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Abstract We study totally positive definite quadratic forms over the ring of integers OK of a totally
real biquadratic field K = Q(

√
m,

√
s). We restrict our attention to classic forms (i.e. those with all non-

diagonal coefficients in 2OK) and prove that no such forms in three variables are universal (i.e. represent
all totally positive elements of OK). Moreover, we show the same result for totally real number fields
containing at least one non-square totally positive unit and satisfying some other mild conditions. These
results provide further evidence towards Kitaoka’s conjecture that there are only finitely many number
fields over which such forms exist. One of our main tools are additively indecomposable elements of OK ;
we prove several new results about their properties.

Keywords: Indecomposable integer; universal quadratic form; ternary quadratic form; biquadratic
number field
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1. Introduction

Several generations of number theorists have been interested in quadratic forms. One
of the most beautiful topics in this area is the study of universal quadratic forms with
integral coefficients. It started with Lagrange’s famous theorem, which says that every
non-negative rational integer can be expressed as a sum of four squares; in modern ter-
minology, we talk about the universality of the form x2 + y2 + z2 + w2 over the ring Z.
Later, all universal forms over Z in four variables were characterized by Ramanujan [26].
In particular, no ternary (i.e. in three variables) quadratic form with rational integer
coefficients can represent all positive rational integers.
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Considering, instead of Z, the ring of algebraic integers OK for a totally real number
field K, many directions of research appear. In [18], Maass showed that the sum of three
squares is universal over OQ(

√
5), which was followed by the result of Siegel [25] saying

that the sum of any number of squares is universal only over Z and OQ(
√
5). Moreover, it

can be deduced from the results of Hsia et al. [12, Th. 3] that in any given totally real
number field, there always exists a universal quadratic form. This naturally leads to the
question how many variables this form must have.
Blomer and Kala [2,13] have shown that for any given N , there always exists a

quadratic number field such that every universal quadratic form over that field has at
least N variables. The same result holds for multiquadratic fields (Kala and Svoboda [17])
and cubic fields (Yatsyna [29]). On the other hand, one can ask, for a given field, what
is the least possible number of variables of a universal quadratic form; Čech, Lachman,
Svoboda and two present authors [6] started to examine this question for biquadratic
fields. Kitaoka conjectured that there are only finitely many number fields that admit
universal ternary quadratic forms. This idea was supported by the result of Chan et al.
[5], who proved that Q(

√
2),Q(

√
3) and Q(

√
5) are the only quadratic fields with a uni-

versal classic totally positive definite ternary quadratic form. Inspired by this statement,
we prove the following theorem.

Theorem 1.1. For any totally real biquadratic number field K, there are no universal
classic totally positive definite ternary quadratic forms over OK .

The proof is divided into §§ 5 and 6. This theorem is, to the extent of our knowledge,
the first result about universality of ternary forms in fields of even degree different from
two. For all totally real number fields of odd degree, a proof of non-existence of universal
ternary forms can be found in [9]. In fact, one part of our proof can be applied to prove
non-universality of ternary forms in a broad class of number fields of arbitrary degree.

Theorem 1.2. Let K be a totally real number field,
√
2 /∈ K, which contains a non-

square totally positive unit ε such that 2ε is not a square in K. Then there is no universal
classic totally positive definite ternary quadratic form over OK .

The proof is contained in § 5.2. For more results on universal quadratic forms, see for
example [3,7,15,16,23,24].

In totally real number fields, the question of universality of quadratic forms is closely
related to the study of indecomposable integers. These are exactly those elements of O+

K

(the set of totally positive algebraic integers of K), which cannot be written as a sum of
two elements of O+

K . In a certain sense, it is difficult to represent them by quadratic forms,
which is demonstrated in the works of Blomer, Kala or Yatsyna. Despite this fact, there is
not much known about them. In quadratic fields, they were characterized by Perron [22],
Dress and Scharlau [8], and their norms were studied by several authors [11,14,27]. Some
general statements can be found in the work of Brunotte [4]. Considering biquadratic
fields, we can draw on the results of [6], which we extend in this paper. In particular, we
prove the following theorem.

https://doi.org/10.1017/S001309152000022X Published online by Cambridge University Press

https://doi.org/10.1017/S001309152000022X


Universal forms over biquadratic fields 863

Theorem 1.3. Let 1 < m < s < t be square-free integers such that Q
(√

m,
√
s
)
is a

biquadratic field containing
√
t. For all u ∈ {m, s, t}, set

U =

{
�√u�+√

u if u ≡ 2, 3 (mod 4),

�√u�odd
+
√
u

2 if u ≡ 1 (mod 4),

where �√u�odd is the smallest odd integer greater than
√
u. Then

(1) M and S are indecomposable in Q
(√

m,
√
s
)
,

(2) 2M− 1, if totally positive, is indecomposable in Q
(√

m,
√
s
)
,

(3) T can decompose in Q
(√

m,
√
s
)
.

We prove the theorem in § 4.3. In particular, the statement of part (1) is covered
by Propositions 4.9 and 4.10, and part (2) by Proposition 4.11. Part (3) follows from
Example 4.7; note that this example provides an indecomposable algebraic integer from
a quadratic field, which decomposes in a biquadratic field, and thus solving an open
question from [6].

The indecomposability of M stated in Theorem 1.3(1) is one of the keystones in the
proof of Theorem 1.1. Although the statement of Theorem 1.3(1) might seem expectable
at first glance, the indecomposability of M and S in every biquadratic field is not imme-
diate, as indicated by part (3) of the theorem. The proof is rather technical; one of the
difficulties arises from the freedom for possible decompositions, which is much greater
than in the quadratic case: instead of two coefficients and two different types of inte-
gral bases, one has to consider four coefficients and five different types of bases. Similar
obstacles occur in proofs of most of our lemmas, making them more difficult than their
quadratic counterparts. This requires a careful approach and case distinction—it can be
treacherous even in the quadratic case, as illustrated with the overlooked exceptional field
in the paper [5] (see Appendix A where this omission is handled)—and also several new
ideas. Moreover, any condition of the type ‘

√
n /∈ K’ (e.g.

√
2 /∈ K) produces an infinite

family of exceptional biquadratic fields instead of just excluding the field Q(
√
n).

The paper is organized as follows: in § 2 we review some basic facts about biquadratic
number fields, quadratic forms and indecomposable integers in totally real number fields.
Since the proof of our main results consists of several parts, § 3 provides a brief outline
of the proof. In particular, we explain the reason for the subsequent case distinction.
Section 4 contains some preparatory statements, mostly about algebraic integers in

biquadratic number fields. Above all, we are concerned with indecomposability; we prove
Theorem 1.3 in § 4.3. Furthermore, we show that some elements of OK derived from the
elements appearing in this theorem are not squares in K, and we also study decomposi-
tions of small rational integers in K. At the end of the section, we look more closely at
representability of some elements by unary quadratic forms and at splitting of quadratic
forms and corresponding lattices.
Section 5 provides the main part of our proof—the method introduced here can be

applied to most biquadratic fields. The remaining cases are solved in § 6; this time, we
use several different methods to deal with arising difficulties, including the knowledge of

https://doi.org/10.1017/S001309152000022X Published online by Cambridge University Press

https://doi.org/10.1017/S001309152000022X


864 J. Krásenský, M. Tinková and K. Zemková

some indecomposable integers in K and the method of escalation. Some computations
used in proofs in §§ 6.8, 6.9 and 6.10 were performed by programs written in Mathematica.
The paper is concluded by three appendixes: Appendix A recovers the problematic

quadratic case of Q(
√
10) from [5]. In Appendix B, we provide some insight into the

behaviour of totally positive units from a quadratic subfield when considering them as
elements of the biquadratic field. Finally, to make the orientation in the different branches
of the proof of Theorem 1.1 easier, Appendix C contains a sketch of its tree structure in
the main cases.

2. Preliminaries

2.1. Algebraic integers

Let K be a totally real number field, i.e. a number field where all embeddings σ of
K into C (including the identity) actually map K into R. We say that α ∈ K is totally
positive, denoted by α � 0, if σ(α) > 0 for each embedding σ. Let OK be the ring of
algebraic integers in K; the subset of totally positive elements of OK will be denoted by
O+

K . Obviously, it is closed under addition and multiplication and contains the set of all
squares, denoted O�

K . The notation α � 0 means that α is either totally positive or 0,
and we use α � β (respectively α � β) to denote α− β � 0 (respectively α− β � 0).
We use symbols TrK/Q (α) and NK/Q (α) to denote the trace and the norm of α, i.e.

TrK/Q (α) =
∑
σ

σ(α) and NK/Q (α) =
∏
σ

σ(α),

where the sum and the product run over all the embeddings σ of K into C. Obviously, if
α, β ∈ OK satisfy α � β, then TrK/Q (α) ≤ TrK/Q (β); if, moreover, both of α and β are
totally positive, then also NK/Q (α) ≤ NK/Q (β). Furthermore, norm has the following

nice property: if K is of degree N over Q and α, β ∈ O+
K , then

N

√
NK/Q (α+ β) ≥ N

√
NK/Q (α) + N

√
NK/Q (β); (2.1)

this is essentially the generalized Hölder’s inequality. Equality happens if and only if
α/β ∈ Q.
We denote by UK the set of units of OK , i.e. the set of algebraic integers of norm

±1; furthermore, we write U+
K (respectively U�

K) for the subset of totally positive units
(respectively for the subset of squares of units).

