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This paper considers the significant role of cross-sectional geometry on resistance
in co-axial pipe flows. We consider an axially flowing viscous fluid in between two
long and thin elliptical coaxial cylinders, one inside the other. The outer cylinder is
stationary, while the inner cylinder (rod) is free to move. The rod poses a resistance
to the axial flow, while the viscous fluid poses a resistance to any motion of the rod.
We show that the equations for flow in the axial direction — driven by a prescribed
flux — and for flow within the cross-section of the domain — driven by the motion of
the rod — decouple in the asymptotic limit of small cylinder aspect ratio into axial
Poiseuille flow and transverse Stokes flow, respectively. The objective of this paper
is to calculate numerically the axial and cross-sectional resistances and to determine
their dependence on cross-sectional geometry — i.e. rod position and the ellipticities
of the rod and bounding cylinder. We characterise axial resistance, first for three
reduced parameter spaces that have not been fully analysed in the literature: (i) a
circle in an ellipse, (ii) an ellipse in a circle and (iii) an ellipse in an ellipse of
equal eccentricity and orientation, before extending our geometric parameter space to
determine the overall optimal geometry to minimise axial flow resistance for fixed
cross-sectional area. Cross-sectional resistance is characterised via coefficients in a
Stokes resistance matrix and we highlight the interdependent effects of cross-sectional
ellipticity and boundary interactions.

Key words: biomedical flows

1. Introduction

Fluid flow in annular geometries is prevalent, found in a range of apparatuses from
oil wells to surgical tools. Annular flows between a co-axial rod and outer cylinder
motivate fundamental design questions, such as the following:

(1) How to position the inner cylindrical rod to maximise axial flow?
(i1)) How will the inner rod move and rotate if free to do so?
(iii)) How do the answers to 1 and 2 depend on the cylinders’ cross-sectional shapes?
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FIGURE 1. A photograph of an isolated Boston Scientific ureteroscope (a) with the tip of
the scope circled and a zoomed-in schematic provided of the scope tip (b). The scope lies
within an access sheath, and a working tool sits inside the working channel. A camera
and a light are embedded in the scope wall. Dimensions of the scope shaft and working
channel are labelled.

A specific medical application of our work is found in a minimally invasive surgical
procedure for the removal of kidney stones, ureterorenoscopy. This involves the
insertion of long fibres, working tools, used to destroy or capture stones, through
a long cylindrical working channel along which there is an axially flowing saline
solution. A minuscule camera in the scope tip allows the surgeon to see inside
the patient’s kidney and the axially flowing fluid is required to clear the field of
view and to open up the ureter, see figure 1. The working channel lies within the
cylindrical shaft of a ureteroscope, and another outer cylinder, an access sheath,
surrounds the scope itself, allowing fluid to flow back out of the kidney. Minimising
the flow resistance posed by the working tools can increase flow through the
working channel and subsequent surgical accuracy by improving visibility within
the kidney (Williams et al. 2019a). Minimising the flow resistance through the
access sheath leads to lower kidney pressures during ureterorenoscopy (Oratis et al.
2018; Williams et al. 2019b) which is desirable as high pressures have been linked
to post-operative complications, such as sepsis (Wilson & Preminger 1990). This
application in particular motivates us to address questions of flow optimality in the
sense of achieving the maximum flow rate for a prescribed axial pressure drop and
fixed cross-sectional area available for fluid flow. The possible design of elliptical
access sheaths, working channels and working tools has been motivated by the
ureteral opening resembling an ellipse (Bergman 1981) and channels with elliptical
cross-sections being relatively easy to manufacture. Thus, we restrict attention to
cylinders with elliptical cross-sections. When designing an optimal device the ideal
scenario would be to place the inner cylindrical rod in the position that minimises
axial flow resistance. A key consideration is whether the surrounding fluid would
then resist changes to the inner rod position, or whether the device must be designed
to constrain the inner rod to the position that minimises axial flow resistance.

Our modelling framework comprises a solid cylindrical rod of mass m and effective
radius R;, rotating about, and moving in a direction perpendicular to, its longitudinal
axis, within a coaxial outer cylinder of equal length, L, and comparable radius, R,
filled with an axially flowing viscous fluid of typical flow rate Q, density p and
dynamic viscosity u. We take the cross-sections of the rod and outer cylinder to be
ellipses of varying eccentricities; this is both appropriate for our ureterorenoscopy
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Symbol Value Unit
R, 1.9 x 107! cm
. R; 1.6 x 107! cm
Scope in sheath I3 36 % 10! om
m 6.1 x 10° g
R, 6.0 x 1072 cm
. . R; 2.2 x 1072 cm
Tool in working channel I 79 % 10! om
m 1.1 x 10° g
0 1.0x 107" cm? s7!
. . 0 1.0x10° gcm™
Fluid properties p 10x 102 gem' s

TABLE 1. Table of typical parameter values for ureteroscopy irrigation. For a scope in a
sheath, R, is a typical effective radius of the access sheath (11/13 F Navigator, Boston
Scientific; 1 F corresponds to three times the diameter in millimetres) and R; and m are
a typical effective radius of the scope shaft and its mass, respectively (LithoVue, Boston
Scientific). For a tool in a working channel, R, is a typical effective radius of the working
channel (LithoVue, Boston Scientific) and R; and m are a typical effective radius of a
working tool and its mass, respectively (ZeroTip 3.0 F, Boston Scientific). Fluid properties
are those of water, and the flow rate Q follows typical bench-top experiments of flow
through a working channel (Williams et al. 2019a).

application and allows us to investigate the effects of non-axisymmetry. Typical
parameter values for ureteroscopy irrigation, which will guide our analysis here, are
listed in table 1. Defining the radius-to-length ratio of the rod as € = R;/L and the
Reynolds number of the flow as Re = QLp/uR?, the key parameters governing the
behaviour of the fluid and the inner rod are €2, €*Re and the ratio of fluid-to-rod
mass multiplied by the reduced Reynolds number, «=' = (m/pR?L)e*Re. Using
typical values presented in table 1, we find €2 = O(107°-107°), €2Re = O(10~") and
a~!'=(10°). These suggest that fluid inertia is negligible while rod inertia is not. In
this regime, we show that the axial fluid flow through the annular region and the
cross-sectional flows induced by the perpendicular movement and rotation of the rod
can be decoupled into axial Poiseuille flow and Stokes flow in the cross-section. The
motion of the rod is determined by conservation of linear and angular momentum,
incorporating the hydrodynamic resistance exerted by the surrounding viscous fluid.
Within this set-up, our objective is to investigate the nature of the resistance, both
the cross-sectional resistance to the motion of the inner rod and resistance to the
axial flow, in terms of the geometry of the two cylinders. To illustrate characteristic
features of the flow and to investigate geometric effects, we will focus primarily on
three reduced parameter spaces, namely:

(i) a circular rod inside an elliptical cylinder;
(i1) an elliptical rod inside a circular cylinder; and
(iii) an elliptical rod inside an elliptical cylinder of the same eccentricity and
orientation.

We also briefly consider the generic ellipse in an ellipse case when determining
the optimal geometry to minimise axial flow resistance. The literature on viscous-
dominated fluid flows through annular pipes is vast. A description of relevant literature
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is given below and summarised in table 2. As our primary concern is the effect of
cross-sectional geometry on resistance, we have grouped references by geometry
in table 2, and have further distinguished which previous works have studied axial
versus cross-sectional flow and motion of the inner rod.

1.1. Axial flow resistance

An analytical solution exists for the steady, fully developed (Poiseuille) flow of a
viscous fluid through an annular region formed by concentric circles (Lamb 1916). By
employing conformal maps, analytical solutions have also been obtained in a domain
bounded by non-concentric circles (Piercy et al. 1933; Heyda 1959; Sastry 1964;
MacDonald 1982; Shivakumar & Chuanxiang 1993). Numerical solutions for the flow
in these domains, together with the corresponding wall shear stress distributions, have
also been obtained (Redberger 1962; Snyder & Goldstein 1965; Ebrahim et al. 2013).
These solutions demonstrate that the distance between the centres of the bounding
circles significantly affects the velocity distribution, and that the total flux for fixed
pressure drop increases with this metric. Analytical solutions for steady, viscous
flow through annular ducts bounded by confocal ellipses (Piercy et al. 1933; Sastry
1964), and externally by an ellipse and internally by a circle (with coincident centres)
have also been determined by employing conformal maps (Sastry 1964), although
the dependence of the flow rate on the geometry of the domain was not discussed.
Shivakumar & Chuanxiang (1993) also considered a region bounded internally by a
circle and externally by a concentric ellipse and noted a flux enhancement compared
to cross-sections bounded by two concentric circles or two confocal ellipses of the
same cross-sectional area. Flow through an annular region bounded by non-concentric
ellipses or by an ellipse in a circle, which form key components of our analysis, has
not been previously considered (see table 2).

1.2. Cross-sectional flow resistance

Two-dimensional Stokes flow between two circular cylinders has been well studied
(Jeffrey 1922; Frazer 1926; Wannier 1950; Slezkin 1955; Chwang & Wu 1975;
Jeffrey & Onishi 1981). The dynamics of a viscous fluid confined in the gap between
rotating cylinders, i.e. Taylor—Couette flow, has many mechanical applications,
e.g. to the lubrication of rotary bearing systems. Stokes flow due to a line rotlet
(a rotating circular cylinder of infinitesimal radius) inside an elliptic cylinder was
solved analytically by Hackborn (1991). The results focussed on the resulting flow
structure and it was found that the number of eddies in the cross-section produced
by the line rotlet increased approximately linearly with the ratio of length to width
of the outer elliptical cross-section. Hackborn (1991) postulated that the flow features
generated by a line rotlet inside a fixed elliptic cylinder are expected to persist when
the line rotlet is replaced by a rotating circular cylinder. Stokes flow between rotating
confocal ellipses has also been considered (Saatdjian et al. 1994), and an analytical
solution for the stream function obtained using elliptical cylindrical coordinates. It
was shown that for counter-rotating ellipses, two hyperbolic points appear in the flow.

As the elliptical eccentricity of the outer cylinder cross-section tends to 1, the
domain approximates one of parallel plates. The motion of a rod of circular
cross-section rotating and translating in Stokes flow between parallel plates has
been studied numerically (Dvinsky & Popel 1987). The authors computed the
position between the centreline and the wall where the rod experienced the minimum
translational drag. It was also found that the torque on a cylinder rotating between
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parallel plates is minimised when the cylinder is centred between the two walls. An
asymptotic solution (for small gap between the cylinder and the walls compared
to the cylinder radius) for a circular cylinder rotating between parallel plates was
obtained by Yang er al. (2013). It was shown that if the cylinder is centred between
the two plates, rotation will only induce an opposing torque, whereas if the cylinder
is offset from the centreline, there is an additional force parallel to the walls.

