
THE REVIEW OF SYMBOLIC LOGIC

Volume 13, Number 2, June 2020

VARIETIES OF DE MORGAN MONOIDS: COVERS OF ATOMS

T. MORASCHINI

Institute of Computer Science, Academy of Sciences of the Czech Republic

J. G. RAFTERY

Department of Mathematics and Applied Mathematics, University of Pretoria
and

J. J. WANNENBURG

Department of Mathematics and Applied Mathematics, University of Pretoria; DST-NRF
Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS)

Abstract. The variety DMM of De Morgan monoids has just four minimal subvarieties. The
join-irreducible covers of these atoms in the subvariety lattice of DMM are investigated. One of
the two atoms consisting of idempotent algebras has no such cover; the other has just one. The
remaining two atoms lack nontrivial idempotent members. They are generated, respectively, by
4-element De Morgan monoids C4 and D4, where C4 is the only nontrivial 0-generated algebra
onto which finitely subdirectly irreducible De Morgan monoids may be mapped by noninjective
homomorphisms. The homomorphic preimages of C4 within DMM (together with the trivial De
Morgan monoids) constitute a proper quasivariety, which is shown to have a largest subvariety U.
The covers of the variety V(C4) within U are revealed here. There are just ten of them (all finitely
generated). In exactly six of these ten varieties, all nontrivial members have C4 as a retract. In the
varietal join of those six classes, every subquasivariety is a variety—in fact, every finite subdirectly
irreducible algebra is projective. Beyond U, all covers of V(C4) [or of V(D4)] within DMM are
discriminator varieties. Of these, we identify infinitely many that are finitely generated, and some
that are not. We also prove that there are just 68 minimal quasivarieties of De Morgan monoids.

§1. Introduction. De Morgan monoids, introduced by Dunn [7, 22], are involutive
distributive residuated lattices satisfying x � x2. The theory of residuated lattices descends
from the study of ideal multiplication in rings, and from the calculus of binary relations,
but the algebras also model substructural logics; see [11]. In particular, the relevance logic
Rt of Anderson and Belnap [1] is algebraized by the variety DMM of De Morgan monoids,
provided that the monoid identity e is distinguished in the algebraic signature. From the
general theory of algebraization [5], it follows that the axiomatic extensions of Rt and
the subvarieties of DMM form antiisomorphic lattices, and the latter are susceptible to the
methods of universal algebra.

Accordingly, in [23], we initiated a study of the lattice of varieties of De Morgan monoids.
Among other results, we proved that this lattice has just four atoms. The idempotent De
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Morgan monoids (a.k.a. Sugihara monoids) are very well understood and encompass two
of the minimal varieties, viz. the class BA of Boolean algebras (whose nontrivial members
satisfy ¬e < e) and the variety V(S3) generated by the 3-element Sugihara monoid (in
which ¬e = e). The remaining two are generated, respectively, by two 4-element algebras
C4 and D4, where C4 is totally ordered (with e < ¬e), while e and ¬e are incomparable in
D4. We established in [23, Theorem 5.21] that a subvariety of DMM omits C4 and D4 iff it
consists of Sugihara monoids.

The present paper is primarily an investigation of the covers of these four atoms within
DMM. It suffices to consider the join-irreducible covers, as the subvariety lattice of
DMM is distributive. We show that BA has no join-irreducible cover within DMM, and
that V(S3) has just one; the situation for V(C4) and V(D4) is much more complex (see
Theorem 7.2).

The covers of V(C4) are distinctive, in view of a result of Slaney [26]: C4 is the only
0-generated nontrivial algebra onto which finitely subdirectly irreducible De Morgan
monoids may be mapped by noninjective homomorphisms. We demonstrate that there
is a largest variety U of De Morgan monoids consisting of homomorphic preimages of
C4 (along with trivial algebras), as well as a largest subvariety M of DMM such that C4
is a retract of every nontrivial member of M. Thus, V(C4) ⊆ M ⊆ U. We furnish U and
M with finite equational axiomatizations; each has an undecidable equational theory and
uncountably many subvarieties (see §4 and §6). We also provide representation theorems
for the members of U and M (Corollaries 5.6 and 5.8), involving a ‘skew reflection’
construction of Slaney [27].

With the help of these representations, we identify all of the covers of V(C4) within U.
There are just ten, of which exactly six fall within M (Theorem 8.10, Corollary 8.14). All
ten of these varieties are finitely generated.

Within DMM, every cover of V(D4) is semisimple—in fact, a discriminator variety. The
same applies to the covers of V(C4) that are not contained in U. In both cases, we identify
infinitely many such covers that are finitely generated, and some that are not even generated
by their finite members (see §9 and §10).

In the literature of substructural logics, subvariety lattices are more prominent than
subquasivariety lattices, because they mirror the extensions of a logic by new axioms, as
opposed to new inference rules. Nevertheless, some natural logical problems call for a con-
sideration of quasivarieties if they are to be approached algebraically, e.g., the identification
of the structurally complete axiomatic extensions of Rt. Although this particular question
is deferred to a subsequent paper, we throw some fresh light here on the subquasivariety
lattice of DMM.

Specifically, each of the four minimal varieties of De Morgan monoids is also minimal as
a quasivariety, but they are not alone in this. Indeed, we prove that DMM has just 68 mini-
mal subquasivarieties (Corollary 3.6, Remark 5.9). The proof exploits Slaney’s description
of the free 0-generated De Morgan monoid in [25]. We show, moreover, that in the varietal
join J of the six covers of V(C4) within M, every finite subdirectly irreducible algebra is
projective. It follows that every subquasivariety of J is a variety. (See Theorems 8.12 and
8.13.)

§2. Residuated structures and De Morgan monoids. Some key definitions and re-
sults are recalled briefly below. Unproved assertions in this section were either referenced
or proved in [23], where additional citations and/or attributions can be found. Familiarity
with [23] is not presupposed, however.
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An involutive (commutative) residuated lattice, or briefly, an IRL, is an algebra A =
〈A; ·, ∧, ∨, ¬, e〉 comprising a commutative monoid 〈A; ·, e〉, a lattice 〈A; ∧, ∨〉 and a
function ¬ : A −→ A, called an involution, such that A satisfies ¬¬x = x and

x · y � z ⇐⇒ ¬z · y � ¬x. (1)

Here, � denotes the lattice order and ¬ binds more strongly than any other operation; we
refer to · as fusion. It follows that ¬ is an antiautomorphism of 〈A; ∧, ∨〉, and if we define
x → y := ¬(x · ¬y) and f := ¬e, then A satisfies

x · y � z ⇐⇒ y � x → z (the law of residuation), (2)

¬x = x → f , hence x · ¬x � f , (3)

x → y = ¬y → ¬x and x · y = ¬(x → ¬y), (4)

e � x = x · x ⇐⇒ x · ¬x = ¬x ⇐⇒ x = x → x. (5)

An algebra A = 〈A; ·, →, ∧, ∨, e〉 is called a (commutative) residuated lattice—or
an RL—if 〈A; ·, e〉 is a commutative monoid, 〈A; ∧, ∨〉 is a lattice and → is a binary
operation—called residuation—such that A satisfies (2).

Every RL satisfies the following well-known laws. Here and subsequently, x ↔ y
abbreviates (x → y) ∧ (y → x).

x · (x → y) � y and x � (x → y) → y (6)

x � y → z ⇐⇒ y � x → z (7)

x · (y ∨ z) = (x · y) ∨ (x · z) (8)

x → (y ∧ z) = (x → y) ∧ (x → z) (9)

(x ∨ y) → z = (x → z) ∧ (y → z) (10)

x � y �⇒
{

x · z � y · z and
z → x � z → y and y → z � x → z

(11)

x � y ⇐⇒ e � x → y (12)

x = y ⇐⇒ e � x ↔ y (13)

e � x → x and e → x = x. (14)

By (13), an RL A is nontrivial (i.e., |A| > 1) iff e is not its least element. A class of algebras
is said to be nontrivial if it has a nontrivial member.

An RL A is said to be bounded if there are extrema ⊥, � ∈ A, by which we mean that
⊥ � a � � for all a ∈ A. In this case, for each a ∈ A,

a · ⊥ = ⊥ = � → ⊥ and ⊥ → a = � = a → � = � · �. (15)

If, moreover, � · a = � for all a ∈ A\{⊥}, then A is said to be rigorously compact [21],
in which case a → ⊥ = ⊥ = � → b for all a ∈ A\{⊥} and b ∈ A\{�}. The extrema
of a bounded [I]RL are not distinguished in the algebra’s signature, so they are not always
retained in subalgebras.

LEMMA 2.1. Let A be a rigorously compact RL, with extrema ⊥, �, and let h : A −→ B
be a homomorphism that is not a constant function. Then

(i) h−1[{h(⊥)}] = {⊥} and h−1[{h(�)}] = {�}.
(ii) If h(⊥) is meet-irreducible in B, then ⊥ is meet-irreducible in A. Likewise, � is

join-irreducible if h(�) is.
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(iii) If B is totally ordered (as a lattice), then ⊥ is meet-irreducible and � join-
irreducible in A.

Proof. (i) If ⊥ < a ∈ A, with h(a) = h(⊥), then � · a = �, by rigorous compactness,
so h(�) = h(�) · h(a) = h(�) · h(⊥) = h(� · ⊥) = h(⊥). Similarly, if � > b ∈ A, with
h(b) = h(�), then h(�) = h(⊥), because � → b = ⊥. As h is isotone, we conclude in
both cases that |h[A]| = 1, contradicting the fact that h is not constant.

(ii) follows easily from (i), and (iii) from (ii). �
In an RL A, we define x0 := e and xn+1 := xn · x for n ∈ ω. We say that A is square-

increasing if it satisfies x � x2. Every [square-increasing] RL can be embedded into a
[square-increasing] IRL, and every finitely generated square-increasing IRL is bounded.
The following laws obtain in all square-increasing IRLs:

x ∧ y � x · y (16)

x, y � e �⇒ x · y = x ∧ y (17)

x → (x → y) � x → y (18)

e � x ∨ ¬x (19)

f � x �⇒ x3 = x2 (in particular, f 3 = f 2). (20)

An RL A is said to be distributive [resp. modular] if its reduct 〈A; ∧, ∨〉 is a distributive
[resp. modular] lattice.

Recall that a [quasi]variety is the model class of a set of [quasi]equations in an algebraic
signature. (Quasiequations have the form

(α1 = β1 & · · · & αn = βn) �⇒ α = β,

where n ∈ ω.) The class of all RLs and that of all IRLs are finitely axiomatized vari-
eties. They are congruence distributive, congruence permutable and have the congruence
extension property (CEP); see [11] for instance.

In the lemma below, the acronym [F]SI abbreviates ‘[finitely] subdirectly irreducible’.
(In any given algebraic signature, the direct product of an empty family is a trivial algebra,
hence SI algebras are nontrivial, as are simple algebras.) Every variety is generated by its
SI finitely generated members, as Birkhoff’s Subdirect Decomposition Theorem [2, Theo-
rem 3.24] says that every algebra is isomorphic to a subdirect product of SI homomorphic
images of itself (and since an equation involves only finitely many variables).

LEMMA 2.2. Let A be a (possibly involutive) RL.

(i) A is FSI iff e is join-irreducible in 〈A; ∧, ∨〉. In this case, therefore, the subalgebras
of A are also FSI.

(ii) When A is distributive, it is FSI iff e is join-prime (i.e., whenever a, b ∈ A with
e � a ∨ b, then e � a or e � b).

(iii) If there is a largest element strictly below e, then A is SI. The converse holds if A
is square-increasing.

(iv) If e has just one strict lower bound, then A is simple. The converse holds when A
is square-increasing.

The class of all [F]SI members of a class L of algebras shall be denoted by L[F]SI.
The class operator symbols I, H, S, P, PS and PU stand, respectively, for closure under
isomorphic and homomorphic images, subalgebras, direct and subdirect products, and
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ultraproducts, while V and Q denote varietal and quasivarietal generation, i.e., V = HSP
and Q = ISPPU = IPSSPU. For each class operator O, we abbreviate O({A1, . . . , An}) as
O(A1, . . . , An). Recall that PU(L) ⊆ I(L) for any finite set L of finite similar algebras [6,
Lemma IV.6.5].

Jónsson’s Theorem [16, 18] asserts that, for any subclass L of a congruence distributive
variety, V(L)FSI ⊆ HSPU(L). In particular, if L consists of finitely many finite similar
algebras, then V(L)FSI ⊆ HS(L), provided that V(L) is congruence distributive. Note also
that HS(L) = SH(L) for any class L of [I]RLs, owing to the CEP.

COROLLARY 2.3. Let K be any class of simple square-increasing [I]RLs. Then the
variety V(K) is semisimple, i.e., its SI members are simple algebras. In fact, its SI members
are just the nontrivial algebras in ISPU(K).1

Proof. By Jónsson’s Theorem, the SI members of V(K) belong to HSPU(K), but the
criterion for simplicity in Lemma 2.2(iv) is first-order definable and therefore persists in
ultraproducts (by Łos’ Theorem [6, Theorem V.2.9]), while the CEP ensures that nontrivial
subalgebras of simple algebras are simple. �

An element a of an [I]RL A is said to be idempotent if a2 = a. We say that A is
idempotent if all of its elements are.

An IRL is said to be antiidempotent if it is square-increasing and satisfies x � f 2 (or
equivalently, ¬(f 2) � x). This terminology is justified by Theorem 2.4(iii), which implies
that a square-increasing IRL A is antiidempotent iff V(A) has no nontrivial idempotent
member.

THEOREM 2.4.

(i) A square-increasing IRL is idempotent iff it satisfies f � e, iff it satisfies f 2 = f .
Consequently:

(ii) A square-increasing nonidempotent IRL has no idempotent subalgebra (and in
particular, no trivial subalgebra).

(iii) A variety of square-increasing IRLs has no nontrivial idempotent member iff it
satisfies x � f 2 (i.e., it consists of antiidempotent algebras).

(iv) In a simple antiidempotent IRL A, if e < a ∈ A, then a · f = f 2.

Proof. (i)–(iii) were proved in [23, Theorem 3.3 and Corollary 3.6].
(iv) Let e < a ∈ A. By (11), f = e · f � a · f , but by (1), a · f � f (since a · e � e), so

f < a · f . As A is simple and square-increasing, Lemma 2.2(iv) and involution properties
show that f has just one strict upper bound in A, which must be f 2, by antiidempotence.
Thus, a · f = f 2. �

DEFINITION 2.5. A De Morgan monoid is a distributive square-increasing IRL. The vari-
ety of De Morgan monoids shall be denoted by DMM.