2.2. Biquadratic fields

Let p, q > 1 be two different square-free integers, put K = Q
(√

p,
√
q
)

and r =
pq/gcd(p, q)2; such a field K is called a (totally real) biquadratic field. Henceforth, K
denotes only such a field. It has degree 4 and one possible Q-vector space basis is
(1,

√
p,
√
q,
√
r); we can find three quadratic subfields in K, namely Q(

√
p), Q(

√
q) and
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Q(
√
r). There are four embeddings of K into C: if α = x+ y

√
p+ z

√
q + w

√
r ∈ K, then

σ1(α) = x+ y
√
p+ z

√
q + w

√
r,

σ2(α) = x− y
√
p+ z

√
q − w

√
r,

σ3(α) = x+ y
√
p− z

√
q − w

√
r,

σ4(α) = x− y
√
p− z

√
q + w

√
r.

Note that biquadratic fields are Galois extensions of Q, i.e. all σi’s are automorphisms
of K.

Depending on p, q (mod 4), after possibly interchanging the role of p, q and r, every case
can be converted into one of the five cases listed below. The importance of distinguishing
these five types of fields lies in the fact that it determines the integral basis, i.e. basis of
OK regarding it as a Z-module (see [10, § 8] and [28, Theorem 2]):

(B1) p ≡ 2 (mod 4), q ≡ 3 (mod 4),
(
1,
√
p,
√
q,

√
p+

√
r

2

)
,

(B2) p ≡ 2 (mod 4), q ≡ 1 (mod 4),
(
1,
√
p,

1+
√
q

2 ,
√
p+

√
r

2

)
,

(B3) p ≡ 3 (mod 4), q ≡ 1 (mod 4),
(
1,
√
p,

1+
√
q

2 ,
√
p+

√
r

2

)
,

(B4) p ≡ 1 (mod 4), q ≡ 1 (mod 4), and

(a) gcd(p, q) ≡ 1 (mod 4), or
(
1,

1+
√
p

2 ,
1+

√
q

2 ,
1+

√
p+

√
q+

√
r

4

)
(b) gcd(p, q) ≡ 3 (mod 4)

(
1,

1+
√
p

2 ,
1+

√
q

2 ,
1−√

p+
√
q+

√
r

4

)
.

Note that in all these cases, we have p ≡ r (mod 4), so in cases (B1), (B2) and (B3),
p and r are interchangeable. In case (B4), all of p, q, r are interchangeable. The field
discriminants are (B1) 64pqr, (B2) 16pqr, (B3) 16pqr, (B4) pqr; these are actually just
products of the discriminants of the quadratic subfields.
For convenience of the reader, we include a more explicit form of algebraic integers

depending on the integral bases.

Remark 2.1. An element α ∈ K belongs to OK if and only if there exist a, b, c, d ∈ Z
such that

(B1) α = a+ b
2

√
p+ c

√
q + d

2

√
r with b ≡ d (mod 2),

(B2), (B3) α = a
2 + b

2

√
p+ c

2

√
q + d

2

√
r with a ≡ c (mod 2) and b ≡ d (mod 2),

(B4a) either α = a
2 + b

2

√
p+ c

2

√
q + d

2

√
r with a+ b+ c+ d ≡ 0 (mod 2), or

α = a
4 + b

4

√
p+ c

4

√
q + d

4

√
r with a, b, c, d odd and a+ b+ c+ d ≡ 0

(mod 4).

(B4b) either α = a
2 + b

2

√
p+ c

2

√
q + d

2

√
r with a+ b+ c+ d ≡ 0 (mod 2), or

α = a
4 + b

4

√
p+ c

4

√
q + d

4

√
r with a, b, c, d odd and a+ b+ c+ d ≡ 2

(mod 4).
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Convention 2.2. Throughout this article, we use three different triples of letters
for the specification of a biquadratic number field, each of them implicitly having a
different property. Regardless of the notation, we always assume all the three numbers
to be square-free, and any of the three numbers to be equal to the product of the
remaining two divided by the second power of their greatest common divisor. Then the
biquadratic field is generated by any two of these three elements. We use the following
notation:

• p, q, r: this triple always satisfies one of the possible congruences above (and hence
it is closely connected to the basis).

• m, s, t: always m < s < t.

• n1, n2, n3: this triple does not carry any additional information (except for the
general properties mentioned above).

In a few proofs, we make use of writing m, s, t as products m = s0t0, s = m0t0, t =
m0s0 where m0, s0 and t0 are pairwise coprime square-free numbers, equal to gcd(s, t),
gcd(m, t) and gcd(m, s), respectively. Note that the inequality m < s < t translates to
m0 > s0 > t0, and in basis (B4) we have m0 ≡ s0 ≡ t0 (mod 4).

Moreover, to describe an element of OK , we usually use either a, b, c, d for integers
or x, y, z, w for rational numbers; a generic element of OK can be then written, e.g. as
1
2a+ 1

2b
√
p+ 1

2c
√
q + 1

2d
√
r or as x+ y

√
n1 + z

√
n2 + w

√
n3.

Bearing this notation in mind, we can give the following necessary condition for the
totally positive elements of OK . This lemma was derived in [6, Lemma 3.1].

Lemma 2.3. If x+ y
√
n1 + z

√
n2 + w

√
n3 ∈ O+

K for some x, y, z, w ∈ Q, then x > 0,
x > |y|√n1, x > |z|√n2, x > |w|√n3.

Note that it implies that, for any fixed K, there are only finitely many totally positive
integers with a given trace; this also means that for a fixed α ∈ O+

K , the equation α =
β + γ has at most finitely many solutions β, γ ∈ O+

K , and they can straightforwardly be
found by a computer program. In particular, it is routine to check whether a given element
α of a fixed field K is indecomposable (see § 2.4).

2.3. Quadratic forms

The expression

Q(x1, x2, . . . , xn) =
∑

1≤i≤j≤n

aijxixj ,

where aij ∈ OK , is called an n-ary quadratic form over OK . We often think of Q
as acting on vectors from the lattice On

K and correspondingly write Q(x) instead of
Q(x1, x2, . . . , xn). Given a quadratic form Q, we can construct a symmetric bilinear form
BQ(x,y) =

1
2

(
Q(x+ y)−Q(x)−Q(y)

)
such that Q(x) = BQ(x,x); this form is called

the polar form of Q.
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An n-ary quadratic form is said to be totally positive definite if Q(x) � 0 for all non-
zero vectors x ∈ On

K . The form Q is classic if 2 divides aij for all i 
= j. It is called
diagonal in the case when aij = 0 for all i 
= j; in such a case, we write Q simply as
〈a1〉⊥〈a2〉⊥ . . .⊥〈an〉. More generally, the expression Q1⊥Q2 means the quadratic form
Q1(x1, . . . , xn) +Q2(xn+1, . . . , xn+m).
We say that Q is universal if it represents all the elements belonging to O+

K , i.e. for
every α ∈ O+

K we can find a vector e ∈ On
K such that Q(e) = α. Moreover, an n-ary

quadratic form Q represents an m-ary quadratic form R over OK if m ≤ n and there
exist m-ary linear forms �i, i = 1, . . . , n, with coefficients in OK , such that

R(x1, . . . , xm) = Q(�1(x1, . . . , xm), . . . , �n(x1, . . . , xm)).

(For example, the form R(x1, x2) = 2x2
1 + 3x2

2 is represented by the form Q(y1, y2, y3) =
y21 + 3y22 + 5y23 overOK withK = Q(

√
2), becauseR(x1, x2) = Q(

√
2x1, x2, 0).) Note that

the case m = 1 yields the usual representation of an element of OK . In general, it is easy
to see that the form Q represents all the integers which are represented by the form R
(and possibly some more).
From now on, by a quadratic form, or just simply a form, we mean a totally positive

definite classic quadratic form.
Two n-ary quadratic forms Q1 and Q2 are called equivalent, denoted by Q1

∼= Q2,
if there exists an n× n matrix M consisting of elements of OK and with detM ∈ UK ,
such that Q2(x) = Q1(Mx). Note that equivalent quadratic forms represent the same
elements; in particular, Q1 is universal if and only if Q2 is universal.

Given an n-ary quadratic form Q and a set of vectors v1, . . . ,vm ∈ On
K , we call the

matrix
(
BQ(vi,vj)

)m
i,j=1

a Gram matrix of v1, . . . ,vm with respect to Q. When this set

of vectors coincides with the canonical basis of Kn, the quadratic form can be expressed
as

Q(x1, x2, . . . , xn) =
(
x1 x2 · · · xn

)
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11
a12
2

· · · a1n
2

a12
2

a22 · · · a2n
2

...
...

. . .
...

a1n
2

a2n
2

· · · ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎝
x1

x2

...
xn

⎞
⎟⎟⎟⎠ ;

then we speak simply about the Gram matrix associated to Q or the matrix of Q.
A form is totally positive definite, respectively, diagonal, if and only if its Gram matrix

has the same property. To examine the total positive definiteness of Q, one can use
Sylvester’s criterion: Q is totally positive definite if and only if the leading principal
minors of its Gram matrix are totally positive definite. Moreover, a form is classic if and
only if its Gram matrix contains only integral entries.

