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Instability caused by the coupling between
non-resonant shape oscillation modes of a

charged conducting drop

By Z. C. F E N G
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(Received 16 October 1995 and in revised form 9 September 1996)

By examining the modal interaction between two non-resonant shape oscillation
modes of a charged liquid drop, we have identified a new route to instability via
nonlinear coupling. We present numerical simulation results to show that when
shape perturbation of a high-mode number Legendre mode is applied to the drop,
the prolate–oblate mode of the drop may grow unbounded. Using multiple-scale
analysis, we derive amplitude equations for the high-mode-number shape mode and
the prolate–oblate mode to show the nonlinear coupling between the two modes.

1. Introduction
Modal interaction provides a means by which energy transfer takes place between

linearly independent modes. In the context of nonlinear dynamics of bubbles and
drops, modal interaction greatly affects mass and momentum transfer and often
results in hydrodynamic instability and symmetry breaking. For example, Natarajan
& Brown (1986) show that the nonlinear coupling between two shape oscillation
modes of an inviscid liquid drop leads to energy exchange between the two modes
in a periodic fashion. A similar type of nonlinear coupling is shown to occur in the
radial mode oscillation and the shape mode oscillation of a gas or a vapour bubble
(Ffowcs Williams & Guo 1991; Feng & Leal 1993). For an oscillating bubble, energy
transfer from the radial mode to the shape modes causes the spherical shape of the
bubble to be unstable. When one of the two resonant modes is forced by an external
periodic forcing, it is possible that chaotic bubble oscillation can occur (Mei & Zhou
1991; Feng & Leal 1994).

For linearly independent modes to interact, certain conditions are required. In the
drop example given above, the frequencies of the fifth mode and the eighth mode
are in one-to-two ratio. For this reason, such modal interactions are called resonant
modal interactions.

In the present paper we will show the presence of modal coupling when no apparent
frequency relationships exist between the interacting modes. This work is motivated
by the paper of Nayfeh & Nayfeh (1992) on nonlinear structural vibrations. Nayfeh
& Nayfeh show that nonlinear modal coupling occurs in linearly independent modes
whose frequencies are widely spaced. Specifically, they show that energy transfer
between two widely spaced modes takes place in the forced vibration of a cantilever
beam. This result is very interesting because if the system nonlinearity can be
considered weak, energy exchange is expected only if the natural frequencies of the
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2 Z. C. Feng

two modes are approximately in one-to-one, one-to-two or one-to-three ratios. The
natural frequencies of the two widely spaced modes considered by Nayfeh & Nayfeh
may differ by an order of magnitude. When such modal interactions occur in fluid
systems, bubbles and drops in particular, we are interested in its implications for the
stability of the fluid flows.

We choose to study the non-resonant modal interaction between the shape oscilla-
tion modes of a charged liquid drop as a part of our effort to understand nonlinear
dynamics of electrostatically levitated drops (Feng & Leal 1996). Various aspects
of the dynamics of a charged conducting liquid drop have been extensively studied.
The equilibrium shape and linear stability of a charged drop have been studied by
Rayleigh (1882). It is known that a critical charge exists above which the spherical
equilibrium shape of the drop is unstable. The critical electric charge is known as
the Rayleigh limit. The bifurcation taking place at the Rayleigh limit is studied
by Tsamopoulos, Akylas & Brown (1985), Natarajan & Brown (1987), Basaran &
Scriven (1989), and Pelekasis, Tsamopoulos & Manolis (1990).

The focus of the present work is on the drop dynamics when the electric charge
is near the Rayleigh limit. We attempt to show the presence of non-resonant modal
coupling among the shape oscillation modes of the drop. By examining the coupling
effect of the shape oscillation of a high mode on the dynamics of the fundamental
mode, we uncover a new mechanism for nonlinear instability.

The paper is organized as follows. In the next section, we first present the governing
differential equations and the boundary conditions in order to discuss the behaviour
of the drop under small perturbations. Then in §3, we describe numerical simulation
results of charged-drop shape oscillations. We draw special attention to the coupling
between the fundamental shape oscillation mode and another higher mode. In §4,
a perturbation method is used to derive amplitude equations for the two interacting
modes. The amplitude equations are studied in §5, where the physical meaning of
the results is given in terms of the drop dynamics. In §6, we discuss the connection
between our results and other related topics.

2. Governing equations and linear solutions
We consider an axisymmetric conducting liquid drop whose volume is equal to

that of a spherical drop of radius R. The drop has density ρ, uniform interfacial
tension σ, and net electrical charge Q∗ in zero gravity. The insulating medium has
electric permittivity εm. We assume that the flow inside the drop is potential flow
with the velocity potential φ∗. Let V ∗ denote the electrostatic potential. We choose R,
(ρR3/σ)1/2, and σ/R as the characteristic length, time and pressure scales, i.e. we let

φ = φ∗(ρ/σR)1/2, V = V ∗(4πεm/σR)1/2, Q = Q∗/(4πεmσR
3)1/2.

