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We consider the entrainment volume that results from the quasi-two-dimensional
interactions of rising surface-parallel vorticity with an air–water interface. Based on
systematic (three-dimensional) direct numerical simulations (DNS) of the canonical
problem of a rectilinear vortex pair impinging on and entraining air at the free surface, we
develop a phenomenological model to predict the resulting entrainment volume in terms
of four key parameters. We identify a new parameter, a circulation flux Froude number
Fr2
� = |Γ |W/a2 g, that predicts the dimensionless volume ∀ of entrained air initiated by a

coherent vortical structure of circulation Γ , effective radius a, vertical rise velocity W with
gravity g. For Fr2

� below some critical value Fr2
�cr, no air is entrained. For Fr2

� > Fr2
�cr,

the average initial entrainment ∀o scales linearly with (Fr2
� − Fr2

�cr). We also find that
∀o is linearly dependent on circulation Weber number WeΓ for a range of vortex Bond
number 5 � BoΓ � 50, and parabolically dependent on circulation Reynolds ReΓ for
ReΓ � 2580. Outside of these ranges, surface tension and viscosity have little effect on
the initial entrainment volume. For the canonical rectilinear vortex problem, the simple
model predicts ∀o extremely well for individual coherent structures over broad ranges
of Fr2

�, WeΓ , BoΓ and ReΓ . We evaluate the performance of this parameterisation and
phenomenological entrainment model for air entrainment due to the complex periodic
vortex shedding and quasi-steady wave breaking behind a fully submerged horizontal
circular cylinder. For the range of parameters we consider, the phenomenological model
predicts the event-by-event dimensionless entrainment volume measured in the DNS
satisfactorily for this complex application.
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1. Introduction

There are many possible mechanisms for entrainment observed at an air–water interface
including four main processes: direct entrapment from droplet impacts and plunging
breaking waves (e.g. Deane & Stokes 2002; Tran et al. 2013), plunging jets that entrain
via the shear layer and/or jet surface disturbances (e.g. Biń 1993), surface aeration and
surface roller-bores (e.g. Ezure et al. 2011; Leng & Chanson 2019) and surface normal and
tangential vortices interacting with the interface. Our interest is the latter mechanism of
air entrainment due to interaction of coherent vorticity with the free surface. Specifically,
recent numerical (Masnadi et al. 2019; Yu, Hendrickson & Yue 2019b) and experimental
(André & Bardet 2017) investigations of strong free-surface turbulent flows identify
tangential (i.e. surface-parallel) vortex structures interacting with an interface (and the
associated near-surface vortex instabilities/transformations) as an important mechanism
for air entrainment. These three-dimensional vortex structures generally possess local
quasi-two-dimensional regions (such as a segment of a vortex ring or the top of a
horseshoe vortex structure) tangent to the free surface interface and interact with it. Such
originating vortex–interface interactions can be viewed as a macroscopic entrainment
event mechanism (Castro, Li & Carrica 2016). Using this macroscopic event framework,
our interest is the development of a simple yet robust entrainment model to predict the total
volume of entrained air due to strong quasi-two-dimensional, surface-parallel vorticity
interactions with the air–water interface.

The detailed interaction of horizontal (surface-parallel) vortices with a free surface in
the absence of entrainment is well documented (see Appendix A). Sarpkaya & Suthon
(1991) experimentally determined that surface-parallel vortex pairs rising towards and
interacting with an interface create a local depression (or a scar). Ohring & Lugt
(1991) and Yu & Tryggvason (1990) investigated an equivalent two-dimensional problem
using numerical simulations and found similar local surface deformations and ultimately
identified gravity, surface tension and geometrical parameters as the main parameters
influencing the interaction of the vortex pairs with the interface. Although entrainment
was not considered in these and many subsequent studies, they do suggest the potential
for entrainment to occur. Within a macroscopic entrainment event framework, if such
vortex interactions are strong enough to overcome the stabilising effects of gravity and
surface tension, such interactions eventually lead to entrainment. Although the detailed
interactions (eventually) involve well-documented three-dimensional vortex instabilities
(e.g. Sarpkaya & Suthon 1991; Dommermuth 1993; André & Bardet 2017), our hypothesis
is that a simple phenomenological model based on the (macroscopic) parameters of
the underlying quasi-two-dimensional surface-parallel coherent vorticity may be able
to predict the total entrainment volume (per unit length in the dominant direction)
without explicitly describing the details of the complex vortex breakup and entrainment
mechanisms.

Macroscopic entrainment modelling for turbulence–interface interactions initially
introduced by Baldy (1993) assumes that the air entrainment is linearly related to the
turbulence dissipation (through similarity arguments). More recent versions of this model
propose a volumetric entrainment source proportional to turbulent dissipation and use
experimentally measured bubble distributions to populate entrained bubble models (Ma,
Shi & Kirby 2011; Derakhti & Kirby 2014). The volume source entrainment model of
Castro et al. (2016) begins with the model of a single vortex of given strength and distance
from the interface and builds a probabilistic model to determine an entrainment rate and
bubble distribution. All of these models relate the rate of air entrainment to the underlying
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Modelling air entrainment from surface-parallel vortices

turbulent field (through local dissipation and vorticity) with modest success. However, all
of these models rely on a certain amount of empiricism and assumptions that have yet
to be confirmed by experiments. As yet, it is not clear what key surface-parallel vorticity
characteristics (and to what degree they need to be resolved) are critical for predicting if,
where and how much entrainment will occur. This understanding is critical for large-scale
computational applications such as the complex air–water flows in the near-wake behind
surface ships where fully resolved turbulent–interface interactions is infeasible (e.g.
Fu et al. 2006; Wyatt et al. 2008; Drazen et al. 2010; Castro et al. 2016; Hendrickson
& Yue 2019b).

