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THE CONSTRAINT SATISFACTION PROBLEM AND UNIVERSAL
ALGEBRA

LIBOR BARTO

Abstract. This paper gives a brief survey of current research on the complexity of the
constraint satisfaction problem over fixed constraint languages.

§1. Introduction. The constraint satisfaction problem (CSP) provides a
common framework for expressing a wide range of both theoretical and
real-life combinatorial problems [50]. One solves an instance of the CSP by
assigning values to its variables so that its constraints are satisfied.
The topic of this paper is a very active theoretical subfieldwhich studies the
computational complexity of the CSP over a fixed constraint language. This
restricted framework is still broad enough to includemanydecision problems
in the class nondeterministic polynomial time (NP), yet it is narrow enough
to potentially allow for a complete classification of all such CSP problems.
One particularly important achievement is the understanding of what
makes the problems over a fixed constraint language computationally easy
or hard. It is not surprising that hardness comes from a lack of symmetry.
However, the usual objects capturing symmetry, automorphisms (or endo-
morphisms) and their groups (or semigroups), are not sufficient in this
context. It turns out that the complexity of the CSP over a template is deter-
mined by more general symmetries of it: polymorphisms and their clones.
My aim is to introduce the basics of this exciting area and to highlight
selected deeper results, in away that is understandable to readers with a basic
knowledge of computational complexity (see [1, 47]). The presentation of
the material is based on my talk “Universal algebra and the constraint
satisfaction problem” delivered at the Association for Symbolic Logic North
American Annual Meeting held in Boulder, Colorado, in 2014. A shorter
version has appeared in SIGLOG News [3].

§2. CSP over a fixed constraint language. A constraint – such as
R(x3, x1, x4) – restricts the allowed values for a tuple of variables – in this
case (x3, x1, x4) – to be an element of a particular relation on the domain – in
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320 LIBOR BARTO

this case R ⊆ D3.1 By an n-ary relation R on a domainD we mean a subset
of the n-th cartesian power Dn. It is sometimes convenient to work with
the corresponding predicate which is a mapping from Dn to {true, false}
specifying which tuples are in R. We will use both formalisms, so e.g.
(a, b, c) ∈ R and R(a, b, c) both mean that the triple (a, b, c) ∈ D3 is from
the relation R.
An instance of the CSP is a list of constraints, e.g.,

R(x), S(y, y, z), T (y,w),

whereR,S,T are relations of appropriate arity on a common domainD and
x, y, z, w are variables. Amappingf assigning values from the domain to the
variables is a solution if it satisfies all the constraints, that is, in our example,

R(f(x)) and S(f(y), f(y), f(z)) and T (f(y), f(w)).

Astandard formal definition of an instance of theCSPover a finite domain
goes as follows.

Definition 2.1. An instance of the CSP is a triple P = (V,D, C) with
• V a finite set of variables,
• D a finite domain,
• C a finite list of constraints, where each constraint is a pair C = (x, R)
with
– x a tuple of variables of length n, called the scope of C , and

– R an n-ary relation on D, called the constraint relation of C .

An assignment, that is, a mapping f : V → D, satisfies a constraint C =
(x, R) if f(x) ∈ R, where f is applied component-wise. An assignment f
is a solution if it satisfies all constraints.

Three basic computational problems associated with an instance are the
following:2

• Satisfiability. Does the given instance have a solution? (A related
problem, the search problem, is to find some solution if at least one
solution exists.)

• Optimization. Even if the instance has no solution, find an optimal
assignment, i.e., one that satisfies the maximum possible number of
constraints. (Approximation algorithms are extensively studied, where
the aim is, for example, to find an assignment that satisfies at least 80%
of the number of constraints satisfied by an optimal assignment.)

• Counting.Howmany solutions does the given instance have? (This prob-
lem also has an approximation version: approximate counting.)

1There are also different types of constraints considered in the literature, see e.g. Chapter 7
in [50].
2To study the computational complexity of these problems we need to specify a represen-

tation of instances. We will assume that the constraint relation in every constraint is given
by a list of all its members. Note, however, that for most of the problems considered in this
article any reasonable representation can be taken.
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2.1. Satisfiability over a fixed constraint language. Even the easiest of the
problems, satisfiability, is computationally hard: It contains many NP-
complete problems including, e.g., 3-SAT (see Example 2.3). However,
certain natural restrictions to CSP satisfiability ensure tractability. The main
types of restrictions that have been studied are structural restrictions, which
limit how constraints interact, and language restrictions, which limit the
choice of constraint relations.
In this paper, we focus just on satisfiability problems with language restric-
tions. Please see [55] for optimization problems and a generalization to
valued CSPs, [33] for approximation, [25] for counting, and [12] for a
generalization to infinite domains.

Definition 2.2. A constraint languageD is a set of relations on a common
finite domain, D. We use CSP(D) to denote the set of CSP satisfiability
problems whose relations are drawn from D.
2.2. Examples.