In standard spherical coordinates, the governing equations for the problem are given
by Tsamopoulos et al. (1985). The equation governing the hydrodynamic field is

∇2φ = 0 (0 6 r 6 F(θ, t), 0 6 θ 6 π), (2.1)

where r = F(θ, t) describes the drop free surface. The equation governing the electric
field is

∇2V = 0 (r > F(θ, t), 0 6 θ 6 π). (2.2)

The boundary conditions to be satisfied on the drop surface include the kinematic
equation, the normal stress balance equation, the constant electric potential condition,
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Non-resonant coupling between shape oscillation modes 3

and the conservation of the total electric charge. The kinematic boundary condition
is

∂φ

∂r
=
∂F

∂t
+

1

r

∂φ

∂θ

∂F

∂θ
. (2.3)

The normal stress balance equation is

∂φ

∂t
+ 1

2
(∇φ)2 + 2H − 1

2
(n · ∇V )2 = ∆P0 (2.4)

where H denotes the mean curvature of the surface and the pressure adjustment ∆P0

is determined by the constraint of volume conservation of the drop, i.e.∫ π

0

F3(θ, t) sin θdθ = 2. (2.5)

Since we assume the drop to be a conductor, V is a constant on the drop surface, i.e.

t · ∇V = 0. (2.6)

The conservation of the total charge on the drop surface gives∫ π

0

(n · ∇V )F(F2 + F2
θ )1/2 sin θdθ = −2Q. (2.7)

In addition, we assume that there is no external electric field acting on the drop.
Therefore,

V = 0 as r →∞. (2.8)

Since we are mainly interested in the coupling phenomenon, we do not include gravity
in our formulation. Hence the drop takes a spherical shape at equilibrium. For a
charged conducting sphere, the electric potential outside the drop is

V0 =
Q

r
.

When the spherical drop is subjected to shape perturbations, the surface electric
charge moves to locations of high curvature. Thus the electric charge is a destablizing
force. On the other hand, surface tension smooths out the high curvature. Therefore,
the stability of the spherical shape of the drop is dependent on the relative magnitude
of these two forces. When the electric charge is below a certain threshold value,
the spherical shape is stable. A small initial axisymmetric shape perturbation will
excite the shape oscillation of the drop. The shape oscillation can be described as a
superposition of Legendre modes. That is

F = 1 +

∞∑
n=2

1

2

[
zne

iωnt + z∗ne
−iωnt

]
Pn(cos θ), (2.9)

φ =

∞∑
n=2

i

2n
ωn
[
zne

iωnt − zne−iωnt
]
rnPn(cos θ), (2.10)

V =
Q

r
+

∞∑
n=2

Q

2

[
zne

iωnt + z∗ne
−iωnt

]
r−(n+1)Pn(cos θ), (2.11)

where Pn is the nth-order Legendre polynomial, zn is the complex amplitude of the nth
mode, and ωn is the shape oscillation frequency of the nth Legendre mode. Rayleigh
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4 Z. C. Feng

(1882) has obtained the formula for the natural frequencies of the shape modes. In
the present non-dimensionalization,

ω2
n = n(n− 1)(n+ 2)

1−
(
Q

Q
(n)
R

)2
 (2.12)

where

Q
(n)
R = 2[(n+ 2)π]1/2. (2.13)

Equation (2.12) indicates that apart from the translational mode n = 1, the second
mode has the lowest natural frequency. Hence we often call this mode the fundamental
mode. If the surface electric charge exceeds Q(2)

R ,the right-hand side of (2.12) becomes
negative. It means that the spherical shape is unstable under the second-mode shape
perturbation. This critical surface charge is called the Rayleigh limit. In the present
non-dimensionalization, Q(2)

R = 4π1/2. When the electric charge is below the Rayleigh
limit, the linear stability theory states that the drop is stable under infinitesimal
perturbations. As a problem with moving interfaces, the drop dynamics is nonlinear.
The nonlinearity affects the stability of the equilibrium shape in a dramatic way. In
particular, instability can set in at subcritical electric charge. Although there exist well-
known mechanisms for such nonlinear instability, we present in the following sections
a new mechanism of nonlinear instability when the electric charge is subcritical.

3. Numerical simulation results
In this section, we present some interesting observations on the modal interactions

and the onset of instability. Our results are based on numerical simulations of the
drop dynamics. A detailed description of the numerical simulation method and its
implementation are given in Feng & Leal (1996). Briefly stated, the strategy amounts
to numerical integration of the following dynamical system:

ż = φttz + φnnz, (3.1)

ṙ = φttr + φnnr, (3.2)

φ̇ = 1
2
(∇φ)2 − 2H + 1

2
(∇V )2. (3.3)

In the above equations z and r describe the cylindrical coordinates of the nodal points
on the free surface of an axisymmetric conducting drop and φ is the velocity potential
of the drop at the nodal points. These three equations, which are valid on the drop
surface, come from the kinematic boundary condition (equations (3.1) and (3.2)) and
the dynamic pressure boundary condition (equation (3.3)). If the generator of the
axisymmetric drop surface is discretized into n nodes, there are three such equations
for each node. Therefore, we have a system of 3n first-order ordinary differential
equations. For given initial conditions, the Runge–Kutta method is used to advance
the time.

The Runge–Kutta method requires the evaluation of the right-hand sides of (3.1)–
(3.3) for given values of z, r, and φ. Among the terms that need to be evaluated,
t = tziz + trir and n = nziz + nrir are the tangent and the outward normal vectors
respectively; iz and ir are the two unit vectors in the cylindrical coordinates. All
of these quantities are known once the nodal coordinates r and z are known. The
evaluation of the right-hand sides of (3.1)–(3.3) also requires the gradients of φ and V
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Non-resonant coupling between shape oscillation modes 5

on the drop boundary. Both φ and V satisfy the Laplace equation; they are defined
in the drop interior and exterior respectively. We use the boundary element method
(Brebbia, Telles & Wrobel 1984) to solve the normal derivatives of φ and V on the
drop surface. The tangent derivatives of φ are obtained by numerical derivatives of
φ employing the cubic spline (the tangent derivatives of V are zero for a conducting
liquid drop).

