginally wider gap at the bottom and the small
positive b, promote slumping of the front to the bottom of the annulus and the viscosity
ratio is close to 1, so has little effect. Figure 15(b) shows the normalized front velocity
computed by differentiating between curves at fixed C̄y at long times in figure 15(a).
This flow (figure 15) is classified as unsteady using the classification (3.1). An interesting
comparison here is with the (unsteady) top side displacement of figures 8 and 9, which
have identical e, similar |b| but negative and also O(1) viscosity ratio.

Figure 16 shows the slumping flow of figure 15 in more detail at t̂ = 25 s. Figure
16(a) shows the iso-surface C = 0.5, illustrating the slumping flow and dispersive spikes
in top and bottom annular gaps. The rest of figure 16 presents the secondary flows
within cross-sections at distances positioned upstream and downstream of the front. As
previously, the grey scale indicates the strength of axial velocity (Ŵ/Ŵ0 − 1), the contours
are streamlines of the flow within each (x, y)-plane and these contours are coloured with
the local axial component of vorticity. The blue lines show the iso-line C = 0.5, the
position of the interface. Just upstream of the front (figure 16b) we see the displacement
is near complete and is also nearly symmetric (i.e. L-R). The denser fluid is pushing
the lighter fluid to drain upwards. Thus we see the associated streamlines driving the
secondary flow upwards on each wall. Slightly further downstream (figure 16c–e), 2 strong
vorticity regions are found lower in the flow, associated with pushing the lighter fluids
upwards along the walls. Away from the walls it is notable that the iso-surface C = 0.5
is essentially stratified. Although we see recirculatory streamlines in wide gap, the largest
vorticity is generated at the interfaces of the wall layers, presumably due to buoyancy
gradients. We note that this is also localized azimuthally at approximately the position
where C = 0.5. In the sequence of figure 16(b–e), the relative strength of the secondary
flow to the mean flow is largest in figure 16(d), just as the interface enters the wide gap
at the bottom. The strength of secondary flows in this example is similar but smaller than
that in figure 9, but in many ways the flow structure appears very similar, except slumping
to the bottom instead of top.

The next displacement was performed at near-identical conditions with the same
fluid pairing, but in a positively eccentric annulus: parameters (e, Re, b, μ̂2/μ̂1) =
(0.46, 299.12, 71.74, 1.48). The eccentricity slows motion along the narrow lower part
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Figure 16. Azimuthal flow near the interface for (e, Re, b, μ̂2/μ̂1) = (−0.07, 304.55, 69.08, 1.50), EXP 309
at t̂ = 25 s. (a) Iso-surface C = 0.5, streamlines at: (b) x̂ = 2.5 m, (c) x̂ = 3.5 m, (d) x̂ = 4 m and (e) x̂ = 4.5
m. Streamlines are coloured by vorticity (ωx). Blue line shows the iso-line C = 0.5 and grey scale represents
Ŵ/Ŵ0 − 1.

of the annulus and this experiment (experiment 313) is classified as steady. The
height-averaged concentrations and front velocities are qualitatively similar to those of
figure 6. Figure 17(a) illustrates the iso-surface C = 0.5 at t = 25 s. We can see that the
length of slumping front is smaller compared to figure 16(a). The spikes also appear to
extend a shorter distance. Figure 17(b–e) shows more detail of the slumping flow within
cross-sections at distances positioned upstream and downstream of the front. The most
interesting feature is that the secondary flows are asymmetric and significantly more so
than in figure 16(b–e) and secondary flows are stronger than the previous example. Similar
to previous cases, there is strong vorticity near the interface and 2 sets of recirculating
streamlines near the inner and outer walls to squeeze and push the displaced fluid upward.
It appears that the steadiness of the front in this example comes from the azimuthal flow
promoted by the wider top gap (balancing the positive buoyancy) and the smaller gap at
the bottom (slowing the stratification), i.e. only the eccentricity has changed. However, the
asymmetry indicates that this balance may not be stable.
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Figure 17. Azimuthal flow near the interface for (e, Re, b, μ̂2/μ̂1) = (0.46, 299.12, 71.74, 1.48), EXP 313 at
t̂ = 25 s. (a) Iso-surface C = 0.5, streamlines at: (b) x̂ = 2.25 m, (c) x̂ = 2.75 m, (d) x̂ = 3.25 m and (e)
x̂ = 3.5 m. Streamlines are coloured by (ωx). Blue line shows the iso-line C = 0.5 and grey scale represents
Ŵ/Ŵ0 − 1.