In this paper, we focus on developing a simple entrainment model based on our
macroscopic entrainment event framework. We investigate entrainment initiated by
coherent vortex structures with a locally surface-parallel dominant direction. We perform
three-dimensional direct numerical simulations (DNS) of the incompressible, two-phase
(air–water) Navier–Stokes equations on a three-dimensional Cartesian grid using a
conservative volume-of-fluid (cVOF) method (Weymouth & Yue 2010). To elucidate the
basic underlying mechanism and parameter dependencies, we first consider the canonical
problem of air entrainment by horizontal rectilinear vortices of known circulation Γ ,
radius a, rising towards the air–water interface with vertical velocity W. We perform
systematic DNS over a broad range of parameters (Γ , a, W, surface tension σ , gravity
g and water kinematic viscosity νw = μw/ρw) and measure the entrainment volume
Ve. Using this extensive DNS dataset, we identify the key dimensionless parameters
relating the macroscopic vortex–interface interaction and the measured entrainment. We
find that the most important parameter governing the initial dimensionless entrainment
volume ∀o is the circulation flux Froude number Fr2

� = Ξ/g, which measures the relative
strength between the circulation flux Ξ = |Γ |W/a2 and gravity. The remaining key
parameters we identified are the vortex Reynolds number ReΓ , Weber number WeΓ
and relative depth zc/a below the interface at which these parameters are defined. We
then use a representative subset of the DNS to develop an explicit model based on
this parameterisation. This model predicts the initial dimensionless entrainment volume
extremely well when assessed across the entire scope of parameters of the DNS cases.
Finally, we assess the validity of the entrainment model for a more complex problem
of air entrainment due to periodic (plunging) quasi-steady wave breaking in the wake
of a fully submerged horizontal circular cylinder in a uniform inflow. For the range of
parameters considered, our model predicts the event-by-event entrainment measured in the
cylinder problem DNS satisfactorily for this complex problem. The modest success of the
model to generalise from a simple test problem to this more complex flow demonstrates
that we have identified the key dimensionless parameters that predict the onset, general
location and quantity of a (macroscopic) entrainment event for surface-parallel vortex
interactions.

The outline of this paper is as follows. Section 2 defines relevant quantities that describe
the general interaction of a surface-parallel coherent structure with an interface. Section 3
details the DNS of the canonical problem of rectilinear vortex tube–interface interactions.
Section 4 identifies the set of parameters, including the circulation flux Froude number,
and summarises the new phenomenological entrainment model. Section 5 assesses the
model for the periodic breaking behind a fully submerged cylinder in a constant inflow.
Section 6 concludes the paper with a summary and discussion of our findings. The
appendix summarises the salient features of air-entraining rectilinear vortex approaching
a free surface (compared with non-entraining cases).
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Figure 1. Schematic of (a) a general, surface-parallel coherent vortex structure rising towards the air–water
interface and entraining air and (b) a general set of coherent structures that satisfy the criteria λ < λcr .

2. Air entrainment due to interaction of surface-parallel vorticity with an interface

2.1. Definitions
Consider a general surface-parallel coherent vortex structure approaching an air–water
interface. Macroscopically, the coherent structure approaches the interface and interacts
with it in a manner that ultimately results in the entrainment of a volume of air Ve.
The coherent structure has volume VΓ , circulation Γ , effective cylindrical radius a and
a local orientation that is surface parallel (see figure 1a). The bulk fluid (water) has
density and kinematic viscosity ρw andμw, and σ represents the surface tension coefficient
of the air–water interface. The coherent structure geometric centroid xc = (xc, yc, zc)
and vertical rise velocity W strongly influence the subsequent surface interactions and
deformations (e.g Yu & Tryggvason 1990; Ohring & Lugt 1991; Lugt & Ohring 1992).
Based on these given parameters, we write the following parameterisation:

Ve = f (a, Γ, νw = μw/ρw, g, σ/ρw,W,VΓ , zc). (2.1)

2.2. Coherent structure identification
To identify the geometric parameters of a coherent vortex structure as input to the model,
we construct a scalar value of the λ2(x) eigenvalue (Jeong & Hussain 1995) as it provides
a robust (albeit imperfect) mechanism to spatially identify the location and orientation of
a coherent structure in an eigenplane across a vortex. We employ the informed component
labeling (ICL) method (Hendrickson, Weymouth & Yue 2020) to identify the connected
regions that satisfy the criterion λ2 < λcr. ICL provides a method to identify the regions
in the domain that satisfy λ2 < λcr and for each region, determine its volume Vλ2,
centroid location xc, extent in each Cartesian direction, and integrated quantities within the
volume. With the coherent volumes identified in this manner (see figure 1b), we define the
geometric quantities of interest as the vortex volume VΓ ≡ Vλ2, the length in the dominant
direction Ld which is the largest extent measured by ICL, the cross-sectional area normal to
that dominant direction Ad = Vλ2/Ld, and an effective radius aλ2 = √

Ad/π. We compute
circulation Γ and circulation flux Ξ of the vorticity component in that dominant direction
ωd using the local vertical velocity w by

Γ = 1
Ld

∫
ωd dVλ2; Ξ = 1

Vλ2

∫
|ωd|w dVλ2. (2.2a,b)
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Modelling air entrainment from surface-parallel vortices

This method is geometrically simpler than the method of Masnadi et al. (2019), which uses
the Q-criterion (Hunt, Wray & Moin 1988) and constructs a spine of the coherent structure
and estimates the vorticity and circulation on isoplanes perpendicular to the spine. Our
method is robust and well suited for vortex structures with a clearly defined dominant
direction such as those considered in this study. In the following section, λcr = 0 as defined
by Jeong & Hussain (1995). We note that the λ2 criterion suffers slightly when several
vortices exist locally (Jeong & Hussain 1995) and it is common practice for more complex
flows (e.g. § 5) to select values |λcr| > 0 for visualisation purposes. In § 5, we discuss
non-zero values of λcr and their influence on the performance of the model developed in
§ 4.

3. Air entrainment due to surface-parallel vortex approaching an interface

To quantify the dependence of air entrainment on the coherent vortex properties and other
physical parameters, we choose a simple canonical problem of a rectilinear surface-parallel
vortex tube rising towards the interface with an initially known rise velocity. This is a
well-studied problem in the absence of entrainment (e.g. Yu & Tryggvason 1990; Ohring
& Lugt 1991; Sarpkaya & Suthon 1991; Dommermuth 1993; Sarpkaya 1996), and the
main conclusions in this body of work relevant to our study are that gravity and the vortex
geometric parameters (depth, size, and strength) control the interaction of the vortex with
interface and that strong surface tension suppresses the surface curvature and formation of
secondary surface vorticity.