In short, we formulate the drop dynamics problem as an initial value problem of
a system of ordinary differential equations (3.1)–(3.3). The evaluation of the right-
hand sides is done using the boundary element method. This method for solving the
potential problem has been found to converge with the mesh refinement. However,
as more elements are used, the time steps must be small enough to avoid numerical
instability associated with the stiffness of the ordinary differential equations. The
mechanism for the numerical instability and the appropriate time steps have been
discussed in Feng & Leal (1996) in detail. A time step of 0.0005 is found to be
sufficiently small to guarantee numerical stability when up to 80 elements are used.

The non-dimensionalization of Tsamopoulos et al. (1985) used here is related to
that in Feng & Leal (1996) in the following way:

QFL = (4π)1/2Qpresent.

The interesting phenomenon that we are about to describe arises in our numerical
study of the dynamics of an electrostatically levitated drop (Feng & Leal, 1996).
Specifically, we have been interested in the modal interactions of charged-drop
shape oscillations. For a charged drop, several shape oscillation modes can become
resonant with each other, i.e. the ratios of their natural frequencies are rational
numbers. Typically, the resonant modes exchange energy in a periodic fashion. To
show this type of modal interaction, we give our result in terms of the amplitudes
of various Legendre modes obtained by taking projections of the drop shape. Figure
1(a) plots the amplitudes of the P2, P5, and P8 modes for an uncharged drop. The
initial condition corresponds to a drop subjected to a shape perturbation in the fifth
mode. The P5 mode has an initial amplitude of 0.1. Based on equation (2.12), we
find that for Q = 0, the natural frequency of the eighth mode is exactly twice of that
of the fifth mode. It is thus not surprising to see in figure 1(a) the slow modulation
of the oscillation amplitudes of the P5 mode and the P8 mode. The slow amplitude
modulation is caused by the resonant energy exchange between the two modes. Since
the total energy is conserved, the growth of the oscillation amplitude of one mode is
at the expense of the other mode. This type of resonant modal coupling has been
analysed by Tsamopoulos & Brown (1984) and Natarajan & Brown (1986).

We note that although the P2 mode is not resonant with either the P5 mode or
the P8 mode, the presence of the other modes causes the P2 mode to experience a
small oscillation. When the same simulation is done for a charged drop with charge
Q = 0.915Q(2)

R (i.e. QFL = 23), the amplitude of the P2 mode experiences relatively
large oscillations. See figure 1(b). In other words, the P2 mode and the other modes
are nonlinearly coupled even though their natural frequencies are not necessarily in
resonance.

Next we examine the consequences of such modal coupling on the stability of the
drop. We simulate the drop dynamics for a drop with charge Q = 0.915Q(2)

R when
the initial shape perturbation of the P5 mode is 0.135. In figure 2(a), we give the
amplitudes of the P2, P5, and P8 modes. We observe that the modal coupling leads
to the growth of the fundamental mode. During this process, the amplitudes of the
other modes (P1, P3, P4, P6, and P7) remain relatively small; see figure 2(b). Figure
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Figure 1. The amplitudes of the second, fifth and eighth modes as functions of time for initial
shape perturbations in the fifth mode. (a) Q = 0, (b) QFL = 23.

3 shows the drop shapes at equal time intervals. The initial P5 mode perturbation
eventually leads to the elongation of the drop along its symmetry axis (the vertical
axis). The last three small figures are the drop shapes on a shorter time interval just
before the numerical program stops running. We observe that one of the two poles
of the drop develops high velocity. The numerical program stops running because the
potential flow solver using the boundary element method encounters a singularity at
the high-curvature tip of the drop. Based on our understanding of the dynamics of a
charged drop (Feng & Leal 1996), we expect drop breakup to take place subsequently.
The plots in figures 2 and 3 are obtained using 40 elements. In order to check the
convergences of our numerical program, we repeat the simulations using 50, 60,
70, and 80 elements with almost identical results. For this initial condition, the
dimensionless time to the development of a singularity at the drop tip varies between
3.09 and 3.13 depending on the number of elements used. All of our subsequent
simulations are done using 40 elements.

As the electric charge approaches the Rayleigh limit, the destablizing effect of
the high-mode shape perturbation becomes more pronounced. At Q = 0.975Q(2)

R , an
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Figure 2. Modal amplitudes as functions of time for an initial fifth-mode perturbation of a
charged drop with QFL = 23. (a) P2, P5, and P8 modes, (b) P1, P3, P4, P6, and P7 modes.

initial shape perturbation of the P5 mode as small as 0.05 in amplitude will lead
to the unbounded growth of the P2 mode. The amplitudes from P1 to P7 modes
are shown in figure 4 as functions of time. We note in particular that the initial
perturbation in the fifth mode does not lead to the growth of the fifth mode; the
amplitude of the fifth mode remains small. The drop develops instability through the
growth of the second mode. Such a mechanism for instability is different from the
well-known nonlinear instability mechanism, where subcritical transition to instability
occurs when the the initial perturbation of the linearly stable mode has exceeded a
threshold value. This latter scenario is shown in figure 5 which plots the amplitudes
of the P2 mode as functions of time when the initial perturbation amplitude of the P2

mode has values 0.05, 0.10, 0.15, 0.18, and 0.20. We observe that unbounded growth
of the second mode occurs when the initial perturbation of the second mode is about
0.18 or above. In contrast, the unbounded growth of the second mode shown in
figure 4(a) is not caused by a finite-amplitude perturbation of the second mode but
by a finite-amplitude perturbation of the fifth mode. While the second mode grows
unbounded, the initial perturbation of the fifth mode does not.
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Figure 3. Shapes of a charged drop with QFL = 23 at equal time intervals after it is subjected to a
perturbation in the fifth mode. The time intervals for the last three shapes are different.