2.4. Indecomposable integers

Let α be a totally positive integer in K. We say that α is indecomposable in K if the
equation α = β + γ cannot be satisfied for any two elements β, γ ∈ O+

K . The structure of
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indecomposable integers of all the quadratic fields is well-known. Let n be a square-free
positive rational integer and set

ωn =

⎧⎨
⎩
√
n if n ≡ 2, 3 (mod 4),

1 +
√
n

2
if n ≡ 1 (mod 4).

If we take the continued fraction [u0, u1, u2, . . . , ul] of −ωn (i.e. of the conjugate element
to −ωn in the quadratic field Q(

√
n)), we can consider only parts of this continued fraction

and get rational numbers of the form

pi
qi

= [u0, u1, . . . , ui].

We can also obtain these numbers from the recurrence relations

pi+1 = pi−1 + ui+1pi,

qi+1 = qi−1 + ui+1qi,

where p−1 = 1, q−1 = 0, p0 = u0 and q0 = 1. Having this sequence of pi and qi, we define
elements αi = pi + qiωn called convergents of −ωn. However, in addition, we can consider
integers of the form αi,k = αi + kαi+1 where 0 ≤ k ≤ ui+2. These elements are called
semiconvergents of −ωn and belong to O+

K if and only if i is odd. In such a case, the
elements αi,k’s are all the indecomposable integers in Q(

√
n); up to multiplication by

units, there are only finitely many of them (see [8,22]).
In biquadratic fields, we do not have such a characterization of indecomposable integers.

The only result known to us is [6, Th. 2.1], which claims that under certain conditions, the
indecomposables from quadratic subfields remain indecomposable in the biquadratic field.
The meaning of p, q and r in this theorem agrees with the one given by Convention 2.2.

Theorem 2.4. Let K = Q
(√

p,
√
q
)
be a biquadratic number field. For k ∈ {p, q, r},

we set Mk = max{ui; i odd}, where [u0, u1, u2, . . . , ul−1, ul] is the continued fraction of
−ωk.

(a) Let α ∈ Q(
√
p) be indecomposable.

• If α is a convergent of −ωp and
√
r >

√
p, then α is indecomposable in K.

• If
√
r > Mp

√
p, then α is indecomposable in K.

(b) Let β ∈ Q(
√
q) be indecomposable.

• In the cases (B1), (B2), (B3), β is indecomposable in K.

• In the case (B4), if
√
r >

√
q and β is a convergent of −ωq, then β is

indecomposable in K.

• In the case (B4), if
√
r > Mq

√
q, then β is indecomposable in K.

(c) Let γ ∈ Q(
√
r) be indecomposable.

• If γ is a convergent of −ωr and
√
p >

√
r, then γ is indecomposable in K.

• If
√
p > Mr

√
r, then γ is indecomposable in K.
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Nevertheless, as we shall see in § 4.3, this theorem does not cover all the indecomposable
integers originating from quadratic subfields and, moreover, we will provide an example of
an element indecomposable in a quadratic subfield, which decomposes in our biquadratic
field K. Both was already foreshadowed in Theorem 1.3.

3. Idea of the proof

In the main part of this article, we do not use the method of escalation as developed in
[1] (the only exception will be fields containing 2 or 5 in §§ 6.8, 6.9 and 6.10). Instead,
we follow the ideas from [5]: assume that Q is a universal classic totally positive definite
ternary quadratic form over OK . Obviously, Q has to represent the number 1, and hence
Q can be orthogonally split into Q ∼= 〈1〉⊥Q0 (see Corollary 4.23(2)). This step is one of
the key ingredients for the proof, as it can actually be used repeatedly any time when a
totally positive unit (not necessarily 1) happens to be represented by the form Q or any
of its subforms.
Now it is easy to see that if we have ‘enough’ totally positive units, which do

not differ (multiplicatively) from each other by a square, then the non-universality of
Q follows: suppose that ε, ε′ are two totally positive units such that ε, ε′, εε′ /∈ U�

K

(in particular, ε, ε′ 
= 1 and ε 
= ε′). The unary form 〈1〉 clearly represents all squares, and
in particular all elements of U�

K , but it does not represent ε. We will see in Lemma 4.3
that a totally positive unit cannot be written as a sum of two elements of O+

K ; thus,
ε has to be represented by the binary form Q0. Therefore, we can repeat the splitting
and write Q0

∼= 〈ε〉⊥〈γ〉 for some γ ∈ O+
K , i.e. Q ∼= 〈1〉⊥〈ε〉⊥〈γ〉. After that, we apply

the same arguments for ε′. Note that 〈ε〉 represents only elements from εO�
K , and so it

does not represent ε′; we obtain that ε′ must be represented by 〈γ〉, which easily gives
Q ∼= 〈1〉⊥〈ε〉⊥〈ε′〉. But in such a case, εε′ is another non-square totally positive unit, and
it is not represented by Q for the same reasons. Therefore, under the given assumptions,
no classic totally positive definite ternary quadratic form can be universal, as we have
actually shown that no such form can represent all the elements 1, ε, ε′, εε′ at once.

The discussion above indicates that the complexity of the problem depends heavily
on the size of the factor group U+

K/U�
K . Using Dirichlet’s unit theorem, one can easily see

that the group UK/U�
K has 16 elements. Thus, as the group UK/U+

K is obviously non-trivial,
we deduce from the equality |UK/U�

K | = |UK/U+
K | ·

∣∣U+
K/U�

K

∣∣ that the size of the factor group
U+

K/U�
K can be only 1, 2, 4 or 8. Let us consider the following three cases:

(I)
∣∣U+

K/U�
K

∣∣ > 2; in this case we can find ε, ε′ as above.

(II)
∣∣U+

K/U�
K

∣∣ = 2; here we can find a totally positive unit ε such that {1, ε} is a system
of representatives of the factor group.

(III)
∣∣U+

K/U�
K

∣∣ = 1; all units are squares, and thus the only relevant unit in this case is 1.

We have solved the case (I) already, there does not exist any universal (classic, totally
positive definite) ternary quadratic form. Lemma B.1 hints that this is often the case.
In the case (II), it is sufficient to consider the quadratic forms 〈1〉⊥〈ε〉⊥〈γ〉 for γ ∈ O+

K

(including the cases γ = 1 and γ = ε). The obvious question is whether such a form
represents 2. Putting aside the case

√
2 ∈ K, we have two possibilities: either 〈ε〉 does
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not represent 2, and hence γ has to be either 1 or 2 (see Lemma 4.3), or 〈ε〉 does represent
2, and we have to look for another number, which is not yet represented. Note that 〈ε〉
represents 2 if and only if 2ε is a square in OK ; we will use this condition significantly
in both cases. It is also worth pointing out Proposition 4.20, which summarizes some
arguments used repeatedly throughout the whole proof.
The most challenging part of the proof is, of course, the case (III). We can still be

lucky enough to obtain a diagonalizable binary quadratic form Q0, and hence we consider
quadratic forms 〈1〉⊥〈β〉⊥〈γ〉 separately; but in general, Q0 has the form α′y2 + 2β′yz +
γ′z2. The problems in the non-diagonalizable case are caused mainly by the fact that β′

(and hence the term 2β′yz) does not have to be totally positive, which prevents us from
using estimations.
It should be clear now from the ideas above that in the cases with ‘not enough totally

positive units’, we need to find other elements that are not squares (because squares are
already represented by 〈1〉), and which are difficult to express as a sum of two elements
of O+

K . In other words, we need to find some non-square indecomposable elements; this
is the main purpose of the next section.

4. Preparation for the proof

In this section, we introduce several tools that are needed for the proof of Theorem 1.1.
As indicated at the end of the previous section, we want to know whether some given
elements of OK are squares and how to express some numbers as a sum of elements
belonging to O+

K . The latter also includes the problematics of indecomposable elements
in K; we provide a proof of Theorem 1.3. Furthermore, we take a more detailed look at
representations by unary forms. Finally, for the sake of non-diagonalizable forms in the
case (III), we include some lemmas about quadratic lattices.

4.1. Squares

If α ∈ OK is a square when considered as an element of the field K, then actually
α ∈ O�

K , because OK is integrally closed in K. In the following, we will slightly abuse
the language, and speak about algebraic integers being or becoming a square in the
(biquadratic) field K, by which we actually mean that they are squares in the ring OK .

The following lemma generalizes [6, Lemma 4.1]. Note that in the statement, the
meaning of n3 is given by Convention 2.2 as n1n2/gcd(n1, n2)

2.

Lemma 4.1. Let F = Q(
√
n1) and K = Q

(√
n1,

√
n2

)
.

(1) Suppose that α ∈ OF is not a square in the field F but becomes a square in K. If
β = x+ y

√
n1 + z

√
n2 + w

√
n3 ∈ OK is such that α = β2, then x = y = 0.

(2) More generally, if β = x+ y
√
n1 + z

√
n2 + w

√
n3 ∈ K (not necessarily integral)

satisfies β2 ∈ Q(
√
n1), then either x = y = 0 or z = w = 0.

Proof. Clearly it suffices to prove the second statement. We can write β = A+B
√
n2

with A = x+ y
√
n1 and B = z + (w/gcd(n1, n2))

√
n1; in particular, A,B ∈ Q(

√
n1).