Example 2.3. An instance of the standard NP-complete problem [1, 47],
3-SAT, is a Boolean formula in conjunctive normal form with exactly three
literals per clause. For example, the formula,

ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x4 ∨ x5 ∨ ¬x1) ∧ (¬x1 ∨ ¬x4 ∨ ¬x3)
is a satisfiable instance of 3-SAT. (Any assignment making x1 and x2 false,
satisfies ϕ.) 3-SAT is equivalent to CSP(D3SAT), where D3SAT = {0, 1} and

D3SAT = {Sijk : i, j, k ∈ {0, 1}}, where Sijk = {0, 1}3 \ {(i, j, k)}.
For example, the formula ϕ corresponds to the following instance of
CSP(D3SAT)

S010(x1, x2, x3), S101(x4, x5, x1), S111(x1, x4, x3).

More generally, for a natural number k, k-SAT denotes a similar problem
where each clause is a disjunction of k literals.
Since 3-SAT is NP-complete, it follows that k-SAT is NP-complete for
each k ≥ 3. On the other hand, 2-SAT is solvable in polynomial time, and is
in fact complete for the complexity class NL (nondeterministic logarithmic
space) under log-space reductions [1, 47] (see also Example 2.7).

Example 2.4. HORN-3-SAT is a restricted version of 3-SAT, where each
clause may have at most one positive literal. This problem is equivalent to
CSP(DHornSAT) for DHornSAT = {S011, S101, S110, S111} (or just DHornSAT =
{S011, S111}). HORN-3-SAT is solvable in polynomial time, in fact, it is a
P-complete problem under log-space reductions [1, 47].

Example 2.5. For a fixed natural number k, the k-COLORING prob-
lem is to decide whether it is possible to assign colors {0, 1, . . . , k − 1} to
the vertices of an input graph in such a way that adjacent vertices receive
different colors. This problem is equivalent to CSP(DkCOLOR), where Dk =
{0, 1, 2, . . . , k − 1} and DkCOLOR = {�=k} consists of a single relation – the
binary inequality relation �=k = {(a, b) ∈ D2k : a �= b}.
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Indeed, given an instance of CSP(DkCOLOR), we can form a graph whose
vertices are the variables and whose edges correspond to the binary con-
straints (that is, x has an edge to y iff the instance contains the constraint
x �=k y). It is easily seen that the original instance has a solution if and only
if the obtained graph is k-colorable. The translation in the other direction is
similar.
The k-COLORING problem is NP-complete for k ≥ 3 [1, 47].
2-COLORING is equivalent to deciding whether an input graph is bipartite.
It is solvable in polynomial time, in fact, it is in the complexity class L (where
L stands for logarithmic space) by a celebrated result of Reingold [49], and
it is an L-complete problem under first-order reductions.

Example 2.6. Let p be a prime number. An input of 3-LIN(p) is a system
of linear equations over the p-element field GF(p), where each equation
contains 3 variables, and the question is whether the system has a solution.
This problem is equivalent to CSP(D3LINp), where D3LINp = GF(p) and
D3LINp consists of all affine subspaces Rabcd of GF(p)3 of dimension 2 or 3,
where

Rabcd = {(x, y, z) ∈ GF(p)3 : ax + by + cz = d}.
This problem is solvable in polynomial time, e.g. by Gaussian elimination.3

It is complete for a somewhat less familiar class ModpL [24].

Example 2.7. An instance of the s, t-connectivity problem, STCON, con-
sists of a directed graph and two of its vertices, s and t. The question is
whether there exists a directed path from s to t.
A closely related (but not identical) problem is CSP(DSTCON), where the
domain is DSTCON = {0, 1} and DSTCON = {C0, C1,≤}, C0 = {0}, C1 = {1},
≤ = {(0, 0), (0, 1), (1, 1)}. Indeed, given an instance of CSP(DSTCON) we
form a directed graph much as we did in Example 2.5 and label some
vertices 0 or 1 according to the unary constraints. Then the original instance
has a solution if and only if there is no directed path from a vertex labeled
1 to a vertex labeled 0. Thus CSP(DSTCON) can be solved by invoking the
complement of STCON, the s, t-nonconnectivity problem, several times.
Both STCON and CSP(DSTCON) can clearly be solved in polynomial
time. By the Immerman–Szelepcsényi theorem [37, 53] both problems are
NL-complete (under log-space reductions).
In the same way, the s, t-connectivity problem for undirected graphs is
closely related to CSP(DUSTCON), whereDUSTCON = {0, 1} andDUSTCON =
{C0, C1,=}. These problems are L-complete by [49].
2.3. The dichotomy conjecture. The most fundamental problem in the
area was formulated in the landmark paper by Feder and Vardi [31].

3The problem of solving general systems of linear equations over GF(p) without the
restriction on number of variables cannot be faithfully phrased as CSP(D) withD consisting
of all affine subspaces, since the input representation of the latter problem can be substantially
larger. However, a systemof linear equation can be easily rewritten to an instance of 3-LIN(p)
by introducing new variables.
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Conjecture 2.8 (The dichotomy conjecture). For each finite constraint
languageD, the problem CSP(D) is in P or is NP-complete.4
Recall that if P �=NP, then there are problems of intermediate complexity
[42]. Feder and Vardi argued that the class of CSPs over fixed constraint
languages is a good candidate for the largest natural class of problems which
exhibit a P versus NP-complete dichotomy.
At that time the conjecture was supported by two major cases: the
dichotomy theorem for all languages over a two-element domain by Schaefer
[51] and the dichotomy theorem for languages consisting of a single binary
symmetric relation by Hell and Nešetřil [34].
Feder and Vardi identified two sources of polynomial-time solvability
and made several important contributions towards understanding them.
In particular, they observed that the known polynomial cases were tied to
algebraic closure properties and asked whether polynomial solvability for
CSP can always be explained in such a way. Subsequent papers have shown
that this is indeed the case and this connection to algebra brought the area
to another level.
The algebraic approach is outlined in Section 3 and some fruits of the
theory discussed in Section 4.