Although we show here several simulation results for initial perturbations in the
P5 mode, simulations with initial perturbations in other modes have been done with
similar results. Figure 6 shows the amplitudes of the P2, P4, P6, and P8 modes as
functions of time. The initial shape perturbation is in the P6 mode. Since the initial
perturbation is an even mode, none of the odd modes are excited.
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Figure 4. The amplitudes of the shape oscillation modes as functions of time for a charged drop
with QFL = 24.5. The drop is subjected to an initial shape perturbation in the fifth mode with an
amplitude of 0.05. (a) P2 and P5 modes, (b) P1, P3. P4, P6, and P7 modes.

In summary, our numerical simulation indicates that the fundamental mode and
the other shape modes couple with each other. This coupling is significant especially
for drops which have electric charges near the Rayleigh limit. As a result of such
modal coupling, a drop which is linearly stable can become unstable. To achieve
some theoretical understanding of these observations, we use perturbation analysis to
obtain amplitude equations to study this coupling phenomenon and the mechanism
for instability.

4. Perturbation analysis
Following Tsamopoulos et al. (1985), we use the method of domain perturba-

tions and multiple-scale analysis to derive the so-called amplitude equations for the
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Figure 5. The amplitudes of the P2 mode as functions of time when the drop is subjected to initial
shape perturbations in the P2 mode with respective amplitudes indicated in the figure. The electric
charge of the drop is QFL = 24.5.
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Figure 6. The amplitudes of the P2, P4, P6, and P8 modes when the drop is subjected to an initial
shape perturbation in the P6 mode. The electric charge of the drop is QFL = 23.

modes that are non-resonantly coupled. Tsamopoulos et al. employ the following
expansions:

φ = εφ1 + ε3/2φ3/2 + ε2φ2, (4.1)

F = 1 + εf1 + ε3/2f3/2 + ε2f2, (4.2)

V = V0 + εV1 + ε3/2V3/2 + ε2V2, (4.3)

Q = Q0 + εQ1, (4.4)

∆P0 = εp1 + ε3/2p3/2 + ε2p2, (4.5)
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where Q0 = Q
(2)
R . Although we essentially follow the steps in Tsamopoulos et al.

(1985), our treatment of the curvature term differs slightly. We use the following
relationship:

2∇s · n = 2− (2f1 + ∇2
s f1)ε− [(2f2 + ∇2

s f2)− 2f1(f1 + ∇2
s f1)]ε

2 + HOT

where

∇2
s =

∂

∂η

[
(1− η2)

∂

∂η

]
,

η = cos θ and HOT denotes higher-order terms. It can be shown that

∇2
s (fg) = 2(1− η2)

∂f

∂η

∂g

∂η
+ g∇2

s f + f∇2
s g.

In particular,

(∇2
s + 2)Pn = −(n− 1)(n+ 2)Pn

where Pn is the nth-order Legendre polynomial.
When equations (4.1)–(4.5) are substituted into (2.1)–(2.8), the governing equations

and the boundary conditions at different orders of ε are obtained. The solution at
O(1) is simply the equilibrium solution for an electrostatically charged sphere:

V0 =
Q0

r
. (4.6)

At O(ε) the equations are

∇2φ1 = 0 for r < 1, (4.7)

∇2V1 = 0 for r > 1, (4.8)

and the boundary conditions are

∂f1

∂t
− ∂φ1

∂r
= 0, (4.9)

∂φ1

∂t
− 1

4π

∂V0

∂r

[
∂V1

∂r
+ f1

∂2V0

∂r2

]
− (2 + ∇2

s )f1 = p1, (4.10)∫ π

0

[
∂V1

∂r
+ f1

(
∂2V0

∂r2
+ 2

∂V0

∂r

)]
sin θ dθ = −2Q1, (4.11)

∂V1

∂θ
+
∂V0

∂r

∂f1

∂θ
= 0. (4.12)

Since we are mainly interested in the coupling between the P2 mode and another
shape mode Pn, the solutions at O(ε) are assumed to be

f1 = x2(T1/2)P2 + 1
2

[
zn(T )eiωnt + zn(T )∗e−iωnt

]
Pn, (4.13)

φ1 =
i

2n
ωn
[
zn(T )eiωnt − zn(T )e−iωnt

]
rnPn, (4.14)

V1 =
Q1

r
+ Q0x2(T1/2)r

−3P2 +
Q0

2

[
zn(T )eiωnt + zn(T )∗e−iωnt

]
r−(n+1)Pn, (4.15)

where

ω2
n = n(n− 1)

[
n+ 2− Q2

0

4π

]
. (4.16)
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12 Z. C. Feng

Note that x2 is assumed to be a function of the slow time T1/2 and zn is assumed to
be a function of the slow time T , where

T1/2 = ε1/2t, T = εt.