A De Morgan monoid satisfies x � e iff it is a Boolean algebra (in which the operation
∧ is duplicated by fusion).

1 Actually, V(K) is a discriminator variety, so it consists of Boolean products of simple algebras,
in the sense of [6, §IV.8–9]. This stronger conclusion will not be needed here, but it follows
because the discriminator varieties are just the congruence permutable semisimple varieties with
equationally definable principal congruences (EDPC) [4,9], and because square-increasing [I]RLs
have EDPC [11, Theorem 3.55].
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In a partially ordered set 〈P; �〉, we denote by [a) the set of all upper bounds of an
element a (including a itself), and by (a] the set of all lower bounds. If a � b ∈ P, we use
[a, b] to denote the interval {c ∈ P : a � c � b}. If a < b and [a, b] = {a, b}, we say that
b covers (or is a cover of) a.

THEOREM 2.6. Let A be a De Morgan monoid that is FSI. Then

(i) A = [e) ∪ (f ];

(ii) if A is bounded, then it is rigorously compact. Consequently,

(iii) every finitely generated subalgebra of A is rigorously compact.

Proof. See [23, §5] and its references to antecedents. �
A Sugihara monoid is an idempotent De Morgan monoid; see [1, 8, 12, 13, 24]. The

variety SM of all Sugihara monoids coincides with V(S∗) for the algebra

S∗ = 〈{a : 0 �= a ∈ Z}; ·, ∧, ∨, ¬, 1〉
on the set of all nonzero integers, where the lattice order is the usual total order, the
involution is the usual additive inversion and

a · b =
{

the element of {a, b} with the greater absolute value, if |a| �= |b|;
a ∧ b if |a| = |b|.

An IRL is said to be odd if it satisfies f = e. By Theorem 2.4(i), every odd De Morgan
monoid is a Sugihara monoid. In the odd Sugihara monoid S = 〈Z; ·, ∧, ∨, −, 0〉 on the
set of all integers, the operations are defined like those of S∗, except that 0 takes over from
1 as the neutral element for ·. The variety of all odd Sugihara monoids is Q(S), whereas
SM = Q(S, S∗).

For each positive integer n, let S2n denote the subalgebra of S∗ with universe {−n, . . . ,
−1, 1, . . . , n} and, for n ∈ ω, let S2n+1 be the subalgebra of S with universe {−n, . . . , −1,
0, 1, . . . , n}. Note that S2 is a Boolean algebra. Up to isomorphism, the algebras Sn (1 <
n ∈ ω) are precisely the finitely generated SI Sugihara monoids, whence the algebras
S2n+1 (0 < n ∈ ω) are just the finitely generated SI odd Sugihara monoids. The algebra
S3 is a homomorphic image of Sn for all integers n ≥ 3. Thus, every nontrivial variety of
Sugihara monoids includes S2 or S3.

THEOREM 2.7 ([12, 24]).

(i) Every quasivariety of odd Sugihara monoids is a variety.

(ii) The lattice of varieties of odd Sugihara monoids is the chain

V(S1) � V(S3) � V(S5) � · · · � V(S2n+1) � · · · � V(S).

An algebra is said to be n-generated (where n is a cardinal) if it has a generating subset
with at most n elements. Thus, an IRL is 0-generated iff it has no proper subalgebra.
We depict below the two-element Boolean algebra 2 (= S2), the three-element Sugihara
monoid S3, and two four-element De Morgan monoids, C4 and D4. In each case, the labeled
Hasse diagram determines the structure.

�

�e

f

2 : �

�

��
e = f

⊥
S3 :

�

�

�

� f 2

f

e

¬(f 2)

C4 :

�
��
�

��
���

�

��
f 2

e f

¬(f 2)

D4 :
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THEOREM 2.8. A De Morgan monoid is simple and 0-generated iff it is isomorphic to 2 or
to C4 or to D4.

LEMMA 2.9. Let A be a nontrivial square-increasing IRL, and K a variety of square-
increasing IRLs.

(i) If A is antiidempotent, with e � f , then e < f .

(ii) If e < f in A, then C4 can be embedded into A.

(iii) If A is simple and C4 or D4 can be embedded into A, then A is antiidempotent.

(iv) If C4 can be embedded into every SI member of K, then K consists of antiidempotent
algebras and satisfies e � f .

(v) If D4 can be embedded into every SI member of K, then K consists of antiidempotent
algebras.

Proof. (i) and (ii) were proved in [23, Lemma 5.22].
(iii) follows from Lemma 2.2(iv), because ¬(f 2) < e in C4 and in D4.
(iv) Suppose C4 embeds into every SI member of K. Then K satisfies e � f , as C4 does.

Now let B ∈ K be nontrivial. Then B ∈ IPS{Bi : i ∈ I} for suitable SI algebras Bi ∈ K, by
the Subdirect Decomposition Theorem. As C4 embeds into each Bi, it embeds diagonally
into

∏
i∈I Bi, and therefore into B, because it is 0-generated. Thus, no nontrivial B ∈ K is

idempotent, and so K satisfies x � f 2, by Theorem 2.4(iii).
The proof of (v) is similar. �
The next lemma generalizes [26, Theorems 2, 3] (where it was confined to FSI De

Morgan monoids).

LEMMA 2.10. Let A be a rigorously compact IRL.

(i) There is at most one homomorphism from A into C4.

(ii) If there is a homomorphism from A to C4, then ¬(f 2) � a � f 2 for all a ∈ A.

Proof. Let ⊥, � be the extrema of A. Suppose h1, h2 : A −→ C4 are homomorphisms,
and note that they are surjective, because C4 is 0-generated. For each i ∈ {1, 2}, as hi is
isotone and preserves ·, ¬, e, we have

hi(f
2) = f 2 = hi(�) and hi(¬(f 2)) = ¬(f 2) = hi(⊥),

so by Lemma 2.1(i), f 2 = � and ¬(f 2) = ⊥ (proving (ii)) and

h−1
i [{f 2}] = {f 2} and h−1

i [{¬(f 2)}] = {¬(f 2)}. (21)

Therefore, if h1 �= h2, then h1(a) = e and h2(a) = f for some a ∈ A. In that case,
h2(a2) = f 2, so a2 = f 2 (by (21)), whence h1(a2) = f 2, contradicting the fact that h1(a2) =
(h1(a))2 = e2 = e. Thus, h1 = h2, proving (i). �

THEOREM 2.11 (Slaney [26, Theorem 1]). Let h : A −→ B be a homomorphism, where A is
an FSI De Morgan monoid, and B is nontrivial and 0-generated. Then h is an isomorphism
or B ∼= C4.
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§3. Minimality. The following general result will be needed in our study of the sub-
variety lattice of DMM.

THEOREM 3.1 ([17], Corollary 4.1.13). If a nontrivial algebra of finite type is finitely
generated, then it has a simple homomorphic image.

A quasivariety is said to be minimal if it is nontrivial and has no nontrivial proper
subquasivariety. If we say that a variety is minimal (without further qualification), we mean
that it is nontrivial and has no nontrivial proper subvariety. When we mean instead that it
is minimal as a quasivariety, we shall say so explicitly, thereby avoiding ambiguity.

Recall that V(2) is the class of all Boolean algebras.

THEOREM 3.2 ([23, Theorem 6.1]). The distinct classes V(2), V(S3), V(C4) and V(D4)
are precisely the minimal varieties of De Morgan monoids.

A variety K is said to be finitely generated if K = V(A) for some finite algebra A (or
equivalently, K = V(L) for some finite set L of finite algebras). Every finitely generated
variety is locally finite, i.e., its finitely generated members are finite algebras [6, Theo-
rem II.10.16]. Bergman and McKenzie [3] showed that every locally finite congruence
modular minimal variety is also minimal as a quasivariety, so by Theorem 3.2, V(2), V(S3),
V(C4) and V(D4) are minimal as quasivarieties. We proceed to show that the total number
of minimal subquasivarieties of DMM is still finite, but much greater than four.

LEMMA 3.3. Let A and B be nontrivial algebras, where A is 0-generated.

(i) If B ∈ Q(A), then A can be embedded into B, whence Q(A) = Q(B).

(ii) Q(A) is a minimal quasivariety.

(iii) If B ∈ Q(A) and B is 0-generated, then A ∼= B.

(iv) If A has finite type and Q(A) is a variety, then A is simple.

Proof. (i) Let B ∈ Q(A) = ISPPU(A). Then B embeds into a direct product D of
ultrapowers of A, where the index set of the direct product is not empty (because B is
nontrivial). Clearly, if a variable-free equation ε is true in A, then it is true in B. Conversely,
if ε is true in B, then it is true in D, as variable-free equations persist in extensions
(i.e., super-algebras). In that case, since ε persists in homomorphic images, it is true in
an ultrapower U of A, whence it is true in A, because all first order sentences persist in
ultraroots. There is therefore a well-defined injection k : A −→ B, given by

αA(cA
1 , cA

2 , . . . ) �→ αB(cB
1 , cB

2 , . . . ),

where c1, c2, . . . are the nullary operation symbols of the signature and α is any term.
Clearly, k is a homomorphism from A into B, so A ∈ IS(B).

(ii) follows immediately from (i).
(iii) In the proof of (i), the image of the embedding k is a subalgebra of B. So, if B is

0-generated, then k is surjective, i.e., k : A ∼= B.
(iv) Suppose A has finite type and is not simple. As A is 0-generated and nontrivial, it has

a simple homomorphic image C, by Theorem 3.1, and C is still 0-generated. If C ∈ Q(A),
then A ∼= C, by (iii), contradicting the nonsimplicity of A. So, C /∈ Q(A), whence Q(A) is
not a variety. �

THEOREM 3.4. A quasivariety of De Morgan monoids is minimal iff it is V(S3) or Q(A)
for some nontrivial 0-generated De Morgan monoid A.
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Proof. Sufficiency follows from Lemma 3.3(ii) and previous remarks about V(S3).
Conversely, let K be a minimal subquasivariety of DMM. Being minimal, K is Q(A) for
some nontrivial De Morgan monoid A. Let B be the smallest subalgebra of A. If B is
trivial, then A satisfies e = f , so K is a variety, by Theorems 2.4(i) and 2.7(i). In this case,
as K is a minimal variety of odd Sugihara monoids, it is V(S3), by Theorem 2.7(ii). On
the other hand, if B is nontrivial, then K = Q(B) (again by the minimality of K), and this
completes the proof, because B is 0-generated. �

A deductive filter of a (possibly involutive) RL A is a lattice filter G of 〈A; ∧, ∨〉 that
is also a submonoid of 〈A; ·, e〉. Thus, [e) is the smallest deductive filter of A. The lat-
tice of deductive filters of A and the congruence lattice Con A of A are isomorphic. The
isomorphism and its inverse are given by

G �→ ΩG := {〈a, b〉 ∈ A2 : a ↔ b ∈ G};
θ �→ {a ∈ A : 〈a ∧ e, e〉 ∈ θ}.

For a deductive filter G of A and a, b ∈ A, we often abbreviate A/ΩG as A/G, and a/ΩG
as a/G, noting that a → b ∈ G iff a/G � b/G in A/G. In the square-increasing case, the
deductive filters of A are just the lattice filters of 〈A; ∧, ∨〉 that contain e, by (16), so [b)
is a deductive filter whenever e � b ∈ A, and if A is finite, then all of its deductive filters
have this form.

For any quasivariety K and any cardinal m, the free m-generated algebra in K shall be
denoted by FK(m) if it exists (i.e., if m > 0 or the signature of K includes a constant
symbol).

THEOREM 3.5. The minimal subquasivarieties of DMM form a finite set, whose cardinal-
ity is the number of lower bounds of e in FDMM(0).

Proof. Let F = FDMM(0). Slaney [25] proved that F has just 3088 elements; its bottom
element is eF ↔ f F (see [23, Theorem 3.2]). By the Homomorphism Theorem, every
0-generated De Morgan monoid is isomorphic to a factor algebra of F, so DMM has only
finitely many minimal subquasivarieties, by Theorem 3.4.

Now consider a factor algebra F/G, where G is a deductive filter of F. As F is finite, G =
[αF) for some nullary term α in the language of IRLs, where αF � eF. If F/G is nontrivial,
i.e., αF � eF ↔ f F, then F/G is not odd (by (13)), whence Q(F/G) �= V(S3). The
function αF �→ Q(F/[αF)) is therefore a well defined surjection from the lower bounds of
eF in F to the set consisting of the trivial subvariety (corresponding to the bottom element
of F) and the minimal subquasivarieties of DMM, other than V(S3). It remains only to
show that this map is injective. To that end, suppose F/[αF) and F/[βF) generate the same
quasivariety, where αF, βF � eF. Then there is an isomorphism g : F/[αF) ∼= F/[βF), by
Lemma 3.3(iii). As βF � eF, we have βF ↔ eF = βF ∈ [βF), by (12) and (14), so
βF/[βF) = eF/[βF). Now

g(βF/[αF)) = g(βF/[αF)) = βF/[βF) = eF/[βF) = g(eF/[αF)),

but g is injective, so βF/[αF) = eF/[αF), i.e., βF = βF ↔ eF ∈ [αF). This means that
αF � βF and, by symmetry, αF = βF, completing the proof. �

COROLLARY 3.6. There are exactly 68 minimal quasivarieties of De Morgan monoids.
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Proof. By Theorem 3.5, we need to show that e has just 68 lower bounds in FDMM(0).
The argument will be given in Remark 5.9, after the notion of a ‘skew reflection’ has been
defined. �

§4. Crystalline varieties. We begin this section with some general observations about
retracts, that will be needed later.

Recall that an algebra A is said to be a retract of an algebra B if there are homomor-
phisms g : A −→ B and h : B −→ A such that h ◦ g is the identity function idA on A. This
forces g to be injective and h surjective; we refer to h as a retraction (of B onto A). The
composite of two retractions, when defined, is clearly still a retraction.

REMARK 4.1. Given similar algebras A and B, the first canonical projection π1 : A ×
B −→ A is a retraction iff there exists a homomorphism f : A −→ B. (Sufficiency: as idA

and f are homomorphisms, so is the function g from A to A × B defined by a �→ 〈a, f (a)〉,
and clearly π1 ◦ g = idA.) Consequently, if an algebra C is a retract of every member of a
class K, then D is a retract of D × E for all D, E ∈ K, because there is always a composite
homomorphism from D to E (whose image is isomorphic to C).

REMARK 4.2. A 0-generated algebra A is a retract of an algebra B if there exist
homomorphisms g : A −→ B and h : B −→ A. For in this case, every element of A has the
form αA(c1, . . . , cn) for some term α and some distinguished elements ci ∈ A,
whence h◦g = idA, because homomorphisms preserve distinguished elements (and respect
terms).