2.4. Alternative views. Note that a constraint language D with domain
D can be viewed as a relational structure (D;R1, R2, . . . ), or equivalently
relational database, with universe D.
Recall that a conjunctive query over the database D is an existential sen-
tence whose quantifier-free part is a conjunction of atoms. CSP(D) is exactly
the problem of deciding whether D satisfies a given conjunctive query. For
example, the instance

R(x), S(y, y, z), T (y,w)

has a solution if and only if the sentence

(∃x, y, z, w ∈ D) R(x) ∧ S(y, y, z) ∧ T (y,w)
is true in D.
From this perspective, it is natural to ask what happens if we allow some
other combination of logical connectives from {∃, ∀,∧,∨,¬,=, �=}. It turns
out that out of the 27 cases only 3 are interesting (the other cases either
reduce to these, or are almost always easy or hard by known results): {∃,∧}
which is CSP, {∃, ∀,∧} which is so-called quantified CSP, and {∃, ∀,∧,∨}.
Determining the complexity of quantified CSP is also an active research
area [27] with a possible trichotomy – P, NP-complete or Pspace-complete.
Recently, a tetrachotomy was obtained for the last case [45] – for every D,
the corresponding problem is either in P, NP-complete, co-NP-complete, or
Pspace-complete.

4It is conjectured in [16] that the dichotomy remains true without the finiteness assumption
on D (the domain D still needs to be finite). Namely, the local-global conjecture states that
CSP(D) is in P (NP-complete) whenever CSP(D′) is in P (NP-complete) for every (some)
finite D′ ⊆ D.
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The CSP over a fixed language can also be formulated as the homomor-
phism problem between relational structures with a fixed target structure
[31]. The idea of the translation is shown in Examples 2.5, and 2.7.

§3. Universal algebra in CSPs. If a computational problem A can sim-
ulate (in some sense) another problem B, then A is at least as hard as B.
This simple idea is widely used in computational complexity; for instance,
NP-completeness is often shown by a gadget reduction of a known NP-
complete problem to the given one. A crucial fact for the algebraic theory
of the CSP is that a so-called primitive positive (pp-, for short) interpretation
between constraint languages gives such a reduction between corresponding
CSPs (more precisely, if D pp-interprets E , then CSP(E) is reducible to
CSP(D)). Pp-interpretations have been, indirectly, the main subject of
universal algebra for the last 80 years!
The algebraic theory of CSPs was developed in a number of papers includ-
ing [16, 38, 39, 43]. The viewpoint taken here is close to [12]. All results in
this section come from these sources unless stated otherwise.
To simplify formulations, all structures (relational or algebraic) are
assumed to have finite domains, all constraint languages are assumed to con-
tain finitely many relations, all of them nonempty. By a reduction we mean
a log-space reduction (although first-order reductions are often possible
under additional weak assumptions).

3.1. Primitive positive interpretations. An important special case of pp-
interpretability is pp-definability.

Definition 3.1. Let D, E be constraint languages on the same domain
D = E. We say that D pp-defines E (or E is pp-definable from D) if each
relation in E can be defined by a first order formula which only uses relations
in D, the equality relation, conjunction and existential quantification.
Theorem 3.2. If D pp-defines E , then CSP(E) is reducible to CSP(D).
Proof by example. LetR be an arbitrary ternary relation on a domainD.
Consider the relations on D defined by

S(x, y) iff (∃z)R(x, y, z) ∧R(y, y, x), T (x, y) iff R(x, x, x) ∧ (x = y),
where the existential quantification is understood over D. The relations
S and T are defined by pp-formulae, therefore the constraint language
D = {R} pp-defines the constraint language E = {S, T}.
We sketch the reduction of CSP(E) to CSP(D) using the instance

S(x3, x2), T (x1, x4), S(x2, x4).

We first replace S and T with their pp-definitions by introducing a new
variable for each quantified variable:

R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), x1 = x4,

R(x2, x4, y2), R(x4, x4, x2)
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and then we get rid of the equality constraint x1 = x4 by identifying these
variables. This way we obtain an instance of CSP(D):
R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), R(x2, x1, y2), R(x1, x1, x2).

Clearly, the new instance of CSP(D) has a solution if and only if the original
instance does. �
This simple theorem provides a quite powerful tool for comparing CSPs
over different languages on the same domain. A more powerful tool, which
can also be used to compare languages with different domains, is pp-
interpretability. Informally, a constraint language D pp-interprets E , if the
domain of E is a pp-definable relation (fromD)modulo a pp-definable equiv-
alence, and the relations of E (viewed, in a natural way, as relations on D)
are also pp-definable from D.5 Formally:
Definition 3.3. Let D, E be constraint languages. We say that D pp-
interprets E if there exists a natural number n,F ⊆ Dn, and an ontomapping
f : F → E such that D pp-defines
• the relation F ,
• the f-preimage of the equality relation on E, and
• the f-preimage of every relation in E ,
where by the f-preimage of a k-ary relation S on E we mean the nk-ary
relation f−1(S) on D defined by

f−1(S)(x11, . . . , x1k, x21, . . . , x2k, . . . , xn1, . . . , xnk)

iff
S(f(x11, . . . , xn1), . . . , f(x1k, . . . , xnk)).