At O(ε3/2), the equations are

∇2φ3/2 = 0 for r < 1, (4.17)

∇2V3/2 = 0 for r > 1, (4.18)

and the boundary conditions are

∂f3/2

∂t
−
∂φ3/2

∂r
= − ∂f1

∂T1/2

, (4.19)

∂φ3/2

∂t
− 1

4π

∂V0

∂r

[
∂V3/2

∂r
+ f3/2

∂2V0

∂r2

]
− (2 + ∇2

s )f3/2 = p3/2, (4.20)∫ π

0

[
∂V3/2

∂r
+ f3/2

(
∂2V0

∂r2
+ 2

∂V0

∂r

)]
sin θdθ = 0, (4.21)

∂V3/2

∂θ
+
∂V0

∂r

∂f3/2

∂θ
= 0. (4.22)

The solutions at O(ε3/2) are

f3/2 = 0, (4.23)

φ3/2 =
1

2

∂x2

∂T1/2

r2P2, (4.24)

V3/2 = 0. (4.25)

At O(ε2) the equations are

∇2φ2 = 0 for r < 1, (4.26)

∇2V2 = 0 for r > 1, (4.27)

and the boundary conditions are

∂f2

∂t
− ∂φ2

∂r
= f1

∂2φ

∂r2
− (1− η2)

∂f1

∂η

∂φ1

∂η
− ∂f1

∂T
−
∂f3/2

∂T1/2

, (4.28)

∂φ2

∂t
− 1

4π

∂V0

∂r

(
∂V2

∂r
+ f2

∂2V0

∂r2

)
− (2 + ∇2

s )f2

= −2f1(f1 + ∇2
s f1)−

∂2φ1

∂t∂r
f1 +

1

2

[(
∂φ1

∂r

)2

+ (1− η2)

(
∂φ1

∂η

)2
]

+
1

8π

(
∂V1

∂r
+ f1

∂2V0

∂r2

)2

+
1

8π

∂V0

∂r

[
−(1− η2)

(
∂f1

∂η

)2
∂V0

∂r

+ 2f1

∂2V1

∂r2
+ f2

1

∂3V0

∂r3
− 2(1− η2)

∂f1

∂η

∂V1

∂η

]
− ∂φ1

∂T
−
∂φ3/2

∂T1/2

, (4.29)
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Non-resonant coupling between shape oscillation modes 13∫ π

0

[
∂V2

∂r
+ f2

(
∂2V0

∂r2
+ 2

∂V0

∂r

)
+f2

1

(
1

2

∂3V0

∂r3
+ 2

∂2V0

∂r2
+
∂V0

∂r

)
+2f1

∂V1

∂r

]
sin θdθ = 0,

(4.30)

∂V2

∂θ
+
∂V0

∂r

∂f2

∂θ
+ f1

∂f1

∂θ

(
−∂V0

∂r
+
∂2V0

∂r2

)
+
∂f1

∂θ

∂V1

∂r
+ f1

∂2V1

∂r∂θ
− f1

∂V1

∂θ
= 0. (4.31)

Following the procedures of multiple-scale analysis, we want to substitute f1, φ1,
V1, f3/2, φ3/2, and V3/2 into the right-hand sides of the above equations to isolate the
secular terms. It is more convenient, however, to first simplify boundary conditions
(4.28)–(4.31). First of all, we regard (4.30) as a constraint on the monopole term of
V2. That is, if we let

V2 =
q

r
+ V 2

where V 2 contains all terms excluding the monopole term, equation (4.30) is satisfied
provided that

q =
1

2

∫ π

0

[
f2

(
∂2V0

∂r2
+ 2

∂V0

∂r

)
+ f2

1

(
1

2

∂3V0

∂r3
+ 2

∂2V0

∂r2
+
∂V0

∂r

)
+ 2f1

∂V1

∂r

]
sin θ dθ,

In other words, (4.30) does not enter the solvability conditions that we are seeking.
Next, we try to remove all non-homogeneous terms in equation (4.31) by letting

f2 = f2 + f̃2

where

f̃2 = −
(
∂V0

∂r

)−1 [
1

2

∂2V0

∂r2
f2

1 + f1

∂V1

∂r

]
(r = 1).

Thus the governing partial differential equations remain the same and the boundary
conditions become

∂f2

∂t
− ∂φ2

∂r
= −∂f̃2

∂t
+ f1

∂2φ

∂r2
− (1− η2)

∂f1

∂η

∂φ1

∂η
− ∂f1

∂T
−
∂f3/2

∂T1/2

, (4.32)

∂φ2

∂t
− 1

4π

∂V0

∂r

[
∂V 2

∂r
+ f2

∂2V0

∂r2

]
− (2 + ∇2

s )f2

=
1

4π

∂V0

∂r

∂2V0

∂r2
f̃2 + (2 + ∇2

s )f̃2 − 2f1(f1 + ∇2
s f1)−

∂2φ1

∂t∂r
f1

− 1

2

[(
∂φ1

∂r

)2

+ (1− η2)

(
∂φ1

∂η

)2
]

+
1

8π

(
∂V1

∂r
+ f1

∂2V0

∂r2

)2

+
1

8π

∂V0

∂r

[
−(1− η2)

(
∂f1

∂η

)2
∂V0

∂r
+ 2f1

∂2V1

∂r2
+ f2

1

∂3V0

∂r3

− 2(1− η2)
∂f1

∂η

∂V1

∂η

]
− ∂φ1

∂T
−
∂φ3/2

∂T1/2

, (4.33)

∂V 2

∂θ
+
∂V0

∂r

∂f2

∂θ
= 0. (4.34)
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14 Z. C. Feng

We substitute (4.13)–(4.15), (4.23)–(4.25) into the above boundary conditions. The
right-hand side of (4.32) can be written as

A2P2 + (Ane
iωnt + A∗ne

−iωnt)Pn + nonsecular terms.