LEMMA 4.3. Let K be a variety of finite type, and let A ∈ K be finite, simple and
0-generated. Then the following conditions are equivalent.

(i) A is a retract of every nontrivial member of K.

(ii) Every simple algebra in K is isomorphic to A and embeds into every nontrivial
member of K.

Proof. (i) ⇒ (ii): For each simple C ∈ K, there is a homomorphism h from C onto
A, by (i), and h must be an isomorphism (as A is nontrivial and C is simple). Thus, the
embedding claim also follows from (i).

(ii) ⇒ (i): By (ii) and Theorem 3.1, A is a homomorphic image of every finitely
generated nontrivial member of K. Consider an arbitrary nontrivial algebra B ∈ K. By
(ii), A ∈ IS(B). Like any nontrivial algebra, B embeds into an ultraproduct U of finitely
generated nontrivial subalgebras Bi of B (cf. [6, Theorem V.2.14]). As A ∈ H(Bi) for all
i, and as PUH(L) ⊆ HPU(L) for any class L of similar algebras, there is a homomorphism
h from U onto an ultrapower of A. But A, being finite, is isomorphic to all of its ultrapow-
ers, so h restricts to a homomorphism from B into A. Therefore, A is a retract of B, by
Remark 4.2. �

Generalizing the usage of [26], we say that an IRL A is crystalline if there is a homomor-
phism h : A −→ C4 (in which case h is surjective).2 Theorem 2.11 motivates the following
definitions.

2 For the sake of Theorem 4.5, we have dropped the requirement in [26] that crystalline algebras
be FSI.
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DEFINITION 4.4.

(i) W := {A ∈ DMM : |A| = 1 or A is crystalline};
(ii) N := {A ∈ DMM : |A| = 1 or C4 is a retract of A} ⊆ W.

By Lemma 2.10(ii), the rigorously compact algebras in W are antiidempotent. Also, A is a
retract of A × B for all nontrivial A, B ∈ N, by Remark 4.1.

THEOREM 4.5. W and N are quasivarieties.

Proof. As W and N are isomorphically closed, we must show that they are closed
under S, P and PU, bearing Remark 4.2 in mind. If B ∈ S(A) and h : A −→ C4 is a
homomorphism, then so is h|B : B −→ C4, while any embedding C4 −→ A maps into B,
as C4 is 0-generated. Thus, W and N are closed under S. Let {Ai : i ∈ I} be a subfamily of
W, where, without loss of generality, I �= ∅. For any j ∈ I, the projection

∏
i∈I Ai −→ Aj

can be composed with a homomorphism Aj −→ C4, so
∏

i∈I Ai ∈ W. If, moreover, Ai ∈ N
for all i, then C4 embeds diagonally into

∏
i∈I Ai, whence

∏
i∈I Ai ∈ N. Every ultraproduct

of {Ai : i ∈ I} can be mapped into C4, as in the proof of Lemma 4.3((ii) ⇒ (i)). Also, as
C4 is finite and of finite type, the property of having a subalgebra isomorphic to C4 is first
order-definable and therefore persists in ultraproducts. Thus, W and N are closed under P
and PU. �

Nevertheless, W and N are not varieties, i.e., they are not closed under H. To see this,
consider any simple De Morgan monoid A of which C4 is a proper subalgebra, and let
B = C4 × A. Then B ∈ N, by Remark 4.1. Now A ∈ H(B) but A /∈ W, because A
is simple and not isomorphic to C4. Concrete examples of finite simple 1-generated De
Morgan monoids having C4 as sole proper subalgebra are given in §9.

An [I]RL is said to be semilinear if it is a subdirect product of totally ordered algebras.
The semilinear De Morgan monoids are axiomatized, relative to DMM, by e � (x →
y) ∨ (y → x) [15]. The examples in §9 show that even the semilinear antiidempotent
algebras in W or N do not form a variety. Note that N contains (semilinear) algebras that
are not antiidempotent. For instance, C4 × C#

4 ∈ N does not satisfy x � f 2, where C#
4

denotes the rigorously compact extension of C4 by new extrema ⊥, �.
As W and N are not varieties, it is not obvious that either of them possesses a largest

subvariety, but we shall show that both do. Purely equational axioms will be needed in the
proof, and the opaque postulate (24), which abbreviates an equation, is introduced below
for that reason. The following convention helps to eliminate some burdensome notation.

CONVENTION 4.6. In an antiidempotent IRL, we define

1 := f 2 and 0 := ¬1 = ¬(f 2).

(These abbreviations will be used when they enhance readability, rather than always. The
typeface distinguishes them from standard uses of 0, 1.)

DEFINITION 4.7. We denote by U the variety of De Morgan monoids satisfying

x2 ∨ (¬x)2 = 1 (22)

1 → (x ∨ y) � (1 → x) ∨ (1 → y) (23)

1 · x · y · q(x) · q(y) � q(x · y) ∧ q(x ∨ y) ∧ q(x → y) ∧ (1 · (x → y)), (24)

where q(x) := 1 → (¬x)2. (Note that U consists of antiidempotent algebras, by (22), so
our use of the symbol 1 in this definition is justified.)
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LEMMA 4.8. Every rigorously compact member of W belongs to U.

Proof. Let A ∈ W be rigorously compact. We may assume that A is nontrivial, so there
is a (surjective) homomorphism from A to C4. Because C4 satisfies (22),

[1 → (x ∨ y)] → [(1 → x) ∨ (1 → y)] = 1 and

[1 · x · y · q(x) · q(y)] → [q(x · y) ∧ q(x ∨ y) ∧ q(x → y) ∧ (1 · (x → y))] = 1,

it follows from Lemma 2.1(i) that A satisfies the same laws.3 Then A satisfies (23) and
(24), by (12), because e � 1. Thus, A ∈ U. �

THEOREM 4.9. U is the largest subvariety of W, i.e., U is the largest variety of crystalline
(or trivial) De Morgan monoids.

Proof. To see that U ⊆ W, let A ∈ U be SI. It suffices to show that A ∈ W, because
W, like any quasivariety, is closed under IPS. Now A is nontrivial and bounded by 0, 1,
so 0 < e � 1 and A is rigorously compact, by Theorem 2.6(ii). It follows from (23),
Lemma 2.2(ii) and (12) that 1 is join-irreducible (whence 0 is meet-irreducible) in A.
Let

B = {a ∈ A : a �= 0 and (¬a)2 = 1} and B′ = {a ∈ A : ¬a ∈ B}.
Then e ∈ B (by definition of 1) and 1 /∈ B (as 02 = 0 �= 1), so e < 1.

We claim that B is closed under the operations ·, →, ∧, ∨ of A. Indeed, let b, c ∈ B,
so 0 < b, c ∈ A and (¬b)2 = 1 = (¬c)2, i.e., q(b) = 1 = q(c). Then b ∧ c �= 0 and
(¬(b ∧ c))2 = 1 (because (¬(b ∧ c))2 � (¬b)2), so b ∧ c ∈ B. Clearly, b ∨ c �= 0. Also,
b · c �= 0, by (16), and 1 · b · c · q(b) · q(c) = 1, by rigorous compactness. Then, by
(24), each of q(b · c), q(b ∨ c), q(b → c) and 1 · (b → c) is 1. Thus, 1 = (¬(b · c))2 =
(¬(b ∨ c))2 = (¬(b → c))2, again by rigorous compactness, and b → c �= 0. This shows
that b · c, b ∨ c, b → c ∈ B, as claimed.

Let a ∈ A\{0, 1}. Since 1 is join-irreducible, (22) shows that a ∈ B or ¬a ∈ B, i.e.,
a ∈ B ∪ B′. Suppose a ∈ B ∩ B′, i.e., a, ¬a ∈ B. Then ¬a → a = ¬((¬a)2) = ¬1 (as
a ∈ B) = 0, so (¬a → a)2 = 0 �= 1, so ¬a → a /∈ B, contradicting the fact that B is
closed under →. Therefore, A is the disjoint union of B, B′, {0} and {1}.

Suppose b, c ∈ B, with ¬c � b. Then b �= 1, so ¬b �= 0 and b2 � (¬c)2 = 1, so
b2 = 1, hence ¬b ∈ B, i.e., b ∈ B ∩ B′ = ∅, a contradiction. Thus, no element of B has a
lower bound in B′. This, together with the meet- [resp. join-] irreducibility of 0 [resp. 1],
shows that b ∧ d ∈ B and b ∨ d ∈ B′ for all b ∈ B and d ∈ B′.

Let h : A −→ C4 be the function such that h(0) = 0 and h(1) = 1 and h(b) = e
and h(¬b) = f for all b ∈ B. It follows readily from the above conclusions that h is a
homomorphism from A to C4, so A ∈ W, as required.

Finally, let K be a subvariety of W. The finitely generated SI algebras in K are rigorously
compact, by Theorem 2.6(iii), so they belong to U, by Lemma 4.8. Thus, K ⊆ U. �

REMARK 4.10. In C4, we have f → a = 0 iff a ∈ {0, e}, while a → e = 0 iff a ∈ {f , 1}.
Therefore, C4 satisfies (f → x) ∨ (x → e) �= 0, and hence also

((f → x) ∨ (x → e)) → 0 = 0. (25)

3 To validate the last equation in C4 quickly, note that the premise of the implication is 0 unless x
and y are both e, in which case both the premise and the conclusion will be 1.
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So, because every SI homomorphic image of a member of U is rigorously compact and
crystalline, it follows from Lemma 2.1(i) that U satisfies (25). Note that N and W do not
satisfy (25), as (25) fails in the algebra C4 × C#

4 mentioned before Convention 4.6.

DEFINITION 4.11. We denote by M the variety of antiidempotent De Morgan monoids
satisfying e � f and (25).

LEMMA 4.12. C4 is a retract of every nontrivial member of M.

Proof. Because M satisfies e � f , it also satisfies

x � f · x, (26)

and therefore

e � x �⇒ f ∨ x � f · x. (27)

As M satisfies (25) and 0 → 0 = 1, its nontrivial members satisfy

(f → x) ∨ (x → e) �= 0, i.e., ¬(f · ¬x) ∨ ¬(f · x) �= 0,

or equivalently (by De Morgan’s laws),

(f · x) ∧ (f · ¬x) �= 1. (28)

By Lemma 2.9(i),(ii), every nontrivial member of M satisfies e < f and has a subalgebra
isomorphic to C4. So, by Lemma 4.3, it suffices to show that every simple member of M is
isomorphic to C4. Suppose A ∈ M is simple. We may assume that C4 ∈ S(A).

We claim that the intervals [0, e], [e, f ] and [f , 1] of A are doubletons, i.e.,

[0, e] = {0, e} and [e, f ] = {e, f } and [f , 1] = {f , 1}. (29)

The first and third assertions in (29) follow from Lemma 2.2(iv) and involution properties.
To prove the middle equation, suppose a ∈ A with e < a < f . As f = ¬e, it follows that
e < ¬a < f and, by (27), f = f ∨ a � f · a. As e · a � e, we have f · a � f (by (1)), so
f < f ·a. Then f ·a = 1, as [f , 1] = {f , 1}. By symmetry, f ·¬a = 1, so (f ·a)∧(f ·¬a) = 1,
contradicting (28). Therefore, [e, f ] = {e, f }, as claimed.

To complete the proof, it suffices to show that every element of A is comparable with
e, as that will imply, by involution properties, that every element is comparable with f ,
forcing A = {0, e, f , 1} = C4.

Suppose, on the contrary, that a ∈ A is incomparable with e, i.e., ¬a is incomparable
with f . As a � e and ¬a � f , we have e < e ∨ a and f < f ∨ ¬a, as well as e � ¬a
(by Theorem 2.6(i)), i.e., a � f . So, by (27), f ∨ ¬a � f · ¬a, hence f < f · ¬a, and so
f · ¬a = 1, because [f , 1] = {f , 1}.

Again, as e · a � e, we have f · a � f , so e � f · a, by Theorem 2.6(i). This, with e < f ,
gives e � f ∧ (f ·a). Also, a � f ·a, by (26), so a � f ∧ (f ·a). Therefore, e∨a � f ∧ (f ·a).

If we can argue that f ∧ (f · a) < f , then e < e ∨ a < f , contradicting the fact that
[e, f ] = {e, f }. So, to finish the proof, it suffices to show that f is incomparable with f · a,
and we have already shown that f · a � f . If f < f · a, then f · a = 1, as [f , 1] = {f , 1},
but since f ·¬a = 1, this yields (f · a) ∧ (f ·¬a) = 1, contradicting (28). Therefore, f and
f · a are indeed incomparable, as required. �

THEOREM 4.13. M is the largest subvariety of N.

Proof. By Lemma 4.12, M is a subvariety of N. Let K be any subvariety of N. Clearly,
K satisfies e � f and, by Lemma 2.9(iv), its members are antiidempotent. Now K is a
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subvariety of U, by Theorem 4.9, because N ⊆ W. By Remark 4.10, (25) is satisfied by U,
so it holds in K. Thus, K ⊆ M. �

COROLLARY 4.14. M is the class of all algebras in U satisfying e � f . In particular, M
satisfies (22), (23) and (24).

COROLLARY 4.15. Every rigorously compact algebra in N belongs to M.

Proof. This follows from Lemma 4.8 and Corollary 4.14. �
At this point in our account, N and M are organizational tools, suggested by Theo-

rem 2.11. They will assume an additional significance when we discuss structural com-
pleteness in a subsequent paper. (The structurally complete varieties of De Morgan monoids
fall into two classes—a denumerable family that is fully understood, and a more opaque
family of subvarieties of M.)

§5. Skew reflections and U. We are going to provide a representation theorem for
algebras in U, using ideas of Slaney [27]. 4

DEFINITION 5.1. Let B = 〈B; ·B, →B, ∧B, ∨B, e〉 be a square-increasing RL, with lattice
order �B. Let B′ = {b′ : b ∈ B} be a disjoint copy of the set B, let 0, 1 be distinct
nonelements of B ∪ B′, and let S = B ∪ B′ ∪ {0, 1}. Let � be a binary relation on S such
that

(i) � is a lattice order whose restriction to B2 is �B

(the meet and join operations of 〈S; �〉 being denoted by ∧ and ∨, respectively), and for
all b, c ∈ B,

(ii) b′ � c′ iff c � b,

(iii) b � c′ iff e � (b ·B c)′,
(iv) b′ � c,

(v) 0 � b � 1 and 0 � b′ � 1.