Two-dimensional Stokes flow in a bounded annular domain with a translating
and rotating inner rod has also been considered. Finn & Cox (2001) presented an
analytical solution for the stream function for such a flow when both the inner
rod and outer cylinder have circular cross-sections. The biharmonic equation for
the stream function was solved with complex variable methods. The motion of the
cylindrical rod was prescribed as a function of time, and the energy required to
maintain the system in equilibrium was determined. It was shown that the power
input depends upon the position of the rod and the prescribed motion. As the two
cylinders approach each other, the power input required to maintain all motions
diverges. Cox & Finn (2007) considered multiple rods with elliptical cross-sections
moving inside a circular cylinder via numerical methods. In both Finn & Cox (2001)
and Cox & Finn (2007) the fluid flow is quasi-static, with temporal variation in the
velocity field only occurring due to changes in domain geometry.

While the above works demonstrate the strong effect of geometry on rod motion,
to our knowledge the effect of geometry on an elliptical cylindrical rod translating
and rotating inside an elliptical cylinder has not been previously investigated. Due
to the linearity of Stokes equations, the velocity field resulting from any prescribed
translational motion (in any bounded or unbounded two or three-dimensional domain)
can be calculated by considering component motions directed along orthogonal axes
and summing the component solutions. The velocity field resulting from prescribed
rotational motion in these domains can also be considered separately, and for
combined translational and rotational motions the solution is obtained by adding
the relative contributions. By implementing the Lorentz reciprocal theorem, it can
be shown that the magnitudes of the hydrodynamic forces and torques on a particle
moving in Stokes flow vary linearly with the imposed translational and rotational
velocities, respectively, and these relationships can be captured by the coefficients of
two symmetric resistance tensors (Brenner 1962c¢, 1963; Hinch 1972). An additional
tensor characterises the interactions between translation and rotation that can occur
when particle or domain symmetry is broken (Brenner 1963; Hinch 1972). The
general theory for the effect of finite domain boundaries on the resistance tensors has
been considered for the case where the particle is small in comparison to its distance
from the boundary (Brenner 1962a,b).

In two dimensions, the three resistance tensors can be formulated as a single
resistance matrix. To illustrate this, consider a Cartesian coordinate system with
orthogonal directions i, j and k. For a given prescribed translational velocity,
dx/dti 4+ dy/dtj, and a prescribed angular velocity d6/dtk, the resistance matrix
provides the hydrodynamic forces F.i, F\j and hydrodynamic torque 7,k via

F, Ki Ky C| [dx/dr
Fy|=—|Ky Ky C,| |dysdr]. (1.1)
T, C. C, A.| |d6/dr

The scalar matrix coefficients K; for i, j =x, y in equation (1.1) characterise the
resistive force in the i-direction due to motion in the j-direction, and equivalently,
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as the matrix is symmetric, the resistance in the j-direction due to motion in the
i-direction. Coefficient A, provides the linear relationship between a rotational motion
in the cross-section and the resistive torque. Finally, coefficients C, and C, describe
the coupling between translational and rotational motions, i.e. the rotation induced by
translation (and vice versa). The coefficients are all functions of the geometry of the
domain (and scale linearly with viscosity).

When considering translation without rotation, equation (1.1) reduces to

8-l 5
Fy,| |Ky Kyl |dy/de|” )
The eigenvectors and corresponding eigenvalues of the matrix in (1.2) are the
directions and magnitudes of the minimum and maximum resistance, respectively.
Using principles of energy dissipation, it can be shown that the eigenvalues must be
positive. This is proved for a three-dimensional particle of arbitrary shape moving in
Stokes flow in Brenner (1962c).

As a simple example of the resistance matrix for two-dimensional flows, consider
the case of concentric circles of inner radius » and outer radius a. Stokes equations
can be solved analytically in this geometry for prescribed translational and rotational
velocities of the rod (Slezkin 1955, pp. 135, 163). The resulting resistance matrix
components, K., K, K,, non-dimensionalised by u, A, by ub* and C,, C, by ub,
are

Ky=C,=C,=0, (1.3a)
Ko=Ky=4n(1+)/(1 -1+ 1 +7")logr), (1.3b)
A,=4n/(l - (1/1’)2), (1.3¢)

where r = a/b. Due to the symmetry of the domain there is no coupling between
translation and rotation. Moreover, the two eigenvalues of the matrix in (1.2) are given
by K., = K,,, i.e. there is equivalent resistance in all directions such that both the
translational and rotational resistance decreases monotonically as the ratio r increases.
A resistance matrix of the form given in (1.1) has been used to describe the motion
of a cylindrical rod of circular cross-section translating and rotating in Stokes flow
between parallel plates (Dvinsky & Popel 1987). More recently, resistance matrices
have been used to understand the interactions between swimming micro-organisms
(Ishikawa, Simmonds & Pedley 2006) and to control the movement of aqueous
particles (Butaité er al. 2019).

1.3. Resistance as the rod approaches the wall

For the cross-sectional flow problem it is important to mention a complexity that
arises if we are to consider the limiting behaviour that occurs when the rod touches
the bounding cylinder. At this point, an interesting paradox arises: the resistance to
motion in all directions tends to infinity; i.e. it will require infinite force to move the
rod in any direction, including away from, or along, the contacting boundary (Jeffrey
& Onishi 1981). To address this paradoxical behaviour, it is worthwhile to consider
the problem of a rod rolling or sliding along a plane wall in Stokes flow, as this
will approximate the behaviour of a moving rod touching a bounding cylinder close
to the point of contact. Even in this simplified scenario, theory detects a pathologic
problem with solutions to the incompressible Stokes equations at the contact point,
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indicating the necessity for fluid compressibility or cavitation to limit the pressure
drop across the point of contact to a physically acceptable value. This results in
an infinite lift force, opening an interstice between the wall and the cylinder; the
fluid dynamics through this narrow gap can be studied through lubrication analysis
(Merlen & Frankiewicz 2011). The creation of cavitation bubbles for a rotating
cylinder near a proximal wall has been confirmed experimentally (Seddon & Mullin
2006), and these findings indicate a physical necessity for a small gap between a
moving rod and bounding cylinder. Thus, in §4, where we discuss cross-sectional
resistance, we limit to configurations where the rod is a located a finite distance from
the bounding cylinder. Fixing a finite distance for the rod from the boundary also
prevents divergence of numerical code, as mesh elements will become degenerate at
the point of contact. Within this framework, we seek the configuration that maximises
the minimum eigenvalue of the Stokes resistance matrix, as, for a given instantaneous
velocity, it will require the least work to perturb the position of the rod in the
direction of minimum resistance. Rod positions that incur high resistance to imposed
instantaneous velocities are of interest to optimal design, as motion of the rod away
from these positions will be naturally retarded by the hydrodynamic forces imposed
by the fluid, without the need to mechanically fix the position of the rod.

1.4. Paper summary

This paper is organised as follows. In §2 we describe the model set-up. In the regime
in which both the aspect ratio of the cylinders and the reduced Reynolds number
are small, we show that at leading order the axial and cross-sectional flows can be
decoupled into Poiseuille flow and Stokes flow, respectively. In § 3 we solve the axial
flow equations and compute the flux for a given pressure drop as a function of rod
position and the cross-sectional shapes of the rod and bounding cylinder, with an aim
to determine configurations that minimise axial flow resistance. We will first consider
the three special cases (i), (ii) and (iii), before extending, in § 3.4, our discussion of
optimal axial flow to the full geometric parameter space of an elliptical rod in an
elliptical cylinder with fixed area available for the fluid. In §4 we solve the cross-
sectional Stokes flow equations and calculate the forces and torque exerted on the
rod by the surrounding viscous fluid when the rod undergoes a prescribed motion.
We calculate the resistance matrix coefficients as functions of cross-sectional geometry
and determine which configurations have high resistance to perturbations in the rod
position. For circles in ellipses and for ellipses in ellipses of the same eccentricity and
orientation, we find that the position of the rod that maximises the axial flow rate and
compare this to the position of highest minimal resistance. We conclude in § 5.

2. Mathematical model

We consider an inner cylindrical rod which is free to move within a fluid-filled
outer cylinder. The rod is prescribed a small, instantaneous, translational motion in a
direction perpendicular to, and a rotation about, its longitudinal axis. The subsequent
motion of the rod is driven by the hydrodynamic forces exerted on the rod by the
fluid. As the rod moves, we assume that it remains coaxial with the outer cylinder.
While the rod is able to move in the direction perpendicular to its longitudinal axis,
we assume that it does not move axially. It is also able to rotate about its longitudinal
axis. Both the translational and angular velocities of the inner rod are constant along
its length.
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FIGURE 2. A schematic of the set-up in a Cartesian coordinate system (x, y, z) with
corresponding coordinate directions i, j, k, where k is oriented along the common axis
of the cylinders of length L. At z=0 the flow is driven by a flux, Q. The boundaries
of a cross-sectional slice of the cylinders are denoted I (inner) and I, (outer), and the
fluid-filled area between them is 2. The inset shows a cross-sectional slice, where the
position and orientation of the rod are given by X and ©, respectively. The rod has

translational velocity X and angular velocity 6.

Both cylinders are of length L and have uniform elliptical cross-sections. The space
between the inner and outer cylinders is filled with an incompressible, Newtonian fluid
of viscosity u and density p. Flow is driven by both an applied non-zero constant
axial flux and the motion of the cylindrical rod. We adopt a Cartesian coordinate
system (x, y, z) with corresponding coordinate directions i, j, k, where k is oriented
along the common axis of the cylinders and z =0 is at the entrance to the annular
region (see figure 2). With subscripts i and o denoting the inner and outer cylinders,
respectively, we take the characteristic radii of the cylinders to be

Ri=+/A;/mt, R,=+/A,/m, (2.1a,b)

where A; and A, are the respective cross-sectional areas. We assume that R; and R,
are comparable and much smaller than L. We denote the annular boundaries of a
cross-sectional slice of the cylinders as I, and I;. The coordinate position of the
geometric centre of the inner rod is given by (X(¢), Y(¢), L/2), where X and Y are
functions of time, and thus the position of the inner rod within the cross-section is
X () = (X(?), Y(¢)). The orientation of the major axis of the rod’s cross-section, with
respect to the x-axis, is given by (), also a function of time (figure 2).