The right-hand side of (4.33) can be written as

B2P2 + (Bne
iωnt + B∗ne

−iωnt)Pn + nonsecular terms

where

A2 = 0

An =
iωn
2

{
Q1

Q0

zn +

[
(2n+ 1)N1 −

N4

n

]
x2zn +

i

ωn

dzn
dT

}
,

B2 =

(
4

Q0

+
Q0

4π

)
Q1x2 +

12

7
x2

2 +

[(
2− 4n+ n2 + n3 +

ω2
n

4

)
N2

+

(
1− n− ω2

n

4n2

)
N3

]
|zn|2 −

1

2

d2x2

dT 2
1/2

,

Bn =

[
−1 +

n

2
+
n2

2
− (1− n)Q2

0

8π

]
Q1

Q0

zn

+

[(
−2 + 4n+

n2

2
+
n3

2
+
ω2
n

2

)
N1 − nN4

]
x2zn −

iωn
2n

dzn
dT

.

By requiring the solutions of f2, φ2, and V 2 to be bounded and following the
derivations in Feng & Leal (1994), we obtain the solvability conditions

B2 = 0,

ωnAn − inBn = 0,

from which we obtain

d2x2

dT 2
1/2

= −κx2 + 24
7
x2

2 + C|zn|2, (4.35)

dzn
dT

= −iσnzn − iDx2zn, (4.36)

where

κ = −16
Q1

Q0

, (4.37)

σn =
4n(n− 1)Q1

ωnQ0

, (4.38)

C =
15(n− 1)(n+ 1)(n2 + 3n− 2)

2(2n− 1)(2n+ 1)(2n+ 3)
, (4.39)

D =
3n(n− 1)(n+ 1)(n2 + 3n− 2)

2(2n− 1)(2n+ 3)ωn
. (4.40)
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Non-resonant coupling between shape oscillation modes 15

Equations (4.35) and (4.36) describe the evolution of the modal amplitude of the
second mode and the oscillatory modal amplitude of the nth mode. They are the
amplitude equations that our subsequent analysis will be based on. When zn is zero,
(4.35) is identical to the one obtained by Tsamopoulos et al. (1985). Our definitions
of κ and the coefficient of x2

2 are also identical to theirs. Physically, κ is proportional
to the excess electric charge above the Rayleigh limit with κ > 0 being subcritical.
The nonlinear term C|zn|2 is due to the coupling by the nth mode. In (4.36), the
nonlinear term Dx2zn is due to the coupling by the second mode. If x2 is zero, (4.36)
is linear. The physical meaning of σn becomes obvious if we substitute the solution
of this equation zn(T ) = zn(0)e−iσnT into (4.13) to obtain

f1 = 1
2
zn(0)

[
ei(ωn−εσn)t + e−i(ωn−εσn)t

]
Pn. (4.41)

Since the ωn above is evaluated at the Rayleigh limit (cf. (4.16)), σn gives the
frequency detuning due to the difference of the electric charge from the Rayleigh
limit. Alternatively, it can be obtained by expanding the frequency as a function of
the electric charge as follows:

ωn(Q0 + εQ1) = ωn(Q0)− εσnQ1 + O(ε2).

The σn obtained by the above expansion agrees with that in formula (4.38).

5. Analysis of the amplitude equations
We now attempt to achieve a qualitative understanding of (4.35) and (4.36). Equa-

tion (4.35) has been analysed by Tsamopoulos et al. (1985) for the case zn = 0, and
we shall discuss our results in the context of theirs in the following two paragraphs.

A transcritical bifurcation is shown to occur at κ = 0, i.e. at Q = Q
(2)
R . For the

electric charge below the Rayleigh limit, the phase-plane diagram for x2 is shown
schematically in figure 7. (A more accurate figure is given in figure 2 of Tsamopoulos
et al. 1985.) There exist two equilibria: one is a saddle and the other a centre.
A homoclinic orbit H encloses a region in which the motion is periodic. Outside
the region, the motion is unbounded which implies the breakup of the drop. Our
numerical simulation results in figure 5 contain both types of motion. For initial
conditions x2 = 0.18, and x2 = 0.20, the motions are unbounded. For smaller initial
perturbations, the motions are periodic. Note that since our simulation is done on the
full partial differential equations, we also see small wiggles on curves corresponding
to relatively large initial perturbations (0.15, 0.18, 0.20); these wiggles represent the
higher modes which are excited by the low modes when the amplitudes of the latter
are sufficiently large.

If we plot the two equilibria as we vary the surface electric charge, we obtain
two straight lines (one coincides with the horizontal axis) on the bifurcation diagram
shown in figure 8. In this figure, the horizontal axis is −κ, which is proportional to
the electric charge in excess of the Rayleigh limit; the left-hand side is subcritical.
The vertical axis is the value of x2 at the equilibrium. On the left half of the figure,
κ > 0, the electric charge is below the Rayleigh limit. The spherical shape of the
drop x2 = 0 is stable and the prolate shape x2 = 7

24
κ is unstable. On the right half

of the figure, κ < 0, the electric charge is above the Rayleigh limit. The spherical
shape x2 = 0 is unstable and the oblate shape x2 = − 7

24
|κ| is stable. However, it is

shown by Natarajan & Brown (1987) that the oblate spheroidal shape is unstable to
non-axisymmetric perturbations.