The skew �–reflection S�(B) of B is the algebra 〈S; ·, ∧, ∨, ¬, e〉 such that

(vi) · is a commutative binary operation on S, extending ·B,

(vii) a · 0 = 0 for all a ∈ S, and if 0 �= a ∈ S, then a · 1 = 1,

(viii) b · c′ = (b →B c)′ and b′ · c′ = 1 for all b, c ∈ B,

(ix) ¬0 = 1 and ¬1 = 0 and ¬b = b′ and ¬(b′) = b for all b ∈ B.

A skew reflection of B is any algebra of the form S�(B), where � is a binary relation on
S satisfying (i)–(v). (Some examples are pictured before Lemma 8.6.)

Definition 5.1 is essentially due to Slaney [27]. (In [27], (iii) is formulated in an osten-
sibly more general manner, as

for all a, b, c ∈ B, we have a ·B b � c′ iff a � (b ·B c)′.

This follows from (iii), however. Indeed, for a, b, c ∈ B,

a ·B b � c′ iff e � ((a ·B b) ·B c)′ = (a ·B (b ·B c))′ iff a � (b ·B c)′.)

4 The nomenclature of [27] is untypical. There, ‘De Morgan monoids’ were not required to be
distributive, and likewise the ‘Dunn monoids’ of Definition 5.5.
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By an RL–subreduct of an IRL A = 〈A; ·, ∧, ∨, ¬, e〉, we mean a subalgebra of the
RL–reduct 〈A; ·, →, ∧, ∨, e〉 of A.

THEOREM 5.2 ([27, Fact 1]). A skew reflection S�(B) of a square-increasing RL B is a
square-increasing IRL, and B is an RL–subreduct of S�(B).

REMARK 5.3. In a skew reflection S�(B) of a square-increasing RL B, we have f = e′,
hence f 2 = 1, so S�(B) is antiidempotent and our use of 0, 1 in Definition 5.1 is consistent
with Convention 4.6. By definition, S�(B) is rigorously compact. Because it has B as an
RL–subreduct, S�(B) satisfies (f → x) ∨ (x → e) �= 0, and hence also (25). It satisfies
(22) and (24) as well.5 The fact that elements of B lack lower bounds in B′ has two easy
but important consequences. First,

S�(B) is simple iff B is trivial (i.e., e is the least element of B),

in view of Lemma 2.2(iv). Secondly, by Lemma 2.2(iii),

S�(B) is SI iff B is SI or trivial.

Specifically, when B is not trivial, an element of S�(B) is the greatest strict lower bound
of e in S�(B) iff it is the greatest strict lower bound of e in B.

Elements of B might lack upper bounds in B′, e.g., D4 arises in this way from a trivial
RL. Such cases are eliminated in the next theorem, however.

THEOREM 5.4. The following two conditions on a square-increasing IRL A are equivalent.

(i) There is a homomorphism h : A −→ C4 and A is rigorously compact.

(ii) A is a skew reflection of a square-increasing RL B, and 0 is meet-irreducible in A.

In this case, in the notation of Definition 5.1,

(iii) h is unique and surjective, and 1 is join-irreducible in A;

(iv) b ∧ c′ ∈ B and b ∨ c′ ∈ B′ for all b, c ∈ B, so each element of B has an upper
bound in B′, and elements of B′ have lower bounds in B;

(v) if B is distributive and A is modular, then A is distributive and therefore a De
Morgan monoid, belonging to U.

Proof. Note first that, in (iii), the uniqueness of h follows from Lemma 2.10(i) (and its
surjectivity from the fact that C4 is 0–generated).

(i) ⇒ (ii): Being crystalline, A is nontrivial. The set B := h−1[{e}] is the universe of
an RL–subreduct B of A, which inherits the square-increasing law, and b �→ b′ := ¬b
defines an antitone bijection from B onto B′ := h−1[{f }]. Clearly, B ∩ B′ = ∅ and no
element of B′ is a lower bound of an element of B, because h is isotone and e < f in C4.
As h fixes 0 and 1, Lemma 2.1 shows that A is antiidempotent, with h−1[{0}] = {0} and
h−1[{1}] = {1}, and that 0 [resp. 1] is meet- [resp. join-] irreducible in A, finishing the
proof of (iii). In particular, A = B ∪ B′ ∪ {0} ∪ {1} (disjointly).

We verify that A satisfies conditions (iii) and (viii) of Definition 5.1. Let b, c ∈ B.
Because B is closed under the operation · of A, we have

b � c′ iff b · e � ¬c iff b · c � f (by (1), deployed in A), iff e � (b · c)′.

5 In verifying (24), we may assume that its left-hand side is not 0, so x, y, q(x), q(y) �= 0. This
forces x, y ∈ B, whence each conjunct of the right-hand side is 1.
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Clearly, b · c′ = (b → c)′ and h(b′ · c′) = ¬h(b) · ¬h(c) = f 2 = 1, so b′ · c′ = 1. This
completes the proof that A = S�(B), where � is the lattice order of A.

(ii) ⇒ (i): Rigorous compactness was noted in Remark 5.3. Definition 5.1 shows that
·, ¬ and e are preserved by the function h : A −→ C4 such that h(0) = 0, h(1) = 1, h(b) =
e and h(b′) = f for all b ∈ B. As 0 is meet-irreducible (whence 1 is join-irreducible) in
A, the map h preserves ∧, ∨ too. Indeed, if b, c ∈ B, then b � b ∧ c′ �= 0 and b has no
lower bound in B′, so b ∧ c′ ∈ B and, by involution properties, b ∨ c′ ∈ B′. This proves (i)
and (iv).

By (iv), when S�(B) is modular, it will be distributive iff the five-element lattice with
three atoms doesn’t embed into the sublattice B∪B′ of S�(B); see [6, Theorems I.3.5, I.3.6].
That is true if B is distributive, as B and B′ are then distributive sublattices of B ∪ B′. This,
with Lemma 4.8, proves (v). �

DEFINITION 5.5. A Dunn monoid is a square-increasing distributive RL.

Dunn monoids originate in [7] and acquired their name in [19].

COROLLARY 5.6. A De Morgan monoid belongs to U iff it is isomorphic to a subdirect
product of skew reflections of Dunn monoids, where 0 is meet-irreducible in each subdirect
factor.

Proof. The forward implication follows from Theorem 5.4 and the Subdirect Decom-
position Theorem, because the SI homomorphic images of members of U are bounded by
0, 1, are rigorously compact (Theorem 2.6(ii)) and are still crystalline (U being a variety),
and because RL–subreducts of De Morgan monoids inherit distributivity. Conversely, by
Remark 5.3, skew reflections of Dunn monoids satisfy the defining postulates of U, except
possibly for (23) and distributivity (which are effectively given here), and U, like any
quasivariety, is closed under IPS. �

LEMMA 5.7. Let A = S�(B) be a skew reflection of a square-increasing RL B, where
A satisfies e � f . Then, in the notation of Definition 5.1,

(i) b � (b → e)′ for all b ∈ B, and

(ii) 0 is meet-irreducible and 1 is join irreducible in A.

Proof. (i) Let b ∈ B. By (6), b · (b → e) � e, so e � f � (b · (b → e))′. Then
b � (b → e)′, by Definition 5.1(iii).

(ii) Let b, c ∈ B. By (i), c � (c → e)′, i.e., c → e � c′. Because B is an RL–subreduct
of A and 0 /∈ B, we have b ∧ c′ � b ∧ (c → e) ∈ B, so b ∧ c′ �= 0. As B and B′ are
both sublattices of A, this shows that 0 is meet-irreducible (whence 1 is join-irreducible)
in A. �

COROLLARY 5.8. A De Morgan monoid belongs to M iff it satisfies e � f and is
isomorphic to a subdirect product of skew reflections of Dunn monoids.

Proof. This follows from Lemma 5.7(ii) and Corollaries 4.14 and 5.6. �

REMARK 5.9. We can now complete the proof of Corollary 3.6. In [25], Slaney showed
that the free 0-generated De Morgan monoid F is 2 × D4 × A, where A is a skew reflection
of the direct product of four Dunn monoids, called ‘the α segments of CA6, CA10a, CA10b
and CA14’. In each of 2, D4 and the four ‘α segments’, e has just one strict lower bound.
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In the four-fold direct product, therefore, the neutral element has 24 lower bounds, so eA

has 24 + 1 lower bounds in A, by Definition 5.1(iv),(v). Thus, the number of lower bounds
of eF in F (including eF itself) is 2 × 2 × (24 + 1) = 68.

§6. Reflections and M.

DEFINITION 6.1. Let B be a square-increasing RL, with lattice order �B, and let S =
B ∪ B′ ∪ {0, 1}, where B′ = {b′ : b ∈ B} is a disjoint copy of B and 0, 1 are distinct
nonelements of B ∪ B′. Let � be the unique partial order of S whose restriction to B2 is
�B, such that

b � c′ for all b, c ∈ B

and conditions (ii), (iv), and (v) of Definition 5.1 hold. As (i) and (iii) obviously hold too,
we may define the reflection R(B) of B to be the resulting skew reflection S�(B). This
definition is essentially due to Meyer; see [20] or [1, pp. 371–373].

By Theorem 5.2, every Dunn monoid B is an RL–subreduct of its reflection R(B),
and R(B) satisfies e � f (by definition) and is distributive (as B is), so R(B) ∈ M,
by Corollary 5.8. Conversely, the RL–reduct of an algebra from M is of course a Dunn
monoid, whence so are its subalgebras. This justifies a variant of the ‘Crystallization Fact’
of [26, p. 124]:

THEOREM 6.2. The variety of Dunn monoids coincides with the class of all RL–subreducts
of members of M.

COROLLARY 6.3. The equational theory of M is undecidable.

Proof. This follows from Theorem 6.2, because Urquhart [28, p. 1070] proved that the
equational theory of Dunn monoids is undecidable. �

COROLLARY 6.4. M is not generated (as a variety) by its finite members.

Proof. This follows from Corollary 6.3, as M is finitely axiomatized. �
Clearly, in the statements of Theorem 6.2 and Corollary 6.3, we may replace M by any

variety K such that M ⊆ K ⊆ DMM. The same applies to Corollary 6.4 if K is also finitely
axiomatized. In particular, the variety U is not generated by its finite members.

The notational conventions of Definition 5.1 are assumed in the next lemma.

LEMMA 6.5. Let B be a Dunn monoid.

(i) If C is a subalgebra of B, then C∪{c′ : c ∈ C}∪{0, 1} is the universe of a subalgebra
of R(B) that is isomorphic to R(C), and every subalgebra of R(B) arises in this
way from a subalgebra of B.

(ii) If θ is a congruence of B, then

R(θ) := θ ∪ {〈a′, b′〉 : 〈a, b〉 ∈ θ} ∪ {〈0, 0〉, 〈1, 1〉}
is a congruence of R(B), and R(B)/R(θ) ∼= R(B/θ). Also, every proper congru-
ence of R(B) has the form R(θ) for some θ ∈ Con B.

(iii) If {Bi : i ∈ I} is a family of Dunn monoids and U is an ultrafilter over I, then∏
i∈I R(Bi)/U ∼= R

(∏
i∈I Bi/U

)
.

Proof. The first assertions in (i) and (ii) are straightforward. For the final assertions, one
shows that if D is a subalgebra and ϕ a proper congruence of R(B), then D is the reflection
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of the subalgebra of B on D ∩ B, while ϕ = R(B2 ∩ ϕ). To see that ϕ ⊆ R(B2 ∩ ϕ),
observe that if ϕ identifies a with b′ (a, b ∈ B), and therefore a′ with b, it must identify
1 = a′ · b′ with b · a ∈ B. But this contradicts Lemma 2.1(i), because R(B) is rigorously
compact.

(iii) For each i ∈ I, let 0i and 1i denote the extrema of R(Bi) and, for convenience,
define 0i = {0i} and 1i = {1i} and (B′)i = B′

i. By 0, 1, we mean (for the moment) the
extrema of R

(∏
i∈I Bi/U

)
. Consider x ∈ ∏

i∈I R(Bi). As U is an ultrafilter, there is a unique
F(x) ∈ {B, B′, 0, 1} such that

{i ∈ I : x(i) ∈ F(x)i} ∈ U
(see [6, Corollary IV.3.13(a)]). If F(x) is 0 [resp. 1], define h(x) to be 0 [resp. 1]. If F(x) =
B, define h(x) = z/U , where z ∈ ∏

i∈I Bi and, for each i ∈ I,

z(i) =
{

x(i) if x(i) ∈ Bi;

eBi otherwise.

If F(x) = B′, define h(x) = (z/U)′, where z ∈ ∏
i∈I Bi and, for each i ∈ I,

z(i) =
{

the unique b ∈ Bi such that x(i) = b′, if this exists;
eBi , otherwise.

Then h is a homomorphism from
∏

i∈I R(Bi) onto R
(∏

i∈I Bi/U
)
, whose kernel is {〈x, y〉 ∈(∏

i∈I R(Bi)
)2 : {i ∈ I : x(i) = y(i)} ∈ U}, so the result follows from the Homomorphism

Theorem. �

DEFINITION 6.6. Given a variety K of Dunn monoids, the reflection R(K) of K is the
subvariety V{R(B) : B ∈ K} of M.

As a function from the lattice of varieties of Dunn monoids to the subvariety lattice of
M, the operator R is obviously isotone.

LEMMA 6.7. R is order-reflecting and therefore injective.

Proof. Let R(K) ⊆ R(L), where K and L are varieties of Dunn monoids. We must show
that K ⊆ L. Let A ∈ K be SI. It suffices to show that A ∈ L. By assumption, R(A) ∈ R(L).
Also, R(A) is SI (because A is), so by Jónsson’s Theorem, R(A) ∈ HSPU{R(B) : B ∈ L}.
Because L is closed under H, S and PU, it follows from Lemma 6.5 that R(A) ∼= R(B) for
some B ∈ L, whence A ∼= B, and so A ∈ L. �

A Brouwerian algebra is an RL satisfying x · y = x ∧ y, or equivalently, a Dunn monoid
satisfying x � e. Every variety of countable type has at most 2ℵ0 subvarieties, and it is
known that there are 2ℵ0 distinct varieties of Brouwerian algebras [29]. So, the injectivity
of R in Lemma 6.7 yields the following conclusion.

THEOREM 6.8. The variety M has 2ℵ0 distinct subvarieties.