Theorem 3.4. If D pp-interprets E , then CSP(E) is reducible to CSP(D).
Proof sketch. The properties of the mapping f from Definition 3.3
allow us to rewrite an instance of CSP(E) to an instance of the CSP
over a constraint language which is pp-definable from D. Then we apply
Theorem 3.2. �
Pp-interpretability is a reflexive and transitive relation on the class of
constraint languages. By identifying equivalent languages, i.e. languages
which mutually pp-interpret each other, we get a partially ordered set, the
pp-interpretability poset. Theorem 3.4 then says that the “higher” we are in
the poset the “easier” the CSP we are dealing with. 3-SAT is terribly hard –
we will see later that its constraint language is the least element of this poset.
Surprisingly, this is “almost” the case for all known NP-complete CSPs! For
a precise formulation of this we will need the reduction described in the
following subsection.

3.2. Cores and singleton expansions. Let D be a constraint language on a
finite setD. A mapping f : D → D is called an endomorphism if it preserves
every relation D, that is, f(R) := {f(a) : a ∈ R} ⊆ R for every R ∈ D.
5This is the classical notion of interpretation from model theory restricted to pp-formulas.
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Theorem 3.5. Let D be a constraint language and f an endomorphism of
D. ThenCSP(D) is reducible to CSP(f(D)) and vice versa, where f(D) is the
constraint language with domain f(D) defined by f(D) = {f(R) : R ∈ D}.
Proof sketch. An instance of the CSP(D) has a solution if and only if the
corresponding instance of CSP(f(D)), obtained by replacing each R ∈ D
with f(R), has a solution. �
A language D is a core if every endomorphism of D is a bijection. It is
not hard to show that if f is an endomorphism of a constraint language D
with minimal range, then f(D) is a core. Moreover, this core is unique up
to isomorphism, therefore we speak about the core of D.
An important fact is that we can add all singleton unary relations to a
core constraint language without increasing the complexity of its CSP:

Theorem 3.6. Let D be a core constraint language and E = D∪⋃
a∈D Ca ,

where Ca denotes the unary relation Ca = {a}. Then CSP(E) is reducible to
CSP(D).
Proof idea. The crucial step is to observe that the set of endomorphisms
of D, viewed as a |D|-ary relation, is pp-definable from D. More precisely,
the relation

S = {(f(a1), . . . , f(an)) : f is an endomorphism of D},
where a1, . . . , an is a list of all elements of D, is pp-definable from D (even
without existential quantification). Indeed, f is, by definition, an endomor-
phism of D if for every R ∈ D of arity ar(R) and every (b1, . . . , bar(R)) ∈ R
we have (f(b1), . . . , f(bar(R))) ∈ R. This directly leads to a pp-definition
of S:

S(xa1 , . . . , xan) iff
∧

R∈D

∧

(b1,...,bar(R))∈R
R(xb1 , . . . , xbar(R)).

Given an instance of CSP(E) we introduce new variables xa1, . . . , xan , we
replace every constraint of the form Ca(x) by x = xa , and we add the con-
straint S(xa1 , . . . , xan). In this way we obtain an instance of CSP(D∪ {=}).
Clearly, if the original instance has a solution, then the new instance has a
solution as well. In the other direction, if g is a solution to the new instance,
then its values on xa1 , . . . , xan determine an endomorphism f of D. As D is
a core, f is a bijection, thus f−1 is an endomorphism as well, and f−1 ◦ g
restricted to the original variables is a solution of the original instance. �
We will call constraint languages containing all singletons idempotent.
Note that an idempotent constraint language is automatically a core as
the only endomorphism is the identity. By Theorems 3.5, 3.6, CSP over
D is reducible to CSP over the singleton expansion of the core of D and
vice versa. It is therefore enough to study CSPs over idempotent constraint
languages.
An interesting consequence of these reductions is that the search problem
for CSP(D) is solvable in polynomial time whenever CSP(D) is. The idea is
to gradually guess values for variables using the unary singleton constraints.
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3.3. Example.

Example 3.7. We show that 3-SAT is reducible to 3-COLORING.
Recall the constraint language D3COLOR = {�={0,1,2}} of 3-COLORING
from Example 2.5 and the constraint language D3SAT = {S000, . . . , S111} of
3-SAT from Example 2.3.
Since D3COLOR is a core, CSP(D′

3COLOR), where D′
3COLOR ={�=, C0,

C1, C2}, is reducible to CSP(D3COLOR) by Theorem 3.6. By Theorem 3.4,
it is now enough to show that D′

3COLOR pp-interprets D3SAT. We give
a pp-interpretation with n = 1, F = {0, 1}, and f the identity map
(see Definition 3.3). The unary relation {0, 1} can be pp-defined by

F (x) iff (∃y) C2(y) ∧ x �= y (iff x �= 2).
The preimage of the equality relation is the equality relation on {0, 1}which
is clearly pp-definable. The relation S000 can be defined by

S000(x1, x2, x3) iff (∃y1, y2, y3, z) C2(z) ∧ y1 �= y2 ∧ y2 �= y3 ∧ y1 �= y3
∧

∧

i=1,2,3

z �= xi ∧ T (xi , yi),

where T is the binary relation

T (x, y) iff (∃u, v) C1(u) ∧ u �= v ∧ x �= v ∧ y �= v.
The other relations Sijk are defined similarly.