Now let us examine the case when zn 6= 0. We first make the observation that
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16 Z. C. Feng

H

x2

dx2

dT1/2

Figure 7. Orbits in the phase-plane (x2, dx2/dT1/2) for a subcritically charged drop. The origin
corresponds to a stable spherical shape. The saddle corresponds to the unstable prolate equilibrium
shape of the drop.

x2
0.3

0.2

0.1

Saddle
Centre

–1.00 –0.75 –0.50 –0.25

–0.1

–0.2

–0.3

0.25 0.50 0.75 1.00
–κ

x2 = 7κ/24

Figure 8. The bifurcation diagram of the equilibrium solutions of a charged drop
near the Rayleigh limit.

according to (4.36), the amplitude |zn| is a constant. This becomes obvious if we let
zn = rne

iθn; (4.36) then take the form

ṙn = 0, (5.1)

θ̇n = −(σn + Dx2). (5.2)

Therefore, we treat |zn| as a constant in the following analysis. This treatment of |zn|
is also consistent with the numerical simulation results. For instance, in figure 4(a),
we see that the P5 mode oscillation amplitude hardly changes before x2 experiences
large increases. Note that it is the P5 mode oscillation amplitude that is related to the
slow time variable zn.

Treating |zn| as a constant, we study the equilibrium solutions of (4.35) and the
stability of these solutions. The equilibrium solutions of (4.35) are given by the
solutions of the quadratic equation

−κx2 + 27
4
x2

2 + C|zn|2 = 0.

Depending on the values of κ and C|zn|2, we can have two, one or zero solutions. In
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Non-resonant coupling between shape oscillation modes 17

κ

C |zn|
2 = (7/96)κ2

C |zn|
2

Figure 9. The bifurcation set and the corresponding phase portraits of equation (4.35).

the parameter space (κ, C|zn|2), a parabola C|zn|2 = 7
96
κ2 separates the space into two

regions. Inside the parabola, there is no equilibrium solution. Outside the parabola,
there are two equilibrium solutions given by

x2 = 1
2

(
κ± [κ2 − 96

7
C|zn|2]1/2

)
.

On the parabola, there is only one solution. This partition of the parameter space,
also called the bifurcation set, is given in figure 9.

If we multiply (4.35) by dx2/dT1/2 and integrate with respect to T1/2, we obtain the
following constant of motion:(

dx2

dT1/2

)2

+ 1
2
κx2

2 − 8
7
x3

2 − C|zn|2x2 = const.

By plotting the level curves of the above constant of motion, we obtain the phase
portraits in the phase space (x2, dx2/dT1/2). The phase portraits are the same within
each region identified above. These are shown schematically in figure 9.

From figure 9, we observe that there is only one phase portrait corresponding to
negative C . Under such circumstances, there are always two equilibrium solutions,
one a saddle and the other a centre. The presence of zn does not have a qualitative
effect on the dynamics of x2. We plot the equilibrium solutions as functions of −κ
in figure 10(a). There is no bifurcation associated with the two branches of the
equilibrium solutions.

According to (4.39), C is positive. Therefore for the dynamics of a charged liquid
drop, the presence of zn can change the dynamics of x2 qualitatively. Specifically, for a

fixed value of zn, figure 9 shows that there is an open interval of κ (|κ| <
(

96
7
C
)1/2 |zn|)

on which no equilibrium solution exists. The bifurcation diagram corresponding to
this case is shown in figure 10(b). We see that the two equilibrium solutions, a saddle
and a centre, disappear through saddle-node bifurcations.

We conclude from the study above that the presence of a high-mode shape per-
turbation changes the bifurcation type at the Rayleigh limit from a transcritical to
a saddle-node bifurcation. Thus this creates an open interval for Q on which no
stable equilibrium exists. Consequently, an initial shape perturbation of a high mode
can lead to the instability of the drop shape oscillation of the fundamental mode.
This fact is important since according to the linear stability theory, the drop is stable
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18 Z. C. Feng

0.3

0.2

0.1

Saddle

Centre

–1.00 –0.75 –0.50 –0.25

–0.1

–0.2

–0.3

0.25 0.50 0.75 1.00
–κ

(b)

0.3

0.2

0.1

–1.00 –0.75 –0.50 –0.25

–0.1

–0.2

–0.3

0.25 0.50 0.75 1.00
–κ

(a)

Figure 10. The bifurcation diagrams of equilibrium solutions for two different cases.
(a) C < 0, (b) C > 0.

under-small-amplitude shape perturbation. This instability is totally a consequence
of the nonlinear modal interaction effect.

6. Discussion
For the electric charge below the Rayleigh limit, the spherical equilibrium shape

of the drop is stable according to the linear stability theory. However, the spherical
shape can become unstable under finite perturbations. Figures 5 and 7 show that if
the perturbation amplitude of the second mode is above a certain threshold value,
the stability is lost. This type of nonlinear instability is well-known (Basaran et al.
1995; Drazin & Reid 1981).