Then it holds that β2 = (A2 + n2B
2) + 2AB

√
n2, and thus one sees that β2 ∈ Q(

√
n1)
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is equivalent to 2AB = 0. If A = 0, then x = y = 0, and if B = 0, then z = w = 0. This
completes the proof. �

As a corollary of this lemma, we obtain a simple yet powerful criterion for quadratic
elements, which become a square in the biquadratic field.

Corollary 4.2. Let F = Q(
√
n1) and α ∈ OF . Suppose that α is not a square in F but

becomes a square in K = Q
(√

n1,
√
n2

)
. Then every odd divisor of gcd(n2, n3) divides α

as well.

Proof. From Lemma 4.1(1) we know that

α =

(
c
√
n2 + d

√
n3

2

)2

=
c2n2 + d2n3

4
+

cd gcd(n2, n3)

2

√
n1,

where the form of integral bases (B1)–(B4) ensures c, d ∈ Z, c ≡ d (mod 2). If c, d are
even, then clearly both expressions 1

4 (c
2n2 + d2n3) and

1
2cd gcd(n2, n3)

√
n1 are divisible

by gcd(n2, n3); if they are odd, then still they are both divisible by all the odd divisors
of gcd(n2, n3). �

4.2. Additive decompositions of rational integers

In the study of universality of quadratic forms in biquadratic fields, we repeatedly
discuss whether our form can represent some (suitably chosen) element. This element is
usually either a rational integer or an indecomposable element in K. In the first case,
we often need to know in what ways we can express our chosen number as a sum of two
elements α, β ∈ O+

K ∪ {0}—i.e. we examine its additive decompositions. If α and β are
also rational integers, we will say that this decomposition is trivial. We will be particularly
interested in the cases when one of α and β is a square.

First of all, let us focus on the additive decompositions of numbers 2, 3 and 5.

Lemma 4.3. In a biquadratic field K :

(1) All totally positive units are indecomposable.

(2) The number 2 can always decompose only trivially as 1 + 1 or 0 + 2.

(3) If
√
5 /∈ K, then 3 can decompose only trivially as 1 + 2 or 0 + 3.

The only non-trivial decomposition is 1
2 (3 +

√
5) + 1

2 (3−
√
5).

(4) If
√
2,
√
3,
√
5,
√
13,

√
17,

√
21 /∈ K, then 5 decomposes only trivially as 2 + 3, 1 + 4

or 0 + 5.
Up to embeddings, the non-trivial decompositions of 5 are: (2 +

√
2) + (3−√

2), (2 +
√
3) + (3−

√
3), 1

2 (3 +
√
5) + 1

2 (7−
√
5), 1

2 (5 +
√
5) + 1

2 (5−
√
5), 1

2 (5 +√
13) + 1

2 (5−
√
13), 1

2 (5 +
√
17) + 1

2 (5−
√
17), 1

2 (5 +
√
21) + 1

2 (5−
√
21), (2 +

1
2 (
√
2 +

√
6)) + (3− 1

2 (
√
2 +

√
6)).

Remark. As we will see from the proof, parts (1) and (2) actually hold for any totally
real number field K, not only for the biquadratic ones.
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Proof. Part (1) follows directly from the inequality (2.1), as the norm of any element of
O+

K is greater or equal to 1. The same idea is used in part (2): if 2 = α+ β for α, β ∈ O+
K ,

then 2 = N
√

NK/Q (α+ β) ≥ N
√

NK/Q (α) + N
√
NK/Q (β) ≥ 1 + 1; we see that α and β

must be units, and, moreover, equality was attained in (2.1), and thus α/β ∈ Q, which
shows α = β = 1.
Part (2) could also have been obtained as an easy corollary of part (3): from the list of

all α � 0 such that 3 � α, only 0, 1 and 2 satisfy 2 � α as well. In a similar fashion, we
can obtain (3) from the full statement of (4).
For the proof of (4), suppose 5 = α+ β for α, β ∈ O+

K ∪ {0}. If α ∈ Q, we obtain
precisely the trivial decompositions. For α /∈ Q, we consider all possible cases.
First, suppose that α and β are in some quadratic subfield Q(

√
n) of K. Without

loss of generality, suppose TrQ(
√
n)/Q (α) ≤ TrQ(

√
n)/Q (β), hence α = 1

2a+ 1
2b
√
n where

0 < 1
2a ≤ 5

2 ; by choosing a suitable embedding we can ensure b > 0. By Lemma 2.3 (which
will be used repeatedly in the whole following proof) we have a > b

√
n. If n 
≡ 1 (mod 4),

then 1
2a,

1
2b ∈ Z, hence the only solution of the inequalities 0 < 1

2a ≤ 5
2 , a > b

√
n > 0 is

1
2a = 2, 1

2b = 1, n ∈ {2, 3}. If n ≡ 1 (mod 4), half-integers are also allowed (provided that
a ≡ b (mod 2)); the same inequalities are satisfied only by 1

2a = 3
2 ,

1
2b =

1
2 , n = 5 and by

1
2a = 5

2 ,
1
2b =

1
2 , n ∈ {5, 13, 17, 21}.

The second case is when, in the basis representation of α, exactly two of the three num-
bers

√
m,

√
s,

√
t are multiplied by a non-zero coefficient—let us denote these two square

roots by
√
n1,

√
n2. By looking at the bases (B1)–(B4), observe that the corresponding

coefficients are half-integers since if quarter-integers are involved, all three square roots
have non-zero coefficients. After possibly interchanging α and β so that TrK/Q (α) ≤
TrK/Q (β) and then using a suitable embedding, we have α = 1

2a− 1
2b1

√
n1 − 1

2b2
√
n2 for

a, b1, b2 > 0 and 1
2a ≤ 5

2 . Thus α � 0 if and only if a > b1
√
n1 + b2

√
n2. From the form

of the possible integral bases (B1)–(B4) we see that not all of a, b1, b2 can be odd at the
same time. Thus either a is even, a = 2a′, and 4 ≥ 2a′ > b1

√
n1 + b2

√
n2, or without loss

of generality b1 is even and 5 ≥ a > 2
√
n1 +

√
n2. The only square-free integers n1, n2,

which may satisfy the latter inequality are 2, 3 in any order; but in that case we are in the
integral basis (B1), which requires a to be even; that is impossible since 4 
> 2

√
2 +

√
3. So

we are left with the former inequality 4 ≥ 2a′ > b1
√
n1 + b2

√
n2; here necessarily a′ = 2,

b1 = b2 = 1 and 4 >
√
n1 +

√
n2. This is satisfied by {n1, n2} equal to {2, 3}, {2, 5}, {2, 6}

and {3, 5}; however, we have to compare these possibilities for α = 2− 1
2 (
√
n1 +

√
n2)

with the corresponding integral bases (B1)–(B4) to see whether they belong to OK . In
fact, only 2− 1

2 (
√
2 +

√
6) is an algebraic integer, so the only decomposition of this type

is 5 = (2− 1
2 (
√
2 +

√
6)) + (3 + 1

2 (
√
2 +

√
6)) (up to embedding).

In the third and last case, all of
√
m,

√
s and

√
t are multiplied by non-zero coefficients.

In this case, instead of requiring TrK/Q (α) ≤ TrK/Q (β), we take α to be the summand

which, in a suitable embedding, has the form 1
4a− 1

4b
√
m− 1

4c
√
s− 1

4d
√
t for b, c, d > 0

(one of the two summands has this property). Then α � 0 if and only if

a > b
√
m+ c

√
s+ d

√
t; (4.1)

to arrive at a contradiction, we distinguish two subcases.
For the first subcase, suppose that quarter-integers are involved, i.e. all of a, b, c, d are

odd. This necessarily means that m ≡ s ≡ t ≡ 1 (mod 4), which easily implies t ≥ 65.
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Applying Lemma 2.3 to

β =

(
5− a

4

)
+

b

4

√
m+

c

4

√
s+

d

4

√
t � 0,

we arrive at (
5− a

4

)
>

∣∣∣∣d4
∣∣∣∣√t ≥

√
t

4
≥

√
65

4
>

8

4
,

and thus a ≤ 11. Plugging this into (4.1), we see that α � 0 implies 11 >
√
m+

√
s+

√
t.

However, this never holds—if m and s are coprime, we get at least
√
5 +

√
13 +

√
65 ≈

13.904; if they are not, the smallest value is
√
21 +

√
33 +

√
77 ≈ 19.102. So there is no

decomposition of this type.
For the second subcase, suppose that no quarter-integers are involved, i.e. all a, b, c, d

are even; denote a = 2a′. Similarly to the previous paragraph, from β � 0 we obtain 5−
1
2a

′ > 1
2

√
t, so except for the field Q

(√
2,
√
3
)
this yields 5− 1

2a
′ > 1

2

√
10 > 3

2 , i.e.
1
2a

′ <
7
2 . In the case of Q

(√
2,
√
3
)
, 1
2a

′ is necessarily in Z and t = 6, so 1
2a

′ ≤ 3. Thus 1
2a

′ ≤ 6
2 in

all cases; by plugging this into (4.1), we obtain 6 >
√
m+

√
s+

√
t. This is satisfied only

by m = 2, s = 3, t = 6; however, even this case fails since 1
2 (2−

√
2−

√
3−

√
6) /∈ OK

and 1
2 (2−

√
2− 2

√
3−

√
6) is not totally positive. So there are no decompositions of this

kind either. �

Remark 4.4. We are particularly interested in decompositions of 1, 2, 3 and 5 as
ω2 + β with β � 0. By scrutinizing the decompositions in Lemma 4.3, we obtain—aside
of the obvious possibilities with ω2 ∈ {0, 1, 4}, and the slightly less obvious ω2 ∈ {2, 3, 5}
if the appropriate square root lies in K—only the following decompositions (up to
embedding):

(1) 3 can be written as ( 12 (
√
5 + 1))2 + ( 12 (

√
5− 1))2;

(2) 5 can be written as ( 12 (
√
2 +

√
6))2 + (3−

√
3) or ( 12 (

√
3 +

√
7))2 + ( 12 (

√
7−

√
3))2.