While it is easy to verify that the presented pp-definitions work, it is not
so easy to find them without any tools. The proof of Theorem 3.9 gives
an algorithm to produce pp-definitions whenever they exist (although the
obtained definitions will usually be very long).

3.4. Tractability conjecture. Now we return to the pp-interpretability
poset. Recall that “higher” in the poset means “easier” CSP and that 3-SAT
corresponds to the least (the hardest) element. When we restrict to idempo-
tent constraint languages (which we can do by the previous discussion), all
known NP-complete CSPs are at the bottom of the poset. Bulatov, Jeavons
and Krokhin conjectured that this is not a coincidence.

Conjecture 3.8 (Tractability conjecture). If an idempotent constraint lan-
guageD does not pp-interpret the language of 3-SAT, thenCSP(D) is solvable
in polynomial time.

This conjecture is also known as the algebraic dichotomy conjecture
because many equivalent formulations, including the original one, are
algebraic.
Similar hardness results and conjectures have been formulated for other
computational/descriptive complexity classes.

3.5. Algebraic counterpart of pp-definability. The link between relations
and operations is provided by a natural notion of compatibility. An n-ary
operation f on a finite setD (that is, a mapping f : Dn → D) is compatible
with a k-ary relationR ⊆ Dk iff applied component-wise to any n-tuple of
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elements of R gives an element of R. In more detail, whenever (aij) is an
n×k matrix such that every row is inR, then f applied to the columns gives
a k-tuple which is in R as well.
We say that an operation f on D is a polymorphism of a constraint
language D if f is compatible with every relation in D. Note that a unary
polymorphism is the same as an endomorphism. If endomorphisms can be
thought of as symmetries, then polymorphisms can be viewed as symmetries
of higher arities.
The set of all polymorphisms of D will be denoted by D. This algebraic
object has the following two properties.

• D contains all projections, that is, for every natural number n and i ≤ n
the n-ary projection onto the i-th coordinate, defined by

�ni (a1, . . . , an) = ai ,

is in D.

• D is closed under composition, that is, for any n-ary g ∈ D and k-ary
f1, . . . , fn ∈ D their (k-ary) composition g(f1, . . . , fn), defined by
g(f1, . . . , fn)(a1, . . . , ak) = g(f1(a1, . . . , ak), . . . , fn(a1, . . . , ak)),

is in D.

Sets of operations with these properties are called concrete clones (or function
clones, or simply clones), thereforewe refer toD as the clone of polymorphisms
of D.
The clone of polymorphisms controls pp-definability in the sense of the
following old result [13, 32].

Theorem 3.9. Let D, E be constraint languages with D = E. Then D
pp-defines E if and only if D ⊆ E.6
Proof sketch. The implication “⇒” is quite easy. For the other impli-
cation it is enough to prove that whenever R is a relation compatible with
every polymorphism ofD, then R is pp-definable fromD. A crucial step is a
more general version of the observation made in the proof of Theorem 3.6:
For any k, the set of k-ary polymorphisms of D can be viewed as a |D|k-
ary relation S on D, and this relation is pp-definable from D. Now R can
be defined from such a relation S (where k is the number of tuples in R)
by existential quantification over suitable coordinates as in Example 3.11. �
In view of this result, Theorem 3.2 says that the complexity of CSP(D)
only depends on the clone D. More precisely, if D ⊆ E, then CSP(E) is
reducible to CSP(D). Moreover, the proof of Theorem 3.9 gives a generic
pp-definition of E from D, which gives us a generic reduction of CSP(E) to
CSP(D).
Example 3.10. It is a nice exercise to show that the language D3SAT of
3-SAT has no polymorphisms except for the projections. This means that

6Moreover, every concrete clone is the clone of polymorphisms of some (possibly infinite)
constraint language.
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D3SAT pp-defines every constraint language with domain {0, 1}. It follows
(see also Theorem 3.14) that D3SAT pp-interprets every constraint language,
so it is the least element of the pp-interpretability poset, as claimed earlier.

Example 3.11. Another nice exercise for the reader is to show that the lan-
guageD′

3COLOR = {�=, C0, C1, C2} on the domain {0, 1, 2} (see Example 3.7)
also does not have any polymorphisms except for projections.
We show how the proof of Theorem 3.9 produces a pp-definition of the
relation

R = {(0, 1), (0, 2), (1, 1), (2, 2)}.
Since R contains 4 pairs, we pp-define the 34-ary relation

S = {(f(0, 0, 0, 0), f(0, 0, 0, 1), . . . , f(2, 2, 2, 2)) :
f is a 4-ary polymorphism of D′

3COLOR},
which corresponds to the set of all 4-ary polymorphisms of D′

3COLOR:

S(x0000, . . . , x2222) iff
∧

i

xiiii = i ∧
∧

i1 �=i2,j1 �=j2,k1 �=k2,l1 �=l2
xi1j1k1l1 �= xi2j2k2l2 .