3.3. Parametric effects
Although the experiments in Renteria & Frigaard (2020) cover a wide range of
the dimensionless parameters, some effects are difficult to study in isolation due to
experimental constraints. Here, we explore in more detail these effects.

3.3.1. Effect of eccentricity
To study the effect of eccentricity (e), we fix the parameters (Re, b, μ̂2/μ̂1) =
(148.99, 0.95, 0.87) (modelled on experiment 125) and change the eccentricity
incrementally from −0.4 to 0.8. The flow has been chosen as it has moderate viscosity ratio
and very small positive b. Figure 18 shows the iso-surface C = 0.5 for these parameters. It
shows that the slumping displacement changes from slumping to top side displacement by
increasing the eccentricity, with minimal influence of b. Therefore, the flow has a tendency
to displace in the widest gap. We recall that at large Péclet number the fluids are mostly
advected and hence the faster flowing regions determine where the front will advance.

Investigating these sorts of examples is difficult experimentally at large values of e,
positive or negative, as errors in setting the gap are most significant. Equally, it is time
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Figure 18. Snapshots of displacement flow for different eccentricities for (Re, b, μ̂2/μ̂1) =
(148.99, 0.95, 0.87) at t̂ = 8 s. Colour map of equally spaced slices represents concentration of the
displacing fluid and the blue shaded region shows the iso-surface C = 0.5. Dimensionless axial velocity
(Ŵ/Ŵ0) is shown on slices and the colour map presents its magnitude.

consuming to set and adjust the eccentricity accurately for a single experimental fluid
combination (hence, in Part 1, we performed experiments over 3 fixed eccentricities only).
Some ripples can be seen for e = −0.4 to 0.4 and they vanish for higher e. Ripples
are caused by steepness of the front and potentially the inertial effect of moderate Re;
they vanish when the flow is more stratified and the eccentricity effect is dominant.
Recall also our earlier figure 17 and the asymmetries observed as the front steepens. The
normalized axial velocity (Ŵ/Ŵ0) is also shown in figure 18 on cross-sections equally
spaced along the annulus. The wide gap has the highest velocity for small b and moderate
viscosity ratio. For very high eccentric cases (e ≥ 0.6) barely any flow can be seen in the
narrow gap.

Figure 19 shows the variation of averaged concentrations of the displacing fluid,
computed by averaging across the gap and along the annulus, on both the top and bottom
of the annulus (θ = 0, π). These are for the same parameters as figure 18 and at the
same time. This shows that there is an eccentricity at which the flow switches from top
side to slumping, characterized by the larger gap-averaged concentration; e.g. in this case
etransition ≈ 0.15. If we inspect the gap-scale velocity in figure 18 we can see that for this
modest viscosity ratio there will always be a tendency to disperse on the annular-gap scale.
The connection between the transition in averaged concentrations and occurrence of a
steady state displacement is also not clear.
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Figure 19. Variation with e of the concentration (C̄) averaged across the gap and along the annulus on top
and bottom sides of the annulus, for (Re, b, μ̂2/μ̂1) = (148.99, 0.95, 0.87) at t̂ = 8 s.