Although the additive decompositions of the form ω2 + β can be fully described also
for the numbers 8 and 10, we exclude biquadratic fields with small values of m in order
to shorten both the statement and the proof.

Lemma 4.5. Let
√
2,
√
3,
√
5,
√
6,
√
7 
∈ K. Then, the following holds.

(1) If 8 = ω2 + β, β � 0, then either ω2 ∈ {0, 1, 4} (these possibilities always exist),
or:

• ω2 =

(
1±

√
13

2

)2

=
7±

√
13

2
if
√
13 ∈ K;

• ω2 =

(
1±

√
17

2

)2

=
9±

√
17

2
if
√
17 ∈ K;

• ω2 =

(
1±

√
21

2

)2

=
11±

√
21

2
if
√
21 ∈ K.
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(2) If 10 = ω2 + β, β � 0, then ω2 can take the same values as listed before, with the
additional possibility ω2 = 9, and also ω2 = 10 if

√
10 ∈ K.

Proof. The first part is a trivial consequence of the second one. Let us therefore
consider 10 � ω2 for

ω =
a

4
+

b

4

√
m+

c

4

√
s+

d

4

√
t

with a, b, c, d ∈ Z. By comparing traces, we get the inequality

10 ≥ a2

16
+

b2

16
m+

c2

16
s+

d2

16
t. (4.2)

If m > 10, this immediately implies 1
4 |b|,

1
4 |c|,

1
4 |d| < 1. For m = 10, the same argument

holds, except for 1
4b = ±1, which yields the decomposition 10 = (±

√
10)2 + 0. We now

divide the discussion into several cases.
First, b, c, d are all zeros. Then 1

4a has to be an integer, and clearly the full list of its
possible values is 1

4a = 0,±1,±2,±3.
Second, exactly one of b, c, d is non-zero. Then ω as well as β belong to a quadratic

subfield Q(
√
n) of K where n ∈ {m, s, t}. If n 
≡ 1 (mod 4), then the coefficient in front

of
√
n is an integer, which cannot happen since it is smaller than 1 (putting aside the

already discussed case of 10 = (±
√
10)2 + 0). So n ≡ 1 (mod 4), n ≥ 13, and we have to

consider only 10 � ( 12 (a
′ ±√

n))2 for a′ odd, without loss of generality positive. This is
equivalent to 40 ≥ a′2 + 2a′

√
n+ n. By plugging in a′ = 3 and n = 13 we find out that

a′ ≥ 3 is never possible. Thus a′ = 1; the resulting inequality 39 ≥ n+ 2
√
n is satisfied

for 13, 17 and 21 but not for 29, which gives us the remaining three decompositions from
the statement.
The last possibility is when at least two of b, c, d are non-zero; we prove that this is

not possible. Suppose first that there are no quarter-integers involved, i.e. all of a, b, c, d
are even. Then if all of b, c, d were non-zero, (4.2) would yield 40 ≥ m+ s+ t, which can
easily be checked never to hold for m ≥ 10.
Thus if no quarter-integers are involved, exactly two of 1

4b,
1
4c,

1
4d are non-zero (and

thus equal to ± 1
2 ). So we have to find out when 10 � ( 12a

′ + 1
2 (±

√
n1 ±

√
n2))

2 holds for
some n1, n2 ∈ {m, s, t}, n1 
= n2. By Lemma 2.3 this gives

10− a′2

4
− n1 + n2

4
≥
∣∣∣∣±2

√
n1

√
n2

4

∣∣∣∣ ,
which implies 40− n1 − n2 − 2

√
n1n2 ≥ 0. That never holds for n1 
= n2 ≥ 10, giving the

desired contradiction.
The only remaining case is when quarter-integers are involved in the decomposition.

This can only happen if m ≡ s ≡ t ≡ 1 (mod 4), and all a, b, c, d are odd—especially, they
cannot be zero. So the basic condition given by (4.2) translates to 10 ≥ 1

16 (1 +m+ s+ t),
i.e. 159 ≥ m+ s+ t. This almost never holds: Clearly m, s cannot be coprime. Thus
m is a composed square-free number satisfying 159 ≥ m+ (m+ 4) + (m+ 8); this gives
m = 21 and m = 33 as the only options. Then the inequality 159− 21 ≥ s+ (s+ 4) only
allows the composed square-free numbers s = 33, s = 57 and s = 65. After computing the
corresponding t’s we get Q

(√
21,

√
33
)
as the only case where indeed 159 ≥ m+ s+ t.
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So we only have to prove that 10 � ( 14 (a+ b
√
21 + c

√
33 + d

√
77))2 cannot happen for

a odd and 1
4 |b|,

1
4 |c|,

1
4 |d| ∈ { 1

4 ,
3
4}. This requires just straightforward calculations, which

we omit. �

Remark. As we will see in § 6.2, the previous lemma is not required when
√
21 ∈ K.

In particular, there is no harm in avoiding the computation for the field Q
(√

21,
√
33
)
.

4.3. New indecomposable elements

Theorem 2.4 gives us several conditions under which indecomposable integers from
quadratic subfields do not decompose in the biquadratic field. The following examples
show that if these conditions are not satisfied, indecomposable elements can become
decomposable in the larger field.

Example 4.6. Let us consider K = Q
(√

2,
√
5
)
and α = 7 + 2

√
10, which is indecom-

posable in Q(
√
10). Nevertheless, α can be written as

α = 7
2 +

√
2 + 1

2

√
5 +

√
10︸ ︷︷ ︸

β

+ 7
2 −

√
2− 1

2

√
5 +

√
10︸ ︷︷ ︸

γ

,

where β and γ are both totally positive integers of Q
(√

2,
√
5
)
. In a similar way we can

see that α′ = 10 + 3
√
10, indecomposable in Q(

√
10), can be expressed as

α′ = 5 + 3
2

√
2 +

√
5 + 3

2

√
10︸ ︷︷ ︸

β′

+5− 3
2

√
2−

√
5 + 3

2

√
10︸ ︷︷ ︸

γ′

for β′, γ′ ∈ O+
K . Thus α and α′ decompose in this biquadratic field.

In the following example, we will show the case when a certain element, later called T ,
decomposes in a biquadratic field. Note that this provides the proof of Theorem 1.3(3).

Example 4.7. Let K = Q
(√

2,
√
21
)
and consider α = 7 +

√
42, which is indecom-

posable in Q(
√
42). Note that this element is of the form α =

⌈√
42
⌉
+
√
42, and 42 ≡ 2

(mod 4). However, as before, the element α can be written as

α = 7
2 + 3

2

√
2 + 1

2

√
21 + 1

2

√
42︸ ︷︷ ︸

β

+ 7
2 − 3

2

√
2− 1

2

√
21 + 1

2

√
42︸ ︷︷ ︸

γ

,

where β, γ ∈ O+
K .

On the other hand, Theorem 2.4 does not cover all indecomposable integers of quadratic
subfields, which do not decompose in our biquadratic field. In the following part, we will
show some examples of such elements, which we later use in proving non-universality of
ternary quadratic forms.
Let u ∈ N be a square-free positive integer greater than 1. In what follows, �√u� stands

for the smallest element of N greater than
√
u. Furthermore, we will denote by �√u�odd
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the smallest odd positive integer greater than
√
u. Denote

M1 =
⌈√

m
⌉
+
√
m.

Moreover, for m ≡ 1 (mod 4) put

M1/2 =
�√m�odd +

√
m

2
.

Note that for m ≡ 1 (mod 4) we have both M1 and M1/2; in other cases, there is only
M1. The elements S1, S1/2, T1 and T1/2 are defined in a similar way. Most importantly,
we denote

M =

{
M1 = �√m�+√

m if m ≡ 2, 3 (mod 4),

M1/2 =
�√m�odd

+
√
m

2 if m ≡ 1 (mod 4).

Likewise, we define S and T .
Now we will show that M is indecomposable in Q(

√
m). All the indecomposable inte-

gers of this subfield can be obtained from the continued fraction [u0, u1, u2, . . . , ul−1, ul] of√
m or 1

2 (
√
m− 1) as convergents and semiconvergents. In the case of m ≡ 2, 3 (mod 4),

the first two convergents of
√
m are α−1 = 1 and α0 = �√m�+√

m. Semiconvergents
α−1,k are consequently equal to

α−1,k = α−1 + kα0,

where 0 ≤ k ≤ u1 and 1 ≤ u1. Note that these elements are totally positive since the
index −1 is odd. If k = 1, we have

α−1,1 = α−1 + α0 = �
√
m�+ 1 +

√
m =

⌈√
m
⌉
+
√
m = M1 = M,

thus M, as one of the totally positive semiconvergents of
√
m, is indecomposable in

Q(
√
m).