For this canonical problem, we perform high-resolution (three-dimensional) DNS of
the two-phase, incompressible Navier–Stokes equations with a fully nonlinear interface
using the cVOF method (Weymouth & Yue 2010). The three-dimensional, two-phase
incompressible Navier–Stokes equations in a single-fluid form with variable density ρ
and viscosity μ are

∂u
∂t

+ ∇ · (uu) = − 1
ρ

∇p + g
Fr2 + 1

Re
1
ρ

∇ · τ + 1
We
κδsn,

∇ · u = 0,

∂f
∂t

+ u · ∇f = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1)

where f (x, t) represents the volume fraction implemented by cVOF that enables robust and
conservative transport of the gas–liquid interface. In (3.1), the volume fraction f provides
the density and viscosity via ρ( f ) = f + (1 − f )ρa/ρw, μ( f ) = f + (1 − f )μa/μw; u is
the three-dimensional velocity field, p the total pressure field, g the unit vector in the
direction of gravity, τ the variable viscosity stress tensor, δs the interfacial Dirac delta
function, κ the interface curvature and n the normal vector to the interface. The equation
is non-dimensionalised by characteristic velocity scale U and length scale L and water
density ρw and viscosity μw.

The numerical implementation of (3.1) is a second-order (in space and time)
finite-volume scheme utilising a staggered grid. Time integration is a two-stage
Runge–Kutta method. We employ a projection method to conserve mass and solve for the
pressure. The resulting variable coefficient Poisson equation is solved using the HYPRE
library (Falgout, Jones & Yang 2006). Finally, surface tension effects are implemented
through the continuous surface force (CSF) method (Brackbill, Kothe & Zemach 1992)
along with a height-function method for the interface curvature (Popinet 2009, 2018).
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Figure 2. Schematic of a horizontal vortex pair rising towards the air–water interface with definitions for
DNS.

Details of the formulation and validations of the numerical method are available in
Campbell, Hendrickson & Liu (2016) and Yu et al. (2019a).

To create a known rise velocity for the vortex tube, we simulate a rectilinear
surface-parallel vortex tube pair initially submerged below the air–water interface with
initial radius a0, spacing 
, vorticity scaling ωc, circulation Γ0 = πa2

0ωc and orientation
angle Θ with the x-axis (see figure 2). We non-dimensionalise the problem with L = a0

and U = Γ0/a0 such that the simulation parameters in (3.1) are Fr2 = Γ 2
0 /ga3

0, Re =
Γ0/νw and We = Γ 2

0 ρw/a0σ . The density and viscosity ratios are ρa/ρw = 0.001 and
μa/μw = 0.01, respectively. The Cartesian domain size is (Lx, Ly, Lz) = (Lx, 15, 30)a0
with water depth Hw = 20a0. The domain width Lx varies depending on orientation angle.
When Θ = 0, Lx = 30a0 and we simulate only half of the vortex pair with a symmetry
plane located at x = 0 and measure the entrainment volume based on the single vortex tube
in the water. WhenΘ > 0, Lx = 60a0 and we simulate the pair of vortices and measure the
entrainment volume based on the first vortex interaction with the surface. The remaining
boundary conditions are symmetry planes in the z direction and periodic in the y direction.

We use (constant) grid spacing Δ = 15a0/128. Increased resolution of up to (constant)
Δ = 15a0/480 was required for large Re and small We to provide adequate resolution
of the laminar viscous free-surface boundary layer (Klettner & Eames 2012) and the
relatively small entrainment volume at small We. Based on these grid sizes, the cell
Bond number BoΔ = gΔ2ρw/σ , which governs entrainment volume (Yu et al. 2019b; Yu
2019), are fully resolved. Grid sensitivity analyses determined that increasing the grid
resolution beyond these reported values resulted in a less than 1 % relative change in
entrained volume, which is the objective of our simulations. The most grid sensitive aspect
of these simulations is the surface connectivity between cells that influences the average
entrainment measurements, which we address in § 3.1. We note that if the full details of the
small-scale capillary interactions are of interest, conditions such as the cell Weber number
WeΔ � 1 (Popinet 2018) may be relevant.

We initialise the DNS by assuming a Gaussian core vorticity distribution with
ωy/ωc = e(x−x0)·(x−x0)/a2

0 , where x0 is the initial vortex core location. We solve for the
one-dimensional vector stream function ψ that satisfies ∇2ψ = −ωy using the same
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Modelling air entrainment from surface-parallel vortices

boundary conditions as the simulation. We solve the resulting indeterminate problem up
to ψ + const to determine the initial velocity field u = ∇ × ψ . To construct an initial
condition that reduces any initial impulse on the free surface, we include the image vortices
located in the air when constructing the initial vorticity field. For cases when Θ > 0, we
construct the water vortex pair such that the vortex closest to the surface is located at z0.

We considered over 100 DNS of rising vortex pairs covering a broad range of simulation
parameters: 90 � Fr2 � 2600, 150 � Re � 2520, 90 � We � ∞ and 0 ≤ Θ ≤ π/2
focusing mainly on entraining cases. Our interest is macroscopic quasi-two-dimensional
processes, and we design the simulations to avoid three-dimensional instabilities using
the following ideas. First, we set a shallow initial depth of the vortex pair z0 to suppress
long-wavelength instabilities that arise from vortices translating/interacting over long
distances (Crow 1970; Sarpkaya & Suthon 1991). Second, we only consider vortices of
within size range 0.1 ≤ a0/
 ≤ 0.3 to limit short-wavelength instabilities (Widnall 1975;
Sarpkaya & Suthon 1991). Combined with the periodic boundary conditions in the y
direction, we expect the initial vortex pair approach to the surface and initial interaction to
be effectively two dimensional. A detailed discussion of the vorticity and vortex core paths
from these simulations appears in Appendix A, where we confirm the expected behaviour
of the vorticity in non-entraining cases and highlight the differences when entrainment
occurs.