3.3.2. Effect of viscosity ratio
In Renteria & Frigaard (2020) we found that the viscosity ratio was of secondary
importance in determining the flow behaviour, i.e. less relevant than eccentricity and
buoyancy. This contrasts with the more prominent role of viscosity ratio in the asymptotic
theory developed by Carrasco-Teja et al. (2008). Partly this different emphasis arises
because, even though a broad range of μ̂2/μ̂1 was studied in Renteria & Frigaard (2020),
the variations were still limited by the fluids used. For example, variation of viscosity is
often accompanied by density change so that b and μ̂2/μ̂1 are not independently varied.
The simulations here have no such issue.

The effect of viscosity ratio (μ̂2/μ̂1) is shown in figure 20 for fixed parameters
(e, Re, b) = (0.46, 40.14, 518.51) (modelled on experiment 312 with μ̂2/μ̂1 = 1.5) at
t̂ = 140 s. The blue shaded region shows the iso-surface C = 0.5. The normalized axial
velocity (Ŵ/Ŵ0) is shown on equally spaced cross-sections and coloured by its magnitude.
In these simulations the flows tend to slump as b is very large. However, the displacement
front elongates less as viscosity ratio (μ̂2/μ̂1) is increased. This promotes steadiness of
the displacement front, in the sense of § 3.2.

Both far upstream and downstream of the front the wide gap has the highest velocity,
as expected. We can also see that the flow is fast on the narrow side near the interface.
However, figure 20(a) shows that stratification appears to drive the axial flow forward just
under the interface, e.g. see figure 20(a,b). It seems that the fast wide side flow from
upstream is pushed downwards under the interface. For these lower values of μ̂2/μ̂1 the
stream of faster moving displacing fluid extends to the bottom of the annulus; hence, the
interface continues to slump and extend. For the smallest μ̂2/μ̂1 the stream of displacing
fluid in the advancing front causes the velocity above the interface to slow considerably
(figure 20a). As μ̂2/μ̂1 is increased the fluid upstream of the front resists the advancement
on the narrow side, the front steepens and the stream under the interface widens. A more
uniform azimuthal distribution of axial velocities is found (figure 20c,d). The frontal
region is also associated with strong secondary flows (such as discussed with figure 7
earlier). This mechanism results in the type of flows that we have termed steady.

Figure 21 shows the variation of averaged concentrations of the displacing fluid,
computed by averaging across the gap and along the annulus, on both the top and bottom
of the annulus (θ = 0, π). These are for the same parameters as figure 20 and at the same
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Figure 20. Snapshots of displacement flow for different viscosity ratios for (e, Re, b) = (0.46, 40.14, 518.51)

at t̂ = 140 s; (a) μ̂2/μ̂1 = 0.5, (b) μ̂2/μ̂1 = 1, (c) μ̂2/μ̂1 = 1.5, (d) μ̂2/μ̂1 = 2.5 and (e) μ̂2/μ̂1 = 5. Colour
map of equally spaced slices represents concentration of the displacing fluid and the blue shaded region shows
the iso-surface C = 0.5. Dimensionless axial velocity (Ŵ/Ŵ0) is shown on slices and the colormap presents
its magnitude.
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Figure 21. Variation with μ̂2/μ̂1 of the concentration (C̄) averaged across the gap and along the annulus on
the top and bottom of the annulus, for (e, Re, b) = (0.46, 40.14, 518.51) at t̂ = 140 s.

time. This shows that front elongates less as viscosity ratio (μ̂2/μ̂1) is increased for this
slumping flow. A high value of the viscosity ratio results in a more uniform displacement
front and promotes steady displacement.

Figure 22 illustrates the effect of viscosity ratio on the displacement efficiency. It shows
the area-averaged concentration C̄, computed over the full cross-section at each axial
position x̂, at two times: at t̂ = 120, 200 s. The data are taken from the computations
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Figure 22. Average concentration (C̄) variation along the well for different viscosity ratios for
(e, Re, b) = (0.46, 40.14, 518.51) at (a) t̂ = 140 s and (b) t̂ = 200 s. Viscosity ratios are

μ̂2/μ̂1 = 0.5, 1.5, 2.5, 5.

of figure 20. We can see that the higher viscosity ratio has reduced the slope of C̄.
Furthermore, the shape of the front at μ̂2/μ̂1 = 2.5, 5 is approximately unchanged
in time, resulting in a successful displacement. We will further explore this example
below.