2.1. Dimensionless system

As motivated in § 1, we are interested in a regime where fluid inertia is negligible.
Thus, the fluid flow is governed by the Stokes and continuity equations. We define
the aspect ratio of the rod to be ¢ = R;/L < 1 and non-dimensionalise the axial
coordinate by L and the cross-sectional coordinates by R; =¢L. We assume a non-zero
constant flux Q is applied at z=0 and thus, non-dimensionalise the axial velocity by
characteristic velocity scale W =Q/R?. We choose the pressure scaling P = (Wu/Le?)
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to balance the viscous terms in the Stokes equations and the cross-sectional force
and torque are scaled by eLuW and €*L*uW, respectively. The dimensionless Stokes
equations are given in component form by

—Px + € (U + 1) + €*u. =0, (2.2a)
—py + € (U +vy) +€*v, =0, (2.2b)
—Pz W Wy, + e’w,, =0, (2.2¢)
U+ v, +w, =0, (2.2d)

where we have adopted the subscript notation for partial derivatives. Due to the scaling
for velocity, the dimensionless flux scales to

// wd2 =1, (2.3)
2

where §2 is the two-dimensional region of the cross-section between the cylinders.
No-slip conditions at the surfaces of the inner and outer cylinders give the
dimensionless boundary conditions

u=X—-0@Gy-Y),

v=Y+6Ox-X), on I} (2.4a—c)
w=0,
and
u=0, on ). (2.5)

To calculate X and ©@, where dots denote derivatives with respect to time, we
consider conservation of linear and angular momentum for the inner rod which gives,
in dimensionless form,

X=oFX,0,X,0), O=d7X,0,X,0), (2.6a,b)

where F and t are the hydrodynamic force in the cross-section and z-component of
the torque exerted on the rod due to the motion of the fluid, obtained by integrating
contributions from the viscous pressure forces. Because the cylinders remain coaxial,
7 and F are the only non-zero force and torque components. The dimensionless
constants in (2.6a,b) are defined as

oa=pl*/mW, o =Rul*/IW, (2.7a,b)

where m and [ are the rod mass and the moment of inertia about the rod axis,
respectively, and o is the same size as o as I scales with R?m. We note that «
can be rearranged to relate the fluid density to the material density of the inner rod
multiplied by the reduced Reynolds number. As discussed in the introduction, we will
consider the regime where this parameter is O(1). As dimensionless initial conditions
for (2.6) we prescribe

X=X, 00)=0, XO0)=UL, ©O0) =o, (2.8a—d)

where X is the initial location of the rod’s axis in the (x, y) plane, @ is its initial
orientation angle, U is its initial velocity in a direction given by £, a unit vector in
the (x, y)-plane and w is its initial angular velocity about the z-axis. We assume X,
U, @, and w are all O(1); due to the chosen non-dimensionalisations, this requires
the initial imposed rod velocities to be € times smaller than the axial velocity.
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2.2. Asymptotic analysis
We take €2 < 1 and seek expansions to our dimensionless variables of the forms
u=uy+eu+---, p=po+ep +--- (2.9a,b)
X=Xo+X,+---, O=0O)+€*O0,+---. (2.9¢,d)
Inserting (2.9a,b) into (2.2¢), (2.2d) and equating O(1) terms gives

dpo

fwo=-— V. -uy +wy=0, (2.10a,b)

where u({ =upl + voj, and that dpy/dz is independent of x and y follows from (2.2a)
and (2.2b) at leading order. To determine the cross-sectional velocity components,
and vy, we consider (2.2a) and (2.2b) at O(e?), and obtain the two-dimensional Stokes
equations

Vi=pi, Vive=py. (2.11a,b)

The leading-order flux condition is

// wodR =1, (2.12)
2

and leading-order boundary conditions are

up =Xo — Oy — Yo),

Vg = YQ + @Q(X — X()), on E (21361—6‘)
wo =0,
and
uy=0 and wy=0, on I (2.14a,b)

The equations of motion for the rod, equation (2.6), read at leading order

Xo=aF(Xo, O, Xo, 0p), Oy =a'10(Xo, O, Xo, O), (2.15a,b)
where the leading-order expressions for the hydrodynamic forces and torque on the
rod are

1
FQ :/ [% oon; dS:| dZ, (216&)
0 I;

1

o=/ { ¢ = Xo@m) -~ 0~ Kooy - ids] d @l6b)
0 I;
for

o0 =[~(po/€* + p)I + (Vuy + Vuy)"]. 2.17)

The leading-order initial conditions for the rod motion are

X,0)=X, 6,0)=0¢, XO0)=U, 6=o. (2.18a—d)
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2.3. Leading-order solution

We seek a separable solution for wy of the form

d
wo =/ (x, y)dl;. (2.19)

Integrating (2.10b) over a cross-section of the fluid domain between the two cylinders,
using (2.13) and (2.14), and applying the divergence theorem gives

/ / wo, d$2 = 0. (2.20)
2

Inserting the form (2.19) and using the imposed flux condition (2.12), we conclude
that

d? d
P _ 0— o _ const. (2.21)
dz? dz
and it follows that
wy, = 0. (2.22)
Hence (2.10b) becomes
V,-u;=0 (2.23)
and the governing equation for the axial fluid flow, (2.10a), is
Vife,y) =1, (2.24)
with no-slip boundary conditions, equations (2.13¢) and (2.14b),
f=0, on I} I, (2.25)
Additionally, using the flux condition (2.3) we can solve for the constant pressure
gradient
d —1
2 [ / / fex. y)d:z] , (2.26)
dz Q
and thus

-1
wo =f(x, y) [// flx, y)d-Q} ) (2.27)
2

combining (2.19) and (2.26).

As py is constant within a cross-section it has no contribution to the leading-order
hydrodynamic force and torque given by (2.16). Additionally, the bracketed terms in
(2.16) are independent of z, and hence (2.16) and (2.17) to calculate the force and
torque reduce to

F, =7{ oon; ds, (2.28a)
I
To= ]{ (x — Xo)(oon;) - j — (y — Yo)(opm;) - i ds, (2.28b)
I
for
oo =[—pi I+ (Vuy + Vuy)"l. (2.29)

Henceforth, we will drop leading-order subscripts. We will retain the subscript on
the only first-order term that appears in our leading-order system, p;, to differentiate
the first-order pressure that drives flow in the cross-section, equations (2.11), from the
leading-order pressure that drives the axial flow, equation (2.10a).
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2.4. Model summary and computational approach

Equations (2.24), (2.25) and (2.27) give rise to Poiseuille flow, where the axial flow
resistance, R(X, ®), is equal to the constant pressure gradient required to maintain
the axial flow through the annular domain at unit flux. This is given by

-1
R(X,0)= [// fx, y)d-Q] : (2.30)
2
a function of domain geometry. We note that for any given flux
dp
X, 0)=—c—-—, 2.31
0X, 0) RX. ) dz (2.31)

and so, once R(X, ®) is determined via (2.30), we can compute Q(X, ®) for any
specified pressure gradient. Motivated by the urological application, in which it is most
natural to consider optimising flow rate for a given pressure drop, our approach in §§ 3
and 3.4 will be to fix dp/dz=—1 as a model input and compute Q(X, &) and the
associated flow profile as primary outputs. In this view, minimising the resistance is
equivalent to maximising the flux.

The equations governing the cross-sectional flow are the Stokes equations (2.11)
and incompressibility (2.23), with no-slip boundary conditions (2.13a-b) and (2.14a).
As discussed in § 1, the forces and torque on the inner rod, equations (2.28a,b), are
linearly related to the imposed velocities via resistance coefficients

F(X,0,X,0)=—[KX, 0)X + CX, 0)6], (2.32a)
(X, 0, X, 0)=—[A.(X, ©)O + C,(X, O)X + C,(X, O)Y], (2.32b)

where K(X, ®) is the two-dimensional translation matrix and C(X, ®) describes the
coupling between translation and rotation:

KX, ®)= {Z’“ ;ﬂ , CX,0)= [g] ) (2.33a,b)
Xy » y

The resistance coefficients in (2.33a,b) are also functions of domain geometry. We
will compute these in §4. To explore the effect of geometry on both the axial and
cross-sectional resistances we consider configurations (i), (ii) and (iii), as introduced
in § 1. In each configuration, we will fix the cross-sectional areas of the cylinders to
constrain the space available for fluid. We do this by setting the characteristic radius
of the outer cylinder (scaled by R;) which we denote R,. This reduces the parameter
space, allowing for full interrogation of the axial and transverse flows on X, &, and
the shape of the elliptical cross-sections of the inner and outer cylinders. In § 3.4, we
will consider a more complete optimisation problem for axial flow resistance, relaxing
our previous restrictions on the considered elliptical geometries.

3. Axial flow

We begin by considering the effect of cross-sectional geometry on axial flow
by solving (2.24) subject to conditions (2.25) for varying ellipse cross-sectional
geometries. Results were calculated numerically using an open-source finite element
library, oomph-1ib (Heil & Hazel 2006). Details on the numerical elements and
mesh are provided in § A.2.
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Our objective is to explore how the flux is affected by the position and orientation
of the inner rod, X and @, respectively, and the elliptical eccentricity of the cross-
sections. The eccentricity is defined as

€io="\ 1- (bi,o/ai.o)zv (31)

where a;, and b;, are the major and minor axes of the inner and outer cylinder,
respectively. A zero eccentricity value therefore corresponds to a circle and e =1 is
a slit of zero width and infinite length. For fixed characteristic radii, see (2.1), and
given eccentricity, e;,, we can calculate a;, and b; ,:

a[:(l _61'2)71/47 bt:(l _6?)1/47 (32a’b)
a,=R,(1—e)~"*,  b,=R,(1—e)"*. (3.2¢,d)

3.1. (i) Circle in ellipse

In figure 3(a) we consider a circular rod (of dimensionless unit radius) inside a
cylinder of elliptical cross-section (with characteristic radius R, = 2). (Figure 3a
has previously appeared in Williams et al. (2019a), an endourological publication to
translate these relevant findings for a clinical audience.) We vary the eccentricity of
the outer cylinder’s cross-section while maintaining the cross-sectional area, using
(3.2) to determine the corresponding lengths of the major and minor axes. When,
for each value of e,, the rod is located at the position that maximises flux (see
appendix B), we find that the flux initially increases with e,. The maximum flux
over all e, (data point (ii)) is nearly 50 % higher than the flux for a circular outer
cylinder of the same cross-sectional area (data point (i)). The eccentricity at which
the maximum flux is achieved is e, 0.84 for R, =2. We might hypothesise that this
coincides with the value for e, where the rod and bounding cylinder match curvature
at the cylinder’s vertex, which we denote e* (appendix B). However, for R, = 2,
e* ~ (.78, which is less than the e, value where maximum flux is achieved. In fact,
in configuration (ii) in figure 3(a), although hard to discern from the colour map, the
circular rod tangentially touches the elliptic cylinder in two locations. The colour bar
in figure 3(a) gives the magnitude of the axial velocity, and demonstrates that the
maximum velocity within the cross-section is also larger in configuration (ii), than in
either (i) or (iii).