Now we existentially quantify over all variables but x0012 and x1212 – the
exceptions are those variables which correspond to the i-th coordinates of
pairs in R, i ∈ {1, 2}. The obtained binary relation R′(x0012, x1212) con-
tains R since S contains the projections, and is contained in R since R is
compatible with every polymorphism of D′

3COLOR.
Note that the definition of S000 from Example 3.7 obtained in this way
contains 37 variables. This is the price we need to pay for genericity.

3.6. Algebraic counterpart of pp-interpretability. For the algebraic
description of pp-interpretability we introduce three constructions which
are clone versions of standard constructions for groups, rings, etc. To avoid
technicalities we use a somewhat nonstandard terminology.
Let D be a (concrete) clone.
The domain D of D is also called the universe of D. We say that E ⊆ D is
a subuniverse of D if it is closed under all operations of D. In this situation,
we can forma cloneEby restricting all operations ofD to the setE. The clone
E is called a subalgebra of D (the word subclone is reserved for set theoretic
inclusion).
For a natural number n we can form the n-th power Dn of D with domain
Dn and operations from D acting coordinate-wise. (More generally, we can
form the X -th power DX of D for any set X .) A subpower is a subuniverse
(or a subalgebra, depending on the context) of a power. Note that ifD is the
clone of polymorphisms of a constraint language D, then R is a subpower
of D if and only if R is pp-definable from D (by Theorem 3.9).
Finally, let φ : D → E be an onto mapping such that for any operation
f ∈ D (say of arity n), the formula

fφ(φ(a1), . . . , φ(an)) = φ(f(a1, . . . , an)) ∀a1, . . . , an ∈ D
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correctly defines an operation fφ on E. Then E = {fφ : f ∈ D} is a clone
with domain E called a concrete homomorphic image of D and φ is called a
concrete homomorphism.
The definition of pp-interpretability can be translated into algebraic terms
as follows.

Theorem 3.12. Let D, E be constraint languages. Then D pp-interprets E
if and only if E contains a concrete homomorphic image of a subpower of D.

3.7. Identities and Mal’tsev conditions. An alternative algebraic charac-
terization of pp-interpretability, which is missing on the relational side,
follows from one of the cornerstones of universal algebra, the Birkhoff HSP
theorem [11]: pp-interpretability depends on the identities (i.e. universally
quantified equations) satisfied by polymorphisms.
We first present a formulation using abstract clone homomorphisms and
then explain the connection to identities.

Definition 3.13. A mapping H from a clone D to a clone E is called a
clone homomorphism if

• it preserves the arities of operations,
• it maps projections to projections (that is, H (�ni ) = �ni , where the
projection on the left hand side works on the set D, while on the right
hand side on the set E), and

• it preserves the composition (that is,
H (g(f1, . . . , fn)) = H (g)(H (f1), . . . , H (fn))

if g, f1, . . . , fn are from D and have appropriate arities).

Theorem 3.14. Let D, E be constraint languages. Then D pp-interprets E
if and only if there exists an abstract clone homomorphism from D to E.

Proof sketch. There are natural abstract clone homomorphisms asso-
ciated to the three constructions on clones (taking sublagebras, powers,
and concrete homomorphic images). The implication ⇒ follows from this
observation and Theorem 3.12.
Now assume that H : D → E is a clone homomorphism. For simplicity,
letE = {1, 2, . . . , n}. It is easy to check that the set F of all n-ary operations
inD is a subuniverse ofDD

n

. Let F be the corresponding subalgebra ofDD
n

.
(This important object, the n-generated free algebra forD, already appeared
in the proof of Theorem 3.9. Indeed, if D is the clone of polymorphisms
of a constraint language D, then F is the set of all n-ary polymorphisms
of D.) A simple calculation shows that the mapping φ : F → E, defined
by φ(f) = (H (f))(1, 2, . . . , n), is a concrete clone homomorphism from F
onto H (D) ⊆ E and thus D pp-interprets E by Theorem 3.12. �
Observe that the existence of an abstract clone homomorphism H : D→
Edoes not dependon the concrete operations inD andE – it only depends on
the way in which operations compose and which operations are projections.
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The skeleton of a concrete clone, which only remembers projections and
compositions, is called an abstract clone.7

We now explain the promised link to identities, first with an example.
A binary operation f on D is a semilattice operation if it satisfies

f(f(x, y), z) ≈ f(x,f(y, z)), f(x, y) ≈ f(y, x), and f(x, x) ≈ x,
where≈means that the corresponding equality is satisfied for each x, y, z in
the domain, that is, f(f(a, b), c) = f(a, f(b, c)), f(a, b) = f(b, a), and
f(a, a) = a hold for any a, b, c ∈ D. This can be expressed in terms of
composition and projections: f is a semilattice operation if and only if

f(f(�31 , �
3
2), �

3
3) = f(�

3
1, f(�

3
2 , �

3
3)), f(�

2
1 , �

2
2) = f(�

2
2 , �

2
1), and

f(�11, �
1
1) = �

1
1.