3.4. Annular displacements modelled in one dimension
Reduced models are essential for industrial process design. Although here we have
effectively used 3-D simulations to study laboratory-scale experiments, the annulus length
is still very small with respect to those in the field. Simulating a full wellbore at acceptable
numerical resolutions remains currently out of reach. The wellbore length increases
not only the number of mesh cells proportionately, but also the time of the simulation
(displacement flow). Since displacement fronts are complex, may disperse or not, may
leave long residual layers, etc. it is not clear that one could universally apply adaptive
meshing to pick out these features. At least this is a complex challenge for the future.

Thus, we return to reduced models. In Part 1, we used the (laminar) computations of
Maleki & Frigaard (2017) and worked within the theoretical framework of Carrasco-Teja
et al. (2008). The simulations performed used a 2DGA model, which ignores inertia and
is a narrow-gap approximation. The main discrepancies between experimental results and
the 2DGA results in Part 1 came from several mechanisms of dispersion and potentially
from neglected inertial effects. In particular, the 2DGA has only radially homogeneous
concentrations and velocities. Although azimuthal secondary flows are present, the
gap-scale dispersion that has been so evident here, is absent. A long term goal is to include
such effects in the 2DGA approach, but we first explore a simpler approximate approach.

3.4.1. Advective effects
In Renteria & Frigaard (2020), we did explore evolution of the area-averaged concentration
C̄y(x̂, t̂), in an effort to describe spreading of the front along the annulus. We were
hampered by inconsistent data resolution and imaging artefacts at high and low C̄y.
We return to this task now computationally. Figure 23 shows spatio-temporal maps of
averaged concentration (C̄y(x̂, t̂)) for fixed parameters (e, Re, b) = (0.46, 40.14, 518.51)
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Figure 23. Spatio-temporal map of averaged concentration C̄y(x̂, t̂) for (e, Re, b) = (0.46, 40.14, 518.51);
(a) μ̂2/μ̂1 = 0.5, (b) μ̂2/μ̂1 = 1.5, (c) μ̂2/μ̂1 = 2.5 and (d) μ̂2/μ̂1 = 5. Dashed black line and dashed grey
line show C̄y(x̂, t̂) = 0.3 and 0.7, respectively.

and different viscosity ratios, similar to figure 20. The black and grey broken lines show
C̄y(x̂, t̂) = 0.3 and 0.7, respectively. The slopes of these lines are the front velocities
for C̄y(x̂, t̂) = 0.3 and 0.7. As the viscosity ratio is increased these slopes become
progressively parallel e.g. figure 23(d), resulting in a steady displacement. Of course, there
is a question of threshold to define steadiness, as some spreading of the concentration field
is also evident in figure 23(d).

Figure 24 shows the developed front velocities, normalized with the mean velocity
(Ŵf /Ŵ0), as a function of averaged concentration for the same parameters as figure 23.
We see that the higher viscosity ratio reduces the variation of front velocity and increase
the steadiness of the flow. For high enough viscosity ratio, the front velocity converges to
the mean flow velocity, see figure 24(d). Using these front velocities we now construct the
advective flux

q̂(C̄adv,y) =
∫ C̄adv,y

0
Ŵf (s) ds, (3.2)

and integrate the following equation:

∂C̄adv,y

∂ t̂
+ ∂

∂ x̂
q̂(C̄adv,y) = 0. (3.3)
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1.5 2.0

(a) (b)

(c) (d)

Figure 24. Dimensionless fully developed front velocities (Ŵf /Ŵ0) for different height-averaged
concentrations (C̄y) for (e, Re, b) = (0.46, 40.14, 518.51); (a) μ̂2/μ̂1 = 0.5, (b) μ̂2/μ̂1 = 1.5, (c) μ̂2/μ̂1 = 2.5
and (d) μ̂2/μ̂1 = 5.