3.2. (ii) Ellipse in circle

When considering an elliptical inner rod and circular outer cylinder (e, =0), we can,
due to the rotational symmetry of the outer domain, fix X = (X, 0) and vary the inner
rod’s position along the x-axis only, without loss of generality. Here, we fix R, =3, a
larger cross-section to allow for a wider range of feasible positions and orientations
for the inner rod, and vary X, ®, and ¢;. We find, as anticipated, that Q increases
with X for all values of e¢; and @. Increasing e; can either increase or decrease Q
depending on the position and orientation of the inner rod. For example, when the
rod is centred in the outer cylinder — and the flux is independent of ® due to the
geometry of the domain — the largest flux is obtained when the rod is circular, and
decreases with ¢;. This effect can be seen for ¢;, =0, ¢;, = 0.7 and e¢; = 0.9 oriented
at ® = 1t/2 in the inset plot in figure 3(b). In contrast, when the rod is sufficiently
offset, the more eccentric rods at ® = /2 cause less obstruction near the centre of
the channel, allowing for higher flow (see figure 3b).
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(a) (I) Circle in ellipse (b) ” (1) Ellipse in circle
267 (i) ‘ ‘ .
/—//,— .
20 | '
, ®
L X
iii /
14} ‘ ‘ : U 8 :
0 0.2 0.4 0.6 0.8 0 2.32

FIGURE 3. Dimensionless flow rate, Q with X = (X, 0), as a function of (a) e,, for ¢; =0,

R,=2, and (b) X, for e¢,=0, R,=3. In (a), for each e,, the inner circle is located at the

position that maximises the axial flux (see appendix B). When e, =¢*, the ellipse matches
curvature with the circle at the ellipse vertex. The colour bar provides the magnitude of
the axial velocity. (b) Plots Q as a function of X for ¢; =0 (blue) ¢;=0.7 (red) ¢;=0.9
(yellow) oriented at /2. The inset plot provides a zoomed-in view from X=0 to X=0.2.
The dashed black line gives the analytical solution by Piercy ef al. (1933) and the black
cross the solution by MacDonald (1982) (see table 2 for more details).

For a circular rod (e; =0), we validate our numerical solution against the analytical
solution for offset circles (Piercy et al. 1933) (dashed black line in figure 3b) in
addition to confirming that our numerical solution approaches the limiting case of
touching circles (MacDonald 1982) as X approaches 2 (black cross in figure 3b). (As
Piercy et al. (1933) presents a solution for the flow rate in terms of an infinite sum,
we truncate this sum to determine the flow rate (see § A.3).)

In §§3.1 and 3.2, we have considered the particular cases where one of the
cylinders has a circular cross-section. As anticipated, in both configurations, the
maximum flux was achieved for a rod tangent to the outer boundary. Perhaps
unexpectedly, figure 3(a) demonstrated that the optimal configuration may not be
one where the inner rod is tangent at a single point. We will explore this in more
detail in § 3.4, where we will determine the true optimal geometry that maximises
axial flux (for fixed area), relaxing all previous geometric restrictions. However, we
will first consider another reduced parameter space, namely elliptical rods in elliptical
cylinders of the same eccentricity and orientation; a configuration that allows for clear
specification of the inner rod’s position, and a discussion of the effects of eccentricity
as a single parameter.

3.3. (iii) Ellipse in ellipse

We now consider cylinders with elliptical cross-sections of the same eccentricities
e=e;=e¢, and orientation (® =0). We fix R, =2 and again seek configurations that
maximise the flux. (It is worthwhile to note, when comparing flux values between
different geometries, that in this section and in § 3.4, R, =2, so the space available
for fluid flow is the same as in figure 3a (a circular rod in an elliptical cylinder) but
less than in figure 3/ (an elliptical rod in a circular cylinder) where R, =3.)

To describe the position of the inner ellipse relative to the outer ellipse we first
define 6 to be the angle between the major axis of the outer ellipse and a line
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(@) (b) ()

¢=0 $=0.5 p=1

FIGURE 4. Schematic showing a sample geometry for ¢ =0.8, 6 = /4 and (a) ¢ =0,
(b) ¢ =0.5, (c) ¢ =1. The shaded ellipse is the cross-section of the rod.

connecting the centres of the two ellipses, see figure 4. The effective radii of the
inner and outer ellipses are then defined as

ri=ab;/\/a? sin® @ + b? cos2 0, 1, = a,b,/\/a%sin’ 6 + b2 cos? 6. (3.3a,b)

With these definitions, the maximum distance, d,,,, between the centres at an angle 6
(when the rod and the outer cylinder touch) is given by

dypax =T, — i (3.4

From this we define an offset parameter, ¢, that is the ratio of the distance between
the centres of the two ellipses at an angle 6 and d,,,:

¢ =d/dpq (3.5)

Thus, the domain is characterised by three parameters: the eccentricity, e € [0, 1); the
angle of offset, 8 € [0, m/2]; and the relative offset, ¢ € [0, 1] (see figure 4).

In figure 5(a—d) we fix e = 0.8 and 8 = 0, and plot the velocity profiles (with
corresponding flux values indicated) for ¢ = 0.01, ¢ = 0.35, ¢ = 0.7 and ¢ = 0.99.
We observe that Q increases with ¢, a result previously known for e =0 (Piercy et al.
1933; Redberger 1962). The effects of 6 and e on Q are less intuitive. In figure 5(e—h)
we fix e=0.8 and ¢ =0.99 and vary 6, plotting the associated velocity colour maps
for 6 =0, 6 =7nt/6, 6 =7n/3 and 0 =m/2. The flux is largest for § =0 and smallest for
0 = /3 demonstrating, for the chosen parameters, non-monotonicity of Q with 6. We
vary e in figure 5(i—I) for fixed 8 =0 and ¢ =0.99. The flux is largest for e =0.6 and
smallest for e =0.9, also demonstrating, for the chosen parameters, non-monotonicity
of Q with e. For completeness, line plots of Q as a function of independent variation
of e, ¢ and O can be found in appendix C.

In figures 6(a)-6(c), we show surface plots of Q in (¢, #) space for three different
eccentricities: e =0, e = 0.7 and e = 0.9, respectively. Note that, as Q varies most
significantly with ¢, we have restricted to 0.9 < ¢ < 0.99 to isolate the effects of 6
and e. When e =0 (figure 6a), Q is independent of € due to the rotational symmetry
of the domain, and increases monotonically with ¢. For eccentric domains, e =0.7 and
e=0.9 (figures 6b and 6c¢, respectively), Q is minimal at an intermediate value of 6
and ¢ =0.9 (the smallest ¢ value plotted). The maximum Q is seen in figure 6(b) for
e=0.7, further validating the existence of a non-zero eccentricity value that maximises
flux, e”™. This existence of a non-zero eccentricity at which flux is maximised may be
of particular interest from an engineering design point of view (Williams et al. 2019a).
However, it is noteworthy that the optimal eccentricity itself will change based on the
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(a) 0=0.77 (b) 0=092 (c) 0=134 (d) 0=1.83
e=0.8
0=0
Vary ¢ 0.50
—2.58 2.58 —2.58 2.58 —2.58 2.58 —2.58 2.58
¢=0.01 ¢=0.35 ¢=0.7 ¢=0.99
(e) 0=1.83 H 0=1.64 (2) 0=1.60 (h) 0 =1.61
e=0.8
¢=0.99
Vary 0
—2.58 2.58 —2.58 2.58 —2.58 2.58 —2.58 2.58
60=0 f=m/6 f=m/3 0=m/2
(i) 0=1381 @) 0=1.83 (k) 0=1.86 ) 0=1.68
6=0
¢=0.99
Vary e
-2 —2.05 2.05 —2.24 224  -3.03 3.03
e=0.3 e=0.6 e=09

FIGURE 5. Dimensionless velocity colourmaps with flux values, Q, for ellipses of equal
eccentricities and orientations. Here R, = 2. Axes are in (x, y) coordinates and these
vary with eccentricity so that the available space for fluid flow is constant. Colour bars
reflect different velocity values within the domains. The direction of the axis of minimal
resistance, k,;,, is indicated by the dashed white line on each diagram. This will be
discussed in §4. Panels (a—d) show the effect of offset, ¢, for e =0.8 and 6 = 0. Offset
values are (a) ¢ =0.01, (b) ¢ =0.35, (¢) ¢ =0.7 and (d) ¢ = 0.99. Panels (e—h) show
the effect of angular position, 6, for e = 0.8 and ¢ = 0.99. Angular position values are
(a) 6=0, (b) 0 =7/6, (c) 8 =7n/3 and (d) 6 = w/2. Panels (i-I) show the effect of
eccentricity, e, for ¢ = 0.99 and 6 = 0. Eccentricity values are (a) e =0, (b) e =0.3,
(¢) e=0.6 and (d) e=0.9.

outer geometry. We plot €™ as a function of R, in figure 6(d). As R, — oo, " — 0.
As R, characterises the ratio between outer and inner cross-sectional areas, the limit
as R, — oo corresponds to a negligible obstruction within the channel, and hence, the
maximum flux will be attained for a circular cross-section (Williams et al. 2019a).

In this section we have determined that for equal eccentricities and orientations of
the outer and inner ellipses, there is a position for the inner ellipse and a non-zero
eccentricity value that maximises flux. We note that this may not be the configuration
that maximises flux for all values of e;, e¢,, X, Y and &, and we consider this global
optimisation problem in more detail in the following section.

3.4. Optimal geometry for axial flow

When solving for axial flow in § 3 we considered three reduced geometric parameter
spaces: (i) circle in ellipse, (ii) ellipse in circle and (iii) ellipse in ellipse of the
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FIGURE 6. Surface plots (a—c) give the dimensionless flow rate, O, as a function of both
offset, ¢, and angular position 6 of the inner ellipse for three different eccentricity values:
(a) e=0, (b) e=0.7 and (c) e=0.9. Here R, =2. Panel (d) gives " as a function of the
characteristic radius R,. The " value is calculated as the one that produces maximum
flow over 100 values from 0.01 < e <0.99 for each radius ratio.

same eccentricity and orientation. We found, in each case, eccentricity values and
positions for the inner rod that maximised Q. In this section, we will relax all previous
assumptions on ellipse eccentricity and explore finding a global optimal geometry for
ellipses of fixed cross sectional area, R, = 2.

For all configurations previously considered, we demonstrated that axial flow
resistance was lowered by increasing the distance between the centres of the inner
and outer ellipses. Intuitively, we might expect that the optimal configuration is one
where the inner ellipse touches the boundary of the outer ellipse and with matching
curvature, i.e. when the inner ellipse ‘hugs’ the outer (although this was shown
not to be the case for configuration I in §3.1). This assumption enables a reduced
parameter space that can be approached analytically (see appendix D). In figure 7(a)
we show a surface plot of Q as a function of e, and 6 produced by this calculation.
We see that a global maximum occurs at 8 =0 and e, ~ 0.71 with corresponding
Q = 2.62 (indicated by the red circle and corresponding flow profile figure 7b).
(At this maximum, we also have ¢; ~0.45, ® =0.)