It follows that if H : D → E is an abstract clone homomorphism and D
contains a semilattice operation f, then E contains a semilattice operation
as well, namely H (f).
More generally, if there exists an abstract clone homomorphism from
D to E, then E satisfies all properties of the form “there exist operations
. . . satisfying identities . . . ” which are satisfied by D. We will call such
properties Mal’tsev conditions (although we deviate from the standard
definition).
It is not hard to see that the converse is also true: if no abstract clone
homomorphism D→ E exists, then there is some Mal’tsev condition which
is satisfied by D while not satisfied by E. In short:

The complexity of CSP(D) only depends on the Mal’tsev conditions
satisfied by the clone of polymorphisms of D.
To illustrate this, we state one of increasinglymany (e.g., [35,41,46,52,54])
characterizations of the conjectured borderline between P andNP-complete
CSPs by means of cyclic operations [6].

Theorem 3.15. Let D be an idempotent constraint language and p > |D|
a prime. Then the following are equivalent.

• D does not interpret the language of 3-SAT.
• D contains an operation t (equivalently,D has a polymorphism t) of arity
p such that

t(x1, . . . , xp) ≈ t(x2, . . . , xp, x1).
Even if the tractability conjecture or the dichotomy conjecture (or the
conjectures classifying other complexity classes) turns out to be incorrect,
we know that classes of CSPs in P, L, NL, . . . can be characterized by
disjunctions of Mal’tsev conditions on polymorphisms.

Example 3.16. We show how to apply cyclic operations to prove the
dichotomy theorem for undirected graphs [34].

7The relation between abstract clones and concrete clones is similar to the relation between
groups and permutation groups, or between monoids and transformation monoids.
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Let R be a symmetric binary relation viewed as an undirected graph and
D = {R}. Let D′ = {R′, . . .} be the singleton expansion of the core of D. If
R contains a loop then CSP(D) is trivially tractable. If R is bipartite, then
the core of R is an edge and CSP(D) is essentially 2-COLORING, which is
tractable.
Finally, ifR is not bipartite and does not contain a loop, then R′ does not
contain a loop and does contain a closed walk a1, a2, . . . , ap, a1 for some
prime p > |D ′|. Assume that D′ contains a cyclic operation t of arity p.
Since t is a polymorphism, the pair

t((a1, a2), . . . , (ap−1, ap), (ap, a1)) = (t(a1, . . . , ap), t(a2, . . . , ap, a1))

is in R′, but it is a loop since t is cyclic. This contradiction shows that D′

does not contain a cyclic operation of arity p, therefore CSP(D′) (and thus
CSP(D)) is NP-complete.

§4. Results. Universal algebra serves the investigation in two ways: as a
toolbox containing heavy hammers (such as Hobby and McKenzie’s Tame
Congruence Theory [35]) and as a guideline for identifying interesting inter-
mediate cases, which are hard to spot from the purely relational perspective.
Major results include the following.

• The dichotomy theorem of Schaefer for CSPs over a two-element
domain was generalized to a three-element domain by Bulatov [19].
A simplification of this result and a generalization to four-element
domains was announced by Marković et al.

• The dichotomy theorem of Hell and Nešetřil for CSPs over undirected
graphs was generalized to digraphs with no sources or sinks [9].

• The dichotomy conjecture was proved for all constraint languages
containing all unary relations by Bulatov [18] (a simpler proof is in [2]).

Notably, all known tractable cases are solvable by a combination of two
basic algorithms, or rather algorithmic principles – local consistency, and the
“few subpowers” algorithm. It is another significant success of the algebraic
approach that the applicability of these principles is now understood.

4.1. Local consistency. The CSP over some constraint languages can be
decided in polynomial time by constraint propagation algorithms, or, in
other words, by enforcing local consistency. Such CSPs are said to have
bounded width.
This notion comes in various versions and equivalent forms. We refer to
[31] for formalizations using Datalog programs and games, to [23] for a
description using dualities, and to [4, 21] for a notion suitable for infinite
languages.
We informally sketch one possible definition. Let k ≤ l be positive inte-
gers. The (k, l)-algorithm derives the strongest possible constraints on k
variables by considering l variables at a time. If a contradiction is found,
the algorithm answers “no (solution)”, otherwise it answers “yes”. These
algorithms work in polynomial time (for fixed k, l) and “no” answers are
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always correct. A constraint language D (or CSP(D)) has width (k, l), if
“yes” answers are correct for every instance of CSP(D). IfD has width (k, l)
for some k, l , we say that D has bounded width.
As an example, we consider the constraint language D2COLOR and the
instance

x1 �= x2, x2 �= x3, x3 �= x4, x4 �= x5, x5 �= x1.
The (2, 3)-algorithm can certify that this instance has no solution as
follows:

• We consider the variables x1, x2, x3. Using x1 �= x2, x2 �= x3 we derive
x1 = x3.

• We consider x1, x3, x4.Using x3 �= x4 and the already derived constraint
x1 = x3 we derive x1 �= x4.

• We consider x1, x4, x5 and using x1 �= x4, x4 �= x5 and x5 �= x1 we
derive a contradiction.

In fact, 2-COLORING has width (2, 3), that is, such reasoning finds a
contradiction for every unsatisfiable instance. Other examples of bounded
width problems include HORN-3-SAT and 2-SAT.
Feder and Vardi [31] proved that problems 3-LIN(p) (and more generally,
similar problems 3-LIN(M) over finite modules) do not have bounded width
and conjectured that linear equations are essentially the only obstacles for
having bounded width. An algebraic formulation of this was given by Larose
and Zádori [44]. They proved that analogues of results in Section 3 hold for
bounded width, therefore no problem which pp-interprets the language of
3-LIN(M) has bounded width, and conjectured that the converse is also
true. After a sequence of partial results [5, 20, 26, 40], the conjecture was
eventually confirmed in [8]8 and independently in [14].