Generally, the surface-parallel vortex pair rises towards the interface causing the surface
to deform as shown for two representative cases in figure 3. This deformation and the
presence of viscosity induces a secondary vorticity of opposite sign in the water at the
interface as well as a horizontal velocity component (Orlandi 1990; Ohring & Lugt 1991;
Yu 2019). Depending on the parameters Fr2, We and Re, entrainment occurs. As seen in
figure 3, the initial entrainment event is essentially a two-dimensional process (as designed
to provide the macroscopic modelling framework). As a result, the entrainment consists
of almost uniform cylindrical tubes of air that become non-uniform and form smaller air
cavities later in the entrainment process.

3.1. Quantification of the entrainment volume
We measure the total entrainment volume from the air volume fraction (1 − f ) using ICL
as a two-level connected component algorithm, with the established optimum levels of
θ = (0.4, 0) (Hendrickson et al. 2020). Figure 4 shows a sample of the measured total
entrainment volume as a function of time for a series of Fr2. As seen in this figure,
the total entrainment volume can fluctuate as grid resolution influences the connectivity
between cells in numerical simulations (Chan et al. 2021). In order to quantify the
initial entrainment volume Vo

e , we first define the onset time (tonset) as the time where
the entrained air volume exceeds and maintains a value above a threshold value of
O(10−5). We then sample the total entrained volume over a set of increasingly longer time
periods from 0.25 to 1.5 vortex turnover times. The average initial entrainment volume Vo

e
represents the sample with the smallest standard deviation in that time period. Typically,
the sample period is 1 or 1.5 vortex turnover times. In all subsequent plots, the error bars
are the 95 % confidence level of this average value.

3.2. General scaling observations
We performed DNS over a range of simulation parameters (Fr2, Re and We) and vortex
parameters (a0, ωc and Θ). Prior to presenting the model, we first describe three key
observations (Yu 2019) using representative data in figure 5 to illustrate these trends.
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Figure 3. Visualisation of two-sample DNS simulation results. Blue isosurface f = 0.5, purple λ2 = −0.01
for f ≥ 0.5, with inset a representative vertical plane with ωy vorticity contours: (a,c,e,g) 
/a0 = 5, Fr2 = 790,
Re = 628, We = ∞ and Θ = 0 with vorticity contour details shown in figure 11(a); (b,d, f,h) 
/a0 = 5, Fr2 =
494, Re = 628, We = ∞ and Θ = π/4 with vorticity contour details shown in figure 13.

First, we observe a strong dependence of ∀o on Re that then decreases for larger Re.
For Fr2 = 790, figure 5(a) shows this transition occurring at Re ≈ 1500 with the average
initial entrainment volume not increasing significantly for Re � 2000. Second, we observe
similar behaviour between ∀o and We where there is a strong dependence that then
becomes less significant at large We. Across the entire DNS dataset, we determined
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Figure 4. Instantaneous non-dimensional total entrainment volume ∀ = Ve/Lyπa2
0 as a function of Froude

number Fr2 with Re = 628, We = ∞ and 
/a0 = 5: � with error bars represent calculated average initial
entrainment ∀o = Vo

e /Lyπa2
0 with 95 % confidence level; Fr2 = 99 (green), 148 (orange), 197 (purple), 395

(pink), 493 (green), 592 (yellow) and 790 (brown).
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Figure 5. Average initial dimensionless entrainment volume ∀o = Vo
e /Lyπa2

0 as a function of (a) Re and (b)
Bo. In (b), the solid line is ∀o for We = ∞, inset linear axis. (a) Fr2 = 790 and We = ∞. (b) Fr2 = 790 and
Re = 628 .

that ∀o is independent of We for Bo = We/Fr2 � 50. For Bo � 50, we observe a linear
relationship ∀o ∝ We above a critical value Wecr as shown in figure 5(b). This critical
value corresponds to the minimum Weber number to entrain air, which we determine to
be Bo ∼ 1–2 as expected. Finally, we note that in the absence of surface tension effects
there is a similar critical Fr2 value above which entrainment occurs (cf. figure 4). This
critical Froude number, which we find to be Fr2 ∼ 138 for Re = 628, compares well with
the simulations of Yu & Tryggvason (1990) and Ohring & Lugt (1991) (after converting to
equivalent length and velocity scales).
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4. Parameterisation and modelling of entrainment volume due to interaction of
surface-parallel vorticity with an air–water interface

4.1. Parameterisation
After extensive analysis of the DNS data from the vortex pairs in § 3, we identify the
key parameters that govern the average initial dimensionless entrainment volume ∀o. The
parameterisation we obtain reads

∀o ≡ Vo
e

VΓ
= f

(
Fr2
� = |Γ | W

a2 g
,WeΓ = Γ 2

a(σ/ρw)
,ReΓ = |Γ |

νw
,

zc

a

)
. (4.1)

The last three parameters are well established as being relevant to vortex interactions with
an interface (e.g. Yu & Tryggvason 1990; Ohring & Lugt 1991): the vortex Weber number
WeΓ measures the effect of surface tension, the vortex Reynolds number ReΓ viscous
effects and zc/a is the (centroid) depth relative to its effective radius a at which these
parameters are quantified. The key new parameter we identify is the circulation flux Froude
number Fr2

� which measures the magnitude of the circulation flux density Ξ = |Γ |W/a2

relative to gravity g. The sign of the circulation Γ is not relevant for Ξ (or ReΓ ) and
we define Fr2

� = Ξ/g for Ξ > 0 and Fr2
� = 0 for Ξ < 0 because we are only concerned

with rising vorticity W > 0. The circulation Bond number is defined as BoΓ = ga2ρw/σ .
These model parameters are calculated using the coherent structure identification in § 2.2
and (2.2a,b) with λcr = 0. In particular, VΓ = Vλ2 and a = aλ2. We propose a simple
predictive model based on (4.1) by assuming that the functional dependencies therein are
separable, and write

∀m = F
(

Fr2
�; zc

a

)
W

(
WeΓ ; zc

a

)
B

(
ReΓ ; zc

a

)
. (4.2)

Equation (4.2) with the explicit dependencies of the parameters on the depth zc/a
acknowledges that the parameter values change with the evolving vortex structure as it
approaches the interface.