The optimal configuration in figure 7(a) shows a nearly 40 % improvement in flux
over the optimal configuration computed in § 3.3. However, it is still not sufficient
to claim this as the global optimum for ellipse geometries. In fact, the results
in figure 3(a) suggested that a ‘curve-hugging’ configuration may not be optimal.
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(@) (b) 0=2.62
0.8 1.6 2.4
E—
Q 0.6
4 Optimal in (a)
0.3
(c) 0=2.80
0

True optimal

FIGURE 7. A plot of Q as a function of ¢, and 6 for R, = 2. Here the inner ellipse
touches the outer boundary tangentially at a single point, matching curvature. The red
circle indicates the presence of a global maximum.

Motivated by this, we relax assumptions about how the ellipses meet at the boundary
and formulate an optimisation problem to traverse the full parameter space. To this
end, we define a vector, g, containing the five parameters governing the geometry of
the domain:

g=(e e, X, Y, O)". (3.6)

The boundaries of the inner and outer ellipses, I; and I, are
x"Ax=0, x"Bx=0, (3.7a,b)

respectively, where xT = (x, y, 1) and matrices A and B are functions of g. Thus, we
seek the solution to the optimisation problem

min —Q, subject to ¢ >0, (3.8)
g

where ¢ is a vector of six nonlinear constraints, dependent on A and B and hence g,
that ensure I is enclosed by I, (see appendix E for more details). We solve
(2.24) in FEniCS (Alnaes et al. 2015), and implement MATLAB’s optimisation routine,
fmincon, to solve the optimisation problem (3.8) with an interior-point method from
eight randomly generated starting points in the feasible five-dimensional parameter
space. As the optimisation routine seeks local minima, a multi-start approach allows
for global optimisation. The optimal geometry found through this method is shown in
figure 7(c) with a corresponding flux, Q & 2.80. The geometric parameters, see (3.6),
are g ~ (0.68, 0.74, 1.49, 0, /2)". This global optimum gives a non-negligible
(nearly 7 %) increase in flux compared with the ‘curve-hugging’ optimum. Indeed,
rather than perfectly matching the geometries at the boundary, the global optimal
geometry is tangent to the outer boundary in two locations (this was also true in
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the results in §3.1). It is interesting to note that this divides the fluid domain into
two separate regions, which may be connected to previous results (Ranger 1994,
1996) that demonstrate flux enhancement through creating multiply connected regions.
Ranger (1996) provides a short discussion on the mechanism whereby disconnected
regions can lead to increased total flux, discussing the distribution of flux per unit
area for flow through a circular pipe. As flux per unit area is low at the edge,
removing these regions and replacing them with disconnected areas of higher flux
may lead to enhanced flow.

4. Cross-sectional flow

We now turn attention to the cross-sectional flow problem, governed by the
Stokes equations (2.11), (2.23), and the no-slip conditions (2.13a,b) and (2.14a).
The objective is again to explore the impact of cross-sectional geometry within the
configuration space of (i), (ii) and (iii); but here, the question is how the geometry
impacts the resistance coefficients for cross-sectional rod motion.

We solve the equations numerically using a finite element method implemented in
oomph-1ib (Heil & Hazel 2006) (details in § A.2), and subsequently compute the
dimensionless forces and torque on the rod due to the surrounding fluid via (2.28). We
validate our numerical solution by comparing with analytical solutions for geometries
where these are available in the literature.

We consider a cross-section of the domain illustrated in figure 2(i), where the rod is
given a prescribed instantaneous velocity, X = (X,Y) in the (x, y) plane and a rotation,
©® about the z-axis. The resulting forces and torques, F = (F,, F\,) and 7, are linearly

related to (X, ¥) and ® by a symmetric resistance matrix

F, Ke Ky G [X
Fl=—|Ky, Ky C| |T], 4.1)
T, C. C Al |®

as discussed in §§1.2 and 2.4. If ©® =0 then
F. Ko Kol [X
== U - 4.2)
[F Y] {ny Kyj [Y}
The eigenvectors of the 2 x 2 matrix in (4.2) are the directions of minimum and
maximum opposing forces experienced by the rod due to the flow. We will refer
to these as the directions of minimum and maximum resistance. The corresponding
eigenvalues give the magnitudes of the opposing forces that result from moving in

the directions of minimum and maximum resistance with unit velocity. These values
are non-negative (see § 1.2) and are given by

Ko =(1/2) (Ko + Ky + K= K2+ 4, (4.3a)

Kmin = (1/2) (Kxx + Kyy - \/(Kxx - yy)z + 4K)2Q) s (43b)
with corresponding directions of minimum and maximum resistance

kmax,min = (nyv Kmax,min - Kxx)' (44)
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The six unique scalars in the resistance matrix (4.1) can be computed by imposing

X=(1,0, ©=0, — K, K, and C,, (4.5q)
X=(0,1, =0, — K,,K, and C,, (4.5b)
X=(0,0, =1, — C,C,and A, (4.5¢)

where each calculation provides us with the coefficients indicated by the arrows. We
note that K,,, C,, and C, can each be determined by two separate calculations, and
we perform both as validation (to within numerical error).

4.1. (i) Circle in ellipse

The analytical solution for Stokes flow between concentric and offset circular cylinders
demonstrates a dependence of the forces and torque experienced by the rod on the
geometry of the domain (Finn & Cox 2001). We first consider how these results
change when the bounding cylinder is elliptical. To limit the candidate geometries,
we position the rod along the x-axis, i.e. X = (X, 0). We fix the cross-sectional area
and set R, =2.

For a circular rod translating within a circular cylinder, K, and K,, increase as the
rod approaches the edge of the bounding cylinder, and K,, =0, due to the symmetry of
the domain (Slezkin 1955). As expected, we find that for e, > 0, the same behaviour
occurs. The effect of e, on the resistance coefficients is not quite so straightforward
as the effect of position — as e, increases for fixed X, the proximity of the rod to
the boundary in the vertical direction decreases while the distance to the boundary
in the horizontal direction increases, and at non-equal rates. Due to these competing
features, K, exhibits an interesting dependence on ¢, for X = 0. In figure 8(a), we
plot K, as a function of e, for a centred rod, and we observe a non-monotonic
behaviour, highlighting the complexity of boundary interactions. Comparing resistance
coefficients for X # 0 adds yet another complexity: as the range of feasible X values
increases with e, (as long as the rod can still fit tangent to the vertex of the outer
cylinder), we can either compare values at absolute, X, or relative, X/(a, — 1),
distance from the centre, which qualitatively affects the observed trends. We find that,
depending on the metric used, K,,, C,, and A, can also be non-monotonically related
to e, when the cylinder is offset (results shown in appendix F). We note that C, =0
for a rod centred on the x-axis, due to arguments of symmetry.

If, instead of fixing cross-sectional area, we fix the gap between the rod and the
cylinder, the domain approaches one of a rod between parallel plates as e, — 1.
An asymptotic approximation to the Stokes force and torque on a cylinder rotating
between parallel plates was obtained by Yang et al. (2013), where the ratio of gap
width to cylinder radius defines the small parameter, €. To test whether the resistance
coefficients for a rod in an elliptic cylinder approach those for a rotating rod between
parallel plates (Yang et al. 2013), we consider a rod at X =0 in an elliptic cylinder
of fixed minor axis, b, =1.025, which sets the gaps between the rod and the cylinder
at x =0, to be 0.025. In figure 8(b) we plot A, as a function of outer eccentricity
(line ii), and we see that as e, — 1 the resistance approaches the value for parallel
plates with € = 0.025 (Yang et al. 2013) (line i). As we increase e, with fixed
minor axis, the cross-sectional area of the elliptic cylinder is also increasing. Thus,
as a further geometric comparison, line iii plots A, for a rod centred in a circular
cylinder with increasing and equivalent cross-sectional area (i.e. for each e,, the
bounding circle has cross-sectional area equal to that of an ellipse of eccentricity e,
and minor axis b, = 1.025). Although A, decreases with e, due to the increase in
cross-sectional area available for the fluid, A, is larger when the outer boundary is
an ellipse compared to a circle of the same cross-sectional area.
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FIGURE 8. Results for R, =2. (a) Rod translating with unit velocity in the y-direction,
centred at (0, 0). K|, is plotted as a function of e,. Inset schematics are for (left to right)
e, =0, e,=0.63 and e¢,=0.9. (b) Plot of A, for a circular rotating rod centred at (0, 0).
The rod is rotating: (iv) between parallel plates with gap size € =0.025 (Yang et al. 2013)
(v) within an outer elliptic cylinder with b, = 1.025 (R, not fixed) (vi) within an outer
circular cylinder of radius R, = 1.025(1 — ¢2)~"/*. Solution obtained from (1.3¢).

4.2. (ii) Ellipse in circle

The next domain we consider is an ellipse in a bounding circle. As in § 3.2, due to
the rotational symmetry of the outer domain, the number of unique combinations of
position and orientation of the rod can be reduced; it is sufficient to consider the rod
centred at X = (X, 0) and to vary X, ® and e;. In figure 9 we investigate how the
resistance coefficients are influenced by the shape of the rod’s cross-section and its
orientation and proximity to the outer boundary. In figure 9(a—c), results are plotted as
functions of absolute offset, and the orientation of the rod, @, as well as its position,
X, determine its proximity to the outer cylinder’s boundary, and in a non-trivial way.

We first consider resistance to rotation. We find that A, increases as a function of
offset for fixed e¢; and @. Results are shown in figure 9(a) for three eccentricities,
e;=0, ¢,=0.7 and ¢; = 0.9, oriented at ® =0, ® = /4, and ® = w/2. For fixed
position and orientation, rotational resistance increases with eccentricity. Without
boundary interactions, A, would be independent of ®@; however, due to the presence
of the bounding circular cylinder, for moderate X #0, A, is largest when ®& =7/2 and
smallest when & = 0. As evidenced by the crossing lines for e¢; = 0.9 in figure 9(a),
when X is sufficiently large, a rod oriented at @ = 0 receives the largest opposing
torque, which is likely due to the proximity of the vertex of the major axis to the
boundary. We note that, if we increase the X range in figure 9(a), this effect is also
seen for ¢; =0.7. (Results shown in appendix F.)

Turning now to translational resistance, our results validate the intuition that when
the major or minor axis of the rod’s cross-section is aligned both with the direction of
motion and a radial line of the outer cylinder’s cross-section, the force on the rod acts
parallel to its direction of motion, and the lift force is zero. Brenner (1962a) proved
this to be true for the motion of a bounded arbitrary particle.

Of the three translational resistances, we first consider the lift force, K,,. We find,
that for fixed e; and X away from the boundary, K,, is maximised for ® = n/4. Thus
the outer cylinder does not seem to change classic results for an elliptic cylinder in
an unbounded fluid (Lee & Leal 1986). To see how the lift force changes with inner
eccentricity, in figure 9(b) we fix the orientation at the maximal value & = n/4 for
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FIGURE 9. Panels (a) and (b) give A, and K,,, respectively, as functions of X for ¢; =0,
e;=0.7 and ¢,=09 and ® =0, Oy =7n/4 and @ =7n/2. In (b), K,, is identically zero
for ® =0 and ® =1/2, so these are not shown as they coincide with the line for e; =0.
Panel (c) displays K,,;, for & =0 and ¢;=0, ¢;,=0.7 and ¢; =0.9. Panel (d) gives C, as
a function of ¢; for ® =0 and X = 1.45. Colour maps of pressure p; near the bounding
wall, due to an imposed angular velocity, are shown for ¢;=0 and e; =0.7 with the colour
bar providing the magnitude of p,, centred around p; =0. All plots have a dimensionless
outer radius of R, =3.

eccentricities e; =0, ¢;=0.7 and ¢; =0.9, and plot K, as a function of X. We find a
significant increase in lift force with eccentricity, and also a non-monotonic relation
with position in the case of ¢; =0.9.