A total variational diminishing method with Min-Mod limiter is used to solve the
1-D conservation equation (3.3). The quantity C̄adv,y corresponds to the advected
concentration, i.e. that which would result from transport due to the long-time/developed
front velocity.

Figure 25 shows the advected concentration evolution in time for two of the viscosity
ratios (figure 25a,c). In figure 25(b,d) we plot the spatio-temporal maps of C̄y − C̄adv,y.
The dashed line shows C̄y = 0.5. We first observe that the over much of the domain the
colour map is very close to zero, suggesting that C̄adv,y does capture much of the variation
in C. However, at later times the highest contours of C̄y − C̄adv,y appear localized in an
expanding strip around the black dashed line. As this strip is close to C̄y = 0.5, it seems
likely that this region is dominated by diffusive mechanisms. However, the spreading
seems limited i.e. we have constant contouring outside of this strip in figure 25(b,d), which
seems to have a ‘edge’. Another observation is that the darker regions where initial effects
are not captured, possibly since C̄adv,y uses late-time values of the front velocity.
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Figure 25. Parameters (e, Re, b) = (0.46, 40.14, 518.51): (a) μ̂2/μ̂1 = 1.50, advective concentration C̄adv,y;
(b) μ̂2/μ̂1 = 1.50, spatio-temporal map of C̄y − C̄adv,y; (c,d) as (a,b) but with μ̂2/μ̂1 = 5. The black dashed
line shows C̄y = 0.5.

3.5. Bulk axial diffusion
Having seen that C̄adv,y, captures only part of the front spreading mechanisms, we resort
instead to a simpler approach to quantify the bulk effects on C̄y, We follow the approach
in Renteria & Frigaard (2020) in plotting profiles of C̄y against the diffusive similarity
variable (x̂ − Ŵ0 t̂)/

√
t̂. This choice removes the mean advection. Figure 26 shows the

results of doing this for the same parameters as figure 24. We can see that data collapse
well against the diffusive similarity variable, as we have seen in experiments, although
better for higher viscosity ratio, i.e. closer to steady flows.

We approximate each single curve of the collapsed data with a complementary error
function, fitting a diffusivity using a nonlinear least squares method. We then average
the diffusivity for each experiment over the values fitted for each timeframe: typically
the time frame values are within 10 % of the mean. Values of diffusivity D̂ are given
for each example in figure 26. From this figure and figure 24 earlier, we see that higher
viscosity ratio increases the steadiness of the flow, decreases �Ŵf and the diffusivity
D̂. We have repeated this calculation for the same slumping displacements as in Part 1.
Figure 27 shows the normalized front velocity difference �Ŵf /(Ŵ0), plotted against
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Figure 26. The result of plotting C̄y(x̂, t̂) against (x̂ − Ŵ0 t̂)/
√

t̂ for (e, Re, b) = (0.46, 40.14, 518.51);
(a) μ̂2/μ̂1 = 0.5, (b) μ̂2/μ̂1 = 1.5, (c) μ̂2/μ̂1 = 2.5 and (d) μ̂2/μ̂1 = 5. The solid red line shows a fit
using the complementary error function, with diffusivity: (a) D̂ = 0.0112 m2 s−1, (b) D̂ = 0.0044 m2 s−1,
(c) D̂ = 0.0022 m2 s−1 and (d) D̂ = 0.0008 m2 s−1.

the dimensionless bulk diffusivity coefficient, computed as in figure 26. These clearly
correlate, as also reported from our experimental observations in Renteria & Frigaard
(2020). The normalized macroscopic diffusion coefficient for cases with intermediate
eccentricity e = 0.46 are �1, whereas for e = 0.73 and e = −0.07 the values spread
along a wider interval. The cases with the highest viscosity ratio also present the smallest
coefficient, independently from the eccentricity. As explained in § 3.3.2, a high viscosity
ratio reduces stratification of the interface by slowing the motion in the narrow bottom
gap.