§7. Covers of atoms. When a lattice L has a least element ⊥, its atoms are the covers
of ⊥. Provided that L is modular, the join of any two distinct atoms covers each join-and, so
a cover c of an atom is interesting when it is not the join of two atoms. If L is distributive,
that is equivalent to the ostensibly stronger demand that c be join-irreducible.
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The lattice of subvarieties of a congruence distributive variety E is itself distributive
[16, Corollary 4.2]. Therefore, once the atoms of this lattice have been determined, the
immediate concern is to identify the join-irreducible covers of each atom E′; we refer to
these as covers of E′ within E. In particular, it behoves us to investigate the join-irreducible
covers, within DMM, of the four varieties in Theorem 3.2.

By Theorem 2.7(ii), V(S5) is a join-irreducible cover of V(S3) within DMM.
For each X ∈ {2, S3, C4, D4} and each variety K of De Morgan monoids, if

A ∈ (K\I(X))FSI is nontrivial, then A /∈ V(X), by Jónsson’s Theorem, because the nontriv-
ial members of HS(X) belong to I(X). In this case, if K covers V(X), then K = V(A, X),
so if K is also join-irreducible, it coincides with V(A). In other words:

FACT 7.1. If X ∈ {2, S3, C4, D4}, then every join-irreducible cover of V(X) within
DMM is generated by each of its nontrivial FSI members, other than the isomorphic copies
of X.

In the subvariety lattice of U, the only atom is V(C4) (as U ⊆ W), so every cover of
V(C4) within U is join-irreducible.

Up to isomorphism, there are just seven nontrivial 0-generated [F]SI De Morgan
monoids, all of which are finite. They were identified by Slaney [25], and are denoted
by C2, C3, . . . , C8 in [26].

Slaney’s C2, C3 and C4 are our 2, D4 and C4, respectively. His C5, . . . , C8 will not be
defined in full here, but their significant additional properties, for present purposes, are as
follows. For n ∈ {5, 6, 7, 8}, Cn is antiidempotent and not totally ordered (in fact, e and
f are incomparable), with |(e]| = 3, so Cn is not simple. It is therefore a homomorphic
preimage of C4, by Theorems 3.1 and 2.11, i.e., Cn ∈ W. But, because Cn is rigorously
compact (Theorem 2.6(ii)) and violates e � f , Lemma 4.8 shows that Cn ∈ U\M, whence
V(Cn) ⊆ U. Moreover, as |(e]| = 3, Cn has just three deductive filters, and hence just
three factor algebras. The class of nontrivial members of HS(Cn) is therefore I(Cn, C4),
because Cn is 0-generated. Thus, V(Cn) is a (join-irreducible) cover of V(C4) within U, by
Jónsson’s Theorem.

THEOREM 7.2.

(i) V(2) has no join-irreducible cover within DMM.

(ii) V(S5) is the only join-irreducible cover of V(S3) within DMM.

(iii) If K is a join-irreducible cover of V(C4) within DMM, then K consists of anti-
idempotent algebras and exactly one of the following holds.

(1) K ⊆ M.

(2) K = V(Cn) for some n ∈ {5, 6, 7, 8}.
(3) K = V(A) for some simple 1-generated De Morgan monoid A, where C4 is a

proper subalgebra of A.

(iv) If K is a join-irreducible cover of V(D4) within DMM, then K = V(A) for some
simple 1-generated De Morgan monoid A, where D4 is a proper subalgebra of A.
In this case, K consists of antiidempotent algebras.

Proof. Let X ∈ {2, S3, C4, D4}, and let K be a join-irreducible cover of V(X) within
DMM. As V(X) � K, there exists a finitely generated SI algebra A ∈ K\V(X). Then
K = V(A), by Fact 7.1. Note that A is rigorously compact, by Theorem 2.6(iii). Let B
be the 0-generated subalgebra of A, so B is FSI, by Lemma 2.2(i). Now B is finite, by the
aforementioned result of Slaney, so B is SI or trivial.

https://doi.org/10.1017/S1755020318000448 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000448


VARIETIES OF DE MORGAN MONOIDS: COVERS OF ATOMS 357

If B is trivial, then A is an odd Sugihara monoid (by Theorem 2.4(i)), whence K consists
of odd Sugihara monoids, forcing X = S3 and K = V(S5) (by Theorem 2.7(ii)), as K
covers V(X).

We may therefore assume that B is nontrivial, in view of the present theorem’s statement.
By Theorems 3.1 and 2.11, B is simple or crystalline, so by Theorem 2.8, we may assume
that B ∈ {2, D4} or C4 ∈ H(B).

If B = 2, then A is idempotent (by Theorem 2.4(ii)). In this case, if X �= 2, then
K = V(X, 2), while if X = 2, then A �∼= 2 (as A /∈ V(X)), so S3 ∈ H(A) (by the remark
preceding Theorem 2.7), whereupon K = V(2, S3). Either way, this contradicts the join-
irreducibility of K, so B �= 2, whence D4 = B or C4 ∈ H(B).

For the same reason, the cases X �= D4 = B and X �= C4 ∈ H(B) are ruled out, as
K would be V(X, D4) in the first of these, and V(X, C4) in the second. If X = C4 ∈
H(B)\I(B), then K = V(B), instantiating (iii)(2), in view of Slaney’s findings. The asser-
tion ‘X = C4 ∈ H(B)\I(B)’ may therefore be assumed false. (The exclusivity claim in (iii)
will be proved separately below.)

It follows that B ∼= X ∈ {C4, D4}. We identify B with X and refer henceforth only to the
latter. Thus, X is a subalgebra of A, and X �= A (as A /∈ V(X)), so A is not 0-generated.
Also, K has no nontrivial idempotent member (otherwise K would be V(X, 2) or V(X, S3)),
so K consists of antiidempotent algebras, by Theorem 2.4(iii).

By Theorem 3.1, there is a surjective homomorphism h : A −→ E for some simple E ∈ K.
Now E �∼= D4, by Theorem 2.11, because A is not 0-generated.

If X = C4, then C4 ∈ S(A). If, moreover, C4 ∈ H(A), then A ∈ N, by Remark 4.2, so
A ∈ M, by Corollary 4.15, because A is rigorously compact. In this case, K ⊆ M, because
K = V(A).

We may therefore assume that X = D4 or X = C4 /∈ H(A). In both cases, E �∼= X. As E is
a nontrivial member of K, it is not idempotent, so the subalgebra h[X] of E cannot be trivial
(by Theorem 2.4(ii)). Therefore, h|X embeds X into E, because X is simple. Since X is
0-generated and finite, it is isomorphic to a proper subalgebra of a 1-generated subalgebra
E′ of E. As E is simple, so is E′, by the CEP for IRLs. Thus, because X � E′ ∈ K, Fact 7.1
gives K = V(E′), witnessing (iii)(3) or (iv).

For the mutual exclusivity claim in (iii), note that (1) precludes (2) (as Cn /∈ M) and
(3) (as C4 /∈ H(A) for the simple generator A of K in (3)). Also, (2) precludes (3), by
Corollary 2.3, because Cn is SI but not simple. �

If K and A are as in Theorem 7.2(iii)(3) [resp. 7.2(iv)], then K is semisimple, by Corol-
lary 2.3. If, moreover, A is finite, then the class of simple members of K is I(C4, A) [resp.
I(D4, A)], by Jónsson’s Theorem and the CEP. The options for A are discussed in §9 and
§10.

An immediate consequence of Theorem 7.2(iii) is the following.

COROLLARY 7.3. The varieties V(C5), V(C6), V(C7) and V(C8) are exactly the covers
of V(C4) within U that are not within M.

In the next section, we shall show that V(C4) has just six covers within M. Some
preparatory results will be required. The subalgebra of an algebra A generated by a subset
X of A shall be denoted by SgAX.

LEMMA 7.4. Let K be a cover of V(C4) within U. Then K = V(A) for some skew
reflection A of an SI Dunn monoid B, where 0 is meet-irreducible in A, and A is generated
by the greatest strict lower bound of e in B.
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Proof. By assumption, there is an SI algebra G ∈ K\V(C4), and K is join-irreducible in
the subvariety lattice of DMM. As G ∈ U, Corollary 5.6 shows that G is a skew reflection
of a Dunn monoid H, and 0 is meet-irreducible in G. Now H is nontrivial, because G �∼= C4,
so Remark 5.3 shows that H is SI, and that H includes the greatest strict lower bound of e
in G, which we denote by c. Then A := SgG{c} ∈ K is SI, by Lemma 2.2(iii), and A �∼= C4,
as 0 < c < e. Consequently, K = V(A), by Fact 7.1. Clearly, A is the skew reflection of
the SI Dunn monoid B := SgA(H ∩ A), with respect to the restricted order of A, and 0 is
meet-irreducible in A. �

A partial converse of Lemma 7.4 is supplied below. It extends the claim about C5, . . . , C8
preceding Theorem 7.2.

LEMMA 7.5. If a skew reflection A ∈ U of a finite simple Dunn monoid B is generated
by the least element of B, then V(A) is a (join-irreducible) cover of V(C4) within U.

Proof. Let ⊥ be the least element of B. By Lemma 2.2(iv), ⊥ is the only strict lower
bound of e in B. The lower bounds of e in A therefore form the chain 0 < ⊥ < e, so
A �∼= C4, but A is SI, by Remark 5.3. Therefore, A /∈ V(C4), by Jónsson’s Theorem, and
so V(C4) � V(A) ⊆ U. To see that V(A) covers V(C4), let E ∈ V(A)\V(C4) be SI. We
must show that A ∈ V(E). Since A is finite, Jónsson’s Theorem gives E ∈ HS(A). Any
subalgebra D of A is nontrivial, so e has a strict lower bound in D, by (13). If 0 is the only
strict lower bound of e in D, then D is a simple member of U (by Lemma 2.2(iv)), whence
D ∼= C4 (as U ⊆ W). Otherwise, ⊥ ∈ D, in which case D = A, as A is generated by ⊥.
Thus, S(A) ⊆ {C4, A}, and so E is a homomorphic image of A (as C4 is simple). Now A
has only three deductive filters (because |(e]| = 3 in A), so A has just three factor algebras,
of which A and a trivial algebra are two. The other is isomorphic to C4, as A ∈ U ⊆ W.
Therefore, E ∼= A, whence A ∈ V(E), as required. �

The RL–reducts of 2, S3 and C4 shall be denoted by 2+, S+
3 and C+

4 , respectively. (In
fact, S3 and S+

3 are termwise equivalent, because ¬x is definable as x → e in S+
3 .) The

following result will be needed later.

THEOREM 7.6. Let B be a square-increasing RL that is SI. Let c be the greatest strict
lower bound of e in B (which exists, by Lemma 2.2(iii)).

If c → e = e, then SgB{c} = {c, e} and SgB{c} ∼= 2+.
If c → e �= e, then SgB{c} ∼= S+

3 , its lattice reduct being c < e < c → e.

Proof. As c < e, we have c2 = c, by (17), and e � c → e, by (12). Then c → c = c →
e, because (11), (14), and (18) yield

c → c � c → e � c → (c → c) � c → c.

Therefore, in view of (14), if c → e = e, then {c, e} is the universe of a subalgebra of B,
isomorphic to 2+.

We may now assume that e < c → e. Then (c → e) → e � e → e = e, by (11),
whereas e � (c → e) → e, by (12), so (c → e) → e < e. Then (c → e) → e � c, by
definition of c, so (c → e) → e = c, by (6). It suffices, therefore, to show that the chain
(c → e) → e < e < c → e constitutes a subalgebra of B, isomorphic to S+

3 , but this
was already proved by Galatos [10, Theorem 5.7]. Although its statement in [10] assumes
idempotence (and a weak form of commutativity) for fusion, all appeals to idempotence in
the proof require only the square-increasing law. �
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§8. Covers of V(C4) within M. If K is a cover of V(C4) within M, then by Lemma 7.4
and Remark 5.3, there exist A, B and ⊥ such that K = V(A),

• B is an SI Dunn monoid, A is a skew reflection of B in which
e < f , and A = SgA{⊥}, where ⊥ ∈ B is the greatest strict lower
bound of e in A.

The displayed properties of A, B and ⊥ will now be assumed, until the ‘conclusions’
after Lemma 8.9. By Lemma 5.7(ii), they imply that 0 is meet-irreducible (and 1 join-
irreducible) in A. We shall prove that they also force A to be finite and B simple, with
|A| ≤ 14 (i.e., |B| ≤ 6).

We define � = ⊥ → e, so � ∈ B. By Theorem 7.6, SgB{⊥} consists of ⊥, e, � and is
isomorphic to 2+ (with e = �) or to S+

3 (with e < �). The respective tables for · and →
in SgB{⊥} are recalled below. (There is no guarantee that SgB{⊥} exhausts B.)

· ⊥ � → ⊥ � · ⊥ e � → ⊥ e �
⊥ ⊥ ⊥ ⊥ � � ⊥ ⊥ ⊥ ⊥ ⊥ � � �
� ⊥ � � ⊥ � or e ⊥ e � e ⊥ e �

� ⊥ � � � ⊥ ⊥ �

Warning. Although ⊥, � will turn out to be extrema for B, that fact will emerge only
after Lemma 8.9. Until then, our use of these symbols should not be taken to justify claims
like ‘b · ⊥ = ⊥ for all b ∈ B’ on the basis of (15) alone. Such claims will be justified
directly when needed.

All this notation will remain fixed until the ‘conclusions’ after Lemma 8.9. We use freely
the notation from Definition 5.1 as well, e.g., ⊥′ = ¬A⊥ ∈ B′ and �′ = ¬A � ∈ B′. The
superscript A will normally be omitted.

THEOREM 8.1. The algebra A is the reflection of B iff e and �′ are comparable. In this
case, e < �′ and B = SgB{⊥}, so B consists of ⊥, e, � only, and

(i) e = � iff B ∼= 2+, iff A ∼= R(2+);

(ii) e �= � iff B ∼= S+
3 , iff A ∼= R(S+

3 ).

Proof. In the first assertion, necessity follows from the definition of reflection. Con-
versely, suppose e and �′ are comparable, and let h be the unique homomorphism from A to
C4. As h is isotone and h(e) = e < f = h(�′), we can’t have �′ � e, so e < �′ = (�·�)′.
Then, by Definition 5.1(iii), � � �′, so

0 < ⊥ < e � � < �′ � f < ⊥′ < 1, (30)

where e = � iff �′ = f . The elements ⊥, e, � ∈ B are closed under ·, →, so items (vi)–
(ix) of Definition 5.1 ensure that the elements listed in (30) are closed under ·, ∧, ∨, ¬.
They include e, so they constitute a subalgebra of A. As they also include ⊥, which
generates A, they exhaust A. Consequently, A = R(B), where B consists of ⊥, e, � only,
and is therefore generated by ⊥. Then (i) and (ii) follow from Theorem 7.6. �

COROLLARY 8.2. If SgB{⊥} �∼= S+
3 , then A ∼= R(2+).