In the case when m ≡ 1 (mod 4), we consider the first two convergents

α−1 = 1 and α0 =

⌊√
m− 1

2

⌋
+

1 +
√
m

2
.

Let us first suppose that �√m� is even, i.e. �√m� is odd. Put √m = 2l + λ for some l ∈ Z
and 0 < λ < 1. Then⌊√

m− 1

2

⌋
=

⌊
2l + λ− 1

2

⌋
=

⌊
l +

λ− 1

2

⌋
= l − 1 =

�√m�
2

− 1.

Therefore,

α−1,1 = α−1 + α0 = 1 +
�√m�
2

− 1 +
1 +

√
m

2
=

�√m�+ 1 +
√
m

2

=
�√m�odd +

√
m

2
= M1/2 = M.
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If �√m� is odd and �√m� is even, i.e.
√
m = 2l + 1 + λ for some l ∈ Z and 0 < λ < 1, we

can say that

⌊√
m− 1

2

⌋
=

⌊
2l + 1 + λ− 1

2

⌋
=

⌊
l +

λ

2

⌋
= l =

�√m� − 1

2
.

As previously, we can conclude that

α−1,1 = 1 +
�√m� − 1

2
+

1 +
√
m

2
=

�√m�+ 2 +
√
m

2
=

�√m�odd +
√
m

2
= M1/2 = M.

In both these cases, M is a semiconvergent of 1
2 (
√
m− 1), and thus it is indecomposable

in Q(
√
m). Moreover, the previous part does not depend on the fact whether we choose

m, s or t. Thus we also know that S and T are indecomposable in the corresponding
quadratic subfields.
Note that, in the same way, we can prove the indecomposability of 2M− 1 in Q(

√
m)

if this element is totally positive. It is a simple matter to see that u1 ≥ 2 in this case and
2M− 1 is the semiconvergent α−1,2.

Our next concern is to discuss the indecomposability of M in a general biquadratic
field. Having indecomposability in Q(

√
m), Theorem 2.4 gives us a partial result of this

task for some special choices of m. First of all, let us focus on the integral basis (B1).
If m ≡ 3 (mod 4) and consequently M = M1, Theorem 2.4 says that this element is
indecomposable in the considered type of biquadratic fields. The same conclusion can be
drawn for the integral bases (B2) and (B3) if m ≡ 1 (mod 4), in which case M = M1/2.

Therefore, it is natural to ask whether this element is indecomposable in the remaining
cases of integral bases and m mod 4. Since M is a convergent of

√
m or 1

2 (
√
m− 1) only

if u1 = 1, Theorem 2.4 resolves this problem only in some special cases. However, as we
will see in Proposition 4.9, the element M actually cannot decompose in any biquadratic
field Q(

√
m,

√
s). For its proof, we first need to know how close the values of m, s and

t can be. While there are infinitely many fields where s−m = 1, the other differences
cannot be arbitrarily small.

Lemma 4.8. The following holds in every biquadratic field (given by the three square
roots

√
m,

√
s,

√
t):

(1)
√
t−√

s > 1
2 ; if the integral basis is of type (B4), then

√
t−√

s > 2;

(2) if
√
t−√

s ≤ 1, then m is even and 2
√
m >

√
s;

(3)
√
t−√

m > 1; if the integral basis is of type (B4), then
√
t−√

m > 4.

Proof. All the three parts use the notation m = s0t0, s = m0t0, t = m0s0; recall that
m < s < t is then equivalent tom0 > s0 > t0, and that in basis (B4) we havem0 ≡ s0 ≡ t0
(mod 4).
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(1) We can compute

√
t−

√
s =

√
m0

(√
s0 −

√
t0
)
=

√
m0√

s0 +
√
t0
(s0 − t0) >

1

2
(s0 − t0). (4.3)

The proof is concluded by observing that s0 − t0 ≥ 1 and in the case (B4) s0 − t0 ≥ 4.
(2) The inequality (4.3) implies that if s0 − t0 
= 1, then

√
t−√

s > 1, which contradicts
our assumption. Therefore, s0 = t0 + 1, and it follows that m = (t0 + 1)t0 is even. To
obtain the required inequality, we write

1 ≥
√
t−

√
s =

√
m0√

s0 +
√
t0

· 1 >

√
m0

2
√
s0

;

multiplying both sides by 2
√
s0t0 yields the desired inequality 2

√
s0t0 >

√
m0t0.

(3) We start by proving
√
s0(

√
s0 + 1−

√
s0 − 1) > 1: since x �→ √

x is a strictly
concave function, it follows that

√
s0 >

√
s0 + 1 +

√
s0 − 1

2
,

which after multiplication by (
√
s0 + 1−

√
s0 − 1) yields

√
s0
(√

s0 + 1−
√
s0 − 1

)
>

(s0 + 1)− (s0 − 1)

2
= 1,

i.e. the desired inequality. Using this, we get

√
t−

√
m =

√
s0
(√

m0 −
√
t0
)
≥ √

s0
(√

s0 + 1−
√
s0 − 1

)
> 1.

To prove the stronger inequality for (B4), the auxiliary inequality is
√
s0(

√
s0 + 4−√

s0 − 4) > 4, otherwise the proof does not change. �

On a side note, all the proven inequalities are the strongest possible, as can be seen
by considering a sequence of fields with m0 = t0 + 2 and s0 = t0 + 1 (since m0, s0, t0 are
square-free, and hence not divisible by 4, t0 ≡ 1 (mod 4) follows) or, in the case of (B4),
m0 = t0 + 8 and s0 = t0 + 4.
Now we proceed to the proof of the indecomposability of M in biquadratic fields. Note

that the following proposition, aside from playing a key role in the proof of Theorem 1.1,
also forms a part of Theorem 1.3.

Proposition 4.9. The element M is indecomposable in Q(
√
m,

√
s).

Proof. Since M is indecomposable in the quadratic subfield Q(
√
m), we do not have

to prove its indecomposability in any of the cases where it is guaranteed by Theorem 2.4.
In particular, it is indecomposable if m ≡ 1 (mod 4) and the integral basis is not (B4).
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Assume first that M = M1/2. If it is decomposable, then the integral basis is (B4).
Suppose that M decomposes as

M1/2 =
�√m�odd +

√
m

2
=

a

4
+

b

4

√
m+

c

4

√
s+

d

4

√
t︸ ︷︷ ︸

γ

+
a′

4
+

b′

4

√
m− c

4

√
s− d

4

√
t︸ ︷︷ ︸

γ′

,

where γ, γ′ ∈ O+
K (in particular, a, a′, b, b′, c, d ∈ Z). By Lemma 2.3 we have 1

4a >
∣∣ 1
4d
∣∣√t

and 1
4a

′ >
∣∣− 1

4d
∣∣√t; putting these two inequalities together, we obtain

∣∣∣d
4

∣∣∣√t < min
{a
4
,
a′

4

}
≤ 1

2

a+ a′

4
=

�√m�odd

4
,

yielding |d|
√
t < �√m�odd <

√
m+ 2. By part (3) of Lemma 4.8, d = 0.

Once we know that d = 0, we exploit the total positivity of γ and γ′ by choosing one
specific embedding to obtain the inequalities

a

4
− b

4

√
m− |c|

4

√
s > 0 and

a′

4
− b′

4

√
m− |c|

4

√
s > 0.

Putting them together, we get∣∣∣ c
4

∣∣∣√s< min
{a− b

√
m

4
,
a′ − b′

√
m

4

}
≤ 1

2

a+ a′ − (b+ b′)
√
m

4
=

1

2

�√m�odd −√
m

2
<

1

2
,

which clearly cannot hold for c 
= 0. Thus, we have c = 0 and d = 0, and hence γ, γ′ are ele-
ments of Q(

√
m) ∩ O+

K = O+
Q(

√
m)

; however, we already know that M is indecomposable

in Q(
√
m). That proves that M1/2 is indecomposable in any biquadratic field.

Now we will handle the case when M = M1. The proof is very similar. Start by
supposing that

M1 =
⌈√

m
⌉
+
√
m =

a

2
+

b

2

√
m+

c

2

√
s+

d

2

√
t︸ ︷︷ ︸

γ

+
a′

2
+

b′

2

√
m− c

2

√
s− d

2

√
t︸ ︷︷ ︸

γ′

,

where again γ, γ′ ∈ O+
K . We use Lemma 2.3 in the same manner as above to obtain∣∣∣d

2

∣∣∣√t < min
{a
2
,
a′

2

}
≤ 1

2

a+ a′

2
=

�√m�
2

,

and hence |d|
√
t <

√
m+ 1; similarly as before, invoking part (3) of Lemma 4.8 yields

d = 0.
Again, we use suitable embeddings of γ and γ′ and put the resulting inequalities

together:∣∣∣ c
2

∣∣∣√s < min
{a− b

√
m

2
,
a′ − b′

√
m

2

}
≤ 1

2

a+ a′ − (b+ b′)
√
m

2
=

1

2

(⌈√
m
⌉
−
√
m
)
<

1

2
.