Figure 28 compares the experimental and 3-D normalized front velocity differences and
bulk diffusivity coefficients. The front velocities from the experiment were computed as
x̂f /t̂ for each concentration, whereas the 3-D front velocities came from differentiating
the profiles of C̄y. In both cases, references values are taken at long times in the
simulation/experiment. The front velocities agree well albeit with some variations,
especially for e = −0.07.

Likewise, in figure 28(b), the dimensionless bulk diffusion coefficient compares well
with the experimental. The experimental bulk diffusivities in Renteria & Frigaard (2020)
were estimated by making a collapse of the average concentrations C̄y (taken from the
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Figure 27. The result of plotting D̂/πr̂oŴ0 against �Ŵf /Ŵ0 for selected slumping classified simulations:
e = −0.07 circle; e = 0.46 square; e = 0.73 triangle. The colour bar represents the viscosity ratio (μ̂2/μ̂1) of
the simulation.
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Ŵ

f,e
xp

/Ŵ
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Figure 28. (a) Value of �Ŵf /Ŵ0 for experiments and 3-D simulations and (b) dimensionless diffusion value
D̂/πr̂oŴ0 for selected slumping classified experiments. e = −0.07 in red circle, e = 0.46 in green square and
e = 0.73 in blue upside-down triangle.

images) against the diffusive similarity variable (x̂ − Ŵ0 t̂)/
√

t̂ and then making an eye
fit. The 3-D model results were computed objectively as concentrations and then fitted
numerically as described. Although the methods are different, the agreement is fair
and importantly the same trends are reproduced. Note that both, the difference in front
velocities and the macroscopic diffusion coefficient display the non-monotonic behaviour
shown in Renteria & Frigaard (2020): the lowest values are found for the intermediate
eccentricity (e = 0.46) and the highest for displacements close to concentric (e = −0.07).

The source of the bulk diffusion may be the result of several mechanisms, yet at first
glance it appears to be mainly gravitationally driven, as in the model of Carrasco-Teja
et al. (2008). However, the magnitude of D̂ certainly contains contributions from various
local effects happening near the interface, as exhaustively described throughout this work.
The interface stratifies for high |b| values and becomes steeper with increasingly high
viscosity ratios. Eccentricity can resist the stratification in a slumping displacement and
even result in something that appears steady. Nevertheless, too much eccentricity either
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promotes the flow in the wider top side or creates residual layers at the narrow (bottom)
side. Thus, the non-monotonic trend in the magnitude of D̂ with the eccentricity is not
unexpected. It appears, however, that the role of buoyancy in this type of horizontal annular
displacements is more complex than previously suggested in Carrasco-Teja et al. (2008),
where buoyancy acts only to determine the axial length of the slumping front.

4. Discussion and conclusions

In this paper we have shown that 3-D simulations are able to capture the dominant features
of eccentric annular displacement flows quantitatively, e.g. see figures 5 and 8. Over wide
ranges of parameters covering the experiments in Part 1, the simulations give very close
matches in classifying flows (top/slumping, steady/unsteady). Equally, the simulations are
effective at predicting other features such as narrow side residual layers. This is important
practically as it is these descriptors that are used industrially to understand whether a
particular cementing design might be effective or problematic.

The simulation results reveal a complex flow structure that is simply not visible in our
experiments. For example, it is hard to visualize thin residual wall layers draining along
the sides of the annulus near the front and capturing secondary flow features would be
extremely challenging. Therefore, a key contribution of our paper is to validate the use of
simulations as a tool. We can now directly investigate dispersive and 3-D structures, e.g.
recirculatory vortices, spikes, wall layers and azimuthal flows, We can now do this in a
more systematic way than has been possible here. Some other insights are as follows.