4.2. Circulation flux
Figure 6(a) shows Ξ/g as a function of relative distance to the static waterline zc/a for a
set of cases with variable Θ . For entraining cases, we show data for t < tonset. For many
oblique rise angles, Ξ/g varies linearly with depth providing that zc/a < −4. For zc/a >
−4, the circulation flux depth dependence becomes more complex due to the interaction
with the interface. We note here that for Θ = π/2, the actual vortex motion is effectively
horizontal and the implied rise towards the surface is due to the increase in a due to
diffusion of the coherent structure. We did not perform a study of horizontally translating
vortices closer to the surface than zc/a0 = −7.5 so the behaviour ofΞ/g for such physical
cases is unclear. Figure 6(b) shows the same for a range of simulation parameters Re, Fr2,
We, Γ0 and a0. Note in this figure that the boundary between entraining and non-entraining
events is not well defined as multiple parameters influence this behaviour. The linear trend
in Ξ/g persists for significant depth zc/a and Ξ/g for most cases. Based on figure 6(a),
for simplicity, we choose zc/a = −6, or effectively 3 coherent structure diameters below
the interface, to develop the model. This choice is somewhat arbitrary and a model could
conceivably be constructed with variable zc/a due to the linear trend observed in the data.
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Figure 6. Plot of Ξ/g as a function of zc/a for (a) variable Θ at fixed Fr2, Re, and We = ∞ and (b) a range
of Fr2, Re, We, Γ0 and a0: (green) ∀o > 0; (orange) ∀o = 0. In (a) Θ = 0 (far right) to Θ = π/2 (far left).

4.3. Development of the explicit entrainment volume model
To formally construct (4.2), we selected 60 representative DNS cases from § 3 to develop
respectively the functions B, F and W . We then estimate any relevant critical values
from the resulting functions. The critical values presented in this section are estimates
based on the DNS data and only apply to this model. When evaluated at zc/a = −6 these
cases obtain the following parameter ranges for model development: 240 � ReΓ � 1640,
0.3 � Fr2

� � 4 and 40 � WeΓ � ∞.
Figure 7(a) shows average initial entrainment volume ∀o as a function of ReΓ at zc/a =

−6 for a set of simulations with variable Re, Fr2 and We = ∞. Note that in this figure, ∀o

is scaled by Fr2
�. We observe a similar trend for dependence on ReΓ as in figure 5(a) in

that ∀o ∝ ReΓ , and viscous effects become less important for greater ReΓ . Based on these
observations, we obtain a general fit for B(ReΓ ; zc/a = −6) given by

B
(

ReΓ ; zc

a
= −6

)
=

⎧⎪⎨
⎪⎩

0 ReΓ � 70,

cv0 + cv1ReΓ + cv2Re2
Γ 70 � ReΓ � 2580,

Bmax ReΓ � 2580.

(4.3)

Using the subset of the DNS data, we obtain cv0 = −3.39 × 10−3 , cv1 = 5.06 × 10−5

and cv2 = −9.79 × 10−9. The maximum value Bmax = 0.062. The R2 value for this fit
to the DNS is 0.97. We estimate the range 70 < ReΓ < 2580 from the minimum root and
maximum value of the function. Thus, for this zc/a, we expect that entrainment should not
occur below this ReΓ range and should be almost independent of viscous effects above
this range. Note that the quadratic fit (4.3) is quite robust and performs more satisfactorily
than, say, a piece-wise linear fit with a transition at ReΓ ≈ 1000.

Figure 7(b) shows ∀o as a function of Fr2
� with We = ∞. Note that we have used (4.3)

to factor out viscous effects in ∀o. The resulting dependence on Fr2
� is close to linear

with a minimum critical value Fr2
�cr and no observed upper bound in the subset of DNS
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Figure 7. (a)–(c) Model functions (4.3)–(4.5) with measured average initial entrainment ∀o for the properties
at zc/a = −6: (a) B(ReΓ ; zc/a); (b) F(Fr2

�; zc/a); (c) W(WeΓ ; zc/a). (d) Comparison of predicted
entrainment ∀model with measured average initial entrainment ∀o. Green: model development cases; orange:
a posteriori cases not used in the model development.

data considered. Thus, we propose as a model

F
(

Fr2
�; zc

a
= −6

)
=

{
0 Fr2

� � Fr2
�cr,

cc
0 + cc

1Fr2
� otherwise.

(4.4)

From the same subset of DNS data, we obtain cc
0 = −0.43, cc

1 = 1.22 with an R2 value of
0.95. The linear fit provides the critical value of Fr2

�cr ≈ 0.4. Similar to the bounds found
in (4.3), the model predicts no entrainment below this Fr2

�cr for this zc/a.
Finally, figure 7(c) shows ∀o as a function of WeΓ for a set of cases with BoΓ < 50,

where we estimate surface tension is relevant (based on the entire DNS data set and
illustrated in figure 5b); and we have used both (4.3) and (4.4) to factor out the effects
of viscosity and circulation flux. We observe a linear dependence between ∀o and WeΓ
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and determine the following relationship:

W
(

WeΓ ; z
a

= −6
)

=

⎧⎪⎨
⎪⎩

0 BoΓ < 1,
cs

0 + cs
1WeΓ 1 < BoΓ < 50,

1 otherwise,
(4.5)

where based on DNS, we have used BoΓ = 1 as the lower limit for air entrainment. Fitting
using the subset DNS obtains cs

0 = 1.47 × 10−2 and cs
1 = 8.06 × 10−5 with R2 = 0.96.

Using the model (4.2) with (4.3), (4.4) and (4.5) to calculate the predicted ∀m, figure 7(d)
compares the model prediction against the DNS predictions for the 60 cases. The
normalised root mean-square error we obtain is 0.031. To verify that the model developed
is sufficient and robust, we used the remaining (∼40) cases of § 3 for a posteriori model
assessment. The overall model performance for DNS datasets now covering the parameter
ranges 110 � ReΓ � 1060, 0 � Fr2

� � 13 and 40 � WeΓ � ∞ remains excellent (see
figure 7d).