Here, however, we have identified another mechanism for nonlinear instability.
That is, instability sets in through nonlinear coupling between non-resonant modes.
The difference from the above one is that the initial perturbation is not on the
second mode but on another shape mode, the fifth mode for instance. Without
the nonlinear coupling to the second mode, according to the well-known nonlinear
instability mechanism the fifth mode could become unstable if the perturbation were
large enough. But such is not the case. The initial perturbation of the fifth mode is
not large enough to cause the fifth mode to be unstable. Yet its nonlinear coupling
to the second mode causes the second mode to be unstable. This is evident in our
numerical simulation results; in figures 2(a) and 4(a) the amplitude of the fifth mode
does not grow at all while the second mode grows rapidly.

In reality, whether a high-mode shape perturbation will lead to the unbounded
growth of the fundamental mode is also dependent on the viscosity of the fluid. In both
the numerical simulation and the perturbation analysis, we have not included fluid vis-
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Non-resonant coupling between shape oscillation modes 19

cosity. This limits the applicability of our results. Needless to say, for drops with large
diameters such as the ones that can be achieved in zero gravity, our result is applica-
ble. Even for drops whose viscosity is not negligible, periodic forcing can be applied
to sustain constant-amplitude shape oscillation of the high mode. In that case, the
shape oscillation can become unstable due to the coupling to the fundamental mode.

Despite the limitation of the inviscid assumption in our analysis, a very important
mechanism for nonlinear instability has been identified. It is safe to say that this new
mechanism plays an important role in many other instability phenomena involving
fluid flows. In order to see such a connection, we first note that (4.35) can be written
in the following equivalent form:

ẋ =

[
0 1
−κ 0

]
x+ nonlinear terms,

where x = {x2, dx2/dT1/2}T and the dot stands for derivative with respect to T1/2.
If κ is a small positive number, the linear coefficient matrix has a pair of pure
imaginary eigenvalues. However, as κ becomes increasingly small, the coefficient
matrix approaches a type of matrix defined as non-normal (Kato 1976). The non-
normal degeneracy has been shown to occur in the operators that arise in Poiseuille
and Couette flow in Reddy, Schmidt & Henningson (1993). By calculating the
pseudospectra of the non-normal operators, Trefethen et al. (1993) propose an
explanation for the anomalies of subcritical transition to turbulence in Poiseuille and
Couette flow. The present work suggests that the presence of high modes may serve
as perturbations which destablize the shear flows.

As another example, we recall that the linear operator governing the dynamics of
a gas or a vapour bubble has similar degeneracy. Physically, this degeneracy arises
because the translational motion of the bubble centroid has zero frequency. It is
shown in Feng & Leal (1995) that the coupling of this mode to two shape oscillation
modes leads to the erratic dancing of the bubble (Benjamin & Ellis 1990).

In the context of nonlinear wave-wave interactions, the new type of non-resonant
modal coupling implies that short waves may interact with long waves. It has been
observed (Mahony & Smith 1972) that standing surface waves in water may be excited
by acoustic fields of very much higher frequency. Some aspects of such wave–wave
interactions have been investigated numerically by Olmez & Milgram (1995). Our
discussion in this work has been limited to the effect on the fundamental mode of
the fast mode. Examining (4.36), we note that the slow mode also affects the fast
mode through the nonlinear term −iDx2zn. If x2 were constant, this term would
change the frequency of the nth mode. In the case of charged drops, D is positive
according to (4.40), and for positive x2 the fast mode slows down. This is manifested
in figure 4(a) by the slowing down of the fifth mode when the amplitude of the second
mode becomes large. Although this frequency change is very small, its effect can be
significant when the fast mode is resonantly interacting with a third mode as is the
case studied by Olmez & Milgram.

Our analysis also reveals that the coupling coefficient C in (4.35) determines whether
the high-mode perturbation will lead to the instability of the low mode. For C < 0,
figure 10(a), the high mode does not affect the dynamics of the low mode in a
qualitative way. On the other hand, for C > 0 as is the case for the charged drops,
the high mode does change the dynamics of the low mode in a dramatic fashion.
Therefore the coupling coefficient C is a very important quantity in nonlinear stability
analysis.
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Finally, we comment that in a sense the coupling analysed in this paper can also
be called resonant since at the Rayleigh limit the frequency of the second mode
is zero, which can be considered in resonance with any mode. We use the term
non-resonant to distinguish from commonly studied one-to-one, one-to-two, and one-
to-three resonances. This type of nonlinear modal coupling was first studied by
Nayfeh & Nayfeh (1992) in structural systems. For structural systems, which typically
have cubic nonlinearity, the mechanism for the coupling is found to be caused by
the cross-softening effect of the fast mode on the slow mode (Feng 1995). In other
words, the motion of the fast mode leads to a decrease in the oscillation frequency
and eventual instability of the slow mode. The present work shows that the coupling
in fluid systems which typically have quadratic nonlinearity differs from that.

In conclusion, we find that the shape oscillation modes of a charged conducting
drop can couple to each other although their natural frequencies are nowhere close to
the often-studied one-to-one, one-to-two, or one-to-three resonances. This coupling
gives rise to a new mechanism for nonlinear instability: the perturbation of a high
mode causes a low mode to become unstable while the high mode remains stable.

The author would like to express his gratitude to the referees for their valuable
suggestions and to Professor C. C. Mei for bringing the paper of Mahony & Smith
to his attention. This work is supported by the MIT Sea Grant College Program in
the form of a Doherty Professorship.
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