Buoyancy acts to stratify the flow and competes with eccentricity to control the leading
order behaviour of the interface. It also acts to drive heavy fluids down and light fluids up,
within the secondary flows evident in the cross-sections. These secondary flows are driven
by the mean flow and by b: smaller |b| reduces the magnitude of the secondary flow.
Characteristically, for moderate |b| the iso-concentration lines tend to stratify with gravity
in the centre of the annular space, where it is wide, but near the walls residual fluid layers
persist. Density gradients act to squeeze the residual fluid in the direction of buoyancy
as viscous stresses drag the fluid downstream (predominantly). Higher viscosity in the
displacing fluids leads to thicker residual layers and slower azimuthal removal. Buoyancy
is not, however, effective at driving the fluids azimuthally at the top/bottom of the annulus.
In particular, the viscosity ratio seems to be important in displacing the narrow side at the
bottom of the annulus, (for e > 0). The small gap slows the displaced fluid flow and front
advancement in a slumping flow. The front then steepens, the spreading is reduced and we
have regimes of ‘steady’ displacement. However, this balance appears delicate. We have
seen that severe eccentricity or an insufficiently large viscosity ratio result in long residual
layers on the lower narrow side, often sinuous and unstable.

What of simpler models? The results of our simulations and the experiments of Renteria
& Frigaard (2020) globally agree with the results of the 2DGA model (Carrasco-Teja et al.
2008; Maleki & Frigaard 2017), in predicting qualitative features, but also succeed in
resolving dispersive effects fully. Although there is an underlying competition between
buoyancy and eccentricity, it is worth pointing out that the asymptotic ‘lubrication’ model
of Carrasco-Teja et al. (2008) is incomplete. In it, large buoyancy |b| � 1 determines
the axial length scale of slumping and whether developed flows are steady or unsteady is
then determined by eccentricity and rheology. However, as is common in most thin-film
approaches, the initial classification of a slumping flow is assumed. As we have seen, the
transition between slumping and top side regimes is itself a competition between (e, b)

and other variables (Re, μ̂2/μ̂1), to a lesser extent. Secondly, even in slumping flows
we have seen many instances of narrow side residual layers. These are also seen in the
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2DGA model, but are missing from the lubrication theory. In the last part of this paper we
have explored whether a simpler 1-D description would be viable. It seems that neither an
advective description nor a diffusive description fully captures the observed bulk spreading
behaviour, although both give some quantitative information useful for estimation.

Lastly, the notion of a steady displacement is key to simpler models of cementing
(Carrasco-Teja et al. 2008; Maleki & Frigaard 2017). Although we see steepening of the
front and have classified displacements as ‘steady’ or unsteady, dispersion means that even
the steady displacement flows have frontal regions that extend with time. We have adopted
a pragmatic approach to defining ‘steady’ flows, via a heavily thresholded criterion (3.1).
This is robust for our simulations and experiments, but, in different set-ups, the notion of
a long time would need better specification. Certainly it means to avoid initial transients,
but in a slowly evolving flow, when exactly should we evaluate the flow? Equally, we note
that steady front propagations such as that in figure 6(b) may satisfy (3.1), but still have
significant residual fluid layers. Despite these issues, we still feel that the notion of a steady
displacement remains useful. Not only are such flows dynamic features of reduced models
such as those of Carrasco-Teja et al. (2008) and Maleki & Frigaard (2017), but it is also a
powerful concept to describe what an ideal flow should look like. The difficulty is how to
understand this in the presence of significant dispersion, i.e. how to identify a steady flow.
Interestingly, similar difficulties are faced in fully turbulent annular displacement flows,
where Taylor dispersion is present, where a differential velocity criterion has been applied
with some success (Maleki & Frigaard 2020).
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