5. Performance of the entrainment volume model for a more general problem

In § 4, we show that the entrainment volume parameterisation and model perform quite
well over a broad range of the underlying physical parameters for the canonical case
of a rectilinear surface-parallel vortex approaching a free surface. As an illustration
of the application of this model, and to assess its general validity and robustness, we
consider a more general and complex problem of air entrainment in the wake of a fully
submerged horizontal cylinder in a uniform flow. We choose this problem because, within
an appreciable range of speeds and submergence, quasi-two-dimensional surface-parallel
vortex structures behind the cylinder interact with the interface leading to air entrainment.
Briefly, for cylinders close to the surface, the interaction of the underlying cylinder wake
and the free surface creates two types of wake structures that produces quasi-steady
breaking waves or spilling jet flows near the first trough of the wave system behind the
cylinder (e.g. Sheridan, Lin & Rockwell 1995, 1997; Reichl, Hourigan & Thompson 2005;
Colagrossi et al. 2019). Although not explicitly addressed in these studies, wave breaking
and associated entrainment is implied. For deeper cylinders, we observed both types of
wake structures depending upon the cylinder Froude number (Hendrickson & Yue 2019a).
For large cylinder Froude numbers, we observed a turbulent bore-like region riding the
front face of the first wave behind the cylinder similar to that observed behind streamlined
objects (Duncan 1981, 1983) and found no correlation between the entrainment signal
and the underlying cylinder wake. For small cylinder Froude numbers, we observed
periodic plunging breaking events at the first wave crest and determined that the measured
frequency of entrainment correlated with the cylinder-wake Strouhal number. It is within
this parameter range that we assess the predictions of the model.

We use a similar DNS described in § 3 with a boundary data immersion method (BDIM)
(Maertens & Weymouth 2015) to model the no-slip body boundary condition on the
fixed cylinder surface. The method and numerical convergence results are described in
detail in (Hendrickson & Yue 2019a). Figure 8(a) is a schematic of the simulation setup
and parameters. For definiteness, we fix the cylinder centre depth at 2d below a static
water line z = 0, where d is the cylinder diameter. We normalise all physical quantities
by length, velocity (and time) scales d, U, the uniform inflow velocity (and d/U),
respectively. We neglect surface tension and focus on the low cylinder Froude number
(Frd = U/

√
gd) regime we identified that produces the periodic plunging breaking events.

Figures 8(b)–8(h) show an instantaneous visualisation of a individual entrainment event
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Figure 8. (a) A schematic for DNS of a flow past a fully submerged cylinder; (b) centre-plane instantaneous
transverse vorticity contours ωy and air–water interface; and (c)–(h) close-up visualisation of individual
entrainment event with blue isosurface f = 0.5 and purple λ2 = −10 for f ≥ 0.5 with a representative vertical
plane transverse vorticity (inset). Cylinder DNS parameters: Red = 250 and Fr2

d = 0.27.

for a representative simulation at Reynolds number Red = Ud/νw = 250. The sequence
shows an individual entrainment event, which occurs on the first wave behind the cylinder,
in relation to a wide view of the transverse vorticity field. In this sequence, the plunging
breaker forms, plunges, entrains air and resets. This event repeats with a frequency
that correlates with the measured cylinder wake Strouhal number (Hendrickson & Yue
2019a). Figure 9(a) shows a sample plot of the entrainment volume as a function of time.
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Figure 9. DNS of a fully submerged cylinder: (a) total entrainment volume as a function of time for Fr2
d = 0.31

and Red = 250; ◦, red Ve(tne ); (b) average entrainment as a function of Fr2
d for Red = 250 with 95 % confidence

error bars.

The periodicity of the entrainment events correlates with the cylinder-wake Strouhal
number for all cases used in this analysis.

5.1. Analysis of DNS data for the cylinder wake entrainment problem
We apply the analysis of §§ 2.2 and 4 to the vortical air-entraining flow behind the fully
submerged cylinder. This section provides an overview of the analysis process and steps
taken to assess and reduce, where necessary, sensitivity of the estimates we obtain.

First, we measure the total entrainment volume of the nth entrainment event as V(n)e =
Ve(t

(n)
e )− min(Ve(t

(n−1)
e : t(n)e )), where t(n)e is the time of the nth local peak in the total

entrainment volume (cf. figure 9a). We include only the initial (largest) peaks, neglecting
smaller secondary entrainment measurements close to the initial event in keeping with
the macroscopic framework. The average entrainment volume for Ne events is Ve =
(ΣnV(n)e )/Ne. Figure 9(b) shows the average entrainment volume as a function of cylinder
Froude number, with the 95 % confidence value bar based on the standard deviation. The
entrainment volume scales linearly with cylinder Froude number (as noted in Hendrickson
& Yue 2019a).

Second, to identify the coherent structures in the flow field, we must choose a value of
λcr to identify and quantify the coherent vortex structures, as discussed in § 2.2. The value
of λcr generally determines the size and extent of the identified vortex structure, with
the threshold enstrophy scaled by |ω|2 � −4λcr (Jeong & Hussain 1995). For the current
problem, we find that the cylinder wake is not captured well for λcr � −15, whereas for
λcr � −5 the resulting vortex structures are large and diffused. Thus, we consider effect
of variations in λcr centred around λcr = −10 and assess the sensitivity in the model
prediction. Overall, we find that varying λcr in the range −12 ≤ λcr ≤ −8 resulted in
a (general) change in average structure volume of 17–10 % relative to λcr = −10. More
details on the overall sensitivity of the model performance to the value of λcr appear in
§ 5.2.
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Third, unlike the laminar vortex pair dataset, it is necessary to estimate the local effective
viscosity in the mixing region behind the cylinder containing the coherent vorticity (for
obtaining ReΓ in the model) as we expect the Reynolds number and turbulent viscosity to
increase along the streamwise direction (e.g. Pope 2000). To do this, we use a technique
from iLES (Aspden et al. 2008; Hendrickson et al. 2019) that calculates νeff = ε/D within
a control volume. Here, ε is the (negative) time rate of change of the kinetic energy
ρwu · u/2 in the control volume, accounting for the appropriate fluxes in and out of the
volume, and D = V−1 ∫

u · ∇2u dV represents the work done by diffusion. To ensure
that the control volume is sufficiently large to contain the coherent structure of interest,
we select the control volume V as 2 < x/d < 3 and −2.5 < z/d < −1.5 to include the
vertical extent of the cylinder near the observed breaking events. Using this, we obtain
860 < ν−1

eff < 870 for the four cases in figure 9(b). An extensive sensitivity analysis on the
effect of the domain and size of the V show that νeff changes by less than 0.6 % with a 5 %
change in V .