Next, we analyse Ky, K,, and K,,;,. For relatively small offset, K,, is smallest (and
K,y largest) when ®& =0. We restrict ourselves to this orientation, and plot K,, (dotted
line) and K, (dashed line) as functions of X for ¢;=0.7 and ¢;=0.9 in figure 9(c). An
interesting feature is the non-monotonic behaviour of K,, with X. The solid coloured
lines give the value of the minimum resistance, K,,;,. Looking particularly at e; =0.9
we see that for small values of X, K,,;, coincides with K, (and thus the eigenvector
kin = 1). However, near X = 1.2 the lines K,, and K,, cross, and the direction of
minimum resistance switches to be aligned with the y-axis. The same behaviour is
seen for e; = 0.7, with the switching occurring at a smaller offset (near X = 1). The
solid lines denoting K, for each eccentricity also cross. When X is small, K,;, is
largest for e; =0 and smallest for e¢; =0.9 and vice versa for large X. Again, this can
be explained by the significance of boundary interactions: far from the boundary the
more eccentric ellipse has a direction of small resistance — its major axis — but closer
to the boundary the major vertex is in closer proximity to the boundary, compared
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to ellipses of smaller eccentricity, hence the resistance in both the x- and y-directions
rapidly increases. We have also demonstrated that for ® = w/2, k,;, is aligned with
the y-axis for ¢; =0, ¢;=0.7 and ¢; =0.9 (at least for 0 < X < 1.45). (Results shown
in appendix F.)

Finally, we consider the coupling between translation and rotation. We find, for
fixed ¢; and X away from the boundary, C, is largest for ® = n/4 and C, is largest
for ® = /2. (Results shown in appendix F.) When the rod is oriented at ® = 0,
there is coupling between rotation and translation in the y-direction (C, # 0). This is
known analytically for e; =0 (Slezkin 1955), and in this classic case, C, increases
monotonically with X. Interestingly, for more eccentric ellipses, this is no longer true;
in fact, C, can change sign as a function of position along the X-axis. Alternatively,
this behaviour can be illustrated by plotting C, as a function of eccentricity for fixed
X sufficiently close to the outer boundary. This is shown in figure 9 for X = 1.45
(the furthest-right position in figure 9a—c). We observe that C, decreases as a function
of e;, changing sign from positive to negative. To explain this behaviour, consider a
rotating rod with imposed angular velocity, in which case C, characterises the induced
translational force in the y-direction. Example pressure profiles for ¢; =0 and e; =
0.775 near the proximal boundary are shown in the insets, and these show that the
pressure drop in the lubrication layer between the rod and the outer boundary changes
direction as a function of e;. Due to the proximity to the boundary, we can appeal to
Reynolds’ lubrication equation to understand this inversion in terms of the behaviour
of the fluid in the lubrication layer: for a circular surface rotating near a fixed plane,
the pressure drop is in the opposite direction compared to the pressure drop for a
highly curved surface moving parallel to the plane (Wannier 1950). For our system,
rotating an ellipse of high eccentricity is analogous to moving the vertex (and point
closest to the boundary) parallel to the boundary, whereas rotating an ellipse of small
eccentricity does not change significantly the minimal distance to the boundary and
hence behaves more like a rotating circle.

4.3. (iii) Ellipse in ellipse

In this section we revisit the configuration considered in §3.3, with both the rod
and bounding cylinder having elliptical cross-sections of the same eccentricity, e, and
orientation (® = 0). We set R, = 2, and parameterise X by offset ¢ and angular
position 6, illustrated in figure 4. Returning to figure 5, the direction of minimum
resistance is marked with a dashed white line. We see that when the rod is centred in
the outer cylinder, k,;, lies along the major axis of the ellipse. As we move towards
the wall, this direction switches to the minor axis, due to the build-up of pressure
between the rod and the proximal edge of the outer cylinder. As we break symmetry
and vary 6, k,;, no longer lies along an axis of symmetry of the inner ellipse and for
¢ =0.99 it varies from vertical for & =0 to horizontal for 6 = n/2, see figure 5(e—g).

Figure 6(a—c) shows the axial flow rate in the (¢, ) parameter space for three
different eccentricity values, and in figure 10(a—c), we plot K,,;, for the same domains.
For both ¢ =0.7 and e = 0.9, the smallest value of K,,;, occurs at 6 = /2 and an
intermediate ¢ value 0 < ¢ < 1. Here, K,;, is in the x-direction, aligned with the
major axis of the rod. This is similar to the behaviour determined by Dvinsky & Popel
(1987) of a circular cylinder translating between two plates, parallel to the boundaries,
where the lowest force was incurred at a position between the centreline and the wall,
with the exact location being dependent upon the ratio of the radius of the cylinder
to the distance between the walls.
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FIGURE 10. Surface plots (a—c) give the value of K,,;, as a function of both offset, ¢, and
angular position 6 (where these values are defined as in § 3) of the inner ellipse for three
different eccentricity values: (a) e =0, (b) e =0.7 and (c¢) e = 0.9. Panels (d) and (e),
respectively, show the maximum and minimum value of K,;, gives the minimum value
of K,;, for a given equal inner and outer ellipse eccentricity value. The geometries that
provide the min(K,;,), (d), and max(K,;,), (e), for e=0, e=0.4, e=0.7 and ¢=0.9 are
demonstrated by diagrams and the white-dashed line on each of these shows the direction
of minimum resistance. R, = 2.

In figure 10(d), the minimum value of K,,;, over (¢, 6)-space is plotted as a function
of e. Several points have been illustrated to show the domain that produces the value,
and the k,;, axis is demonstrated on these by a dashed white line. We see that K,
has a local minimum near e¢ = 0.7. Note also that the position where the minimum
K.,.in 1s achieved changes with e, moving from the centre of the outer cylinder to the
edge with increasing eccentricity. Figure 10(e) shows the maximum value of K, for
increasing eccentricity, and again, the locations along with the k,,;, axis that produces
these values is demonstrated at four points. Here there is a monotonic increase with
eccentricity, and the location of the maximum K,,;, always occurs on the major axis
of the outer cylinder, closest to the wall (6 =0, ¢ =0.99).

Connecting these results with those in § 3.3, we find that for each e, the location
where K, is maximised coincides with the position where Q is maximised. This
can be seen by comparing figure 10(a—c) with figure 6(a—c). Contour plots of Q,
log(K,nin) and log(K,u.,) for e, =e;=0.7, ® =0 are shown in figure 11 as functions
of (X, Y). The plots are computed for 0 < ¢ < 0.99, 0 < 6 < /2, and the black
boundary indicates the edge of the outer ellipse. The coincident positions of max(Q)
and max(K,,;,) are indicated in figures 11(a) and 11(b), respectively, by the red circles.

We note that, by parametrising the position of the rod by ¢, the minimum gap
between the rod and the bounding cylinder depends on the angular position 6. To
test the sensitivity — of positions of highest minimum resistance and maximum
flux — to the minimum fixed distance between the rod and the cylinder wall, we
consider, in appendix G, an absolute minimum distance between the rod and bounding
cylinder, rather than one that depends on 6, as well as different maximum ¢ values.
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FIGURE 11. Panels (a), (b) and (c), show Q, log(K,;) and log(K,..) as functions of
position for ellipses of equal eccentricity e, =¢; =0.7, and equal orientation (® =0). The
arrows in (b) and (c¢) show the directions of k,; and k,,,, respectively. Red circles in
(@) and (b) indicate the coincident locations of maximum @ and maximum K,,;,.

We find, for all considered minimum distances between the rod and cylinder, that the
correspondence between rod positions of highest minimum resistance and maximum
flux persists.

The resistance contours, figures 11(») and 11(c), show increasingly narrow contours
with proximity to the edge of the outer ellipse, demonstrating a rapid increase in the
gradient of K,;, and K,,,, respectively. In contrast, the distances between neighbouring
Q contour lines in figure 11(a) remain relatively constant. Thus, it is interesting to
note that small changes to the position of the inner rod when it is near the outer
boundary may incur vast changes to the resistance to cross-sectional motion, but only
a small change to the corresponding axial flux. The arrows in figures 11(b) and 11(c)
demonstrate the directions of minimum and maximum resistance, respectively. Along
the major axis of the outer ellipse, and close to its centre, the direction of minimum
resistance is towards the vertex of the inner rod, demonstrating the effect of the
rod’s streamlined elliptical cross-section. However, the directions of the arrows
change once the rod is sufficiently far from the centre, and the competing effects
of the bounding walls become significant. This is in agreement with the results in
figure 9(c). As anticipated, when the rod is near the outer boundary, the direction of
minimum resistance is tangent to the wall and the direction of maximum resistance
perpendicular to it. The arrows in figures 11(b) and 11(c) allow some conjecturing
as to local trajectories of the inner rod; however, it is important to recall that the
results in figure 11 are computed for fixed orientation of the inner rod (® =0). In
actuality, torque will be induced by the translational motion of the rod, thus changing
the resistance contours. Although similar trends exist between Q, K,;, and K., as
shown in figure 11, the non-monotonic contour shapes in figure 11(b), as well as
the difference in gradients, indicate that the apparent correspondence between axial
and cross-sectional resistance is complicated, even in the particular reduced parameter
space (of equal ellipse eccentricity and orientation) explored in figures 10 and 11.

5. Discussion

We have considered in this paper the effect of geometry in an annular region,
formed by an elliptic rod and coaxial elliptic cylinder, on two types of resistance: the
resistance to axial flow, and the resistance to movement of the rod in the cross-section.
This research was motivated by questions of optimal device design: where to position
the rod, and how to shape the cross-sections of the rod and the bounding cylinder,
to maximise axial flux and minimise movement of the rod. Motivated by the design
of urological devices, we have restricted to the parameter regime in which the fluid
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behaviour is dominated by viscous forces, but in which inertia of the inner cylinder
is non-negligible. In this regime, we showed that the axial flow decouples from the
cross-sectional flows. Therefore, we can separately solve a Poiseuille flow problem
for the axial flow and Stokes flow in the cross-section, with the profile of the
cross-sectional flow producing a net force and torque that couple to the motion of
the inner cylinder.