Proof. In this case, SgB{⊥} ∼= 2+, by Theorem 7.6, so e = �. As A ∈ M, we have
e < f = e′ = �′, so the result follows from Theorem 8.1. �
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By Lemma 7.5, R(2+) and R(S+
3 ) generate covers of V(C4) within M, as each is gener-

ated by its own unique atom. Because our aim is now to isolate the other covers of V(C4)
within M, the previous two results allow us to assume, until further notice, that

• SgB{⊥} is isomorphic to S+
3 and has universe ⊥ < e < �, and

• A is not the reflection of B, i.e., e and �′ are incomparable.

Consider the formal diagram below.

��
�

�
�
�
�

�
�

��
�

�
�

�
�

�

�

�
�
�
�
��

�
�

�

�

�
�

�
�

�
�
��
�

�
�
�
�

�
�
�

�

��
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

⊥′

f

f ∧ (�′ ∨ �)

�′ ∨ e

�′

�′ ∨ �

�

f ∧ �
e ∨ (�′ ∧ �)

e �′ ∧ �

⊥

By Theorem 5.4(iv), the labels on the thicker points all identify elements of B, but we do
not claim that the twelve depicted elements are distinct in A. (It will turn out that they
exhaust A, but that is not yet obvious.)

LEMMA 8.3. The subset of A comprising the elements depicted above is closed under
the operations ∧, ∨ and ¬ of A.

Moreover, the label on the diagrammatic join of any two elements is the actual join in A
of the labels on those elements, and similarly for meets.

Proof. Note first that the diagram order is sound, in the sense that wherever x is depicted
as a lower bound of y, then x � y in A. This is easy to see, except perhaps for the
A-inequalities ⊥ � �′ and �′∧� � f (= e′). The first of these follows from Lemma 5.7(i),
as � = ⊥ → e, and the second from Definition 5.1(iii), because e � � � � ∨ �′ =
(�′ ∧ �)′ = ((�′ ∧ �) · e)′ in A.

Closure under ¬ follows from the identity ¬¬x = x and De Morgan’s laws.
Let x, y be expressions from the diagram. We shall show that x ∨ y (computed in A) is

equal (in A) to the label on the diagrammatic join of x, y. In view of the chosen labels and
De Morgan’s laws, the same will then follow for meets. We go through the possible values
of x. Because the diagram order is sound, we can eliminate cases where y is comparable
(according to the diagram) with x. This eliminates ⊥ and ⊥′ as values for x and for y.

If x is e, then the uneliminated values of y are �′ and �′ ∧ �. These cases are disposed
of by noting that e∨�′ and e∨ (�′ ∧�) appear (up to commutativity of ∨) in the diagram,
and that the diagram order makes them the least upper bounds, respectively, of e, �′ and
of e, �′ ∧ �.

When x is �′ ∧ �, the only uneliminated value of y is e, which we have just considered.
When x is e ∨ (�′ ∧ �), the uneliminated possibilities for y are e, �′ ∧ �, �′, of which

all but �′ have been considered. As e ∨ (�′ ∧ �) ∨ �′ = �′ ∨ e, which appears (in the
correct place) in the diagram, we are done with this case.
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When x is �′, the only uneliminated choices for y, not already considered, are � and
f ∧ �. Now �′ ∨ � is well-placed in the diagram, and in A, we have �′ ∨ (f ∧ �) =
(�′ ∨ f ) ∧ (�′ ∨ �) = f ∧ (�′ ∨ �), which is also well-placed.

When x is �′ ∨ e, the only interesting possibilities for y are � and f ∧ �. And in A, we
have well-placed values (�′ ∨ e) ∨ � = �′ ∨ � and

(�′ ∨ e) ∨ (f ∧ �) = (�′ ∨ e ∨ f ) ∧ (�′ ∨ e ∨ �) = f ∧ (�′ ∨ �).

From cases already considered, it follows that (f ∧ �) ∨ y is well-placed in the diagram,
for every y.

When x is f ∧ (�′ ∨ �), the only interesting y is �. In A, we have

(f ∧ (�′ ∨ �)) ∨ � = (f ∨ �) ∧ ((�′ ∨ �) ∨ �) = (f ∨ �) ∧ (�′ ∨ �).

This expression will simplify to the well-placed �′ ∨ �, provided that f ∨ � = ⊥′, or
equivalently, e∧�′ = ⊥ (in A), which we now show. We have already verified that ⊥ � �′,
so ⊥ � e ∧ �′. As e � �′, we have e ∧ �′ < e, whence e ∧ �′ � ⊥ (by definition of ⊥),
and so e ∧ �′ = ⊥, as required.

When x is �, the only new y to consider is f , but we have just shown that � ∨ f = ⊥′,
which is well-placed.

When x is f , the only new y is �′ ∨ �, and � � �′ ∨ � � ⊥′. In A, we have seen that
f ∨ � = ⊥′ = f ∨ ⊥′, so f ∨ (�′ ∨ �) = ⊥′, which is well-placed.

When x is �′ ∨ �, there is no longer any unconsidered option for y. �

LEMMA 8.4. Fusion in A behaves as in the following table.

· ⊥ e �′ ∧ � e ∨ (�′ ∧ �) f ∧ � �
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
e e �′ ∧ � e ∨ (�′ ∧ �) f ∧ � �

�′ ∧ � �′ ∧ � �′ ∧ � �′ ∧ � �′ ∧ �
e ∨ (�′ ∧ �) e ∨ (�′ ∧ �) f ∧ � �

f ∧ � �
� �

Proof. The submatrix involving only ⊥, e, � is justified, because SgB{⊥} is an RL–
subreduct of A. If x ∈ {�′ ∧ �, e ∨ (�′ ∧ �), f ∧ �}, then ⊥ � x � �, so ⊥ · x = ⊥, by
(11), since ⊥2 = ⊥ = ⊥ · �. This justifies the first row; the second records the neutrality
of e in A.

To see that (�′ ∧ �) · � = �′ ∧ �, note the following consequences of (11), Defini-
tion 5.1(viii) and the tables for SgB{⊥}:

(�′ ∧ �) · � � (�′ · �) ∧ �2 = (� → �)′ ∧ �
= �′ ∧ � = (�′ ∧ �) · e � (�′ ∧ �) · �.

For any x ∈ {�′ ∧ �, e ∨ (�′ ∧ �), f ∧ �}, we now have

�′ ∧ � � (�′ ∧ �)2 � (�′ ∧ �) · x � (�′ ∧ �) · � = �′ ∧ �,

so (�′ ∧ �) · x = �′ ∧ �. If y ∈ {e ∨ (�′ ∧ �), f ∧ �, �}, then

� = e · � � y · � � �2 = �,
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whence y · � = �. By (8) and the idempotence of �′ ∧ �,

(e ∨ (�′ ∧ �))2 = e ∨ (�′ ∧ �) ∨ (�′ ∧ �)2 = e ∨ (�′ ∧ �).

Finally, by (8) and since �′ � f , we have

(e ∨ (�′ ∧ �)) · (f ∧ �) = (e · (f ∧ �)) ∨ ((�′ ∧ �) · (f ∧ �))

= (f ∧ �) ∨ (�′ ∧ �) = f ∧ �. �

LEMMA 8.5. Residuation in A behaves as in the following table.

→ ⊥ e �′ ∧ � e ∨ (�′ ∧ �) f ∧ � �
⊥ � � � � � �
e ⊥ e �′ ∧ � e ∨ (�′ ∧ �) f ∧ � �

�′ ∧ � � � � �
e ∨ (�′ ∧ �) ⊥ �′ ∧ � e ∨ (�′ ∧ �) f ∧ � �

f ∧ � ⊥ �′ ∧ � e ∨ (�′ ∧ �) �
� ⊥ ⊥ �′ ∧ � �′ ∧ � �′ ∧ � �

Proof. All elements in the table lie between ⊥ and �. The submatrix involving only
⊥, e, � documents residuation in SgB{⊥}, so the first row and last column follow from
(11), because � = ⊥ → ⊥ = ⊥ → � = � → �. The second row is justified by (14).
Then (�′ ∧ �) → �′ = ¬((�′ ∧ �) · �) = (�′ ∧ �)′ (Lemma 8.4) = �′ ∨ �, so by (9),

(�′ ∧ �) → (�′ ∧ �) = ((�′ ∧ �) → �′) ∧ ((�′ ∧ �) → �) = (�′ ∨ �) ∧ � = �.

Now, for each x ∈ {e ∨ (�′ ∧ �), f ∧ �},
� = (�′ ∧ �) → (�′ ∧ �) � (�′ ∧ �) → x � (�′ ∧ �) → � = �,

by (11), whence (�′ ∧ �) → x = �.
Clearly, e ∨ (�′ ∧ �) � � = ⊥ → ⊥, so (7) and (11) yield

⊥ � (e ∨ (�′ ∧ �)) → ⊥ � e → ⊥ = ⊥,

whence (e ∨ (�′ ∧ �)) → ⊥ = ⊥. By Lemma 8.4, e ∨ (�′ ∧ �) is an idempotent upper
bound of e, so (e ∨ (�′ ∧ �)) → (e ∨ (�′ ∧ �)) = e ∨ (�′ ∧ �), by (5). Also, by (10),

(e ∨ (�′ ∧ �)) → (�′ ∧ �) = (e → (�′ ∧ �)) ∧ ((�′ ∧ �) → (�′ ∧ �))

= (�′ ∧ �) ∧ � = �′ ∧ �;

(e ∨ (�′ ∧ �)) → (f ∧ �) = (e → (f ∧ �)) ∧ ((�′ ∧ �) → (f ∧ �))

= (f ∧ �) ∧ � = f ∧ �.

Similarly, from f ∧ � � � = ⊥ → ⊥ and e � f ∧ � and (7), (11), we obtain ⊥ �
(f ∧ �) → ⊥ � e → ⊥ = ⊥, hence (f ∧ �) → ⊥ = ⊥. Also, by (9),

(f ∧ �) → (�′ ∧ �) = ((f ∧ �) → �′) ∧ ((f ∧ �) → �)

= ¬((f ∧ �) · �) ∧ � = �′ ∧ � (by Lemma 8.4);

(f ∧ �) → (f ∧ �) = ((f ∧ �) → f ) ∧ ((f ∧ �) → �) = ¬(f ∧ �) ∧ �
= (e ∨ �′) ∧ � = e ∨ (�′ ∧ �) (by distributivity, since e � �);
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� → (�′ ∧ �) = (� → �′) ∧ (� → �) = ¬(� · �) ∧ � = �′ ∧ �;
� → (f ∧ �) = (� → f ) ∧ (� → �) = ¬� ∧ � = �′ ∧ �,

so, because �′ ∧ � � e ∨ (�′ ∧ �) � f ∧ �, (11) yields

� → (e ∨ (�′ ∧ �)) = �′ ∧ �. �
Recall that A has the following properties (under present assumptions):

• [�′) ∩ (�] = ∅, by the definition of a skew reflection,
• ⊥ < e < � and �′ < f < ⊥′, as SgB{⊥} ∼= S+

3 , and
• e and �′ are incomparable, by Theorem 8.1, as A �= R(B).

There are only four ways to identify elements from the diagram preceding Lemma 8.3
while respecting these rules. Thus, A must have one of the four Hasse diagrams below,
where the thicker points denote the elements of B.
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⊥
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⊥
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CASE IV

LEMMA 8.6. In Cases II, III and IV, we have (f ∧ �) → e = ⊥.

Proof. From f ∧ � � � = ⊥ → e and (7) we infer ⊥ � (f ∧ �) → e. As e � f ∧ �,
(11) shows that (f ∧ �) → e � e → e = e. In Cases II, III and IV, f ∧ � � e, so (12)
shows that (f ∧ �) → e < e. Therefore, (f ∧ �) → e � ⊥ (by definition of ⊥), hence the
result. �

LEMMA 8.7. In Cases II and IV, we have (f ∧ �)2 = �.

Proof. By (11), (f ∧�)2 � �2 = �. By Lemma 8.5, (f ∧�) → (f ∧�) = e∨(�′ ∧�).
In Cases II and IV, therefore, (f ∧ �) → (f ∧ �) �= f ∧ � � e, so f ∧ � is not idempotent
(by (5)), i.e., f ∧ � < (f ∧ �)2. Suppose, with a view to contradiction, that (f ∧ �)2 < �.
Then the diagram below depicts a five-element sub-poset of 〈A; �〉, which we claim is a
sublattice of 〈A; ∧, ∨〉. That will contradict the distributivity of A, finishing the proof.

��
��

�

�

��

���
�

�
��

f ∧ �

f
(f ∧ �)2

�

⊥′

https://doi.org/10.1017/S1755020318000448 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000448


364 T. MORASCHINI, J. G. RAFTERY, AND J. J. WANNENBURG

The claim amounts to the assertion that f ∨ (f ∧ �)2 = ⊥′. As f and (f ∧ �)2 are
incomparable, we have f < f ∨ (f ∧ �)2 � ⊥′. In A, however, ⊥′ is the smallest
strict upper bound of f (because ⊥ is the greatest strict lower bound of e). Therefore,
f ∨ (f ∧ �)2 = ⊥′. �

LEMMA 8.8. In Cases III and IV, ⊥ is the value of all three of

(�′ ∧ �) → e, (�′ ∧ �) → ⊥ and (e ∨ (�′ ∧ �)) → e.

Proof. As �′ ∧ � � � = ⊥ → ⊥ and ⊥ � e, we have

⊥ � (�′ ∧ �) → ⊥ � (�′ ∧ �) → e,

by (7) and (11). Thus, the first claim subsumes the second. Suppose, with a view to
contradiction, that

⊥ < (�′ ∧ �) → e. (31)

Since e � �, it follows from (11) that

(�′ ∧ �) → e � � · ((�′ ∧ �) → e). (32)

On the other hand, (�′ ∧ �) · � = �′ ∧ �, by Lemma 8.4, so

(�′ ∧ �) · � · ((�′ ∧ �) → e) = (�′ ∧ �) · ((�′ ∧ �) → e) � e,

by (6), whence � · ((�′ ∧ �) → e) � (�′ ∧ �) → e, by (2). Then, by (32),

� · ((�′ ∧ �) → e) = (�′ ∧ �) → e = d, say. (33)

In Cases III and IV, �′ ∧ � � e, so e � d, by (12). Consequently, d � f , by
Theorem 2.6(i), because A is SI. Therefore, e � ¬d = ¬(d · �) (by (33)) = d → �′,
so d � �′, i.e., (�′ ∧ �) → e � �′. Also, ⊥ � �′ ∧ �, so by (11), (�′ ∧ �) → e �
⊥ → e = �. Therefore,

(�′ ∧ �) → e � �′ ∧ �. (34)

Now, by (2),

e � (�′ ∧ �) · ((�′ ∧ �) → e) � ((�′ ∧ �) → e)2 (by (34))

� (�′ ∧ �) → e > ⊥ (by (31)).