Finally, we identify which (if any) of the coherent vortex structures found in the
cylinder wake correlates with an observed entrainment event. To do this, we develop an
event-by-event analysis technique that is free from subjective bias. Between entrainment
events t(n−1)

e < t < t(n)e , we first bin the identified structures by their location behind the
cylinder and assess whether they meet the criteria developed in § 4.3, namely a positive
circulation flux and centroid locations −7 < zc/a < −4 below the static water line.
We observe that the coherent vortex structures shed from the lower portion of the cylinder
always meet the criteria when x/d > 1, and we use this subset of the coherent structures
for further analysis.

5.2. Model predictions for entrainment in cylinder wake
Using data analysis outlined in § 5.1, we identify the coherent vortex structures and
estimate the associated model parameters for each nth entrainment event (across the 4
cylinder cases, the total number events is 37). Figure 10(a) shows the resulting Re(n)Γ =
|Γ |(n)/νeff and zc/a using λcr = −10. For all of the events, the relative vortex centroid
depth below the static waterline has an average value of zc/a = −6.4, thus enabling us
to use (4.3)–(4.4) without modification. For reference, the average (effective) circulation
Reynolds number is 1664 and all entrainment events fall within the range of (4.3) where
Reynolds number is a factor in the entrainment volume prediction.

Figure 10(b) shows a comparison of the normalised observed event entrainment volume
∀ = V(n)e /V(n)λ2 and the predicted entrainment volume using (4.2)–(4.5). The normalised
root-mean-squared error for all of the events is 0.175 (root-mean-squared error = 0.0035).
For information, we indicate the Fr2

d of each event and include an average estimate for

each Fr2
d case with ReΓ = N−1

e ΣnΓ
(n)/νeff , Fr2

� = N−1
e Σn(Fr2

�)
(n) and ∀ = N−1

e Σn∀(n).
The normalised root-mean-squared error is 0.162 (root-mean-squared error = 0.0023)
using these average quantities. These results are for λcr = −10. As previously noted,
the model prediction is somewhat sensitive to this value of λcr. For −12 ≤ λcr ≤ −8,
the normalised root-mean-squared error over all events varies between 0.18 and 0.21,
not significantly different from the λcr = −10 baseline model prediction. Despite the
differences between this problem and the model development problem in § 3 (such as
the presence of weak free-surface turbulence and a strong convective inflow velocity),
the macroscopic framework satisfactorily predicts the initial entrainment volume that
correlates with the large vortex structures behind the cylinder. This indicates that the
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Figure 10. (a) Whisker plot of (zc/a)(n) and Re(n)Γ = |Γ |(n)/νeff for all entrainment events (all cylinder cases).
(b) Comparison of predicted entrainment ∀m from (4.2)–(4.5) with measured entrainment ∀. In (b) for reference:
Fr2

d = 0.27 (orange), 0.29 (pink) 0.31 (green) and 0.33 (purple); � average value for each Fr2
d case; and

- - - ∀ = ∀m. Here λcr = −10.

key dimensionless parameters we identified, namely Fr2
� and ReΓ , and the functional

dependence of entrainment on them, provide a useful model for air entrainment by
large-scale, surface-parallel coherent vortical structures.

6. Summary

We have performed DNS, data analysis and macroscopic entrainment event modelling of
the initial entrainment volume due to the interaction of a rectilinear surface-parallel vortex
rising towards an air–water interface. For the general case, we develop a coherent structure
identification scheme to estimate and quantify the vortex geometric and kinematic
quantities. These include the circulation Γ of the primary horizontal vorticity, equivalent
radius a and vertical rise velocity W.

As a canonical problem, we consider the air entrainment by a surface-parallel coherent
vortex structure rising toward the free surface as part of a rectilinear vortex pair. For this
problem we perform systematic three-dimensional DNS of the incompressible, two-phase
Navier–Stokes equations over broad ranges of physical parameters, Froude, Weber and
Reynolds numbers; as well as vortex radius a, vortex pair separation 
 and orientation
angleΘ (which affects the rise velocity W). Based on the extensive DNS data we generated
for this problem, we obtain the key parameterisation for the air entrainment volume. We
identify a new parameter, the circulation flux Froude number Fr2

� = Ξ/g which measures
the relative importance of the circulation flux Ξ ≡ ΓW/a2 to gravity g, and controls the
air volume entrained. We show that it is the most important parameter governing the total
volume of air entrained.

We propose a simple, phenomenological model for the entrainment volume expressed as
the product of three factors representing the separate effects of Fr2

�, the circulation Weber
number WeΓ = Γ 2(a(σ/ρw))

−1 and the circulation Reynolds number ReΓ = |Γ |/νw, all
defined/estimated at some distance zc/a below the free surface. The model performs
extremely well over a broad range of these parameters for the vortex pair DNS cases.

To assess the usefulness and robustness of the new model, we apply it to a more general
and complex problem of air entrainment by the horizontal vorticity shed from a submerged
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circular cylinder in uniform flow. We focus on and perform DNS for the range of cylinder
Froude number characterised by large horizontal coherent vortical structures in the wake
and quasi-periodic wave breaking and air entrainment on the surface. Using a general
vorticity identification scheme to obtain the model parameters for the coherent horizontal
vorticity structures and kinematics, the phenomenological model performs satisfactorily
compared with DNS of the cylinder problem.

Our main interest in this work is predicting the total entrained volume in the context
of a macroscopic event framework rather than the detailed structures and mechanisms
of the vortex–interface interactions. In this context, we have focused on macroscopic
air entrainment events associated with coherent structures with primarily surface-parallel
vorticity aligned in a dominant direction. Despite these restrictions, such scenarios are
common, for example, in air entrainment in large-Froude-number (isotropic) free-surface
turbulence (see, e.g. Yu et al. 2019a) and vertically immersed flat-plate boundary
layers (Masnadi et al. 2019). Our hypothesis that a phenomenological model based
on macroscopic parameterisation of the vortical structure can capture the subsequent
entrainment volume has guided and simplified the current approach and modelling for
the types of interactions studied here. This work identifies the key parameters necessary
for macroscopic entrainment modelling for large-scale computations where high-fidelity
flow data is unavailable. An immediate application, for example, is to obtain predictions
using the present model of the entrainment volume in a ship wake, based on resolved
flow quantities obtained from large-scale uRANS calculations. Such predictions, when
compared to available measurements, can provide an assessment of the validity and
applicability of the present model. This work is now underway.
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Appendix A. DNS of entrainment by a surface-parallel vortex pair near an air–water
interface

The interaction of a horizontal vortex pair with a free surface in the absence of entrainment
is well documented (Yu & Tryggvason 1990; Ohring & Lugt 1991; Sarpkaya & Suthon
1991; Dommermuth 1993; Rood 1994a,b, 1995; Sarpkaya 1996). This appendix verifies
our simulations for non-entraining vortex behaviour and highlights the differences of the
behaviour when entrainment occurs.