This clearly implies c = 0. But then necessarily γ, γ′ ∈ O+
Q(

√
m)

, which contradicts the

indecomposability of M in the quadratic field Q(
√
m). �
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In the following proposition, we prove the indecomposability of S; this result, together
with the previous proposition, concludes part (1) of Theorem 1.3. The main techniques
of the proof are very similar as in the case of M; the only problem is that the inequality√
t−√

s > 1 is not necessarily satisfied: not only are there fields where
√
t−√

s is very
close to 0.5, but in some of them

⌈√
t
⌉
= �√s� actually happens. An example is the field

Q
(√

1806,
√
2814

)
, where t0 = 42, s0 = 43 and m0 = 67. However, in every such field,

part (2) of Lemma 4.8 applies, which we will exploit significantly.

Proposition 4.10. The element S is indecomposable in Q(
√
m,

√
s).

Proof. As in the case with M, the element S is indecomposable in Q(
√
s), so by

Theorem 2.4 it is indecomposable if s ≡ 1 (mod 4) (i.e. S = S1/2) and the integral basis
is not (B4), and also if s 
≡ 1 (mod 4) (i.e. S = S1) and s = q.

Writing

S1/2 =
�√s�odd +

√
s

2
=

a

4
+

b

4

√
m+

c

4

√
s+

d

4

√
t︸ ︷︷ ︸

γ

+
a′

4
− b

4

√
m+

c′

4

√
s− d

4

√
t︸ ︷︷ ︸

γ′

,

the case of S = S1/2 in the integral basis (B4) can be treated in the same manner as
M = M1/2 in the proof of Proposition 4.9, with the minor difference that part (1) of
Lemma 4.8 is used instead of part (3).
Let us turn our attention to the cases when S = S1. We write

S1 =
⌈√

s
⌉
+
√
s =

a

2
+

b

2

√
m+

c

2

√
s+

d

2

√
t︸ ︷︷ ︸

γ

+
a′

2
− b

2

√
m+

c′

2

√
s− d

2

√
t︸ ︷︷ ︸

γ′

, (4.4)

and the same approach as before yields∣∣∣d
2

∣∣∣√t < min
{a
2
,
a′

2

}
≤ 1

2

a+ a′

2
=

�√s�
2

, (4.5)

implying |d|
√
t < �√s� < √

s+ 1. It is clear that |d| ≥ 2 is impossible; however, |d| = 1 is
not excluded by this inequality.
Suppose |d| = 1. If a 
= a′, then the inequality (4.5) can be improved to

1

2

√
t =

∣∣∣d
2

∣∣∣√t < min
{a
2
,
a′

2

}
≤ �√s� − 1

2
,

but
√
t < �√s� − 1 <

√
s clearly cannot happen. Thus a = a′ = 1

2 �
√
s�. Consequently, the

inequalities 1
2 �
√
s� > | 12c|

√
s and 1

2 �
√
s� > | 12c′|

√
s together with the condition c+ c′ = 2

ensure that c = c′ = 1. All in all, the assumption d 
= 0 leads us to a decomposition of
the form

S1 =
⌈√

s
⌉
+
√
s =

�√s�
2

+
b

2

√
m+

1

2

√
s+

1

2

√
t︸ ︷︷ ︸

γ

+
�√s�
2

− b

2

√
m+

1

2

√
s− 1

2

√
t︸ ︷︷ ︸

γ′

.

On a side note, γ and γ′ differ only by an embedding, so total positivity of one
implies total positivity of the other; therefore, we shall focus only on γ. Obviously,
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b > 0; otherwise in one embedding all three signs would be negative, but the inequality
1
2 (�

√
s� − √

s−
√
t) > 0 clearly cannot hold. On the other hand, if we suppose b ≥ 3, then

by Lemma 2.3 we have

�√s�
2

>
∣∣∣ b
2

∣∣∣√m ≥ 3

2

√
m.

Recall that (4.5) implies
√
t <

√
s+ 1, hence part (2) of Lemma 4.8 guarantees that m is

even and 2
√
m >

√
s. But this would yield 2 �√s� > 3

√
s; however, this inequality never

holds, meaning that either b = 1 or b = 2.
If b = 2, then the coefficient in front of

√
m is an integer, whereas in front of

√
s and√

t are half-integers. Comparing this with bases (B1)–(B3), this must mean that m = q.
Nonetheless, we also know that m is even, which is a contradiction.
If b = 1, then γ = 1

2 (�
√
s�+√

m+
√
s+

√
t) must be totally positive. However, that

would mean (�√s� − √
s)− (

√
t−√

m) > 0, which is impossible since clearly �√s� −√
s < 1, whereas

√
t−√

m > 1 by Lemma 4.8(3).
So, although it was much more work than before, we have showed that d = 0. After

that, we return to the usual strategy:

S1 =
⌈√

s
⌉
+
√
s =

a

2
+

b

2

√
m+

c

2

√
s︸ ︷︷ ︸

γ

+
a′

2
− b

2

√
m+

c′

2

√
s︸ ︷︷ ︸

γ′

.

Again, on each of γ and γ′ we apply one specific embedding, and putting the obtained
inequalities together, we get∣∣∣ b

2

∣∣∣√m < min
{a− c

√
s

2
,
a′ − c′

√
s

2

}
≤ 1

2

a+ a′ − (c+ c′)
√
s

2
=

1

2

(⌈√
s
⌉
−
√
s
)
<

1

2
,

which clearly implies b = 0. Since S is indecomposable in Q(
√
s), we have proven the

indecomposability of S = S1 in any biquadratic field. �

Let us foreshadow that in the proof of Theorem 1.1, we use the indecomposability of
S only in a few cases where m is a prime; in such a situation (and more generally if m
and s are coprime) the proof of Proposition 4.10 becomes easier thanks to t = ms.

The following statement is interesting on its own, and forms part (2) of Theorem 1.3.
But for the proof of Theorem 1.1 we need only the case when m = 85 (see § 6.7), where
it can also be checked directly.

Proposition 4.11. If 2M− 1 is totally positive, then it is indecomposable in
Q(

√
m,

√
s).

Proof. The proof is analogous to the ones of Propositions 4.9 and 4.10. The only tricky
part is to show that if M = M1, the decomposition

2M− 1 =

((⌈√
m
⌉
− 1

2

)
+
√
m+

√
s+

√
t

2

)
+

((⌈√
m
⌉
− 1

2

)
+
√
m−

√
s−

√
t

2

)
is not valid since (�√m� − 1

2 ) +
√
m+

√
s+ 1

2

√
t is not a totally positive integer. To prove

that, the following claim is used: if t ≡ 1 (mod 4) and
√
s−√

m ≤ 1
2 , then

√
t > 4

√
m.

This claim is proved similarly to Lemma 4.8(2). �
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Remark 4.12. If we are interested in indecomposability of T , the only part of
Theorem 2.4 that is useful is the one claiming that in bases (B1), (B2) and (B3), all
indecomposable integers from Q(

√
q) remain indecomposable. Thus if t = q and the inte-

gral basis is not (B4)—these conditions can be reformulated as m ≡ s 
≡ 1 (mod 4)—then
T is indecomposable. On the other hand, Example 4.7 shows that sometimes T does
decompose. To characterize the cases when that happens could be a direction of a further
examination.

4.4. Some useful properties of M and S
In the study of ternary forms over OK , it is also useful to know whether nM is a

square. As we will see in Corollary 4.14, for n ≤ 5, this occurs only for few cases of m and
for some specific biquadratic fields. We will also analyze the same question for S and 2S.
In order to use Lemma 4.1(1), we divide the question into two separate problems: first, we
prove that the considered element is not a square in the appropriate quadratic subfield,
and then we examine it in the biquadratic field. This approach yields the following.

Lemma 4.13. Let n ≤ 5 be a positive integer. Then

(1) nM1 is a square in Q(
√
m) if and only if

• n = 2 and m ∈ {3, 5}.

nM1/2 is a square in Q(
√
m) if and only if

• n = 1 or n = 4 and m = 5;

• n = 3 and m ∈ {21, 33};
• n = 5 and m ∈ {5, 65, 85}.

(2) Let K = Q
(√

m,
√
s
)
. Then

nM1 is a square in K but not in Q(
√
m) if and only if

• n = 3, m = 5 and K = Q
(√

5,
√
6
)
;

• n = 5 and either m = 3 and K = Q
(√

3,
√
10
)
, or m = 21 and K =

Q
(√

21,
√
30
)
;

nM1/2 can only be a square in K if it is a square in Q(
√
m).

Remark. Recall that M1 is defined for all square-free values of m, but M1/2 is
defined only for those square-free m, which satisfy m ≡ 1 (mod 4); thus, the above lemma
does not cover nM1/2 for m 
≡ 1 (mod 4) even though it might be an algebraic integer.
Moreover, note that in (1), we do not use the fact that m < s < t.

Proof. (1) First, consider the odd multiples of M1; let a, b ∈ Z be such that a ≡ b
(mod 2) and (

a+ b
√
m

2

)2

= (2k + 1)
⌈√

m
⌉
+ (2k + 1)

√
m

for some k ∈ Z, k ≥ 0, and square-free m ∈ Z, m > 1. Comparing the coefficients in front
of

√
m gives the equality 2ab = 4(2k + 1), which cannot be satisfied with a ≡ b (mod 2).