This forces

(�′ ∧ �) · ((�′ ∧ �) → e) = e, (35)

by definition of ⊥. Then, by Lemma 8.4,

�′ ∧ � = (�′ ∧ �)2 � (�′ ∧ �) · ((�′ ∧ �) → e) (by (34)) = e (by (35)),

contradicting the diagrams for Cases III and IV. Thus, (�′ ∧ �) → e = ⊥.
Finally, by (10) and the claim just proved,

(e ∨ (�′ ∧ �)) → e = (e → e) ∧ ((�′ ∧ �) → e) = e ∧ ⊥ = ⊥. �
The next lemma applies to Case IV. Its statement remains true in Case II, but is redun-

dant there, as �′ ∧ � = ⊥ and e ∨ (�′ ∧ �) = e in Case II (cf. Lemma 8.6).

LEMMA 8.9. In Case IV, we have (f ∧ �) → (e ∨ (�′ ∧ �)) = �′ ∧ �.
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Proof. Observe that

�′ ∧ � = (f ∧ �) → (�′ ∧ �) (by Lemma 8.5)

� (f ∧ �) → (e ∨ (�′ ∧ �)) (by (11))

� e → (e ∨ (�′ ∧ �)) (by (11), as e � f ∧ �)

= e ∨ (�′ ∧ �) (by (14)).

In Case IV, f ∧ � � e ∨ (�′ ∧ �), so e � (f ∧ �) → (e ∨ (�′ ∧ �)), by (12). Thus,
(f ∧ �) → (e ∨ (�′ ∧ �)) �= e ∨ (�′ ∧ �). Suppose, with a view to contradiction, that
(f ∧ �) → (e ∨ (�′ ∧ �)) �= �′ ∧ �. Then

�′ ∧ � < (f ∧ �) → (e ∨ (�′ ∧ �)) < e ∨ (�′ ∧ �),

so the Hasse diagram below depicts a five-element sub-poset of 〈A; �〉.

���
�

�
��

�
��

�

�

���

⊥

e
�′ ∧ �
(f ∧ �) → (e ∨ (�′ ∧ �))

e ∨ (�′ ∧ �)

Using the fact that ⊥ is the greatest strict lower bound of e in A, we obtain

e ∧ ((f ∧ �) → (e ∨ (�′ ∧ �))) � ⊥
(cf. the proof of Lemma 8.7). On the other hand, by Lemma 8.4,

(f ∧ �) · ⊥ = ⊥ � e ∨ (�′ ∧ �),

so by (2), ⊥ � (f ∧ �) → (e ∨ (�′ ∧ �)). Also, ⊥ � e, so

⊥ � e ∧ ((f ∧ �) → (e ∨ (�′ ∧ �))).

Therefore, e∧ ((f ∧�) → (e∨ (�′ ∧�))) = ⊥, whence the elements depicted above form
a sublattice of 〈A; ∧, ∨〉, contradicting the distributivity of A. �

This completes the tables from Lemmas 8.4 and 8.5 in all cases.

Conclusions. The above arguments put constraints on B and on the order � if A =
S�(B) is to generate a cover of V(C4) within M. In particular, B must be finite and simple,
with |B| ≤ 6 (i.e., |A| ≤ 14), and in each of Cases I–IV, there is at most one way to choose
� and the operations ·, → on B if this is to happen, in view of Lemmas 8.3–8.9. It remains,
however, to check that in each case, B really is a Dunn monoid for which SgA{⊥} = A. If
so, then since B is finite and simple, V(A) will indeed be a cover of V(C4) within M, by
Lemma 7.5, and the resulting varieties will be the only covers of V(C4) within M, apart
from R(2+) and R(S+

3 ).
In Case I, the intended B is clearly the Dunn monoid S+

3 , which is generated by ⊥, so
SgA{⊥} = A.

In Case II, B ∼= C+
4 , so B is a Dunn monoid. Its elements form the chain

⊥ < e < f ∧ � < �.

As the co-atom of B is f ∧ �, it is clear that ⊥ generates the skew reflection A of B shown
in the diagram for Case II.
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In Case III, the intended elements of B are

⊥, e, �′ ∧ �, � and f ∧ � = e ∨ (�′ ∧ �).

That the operations in the lemmas turn this into a Dunn monoid (actually, an idempotent
one) with neutral element e can be verified mechanically, the only real issues being the
associativity of fusion and the law of residuation; we omit the details.

We shall call this Dunn monoid T5. It is clear from the above description of its elements
that its skew reflection A, in the diagram for Case III, is generated by ⊥.

Finally, in Case IV, the intended elements of B are

⊥, e, �′ ∧ �, e ∨ (�′ ∧ �), f ∧ � and �.

We suppress the mechanical verification that this becomes a Dunn monoid, with neutral
element e, when equipped with the operations in the lemmas.

We denote this Dunn monoid by T6. Again, the above description of its elements shows
that its skew reflection A, in the diagram for Case IV, is generated by ⊥.

We have now proved the following.

THEOREM 8.10. The covers of V(C4) within M are just

V(R(2+)), V(R(S+
3 )), V(S�(S+

3 )), V(S�(C+
4 )), V(S�(T5)) and V(S�(T6)),

for the last four of which � is as in the respective diagrams of Cases I–IV.

The claim that these varieties cover V(C4) will be strengthened in Theorem 8.13.
To facilitate the proof, let G1, . . . , G6 abbreviate the six algebras mentioned in Theo-
rem 8.10, so that V(Gi), i = 1, . . . , 6, are the covers of V(C4) within M. Their varietal join
V(G1, . . . , G6) is locally finite, like any finitely generated variety. For each i ∈ {1, . . . , 6},
recall that Gi and C4 are the only subalgebras of Gi and are also, up to isomorphism,
the only nontrivial homomorphic images of Gi (because |(e]| = 3 in Gi). By Jónsson’s
Theorem, therefore,

if ∅ �= X ⊆ {G1, . . . , G6, C4}, then V(X)SI = I(X ∪ {C4}). (36)

LEMMA 8.11. Let Z1, . . . , Zn ∈ {G1, . . . , G6, C4}, where 0 < n ∈ ω. Then Z1, . . . , Zn

are retracts of each algebra that embeds subdirectly into
∏n

i=1 Zi.

Proof. The proof is by induction on n. The case n = 1 is trivial, so let n > 1. For
Z := ∏n

i=1 Zi, suppose that A ∈ S(Z) and that πi[A] = Zi for each canonical projection
πi : Z −→ Zi.

Let B = π [A], where π : Z −→ ∏n−1
i=1 Zi is the homomorphism

〈z1, . . . , zn−1, zn〉 �→ 〈z1, . . . , zn−1〉.
Then B embeds subdirectly into

∏n−1
i=1 Zi, so by the induction hypothesis,

Z1, . . . , Zn−1 are retracts of B. (37)

Also, A embeds subdirectly into B × Zn and shall be identified here with the image
of the obvious embedding. Fleischer’s Lemma [2, Theorem 6.2] applies to any algebra
that embeds subdirectly into the direct product of a pair of algebras from a congruence
permutable variety—in particular, from any variety of IRLs. According to this lemma,
there exist an algebra C and surjective homomorphisms g : B −→ C and h : Zn −→ C such
that
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A = {〈x, y〉 ∈ B × Zn : g(x) = h(y)}. (38)

As C ∈ H(Zn), we may assume that C is Zn or C4 or a trivial algebra.
If C is trivial, then A = B × Zn, by (38), so the retracts of A include B and Zn (as noted

before Theorem 4.5) and hence all of Z1, . . . , Zn, by (37).
If C = Zn � C4, then h is an isomorphism and

Zn ∈ H(B) ⊆ HPS(Z1, . . . , Zn−1) ⊆ V(Z1, . . . , Zn−1),

but Zn is SI, so Zn ∈ I(Z1, . . . , Zn−1), by (36), whence Z1, . . . , Zn are retracts of B, by
(37). In this case, therefore, it suffices to show that B is a retract of A. As idB : B −→ B
and h−1 ◦ g : B −→ Zn are homomorphisms, so is the function k : B −→ B × Zn defined by
x �→ 〈x, h−1g(x)〉, and k[B] ⊆ A, by (38). Obviously, π ◦ k = idB, so π |A is the desired
retraction.

We may therefore assume, for the remainder of the proof, that C = C4.
First, let i ∈ {1, . . . , n−1}. By (37), there are homomorphisms r : Zi −→ B and s : B −→

Zi (and hence s ◦ π |A : A −→ Zi) with s ◦ r = idZi . Because g ◦ r : Zi −→ C4 ∈ S(Zn) is a
homomorphism, so is the map p : Zi −→ B × Zn defined by x �→ 〈r(x), gr(x)〉. Now h|C4 is
an endomorphism of C4, which can only be idC4 , so gr(x) = hgr(x) for all x ∈ Zi, whence
p[Zi] ⊆ A, by (38). Clearly, s ◦ π |A ◦ p = idZi , so Zi is a retract of A.

It remains to show that Zn is a retract of A. As h : Zn −→ C4 ∈ S(B) is a homomorphism,
so is the function t : Zn −→ B × Zn given by x �→ 〈h(x), x〉. Since the endomorphism g|C4

of C4 is the identity map, we have gh(x) = h(x) for all x ∈ Zn. Therefore, t[Zn] ⊆ A, by
(38), while πn|A ◦ t = idZn . �

THEOREM 8.12. In the variety V(G1, . . . , G6), every finite subdirectly irreducible algebra
E is projective.

Proof. Recall that a [finitely generated] member of a variety K is projective in K iff
it is a retract of each of its [finitely generated] homomorphic preimages in K. Let A ∈
J := V(G1, . . . , G6) be a finitely generated homomorphic preimage of E. Then A is
finite (as J is locally finite) and nontrivial. Also, JSI = I(G1, . . . , G6, C4), by (36), and
there are only finitely many maps from A to members of {G1, . . . , G6, C4}. Therefore,
by the Subdirect Decomposition Theorem, there exist an integer n > 0 and (not neces-
sarily distinct) algebras Z1, . . . , Zn ∈ {G1, . . . , G6, C4} such that A embeds subdirectly
into

∏n
i=1 Zi. By Lemma 8.11, Z1, . . . , Zn are retracts of A. Now E is an SI member of

HPS(Z1, . . . , Zn) ⊆ V(Z1, . . . , Zn), so E ∈ I(Z1, . . . , Zn, C4), by (36). As C4 is a retract
of each nontrivial member of M, this show that E is a retract of A, and hence that E is
projective in J. �

THEOREM 8.13. Every subquasivariety of V(G1, . . . , G6) is a variety.

Proof. Gorbunov [14] proved that a locally finite variety K has no subquasivariety other
than its subvarieties iff every finite SI member of K embeds into each of its homomor-
phic preimages in K (cf. [24, §9]). This, with Theorem 8.12, delivers the result, because
V(G1, . . . , G6) is locally finite. �

Combining Theorem 8.10 and Corollary 7.3, we obtain the following.

COROLLARY 8.14. There are just ten covers of V(C4) within U, viz. the six listed in
Theorem 8.10 and V(C5), . . . ,V(C8).
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In contrast with Theorem 8.13, for each n ∈ {5, 6, 7, 8}, the quasivariety Q(Cn) omits
C4, and is therefore strictly smaller than V(Cn). Indeed, the quasiequation e = e ∧ f �⇒
x = y holds in Cn but not in C4.

By Theorem 7.2 and Corollaries 2.3 and 8.14, the non-semisimple covers of atoms in
the subvariety lattice of DMM (regardless of join-irreducibility) are just V(S5) and the
ones contained in U. All of these are finitely generated varieties. Example 9.5 will show,
however, that V(C4) has at least one join-irreducible cover within DMM that is not finitely
generated.

§9. Other covers of V(C4). We have seen that each cover of V(C4) within U is
generated by a finite nonsimple algebra. By Lemma 2.9(iii), a simple De Morgan monoid
A is antiidempotent if it has C4 as a subalgebra (cf. Theorem 7.2(iii)(3)). If A is finite as
well, then it generates a cover of V(C4) exactly when C4 is its only proper subalgebra,
by Jónsson’s Theorem and the CEP. In that case, by the same arguments, V(A) is join-
irreducible in the subvariety lattice of DMM.

In fact, V(C4) has infinitely many finitely generated covers within DMM witnessing
Theorem 7.2(iii)(3), as the next example shows.

EXAMPLE 9.1. For each positive integer p, let Ap be the rigorously compact De Morgan
monoid on the chain 0 < 1 < 2 < 4 < 8 < · · · < 2p < 2p+1, where fusion is
multiplication, truncated at 2p+1. Thus,

∣∣Ap
∣∣ = p + 3 and e is the integer 1, while f = 2p

and ¬(2k) = 2p−k for all k ∈ {0, 1, . . . , p}. Clearly, Ap is simple and generated by 2, and
we may identify C4 with the subalgebra of Ap on {0, 1, 2p, 2p+1}.

Now suppose p is prime. We claim that C4 is the only proper subalgebra of Ap.
It suffices to show that, whenever k ∈ {1, 2, . . . , p − 1}, then 2 ∈ SgAp{2k}. The proof is

by induction on k and the base case is trivial, so let k > 1. As p is prime, it is not divisible
by k, whence there is a positive integer n such that kn ∈ {p − 1, p − 2, . . . , p − (k − 1)},
so ¬(2kn) ∈ {2, 4, . . . , 2k−1} ∩ SgAp{2k}. Because ¬(2kn) = 2r, where 1 ≤ r < k, the
induction hypothesis implies that 2 ∈ SgAp{¬(2kn)} ⊆ SgAp{2k}, as required.

Thus, V(Ap) is a (join-irreducible) cover of V(C4) within DMM. And by Jónsson’s
Theorem, V(Ap) �= V(Aq) for distinct primes p, q, vindicating the claim preceding this
example.

The ∧, ∨ reduct of a simple De Morgan monoid is a self-dual distributive lattice in which
e is an atom and f a co-atom. It is therefore not difficult to verify that, up to isomorphism,
there are just eight simple De Morgan monoids A on at most 6 elements (and none on 7
elements) such that C4 is the only proper subalgebra of A. Six such algebras are depicted
below; the other two are A2 and A3 from Example 9.1. Each of these eight De Morgan
monoids is 1-generated and generates a (join-irreducible) cover of V(C4) exemplifying
Theorem 7.2(iii)(3).