5.1. Axial flow resistance

For all configurations considered, the flux increases monotonically as the rod is
positioned further from the centre of the outer cylinder, and the maximum flux is
achieved when the rod touches the boundary of the outer cylinder. For a circular rod
in a circular cylinder, the maximum flux is achieved when the circle touches the outer
boundary at a single point (Snyder & Goldstein 1965; MacDonald 1982). When either
the outer cylinder or the rod is elliptical, we found that flux can be increased from
the circular case by touching the boundary tangentially at two points. Even within the
reduced space of elliptical cylinders, the full optimisation problem is five-dimensional
and non-trivial, containing many local minima. Along with the global optimum, we
have also considered several constrained optimisation problems; these are summarised
in table 3, grouped by geometric constraint. Of particular relevance is the fact that
the global optimum gives a 52 % increase over the circle in circle case. Also of note
is the observation that the true optimum in the case of an ellipse in circle, circle in
ellipse and ellipse in ellipse, all occur at configurations for which the inner cylinder
meets the outer cylinder at two tangent points and thus does not correspond to a
matching of the curvature of the boundaries.

The existence of an optimal eccentricity value to minimise resistance for an outer
elliptic cylinder containing an inner circular rod is of particular interest to the
endourological community. It is important to note, however, that in a biomedical
context, the value of R, varies with the particular medical device under consideration.
Even within the category of ureteroscopes, there are a variety of available sizes for
working tools and access sheaths, and hence, as the optimal geometry depends on the
size of R,, there is no single optimal configuration. The system is further complicated
by concurrent flows through the working channel and access sheath, connected by
pressure within the kidney. We derive an irrigation systems model in Williams et al.
(2019b) and discuss — based on the fluid mechanics presented in § 3.4 — the effects of
modifying flow resistance through the access sheath on flow rate and kidney pressure.

5.2. Cross-sectional flow resistance

The cross-sectional resistance to imposed translational and rotational movement
of the rod is fully characterised by six unique scalars. The behaviour of these
resistance coefficients is determined both by the shape of the rod’s cross-section
and its proximity to the bounding cylinder. When varying eccentricity, position
and orientation, and the impact on six scalars, we are thus faced with a very
high-dimensional parameter space to investigate. Our results do not represent a
complete sweeping of all configurations; rather, we have tried to uncover trends,
to compare with classic results in particular limits, and to focus on unexpected
behaviour. One particularly interesting result was found for an elliptic rod near the
edge of a bounding circular cylinder, in which case we found that the sign of the
coefficient coupling translational and rotational motion changed as the eccentricity
of the inner ellipse increased. This result could be rephrased as a change in motion


https://doi.org/10.1017/jfm.2020.121

https://doi.org/10.1017/jfm.2020.121 Published online by Cambridge University Press

Effects of geometry on resistance in elliptical pipe flows 891 A4-29

Description Optimal configuration Geometry Q  Tangent points

Circle in circle X=1 Y=0 1.84 1

Ellipse in ellipse
(ei=ep, ©® =0)

Y=0 1.89 1

Ellipse in ellipse

(‘curve hugging’) 2.62

Ellipse in circle X=123 Y=0 2.66 2

e =
Circle in ellipse X=165 Y=0 2.69 2
©®

e;=0.68 ¢,=0.74
X=149 Y=0 2.80 2
O=mn/2

Ellipse in ellipse

Q=D
T
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TABLE 3. Summary of optimal configurations for R, =2.

being generated by a change in shape, and we might speculate whether such a process
could be harnessed in a micro-swimming context, where trajectories are determined
by principles of Stokes resistance (Lauga & Powers 2009).

It is important to note that all resistance coefficients diverge as the rod approaches
the outer boundary. Thus, positions for the rod which lead to high axial flux (close to
the edge of the bounding cylinder) receive extremely high resistance to translational
and rotational motions. Thus, it is impossible to fully connect configurations of
maximum axial flux to positions of highest minimal resistance within our modelling
framework, as the maximum axial flow occurs when the rod touches the wall, and
here the resistance always diverges. Nevertheless, for the particular class of an elliptic
rod in an elliptic cylinder of the same eccentricity and orientation, we restricted the
parameter space of rod positions to those within a fixed relative distance to the
boundary, and found a correspondence between the position of maximum axial flux
and highest minimum resistance.

Although we have uncovered coincident rod positions for optimal axial flow and
highest minimum resistance, a question still remains as to whether the rod will be
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driven to such a position by the hydrodynamic forces and torque, a question that
may have interesting design implications. One could address this with rod trajectories
calculated by integrating forward the equations of motion for the rod. Within the
parameter regime where rod inertia is included while fluid inertia is neglected, one
could quasi-statically update the forces and torques on the rod after updating its
position and resolving the Stokes equations in the cross-section. While more work is
needed to fully characterise how a rod will move in these geometries, we can provide
at least an answer to the question of whether the rod will always naturally move to
the position of maximum axial flow: the answer is no, when one considers that the
fluid is not really pushing the rod at all but merely dissipating energy that has to
be input to the rod from the external world. However, as positions of near contact
between the rod and wall correlate both with high axial flux and high cross-sectional
resistance, we speculate that a large energy input is required to move the rod if it
originates in such a position. Of course, these conclusions rely on the decoupling of
axial and cross-sectional flow, which would cease to be the case if one breaks the
co-axial assumption. It would be interesting to consider how such effects, as well as
including fluid inertia, impact on our findings.

Low Reynolds number flow in annular regions bounded internally and externally
by ellipses is a surprisingly rich area of research. There are many industrial flows
through cylinders containing a coaxial rod, such as oil wells and small-scale medical
devices, and in these applications, it is often important to maximise the flux. Our
results indicate that an understanding of the complex effect of geometry on resistance
in annular domains can enhance optimal device design. Our work has particular impact
in the field of endourology, where an understanding of the axial flow resistance and
geometric configurations can help guide the design of surgical tools.
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Appendix A. Numerical details
A.1. Elements

The finite elements are implemented with an open-source finite element library,
oomph-1lib (Heil & Hazel 2006). In §3, the elements for solving the Poisson
equation are first-order triangular elements. In §4, the elements for solving the
Stokes equations are triangular Taylor—Hood elements (second order for velocity and
first order for pressure).

A.2. Mesh

An unstructured mesh of triangular elements is generated for each domain via the use
of the Triangle library within an oomph-1ib driver code (Shewchuk 1996). A single,
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FIGURE 12. Equation (8) in Piercy et al. (1933) with the infinite sum truncated at n =N
as a function of N for ¢ =0.01, ¢ =0.5 and ¢ =0.99.

automatic mesh adaptation is enabled, to allow elements to cluster where there is a
narrow gap between the rod and the outer cylinder. The maximum allowed element
area is set to be 0.1 and the minimum element area to be 107°. A typical number of
elements is 4000.

A.3. Calculating the analytical flux for offset circles

A formula for the flow rate between a pair of offset circular cylinders is given in
Piercy et al. (1933, p. 650), equation (8). This equation can be made dimensionless
by setting R; =dp/dz=pu = 1. The formula contains an infinite sum over n, and in
figure 12 we plot Q(N) (which we define as the formula with sum truncated at n=N)
as a function of N, for R, =2 and three values of ¢. We observe that the rate of
convergence decreases monotonically with ¢. When validating our numerical solution
for flow in an offset circular annulus, and when plotting the analytical solution for Q
in figure 3(b), we take N =50. For ¢ =0.99 — the largest ¢-value considered in this
section, and thus the ¢-value which will have the largest error induced by truncating
the sum — the relative error for N =50 is

L Q650) — 0(49)

=0(107%). Al
0G30) (107°) (A1)

Appendix B. Position that maximises flux (§3.1)

The rod position that maximises axial flux for a circular rod in an elliptic cylinder is
the position as close to the vertex of the bounding cylinder as geometrically possible.
This will be when the radius of the inner circle is less than the radius of curvature
of the ellipse at the vertex, which for a cylinder of major axis a and minor axis b
is b*/a.

Thus, for a circle of radius r, if b*>/a > r then the rod position that maximises flux
is a — r from the centre of the ellipse. If b*>/a < r, we can solve for the position of
the circle centre where the circle and the ellipse are tangent in two locations. This is

Ja*r — b2 \/ 1 — r/b?* from the centre of the bounding ellipse.
Thus, for our configuration, the rod position that maximises flux is

X=a,—1, ife,>e", X=ae,n/1-b72 ife,<e", (B la,b)
e =1/1—R,"". (B2)

where
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2 3 4

FIGURE 13. The geometry that maximises flux in figure 3. A close-up of
configuration (ii).

A closer look at the ellipse vertex for configuration (ii) in figure 3 (the configuration
that maximises flux over all e, for R, =2) is shown in figure 13. The two points of
intersection between the rod and bounding cylinder are indicated by red dots. As the
eccentricity of the outer ellipse is greater that e*, the inner circle touches the outer
ellipse in two locations, rather than just at the vertex.

Appendix C. Additional results (§3.3)

Figure 6(a—c) shows colour maps of Q as a function of the position of the rod,
parameterised by ¢ and 6, for an elliptical rod in an elliptical cylinder of the same
eccentricity e, and orientation ® =0. To highlight the behaviour of Q with respect to
individual variation of e, ¢ and 6, in figure 14 we fix two of our three parameters
and plot Q as a function of the third. Figure 14(a) shows a monotonic increase of
QO with ¢ for 6 =0 and e=0, 0.4, 0.65 and 0.8. Figure 14(b) captures a zoomed-in
view of figure 14(a) between 0.9 < ¢ < 0.99, and shows that over this range of ¢, for
the four eccentricity values plotted, e = 0.65 has the highest flux and ¢ =0 has the
lowest. Figure 14(c) plots the non-monotonic relationship between 6 and Q indicated
by figure 5(e-h) for e =0, 0.4, 0.65 and 0.8. The flux is largest for & =0 and has
a minimum between 6 = /4 and 8 = /2. For e =0, Q is constant with respect to
¢ as expected due to the rotational symmetry of the domain. Figure 14(d) shows Q
as a function of e for fixed offset, ¢ =0.99, and 6 =0, ©/4 and /2. For 6 =0, the
flux is maximum for e between 0.6 and 0.8. For 8 = nt/4, there is a maximum Q near
e =0.3, whereas for w/2, Q decreases monotonically with e. The results in figure 14
suggest that ¢ =0.99, 0 =0, and a non-zero value of e lead to the maximum flux.