Theorem 4.1. An idempotent constraint language D has bounded width
if and only if D does not interpret the language of 3-LIN(M) for a finite
moduleM.9

4.2. Few subpowers. Gaussian elimination not only solves 3-LIN(p), it
also describes all the solutions in the sense that the algorithm can output a
small (polynomially large) set of points in GF(p)n so that the affine hull of
these points is equal to the solution set of the original instance. A sequence
of papers [15,17,29,31] culminating in [10,36] pushed this idea, in a way, to
its limit.
We need some terminology to state the result. Let D be a constraint
language and D its clone of polymorphisms. Recall that a relation on D is
a subpower of D if and only if it is pp-definable from D. Note that the set
of solutions of any instance of CSP(D) can be viewed as a subpower of D.
8A modification required to handle infinite languages was given in [4].
9Moreover, ifD has bounded width, then it has width (2, 3) with an appropriate notion of

width. Also, the property of having bounded width can be checked in polynomial time given
an idempotent D on input.
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NowD has few subpowers if each subpower has a small generating set, that is,
each subpower can be obtained as a closure under polymorphisms of a set
which is polynomially large with respect to the arity.10

Theorem 4.2. Let D be an idempotent constraint language. If D has few
subpowers, then CSP(D) can be solved in polynomial time (moreover, the
algorithm can output a generating set for the set of all solutions).

§5. Conclusion. We have seen that the complexity of the satisfiability
problem for CSP over a fixed constraint language depends on “higher arity
symmetries” – polymorphisms of the language. (We have only discussed
languages with finite domains. The algebraic theory extends to interesting
subclasses of infinite domain CSP [12]). Significant progress has been
achieved using this insight, but themain problem, the dichotomy conjecture,
is still open.
A similar approach can be applied to other variants of CSP over a fixed
constraint language. In two of them, the main goal has been reached: the
dichotomy for the counting problemwas proved in [22] (substantially simpli-
fied in [30]) and for the robust satisfiability problem in [7].Ageneralization of
the theory for the optimization problem and valued CSPs was given in [28],
and some links to universal algebra are emerging from research in the area
of approximation algorithms (such as [48]).
Is this approach only applicable to CSPs over fixed languages? Or are we
merely seeing a piece of a bigger theory?
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[13] V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov, Galois theory

for Post algebras. I, II, Kibernetika (Kiev), (1969), no. 3, pp. 1–10; ibid. 1969, no. 5, pp. 1–9.
[14] Andrei Bulatov, Bounded relational width, manuscript, 2009.
[15] Andrei Bulatov and Vı́ctor Dalmau, A simple algorithm for Mal′tsev constraints.

SIAM Journal on Computing, vol. 36 (2006), no. 1, pp. 16–27 (electronic).
[16] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin, Classifying the com-

plexity of constraints using finite algebras. SIAM Journal on Computing, vol. 34 (2005),
pp. 720–742.
[17] Andrei A. Bulatov, Mal’tsev constraints are tractable. Electronic Colloquium on

Computational Complexity (ECCC), vol. 34 (2002), pp. 1–37. http://eccc.hpi-web.de/eccc-
reports/2002/TR02-034/index.html.
[18] , Tractable conservative constraint satisfaction problems, Proceedings of the

18th Annual IEEE Symposium on Logic in Computer Science (Washington, DC, USA), IEEE
Computer Society, 2003, pp. 321–330.
[19] Andrei A. Bulatov, A graph of a relational structure and constraint satisfaction

problems, Proceedings of the Nineteenth Annual IEEE Symposium on Logic in Computer
Science (LICS 2004), IEEE Computer Society Press, July 2004, pp. 448–457.
[20] , Combinatorial problems raised from 2-semilattices. Journal of Algebra,

vol. 298 (2006), no. 2, pp. 321–339.
[21] , Complexity of conservative constraint satisfaction problems. ACM Transac-

tions on Computational Logic, vol. 12 (2011), no. 4, pp. 24:1–24:66.
[22] , The complexity of the counting constraint satisfaction problem. Journal of

ACM, vol. 60 (2013), no. 5, pp. 34:1–34:41.
[23] Andrei A. Bulatov, Andrei Krokhin, and Benoit Larose, Complexity of Con-

straints (Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors), Springer-
Verlag, Berlin, Heidelberg, 2008, pp. 93–124.
[24]Gerhard Buntrock, CarstenDamm,UlrichHertrampf, andChristophMeinel,

Structure and importance of logspace-mod class.Mathematical SystemsTheory, vol. 25 (1992),
no. 3, pp. 223–237 (English).
[25] Jin-YiCai andXiChen,Complexity of counting cspwith complexweights,Proceedings

of the Forty-Fourth Annual ACMSymposium on Theory of Computing (NewYork, NY,USA),
STOC ’12, ACM, 2012, pp. 909–920.
[26] Catarina Carvalho, Vı́ctor Dalmau, Petar Marković, and Miklós Maróti,
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