�

�

�

�

�

f 2 = f · a

f

a = a2 = ¬a

e

¬(f 2) �

�

�

�

�

� f 2 = f · a = (¬a)2

f

¬a = a · ¬a

a = a2

e

¬(f 2) �

�

�

�

�

� f 2 = f · a = (¬a)2

f = a2 = a · ¬a

¬a

a

e

¬(f 2)

�

� ��
�

�
�

�
�

�
�

�

�

�

f 2 = a2 = (¬a)2

f = a · ¬a

a ¬a

e

¬(f 2)
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�

��
�� �

��
��

������

f 2 = (¬a)2 = f · a

a · ¬a = ¬a

f
a = a2

¬(f 2)

e

�

��
�� �

��
��

������

f 2 = (¬a)2 = f · a = a2

¬a

a · ¬a = f
a

¬(f 2)

e

The exhaustiveness of this eight-item list will not be proved here, as we shall not rely on
it below.6 Some features of the covers of V(C4) consisting of semilinear algebras deserve
to be established, however. We consider first the case where A has an idempotent element
outside C4.

THEOREM 9.2. Let A be a simple totally ordered De Morgan monoid, having C4 as a
proper subalgebra, and suppose a2 = a ∈ A\C4. Then a generates a subalgebra of A
isomorphic to one of the first two algebras pictured above.

Proof. By Lemmas 2.2(iv) and 2.9(iii), A is antiidempotent, with e < a < f and e <
¬a < f . Now a � ¬a, by (1), as a2 � f . Also, a ·¬a = ¬a, by (5), and f ·a = f 2 = f ·¬a,
by Theorem 2.4(iv). If ¬a = a, then SgA{a} matches the first of the two pictured algebras.
If ¬a � a then (¬a)2 � f , by (1), whence (¬a)2 = f 2 and SgA{a} matches the second
pictured algebra. �

Now we consider the case where A has no idempotent element outside C4, assuming
that A is finite.

THEOREM 9.3. Let A be a finite simple totally ordered De Morgan monoid, having C4 as
a proper subalgebra, where no element of A\C4 is idempotent.

Let c be the cover of e in A, and n the smallest positive integer such that cn+1 = cn+2.
Then

(i) cn = f and cn+1 = f 2;

(ii) ¬(cm+1) < cn−m � ¬(cm) for each positive integer m < n;

(iii) b · ¬b = f for all b ∈ A\{f 2, ¬(f 2)}.
If, moreover, |A| is odd, then SgA{a} ∼= A2 (as defined in Example 9.1), where a is the

fixed point of ¬ in A.

Proof. Again, recall that A is antiidempotent, with A = {¬(f 2), f 2} ∪ [e, f ], and note
that f covers ¬c, by definition of c.

(i) As cn+1 is idempotent, we have e < cn+1 ∈ C4 (by assumption), whence cn+1 = f 2.
As cn is not idempotent, cn < f 2, i.e., cn � f . But cn � ¬c (by (1), since cn+1 � f ), so
cn = f , because f covers ¬c.

6 Readers wanting to confirm it should note that all self-dual distributive lattices on 5, 6, or 7
elements are pictured above, except for the 7-element chain (ruled out by Theorem 9.4) and the
7-element lattice that stacks one 4-element diamond on another, gluing them at the juncture. The
latter supports several simple De Morgan monoids A that extend C4, but in each case, the vertical
‘midpoint’ a of A is a fixed point of ¬, and a · f = f 2, by Theorem 2.4(iv) and Lemma 2.9(iii),
while a � a2 = a · ¬a � f , so a2 ∈ [a, f ] = {a, f }. Thus, SgA{a} is a proper subalgebra of
A, strictly containing C4, so V(A) does not cover V(C4). The arguments for the lattices depicted
above are no more difficult.
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(ii) Consider a positive integer m < n. We cannot have cn−m � ¬(cm+1), otherwise
cn+1 = cm+1·cn−m � cm+1·¬(cm+1) � f (by (3)), a contradiction. Thus, ¬(cm+1) < cn−m.
By (2), cn−m � cm → cn = cm → f = ¬(cm).

(iii) Let b ∈ A\{f 2, ¬(f 2)}. Then b · ¬b � f , by (3). Since b · ¬b = f for b ∈ {e, f }, we
may assume that e < b < f , i.e., c � b � ¬c. Suppose b · ¬b < f , i.e., b ·¬b � ¬c. Then
b · c � b, by (1). As c � b < f = cn, we have cp � b < cp+1 for some positive integer
p < n. Then cp+1 � b · c � b < cp+1, a contradiction. Thus, b · ¬b = f .

Finally, let |A| be odd, so ¬a = a for some (unique) a ∈ A, as ¬ is a bijection. Then
a /∈ C4, so a2 = a · ¬a = f , by (iii), whence SgA{a} = C4 ∪ {a} and SgA{a} ∼= A2. �

The third example pictured above shows that, in Theorem 9.3, when A has even cardi-
nality, it need not have a subalgebra of the form Ap for p > 1.

THEOREM 9.4. If V(A) is a cover of V(C4) within DMM, where A is finite, simple and
totally ordered, then |A| is 5 or an even number.

Proof. The hypothesis implies that C4 is the only proper subalgebra of A, as noted
earlier. If |A| is odd, then |A| �= 6, so by Theorems 9.2 and 9.3, A has a 5-element
subalgebra, which cannot be proper, so |A| = 5. �

In the statement of Theorem 7.2(iii)(3), the algebra A cannot always be chosen finite, in
view of the following example.

EXAMPLE 9.5. The set B = {0} ∪ {2n : n ∈ ω} ∪ {∞} is the universe of a rigorously
compact Dunn monoid B whose lattice order is the conventional total order, and whose
fusion is ordinary multiplication on the finite elements of B (hence e = 1). For finite
nonzero b, c ∈ B, the value of b → c is c/b if b divides c; otherwise it is 0. It is well known
that there is a unique totally ordered De Morgan monoid A∞, having B as an RL–subreduct
and having exactly the additional elements indicated and ordered below:

0 < 1 < 2 < 4 < 8 < 16 < · · · < ¬16 < ¬8 < ¬4 < ¬2 < ¬1 < ∞.

Here, b ·¬c = ¬(b → c) and ¬b ·¬c = ∞ for all finite nonzero b, c ∈ B. Note that A∞ is
generated by 2. The subalgebra of A∞ on {0, 1, ¬1, ∞} is isomorphic to C4. Clearly, A∞
is simple, so A∞ /∈ W, whence A∞ is not the reflection of a Dunn monoid.

By Corollary 2.3, every SI algebra C ∈ V(A∞) embeds into an ultrapower of A∞,
and it is easily deduced that C contains an isomorphic copy of A∞, unless C ∼= C4. In
particular, 2, S3, D4 /∈ V(A∞), and V(A∞) is not generated by its finite members. This
establishes that V(A∞) is a join-irreducible cover of V(C4) within DMM, exemplifying
Theorem 7.2(iii)(3), and that V(A∞) is not finitely generated.

Actually, A∞ embeds naturally into an ultraproduct of the algebras Ap (p a positive
prime) from Example 9.1, so V(A∞) is contained in the varietal join of the V(Ap).

§10. Covers of V(D4). Suppose D4 is a subalgebra of an FSI De Morgan monoid A.
Then A is the disjoint union of the antiisomorphic sublattices [e) and (f ] of 〈A; ∧, ∨〉,
by Theorem 2.6(i). Consequently, if A is finite, then |A| is even. Also, if A is simple (cf.
Theorem 7.2(iv)), then it is antiidempotent, by Lemma 2.9(iii). When A is both finite and
simple, then D4 is the sole proper subalgebra of A iff V(A) is a cover of V(D4) within
DMM, in which case V(A) is join-irreducible (the arguments being just as for C4).

EXAMPLE 10.1. Each of the simple De Morgan monoids depicted below generates a
cover of V(D4) within DMM, witnessing Theorem 7.2(iv). Up to isomorphism, they are
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the only two such algebras on 6 elements. (The one on the left is a subalgebra of the
eight-element ‘Belnap lattice’; it is obtained by removing from that structure the elements
labeled 2 and −2 in [1, p.252]. The one on the right is isomorphic to the algebra B2 in
Example 10.2 below.)

�

��
�� �

��
��

������

f 2 = f · ¬a

e

a2 = a
f

¬(f 2)

¬a = (¬a)2 = a · ¬a

�

��
�� �

��
��

������

f 2 = a2 = f · ¬a

e

a
f = (¬a)2 = a · ¬a

¬(f 2)

¬a

In analogy with the case of C4, there are infinitely many finitely generated covers of
V(D4) within DMM, as well as a cover that is not finitely generated (nor even generated
by its finite members). This is shown by the next two examples.

EXAMPLE 10.2. For each positive integer p, it can be checked that there is a unique
rigorously compact (simple) De Morgan monoid Bp having the labeled Hasse diagram
and fusion indicated below, where it is understood that m, n, k, 	 ∈ ω with m, n ≤ p and
k, 	 < p.

Bp :

�
�
�

�
�
�

�¬4
��
�2p−2

��
�¬2

��
�2p−1

�� ��

�� �¬1 = f
��
�

2p = f 2

�¬(2p−2)

�4
��
���¬(2p−1)

���2
����

���
0 = ¬(f 2)

��
�e = 1

2m · 2n = 2min{m+n,p}

2m · ¬(2	) =
{ ¬(2	−m) if 	 ≥ m;

2p if 	 < m.

¬(2k) · ¬(2	) =
{ ¬(2k+	−p) if k + 	 ≥ p;

2p if k + 	 < p.

The subalgebra of Bp on {0, 1, ¬1, 2p} may be identified with D4.
Now suppose p is prime. We claim that Bp has no proper subalgebra other than D4. It

suffices (by involution properties) to show, by induction on k, that 2 ∈ Y := SgBp{2k} for
each positive integer k < p. The base case is trivial, so let k > 1. As k does not divide p, we
have r := p−kn ∈ {1, 2, . . . , k−1} for some positive integer n, so ¬(2p−r) = ¬(2kn) ∈ Y,
whence 2r = e ∨ ¬(2p−r) ∈ Y. By the induction hypothesis, 2 ∈ SgBp{2r}, so 2 ∈ Y,
completing the proof. Thus, V(Bp) is a cover of V(D4) within DMM and, by Jónsson’s
Theorem, V(Bp) �= V(Bq) for distinct primes p, q.

EXAMPLE 10.3. In each Bp above, the element e has a unique cover. That is a first
order property, so it persists in the rigorously compact simple ultraproduct

∏
p Bp/F , for

each nonprincipal ultrafilter F over the set of positive primes. By similar applications of
Łos’ Theorem, in any such ultraproduct, the rigorously compact simple subalgebra B∞
generated by the cover of e (still denoted by 2) has the infinite lattice reduct shown in the
next diagram, and its fusion is determined by the following additional information, where
m, n are positive integers:

f · x = f 2 whenever x ∈ B∞\{0, e}
2m · 2n = 2m+n

https://doi.org/10.1017/S1755020318000448 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000448


372 T. MORASCHINI, J. G. RAFTERY, AND J. J. WANNENBURG

2m · 2n = 2m+n = 2m · 2n

¬(2m) · ¬2n = f 2 = ¬2m · ¬2n = ¬(2m) · ¬(2n)

2m · ¬2n =
{ ¬2n−m if m ≤ n

f 2 if m > n

}
= 2m · ¬(2n) = 2m · ¬(2n) = 2m · ¬2n.

We claim that V(B∞) is a join-irreducible cover of V(D4) within DMM, not generated
by its finite members. For this, it suffices, as in Example 9.5, to establish the following.

FACT 10.4. Let D be a subalgebra of an ultrapower of B∞, where D �∼= D4. Then B∞
can be embedded into D.

B∞ :

��
�8

�

8
�
�
�
�¬8

��
�¬8

�
�
� ��

�¬4
��
�¬4

�� ��
�¬2

��
�¬2

�� ��

�� �
f

��
�
f 2

���
4

���4
��
���

2

���2
����

���
0 = ¬(f 2)

��
�e

Proof Sketch. Identifying D4 with the 0-generated subalgebra of the ultrapower U (and
hence of D), we see that D is antiidempotent, rigorously compact and simple, and that D
is the disjoint union of its subsets [e) and (f ]. We may choose a ∈ D\D4, because D �∼= D4
and D4 is finite. Membership and nonmembership of D4 are first order properties, because
e is distinguished. We can arrange that

e < a < a2 < f 2,

because the following properties of B∞ are expressible as universal first order sentences
(which therefore persist in both U and D):

x = x2 �⇒ x ∈ D4;
(x /∈ D4 & x2 = f 2) �⇒ e < (e ∨ ¬x) < (e ∨ ¬x)2 < f 2.

(So, we may replace a by e ∨ ¬a ∈ D if a2 = f 2, and by e ∨ a ∈ D if e �< a with a2 < f 2.)
As 2 generates B∞, there is at most one homomorphism h : B∞ −→ D sending 2 to a. To
see that h is well defined and injective, it suffices (by (13)) to show that for any unary term
α in ·, ∧, ¬, e, we have

e � αB∞(2) iff e � αD(a).

This can be shown by induction on the complexity of α. At the inductive step, the case of ∧
is trivial, while ¬ is straightforward, because D is the disjoint union of [e) and (f ]. Fusion
requires an examination of subcases, which is aided by noting that B∞ (and hence D) has
properties of the following kind, where n, m, p are any fixed positive integers with p ≥ m:

e < x < x2 < f 2 �⇒ (xm · xn = xm+n & xm · (e ∨ ¬(xp)) = e ∨ ¬(xp−m)). �
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POD VODÁRENSKOU VĚŽÍ 2, 182 07 PRAGUE 8, CZECH REPUBLIC
E-mail: moraschini@cs.cas.cz

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
UNIVERSITY OF PRETORIA, PRIVATE BAG X20, HATFIELD

PRETORIA 0028, SOUTH AFRICA
E-mail: james.raftery@up.ac.za

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
UNIVERSITY OF PRETORIA, PRIVATE BAG X20, HATFIELD

PRETORIA 0028, AND DST-NRF CENTRE OF EXCELLENCE
IN MATHEMATICAL AND STATISTICAL SCIENCES (COE-MASS)

SOUTH AFRICA
E-mail: jamie.wannenburg@up.ac.za

https://doi.org/10.1017/S1755020318000448 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000448