Appendix D. Curvature matching (§ 3.4)
The equations for I; and I, are

((x=X)cos ® + (y — Y) sin ©@)? N (x=X)sin® + (y—¥) cos ©)*

1 1

I, (Dla)

X
—4+==1, (D 1b)
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FIGURE 14. Dimensionless flow rate, Q, as a function of (a) and (b) offset, ¢,
(c) eccentricity, e, and (d), angular position, 6. Panel (b) displays the outlined section
of (a). Here R, =2.

respectively, where a;, and b;, can be calculated from R,, e;, via (3.2). We seek
values for X, Y, ® and e; so that the inner ellipse will touch the outer ellipse
tangentially with matching curvature at a point

(x,y)=(a,cos0, b,sinb), (D2)
with its centre located furthest from the centre of the outer ellipse. Transforming

coordinates

(x,y) > (x cos o + bl sin o, x sino — blcos a) =, ), (D3)

o o aO o
where o = /2 — 6, the equations for the inner and outer ellipse are then
(Xcos @ + (5 — ¥) sin )2 N (Xsin @ + (5 — Y) cos ©)? _

o e 1, (D 4a)

) 2
X
Crl=L (D4b)
a; bg
As the outer boundary is now circular, we seek without loss of generality, a
geometry for the inner ellipse that touches the outer boundary in a single point,
(0, Y) with matching tangent and curvature. As R is fixed, the major and minor axes
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FIGURE 15. Dimensionless velocity colour maps with dimensionless flow rates, Q. Axes
are in (x, y) coordinates and these vary with eccentricity as the available space for fluid
flow is constant. Panels (a—d) show the effect of the position of the inner ellipse, 6, and
panels (e—h) show the effect of the outer ellipse eccentricity, e,. Given 6 and e,, we solve
for X, Y and @, so that the ellipses touch at a single point with matching tangent and
curvature.

of the ellipses are determined by their eccentricity values. To maximise the distance
between the centres of the ellipse we take & =0 and the ellipse centres are a distance
1 — b; apart. Hence, we have

G=R?* b=R* X=0, Y=1-R"*". (D 5a—d)

We can therefore determine the position and orientation angle of the initial ellipse by
reversing the transformation (D 3). Some velocity colour maps are shown in figure 15.
The values for 6 and e, in figure 15(a—h) correspond to those in figure 5(e-l),
respectively. This comparison shows that Q is larger for e;, ® that match the curvature
of the outer ellipse (figure 15), compared to e¢; = ¢, and ® =0 (figure 5).

Appendix E. Optimisation constraints (§3.4)

From (3.8), we have that the equations of the outer and inner ellipses can be written
respectively as
x'Ax=0, x"Bx=0,

where x = (x, y, 1)T and A and B are symmetric matrices of coefficients, functions
of the components of g (3.6). The intersections of two conics can be determined by
considering their pencil, 1A + B (Casey 1893). Conditions to determine the relative
position of two ellipses were derived by Etayo & Gonzalez-Vega (2006), which we
can then write in terms of the components of g. The characteristic polynomial of the
pencil (once turned monic) is

FQ =2 4+al +ba+c. (E1)
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In order for the inner ellipse to be fully enclosed in the outer ellipse, the following
conditions must hold:

a>0, =3b+a*>0, 3ac+ba*®—4b*>0, (E2a—c)
—27¢* + 18cab + a*b* — 4a’c — 4b* > 0, (E2d)

along with conditions
ny det(N) >0, det(Ny;) >0, (E3a,b)

where N =vA+ B = (n;) and Ny, is the minor of N (Etayo & Gonzalez-Vega 2006).
Equations (E2) and (E3) provide a set of six nonlinear constraints on g. Thus, the
optimisation problem can be formulated as (3.8)

min —Q, subject to ¢ >0, (E4)
g

where
a

—3b+a?
3ac + ba* — 4b®
—27¢% 4+ 18cab + a*b*> — 4a’c — 4b3
13y det(N)
det(N11)

(E5)

Appendix F. Additional results (§§4.1 and 4.2)

Sections 4.1 and 4.2 explore Stokes resistance to rod motion for a circular rod
and a circular outer cylinder, respectively. Although we fix the eccentricity of either
the rod or bounding cylinder in each section, the parameter space remains vast and
comprises: the position of the rod, the eccentricity of the rod or outer cylinder and the
six Stokes coefficients. We have highlighted key results in figures 8 and 9 and provide
plots of additional results (which we refer to in the main text) in this appendix for
completeness.

F.1. Section 4.1

We plot K, as a function of relative offset (which varies from O when the rod is
concentric to 1 when the rod touches the boundary (for all e, values shown, the rod
can fit tangent to the vertex, so X/(a, — 1) =1 is achievable)) in figure 16(a) for
e, =0, e,=0.6 and e, = 0.8 (lines i, ii and iii, respectively). For each offset value,
K, increases with e,, although it should be noted that when plotting K, as a function
of absolute offset X, a crossing of the curves is observed (see inset in figure 16a); this
is due to the fact that with higher eccentricity, there is a larger absolute distance to
the edge. In all cases we compute the lift force K,, =0 (to within numerical error),
which is expected by the symmetry of the domain. We next consider the coupling
coefficients C, and C,. For concentric circular cylinders, there is no coupling between
translation and rotation, i.e. C, = Cy, =0 (see §1.2). However, coupling does occur
when there is an offset; e.g. when the rod is rotating and positioned away from the
centre of the outer cylinder, the viscous fluid provides both an opposing torque and a
force orthogonal to the minimal spacing. The force parallel to the minimal spacing in
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FIGURE 16. Results for R, =2. (a) Rod of unit radius centred at (X, 0), translating with
unit velocity in the x-direction. K,, is plotted both as a function of relative offset and of
X (inset) for three values of e¢,: (i) e, =0 (ii) e,=0.6 and (iii) ¢, =0.8. (b) Rod centred
at (X, 0), rotating with unit velocity in the clockwise direction for (i) e, =0, (ii)) e, =0.6
and (iii) e, = 0.8. The solution for e, =0 is compared against the analytical solution —
Slezkin (1955), dashed black line. The main plot is function of relative offset, and inset
is a function of X.

this scenario is zero (Slezkin 1955). We now explore how these results extend for a
circular rod in an outer elliptical cylinder. We determine that, as with a circular outer
cylinder, if the rod is offset in the x-direction, the coupling coefficient C, =0, while
C, #0 for all e, with X #0. In figure 16(b) we plot C, as a function of relative offset
for e, =0, e,=0.6, and e, =0.8 (lines i, ii and iii, respectively). As observed by the
crossing of the curves, for small relative offset the coupling is highest for the circular
rod, while for large offset the most eccentric rod has the largest coupling coefficient.
That is, as the inner rod approaches the edge of the domain, the fluid couples rotation
to vertical force (and likewise vertical velocity to torque) more strongly for increased
eccentricity. Again, the picture appears differently when plotted against absolute offset,
since a greater total distance is available with increased eccentricity: for each absolute
distance X, C, decreases with eccentricity (plotted in the inset).

F.2. Section 4.2

Figure 17(a) plots A, as a function of absolute offset, 1.45 < X < 1.8, for ¢; = 0.7,
continuing the plot in figure 9(a) for larger values of X. We observe the same line
crossing behaviour noted for ¢; =0.9 in figure 9(a).

Figure 17(b) plots K, (dotted), K,, (dashed) and K,; (solid) for ellipses of
eccentricities ¢; =0, ¢; =0.7 and ¢; =0.9, all oriented at angle ® = n/2. We see that
over this range of offset values (0 <X < 1.45), K,y = Ky, and k,,;, =]J.

Figure 17(c—h) shows either coupling or lift coefficients for e; = 0.7 (a,c,e,g) and
e¢;=0.9 (b,d,f,h) as functions of absolute offset, X. The dashed black lines are different
©® values, ranging from ® =0 to ® =7/2 in steps of 1t/40. In each plot, the @ value
that maximises the force coefficient (over the majority of the X range) is indicated by
a solid red line. Schematics indicate orientation for the minimal and maximal lines.

The coupling between rotation and translation in the x-direction is shown in
figure 17(c,d). We see that for ® =0 and ® = /2, C,=0. Over the majority of the
offset values, C, is maximal when ® = w/4. However, for ¢; = 0.9, there is a region
close to the outer boundary, where smaller offset angles provide a higher coupling
force.
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FIGURE 17. Panel (a) shows A, as a function of offset for ¢; = 0.7 oriented at & =0,
O =m7/4 and ® = /2. Offset, X €[1.45, 1.8] (a continuation from figure 9a). Panel (b)
shows K, for ¢,=0, ¢;,=0.7 and ¢; =0.9 all oriented at ® = /2. Panels (c-h) show
coupling and lift force coefficients for e; =0.7 (a,c,e,g) and e; =0.9 (b.d,f,h). Orientation
angles vary between ® =0 and ® = 1t/2 in steps of 1/40.

The coupling between rotation and translation in the y-direction is shown in
figures 17(e) and 17(f). For both e¢; =0.7 and ¢; = 0.9, C, increases monotonically
with ® from ® =0 to ® = nt/2 over the full range of offset values.
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FIGURE 18. Plots of Q (a,b) and K,;, (c,d) as functions of angular position 6
(see figure 4) for different offset values from the wall. Panels (a) and (c¢) with solid lines
show relative distances, denoted with ¢ (figure 4) and absolute distances, §.

The lift force, K, is plotted in figure 17(g) and figure 17(h). This is zero for ® =0
and ® = /2 and maximal (over the majority of the offset values) for @ = n/4.
However, for e; = 0.9, as with C,, there is a region close to the boundary, where
crossing of the lines occurs.

Appendix G. Absolute versus relative distance from the wall

In figure 11, the closest distance to the wall at each value of angular position 6 is
taken as ¢ =0.99, with ¢ and 0 defined as in figure 4: ¢ =0 corresponds to the rod
positioned in the centre of the outer cylinder (X =Y =0) and ¢ =1 denotes the rod
touching the cylinder wall. For each value of (¢, 6), the position of the rod is

X=¢(@r,—r)cosf, Y=¢(,—r;)sinb, (G la,b)

where r, and r; are the effective radii of the inner and outer ellipses at an angle 6, as
defined in (3.3). Because the radius of the inner and outer ellipses vary with angular
position 6, ¢ provides a ‘relative’ position for the rod; i.e. the absolute distance
between the edge of the rod and the cylinder is different for constant ¢ at each
value of 6. In figure 18 we test the sensitivity to the fixed distance from the wall of
the observed correspondence between positions of highest minimum resistance and
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maximum axial flux in figure 11 (where ¢; = e, =0.7, ® = 0). Positions for the rod
with an absolute distance, §, are

X=0,—r;i—68)cos6, Y=(r,—ri—3)sinb. (G2a,b)

We plot, as the solid lines in figure 18(a,c), Q and K,;,, respectively, for fixed values
of ¢ =0.9, 0.925, 0.95, 0.99 (increasing ¢ correlates with decreasing distance between
the rod and the cylinder wall). We see that the position that provides both maximum
flux and highest minimum resistance is at § =0 for all values of ¢. We compare this
with flux and resistance when the rod is positioned at an absolute distance from the
edge of the cylinder, §. In figure 18(b,d), we again plot Q and K,;,, respectively, but
now for fixed § = 0.1, 0.05, 0.025, 0.01 (dashed lines). We see that the qualitative
nature of the curves is unchanged, and that again, the position of both maximum flux
and highest minimum resistance is at 6 =0 for all values of §.
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