A.1. Verification of non-entraining vortex behaviour
Each column of figure 11 shows a sequence of instantaneous vorticity contours for
different Fr2 and We and at increasing time instances during the evolution. The
non-dimensional entrainment volume ∀o = Ve/(Lyπa2

0) increases from left to right, ∀o =
(0.0, 0.013, 0.097). The bottom row represents the corresponding vortex motion of the two
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Figure 11. Contours of transverse vorticity ωy/ωc (red, ωy < 0) on the centre-plane for Re = 628 
/a0 = 5;
for (Fr2,We) = (790, 99) (a,d,g,j), (197,∞) (b,e,h,k) and (790,∞) (c, f,i,l). (a–i) For increasing time instances
in the evolution. Vorticity bounds are −1.5, 1.5. Black line near z = 0 is the interface. ( j–l) Primary vortex path
for ωy > 0 (black) and ωy < 0 (red) with solid line showing data from Lamb (1932) and dashed line z = 0.

strongest vortices in the water (as identified using the method in § 2.2 with λcr = 0). As the
primary (positive) vortex rises towards the interface, the surface deforms and secondary
(negative) vorticity forms in both fluids at the surface due to interface curvature and the
presence of viscosity (Orlandi 1990; Rood 1994a,b, 1995). If the secondary vorticity is
strong enough (columns 2 and 3), it couples with the primary vortex and this new pair (of
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Figure 12. Primary vortex path prior to entrainment onset (if entraining) t < tonset for Re = 628 and 
/a0 = 5.
Filled symbols are entraining cases. Solid line shows data from Lamb (1932); dashed line, z = 0. (a) Fr2 = 790
(green), 493 (orange), 197 (pink) and 99 (purple) with We = ∞. (b) Bo = ∞ (orange), 4 (purple) and 0.2
(green) with Fr2 = 494.

unequal strengths) process around each other via mutual induction (Ohring & Lugt 1991;
Orlandi 1990). In column 1, surface tension sufficiently suppresses the surface curvature
such that no significant coupling occurs and the primary vortex follows a path similar to
the classical solution of the path of an inviscid point vortex near a wall (Lamb 1932).
Our simulations showed that the primary vortex path will always approach this classical
solution when Froude number is reduced or surface tension restricts the surface motion.
This finding is consistent with the viscous simulations of Ohring & Lugt (1991) and the
inviscid simulations of Yu & Tryggvason (1990).

A.2. Vortex behaviour for entrainment cases
Columns 2 and 3 of figure 11 include entrainment events. In both cases, the entrained air
generally tracks with the secondary vortex as the coupled pair retreats deeper into the water
bulk. For larger Fr2 (column 3), multiple secondary vortices appear in the water implying
that the vortex procession involves three or more vortex structures, resulting in increased
entrainment volume.

A survey of our simulations show that the coupling of the vortices and the procession of
the secondary vorticity into the bulk can correlate with entrainment. Figure 12 shows the
path of the primary vortex centre for a range of Fr2 and We. First, we note that the gravity
has a much stronger influence on the primary vortex approach to the surface compared
with surface tension, as indicated by the point at which the vortex motion transitions from
vertical to horizontal. Second, the return of the primary vortex into the water bulk (below
the classical theory line) indicates stronger secondary surface vorticity and coupling. The
steeper the return of the primary vortex to the bulk, the stronger the coupling and the
resulting entrainment. However, as shown by Ohring & Lugt (1991) and confirmed in the
vortex paths in figures 11 and 12, this event is not a sufficient indicator for entrainment
by itself. What our simulations do show is that this coupling and procession is likely
responsible for the transport of air to the bulk.

We summarise briefly the vortex behaviour for the oblique cases using Θ = π/4 as an
illustration in figure 13. The vortex pair rises obliquely to the interface consistent with the
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Figure 13. Contours of transverse vorticity ωy/ωc (red, ωy < 0) on the centre-plane for an oblique incidence
angle Θ = π/4 with 
/a0 = 5, Fr2 = 494, Re = 628 and We = ∞. Time evolution is top–down, left–right.
Red contours are negative vorticity. Vorticity bounds are −1.5, 1.5. Black line near z = 0 is the interface.

orientation angle and the surface deforms due to the influence of vortex 1 (the positive
vortex closes to the interface at t = 0). This generates secondary negative vorticity at the
interface. Vortex 1 turns away from inclination axis, as expected by the classical theory
and shown in Lugt & Ohring (1994). As in the Θ = 0 case, if the secondary surface
vorticity near vortex 1 is strong enough, they will couple and process downward into the
bulk. After vortex 1 couples to its secondary surface vorticity, the contours representing
vortex 2 become circular and it continues its approach to the surface following the original
rise angle. In all cases considered, the surface deformation associated with vortex 2
is significantly less but can also cause entrainment. In our simulations we focused on
entrainment events by vortex 1 only and observed entrainment for all angles Θ < 75◦ at
the initial depth studied.

REFERENCES

ANDRÉ, M.A. & BARDET, P.M. 2017 Free surface over a horizontal shear layer: vorticity generation and air
entrainment mechanisms. J. Fluid Mech. 813, 1007–1044.

ASPDEN, A., NIKIFORKAKIS, N., DALZIEL, S. & BELL, J.B. 2008 Analysis of implicit LES methods.
Commun. Appl. Math. Comput. Sci. 3 (1), 103–126.

BALDY, S. 1993 A generation-dispersion model of ambient and transient bubbles in the close vicinity of
breaking waves. J. Geophys. Res. 98 (C10), 18277–18293.
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