Thus, (2k + 1)M1 is not a square in Q(
√
m) for any k and any m.
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Observe that 4M1 is a square if and only if M1 is a square (more generally, for k, l ∈ Z,
it holds that k2lM is a square if and only if lM is a square). Thus, in the case of nM1, it
only remains to deal with n = 2. First note that no halves can appear in the hypothetical
square root of 2M1. Hence, let a, b ∈ Z be such that

(
a+ b

√
m
)2

= 2
(⌈√

m
⌉
+
√
m
)
. (4.6)

Comparing the coefficients in front of
√
m, we see that necessarily a = b = ±1. Then the

rest of the equality yields 1 +m = 2 �√m� , which is satisfied only for m ≤ 5. Evaluating
(4.6) at a = b = ±1 and m ∈ {2, 3, 5} gives that 2M1 is a square if and only if m ∈ {3, 5}.

For the multiples of M1/2, consider n ∈ Z, n > 0, and let a, b ∈ Z be such that a ≡ b
(mod 2) and (

a+ b
√
m

2

)2

= n
�√m�odd +

√
m

2
; (4.7)

note that we can assume without loss of generality a, b > 0. Taking the conjugates gives

(
a− b

√
m
)2

= 2n
(⌈√

m
⌉odd −

√
m
)
< 4n,

i.e. |a− b
√
m| < 2

√
n, which produces the upper bound

m <

(
2
√
n+ a

b

)2

. (4.8)

Comparing the coefficients in front of
√
m in (4.7) yields n = ab, which gives us for a fixed

value of n only a few possibilities for a, b. It is just a matter of a simple computation to
check which m’s satisfy both (4.8) and (4.7).
(2) Let us start with a simple observation: for a given m0 ∈ N, there are only finitely

many biquadratic fields K such that gcd(s, t) = m0. This becomes obvious if we write
s = m0t0, t = m0s0, m = s0t0, since the inequality m < s < t translates into m0 > s0 >
t0. Thus every field with gcd(s, t) = m0 is determined by the choice of s0 and t0, which
are square-free numbers (t0 = 1 is possible) smaller than m0 such that m0, s0, t0 are
pairwise coprime.
Suppose now that nM1 = n �√m�+ n

√
m is not a square in Q(

√
m) but becomes a

square in K. Invoking Lemma 4.1(1), we know that this means

(
c
√
s+ d

√
t

2

)2

= nM1

for some c, d ∈ Z. Comparing the coefficients in front of
√
m and writing m0 for gcd(s, t),

we obtain 1
4 (2cdm0) = n, i.e. cdm0 = 2n. Thus m0 is some divisor of 2n, which gives us

only a few concrete fields Q
(√

m,
√
s
)
, which have to be checked. Through realizing that

c ≡ d ≡ n (mod 2), one can reduce the number of possibilities for c, d, and consequently
also for m0, significantly. The few remaining cases can be checked directly, concluding
this part of the proof.
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For nM1/2, we proceed analogously: again, we write m0 for gcd(s, t); then the
requirement (

c
√
s+ d

√
t

2

)2

= nM1/2

leads to cdm0 = n, and thus a simple computation shows that nM1/2 never becomes a

square for n = 1, 2, 4. Furthermore, for n = 3 the only possible field is Q
(√

2,
√
3
)
with

m0 = 3; and for n = 5, we have m0 = 5, meaning that both s0 and t0 are chosen from
{1, 2, 3}. However, in all the resulting fields we have m 
≡ 1 (mod 4), so there is no M1/2

and considering nM1/2 is utterly irrelevant. �

In most situations, we are interested whether nM (equal either to nM1 or to nM1/2

according to the value of m) is a square without distinguishing between quadratic and
biquadratic fields.

Corollary 4.14. In a biquadratic field K, the following holds:

(1) M and 4M are squares if and only if m = 5;

(2) 2M is a square if and only if m = 3;

(3) 3M is a square if and only if m ∈ {21, 33};

(4) 5M is a square if and only if m ∈ {5, 65, 85} or K = Q
(√

3,
√
10
)
.

The following lemma shows that S is almost never a square. Note that it does not say
anything about S1 if s ≡ 1 (mod 4), since then S = S1/2.

Lemma 4.15. The element S ∈ OK is a square only in the fields Q
(√

2,
√
3
)
,

Q
(√

2,
√
5
)
andQ

(√
3,
√
5
)
; the element 2S is a square only inQ

(√
2,
√
3
)
andQ

(√
2,
√
5
)
.

More specifically, the following holds.

(1) If S is non-square in Q(
√
s), then it is non-square in the biquadratic field

Q
(√

m,
√
s
)
with the exception of Q

(√
2,
√
3
)
, where S = 2 +

√
3 = ( 12 (

√
2 +

√
6))2.

(2) If 2S is non-square in Q(
√
s), then it is non-square in the biquadratic field

Q
(√

m,
√
s
)

with the exception of Q
(√

2,
√
5
)
, where 2S = 3 +

√
5 = ( 12 (

√
2 +√

10))2.

Proof. If S (respectively 2S) is a square already in Q(
√
s), then by the first part

of Lemma 4.13 and the subsequent remark we get s = 5 (respectively s = 3). Thus it
remains to prove the statements (1) and (2).
First we prove that if S or 2S becomes a square in Q

(√
m,

√
s
)
, then m = 2: observe

that neither S nor 2S has odd integer divisors, so if either of them is a square in
Q
(√

m,
√
s
)
, Corollary 4.2 gives gcd(m, t) = 1 or 2. The first case is clearly impossible

since then s = mt contradicts m < s < t. If gcd(m, t) = 2, then the required inequality
s = 1

4mt < t together with 2 | m yields m = 2.

So it remains to examine the field Q
(√

2,
√
s
)
. We shall make a general observation: if

a non-square α ∈ OQ(
√
s) becomes a square in Q

(√
2,
√
s
)
, then 2α is a square in Q(

√
s).
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Indeed, from Lemma 4.1(1) we get α = ( 12 (a
√
2 + b

√
2s))2, which can be rewritten as

2α = (a+ b
√
s)2. This proves the observation.

In Q(
√
s), the number 2S is a square only for s = 3 and 4S only for s = 5 (by

Lemma 4.13 and the subsequent Remark). Thus, our observation yields that S can become
a square only in Q

(√
2,
√
3
)
and 2S only in Q

(√
2,
√
5
)
; indeed, it is the case both for S

and 2S. �

Our next concern is to study additive decompositions of 2M. In particular, we are
interested in the question of how 2M can be expressed as a sum of a square of an
algebraic integer and a totally positive element. In some cases, 2M− 1 happens to be
totally positive; then it is possible for 2M to be written as (2M− 1) + 1. Therefore, in
such a situation, we need to know whether 2M− 1 is a square.

Lemma 4.16. The element 2M− 1 is a square if and only if m = 2.

Proof. First of all, let us note that when M = M1/2, then either 2M− 1 is not totally
positive and thus not a square, or 2M− 1 = M1, which is not a square in any case of
m ≡ 1 (mod 4), see Lemma 4.13.
Let us now turn to M = M1. First, suppose that 2M1 − 1 is a square in the subfield

Q(
√
m), i.e. 2M1 − 1 = (a+ b

√
m)2 for some a, b ∈ Z. Then we have

2M1 − 1 = 2
⌈√

m
⌉
− 1 + 2

√
m = a2 + b2m+ 2ab

√
m.

It follows that ab = 1; the resulting equality 2 �√m� − 1 = m+ 1 holds form = 2, whereas
for m ≥ 3 the right-hand side is too large.
Finally we prove that if 2M− 1 is not a square in Q(

√
m), it does not become one in

K either: since 2M− 1 has no non-trivial odd divisor, using Corollary 4.2 we see that
2M− 1 can become a square only in a field with gcd(s, t) = 1 or 2; however, there are
no such fields. �

Lemma 4.17. Let 2M = ω2 + γ for some ω ∈ OK and γ ∈ O+
K . Then either ω2 = 0

or ω2 = 1 with the exception of m ∈ {2, 3, 5}. In particular, if m /∈ {2, 3, 5}, then the
element 2M cannot be written as a sum of two squares in OK .

Remark. Note that 2M1/2 = 1 + γ is possible if and only if �√m� is even, and 2M1 =

1 + γ is possible if and only if �√m� − √
m ≥ 1

2 .

Proof. In the first part of the proof, our strategy is to study all decompositions of the
form 2M = γ′ + γ with γ′, γ ∈ O+

K ∪ {0}, ignoring the condition γ′ = ω2.
Supposing first that γ′, γ ∈ Q(

√
m), it is easy to check that the only decomposi-

tions of 2M are 0 + 2M, M+M and possibly 1 + (2M− 1). From them, 0 and 1 are
squares, whereas M is a square only for m = 5, 2M only for m = 3 (both according to
Lemma 4.13) and 2M− 1 only for m = 2 (Lemma 4.16).
The next step is to show that 2M does not admit any decomposition where exactly

one of the coefficients in front of
√
s and

√
t is non-zero. That follows quite easily since it

is possible to choose an embedding where all the non-zero coefficients in front of square
roots have negative sign.
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Only now we start exploiting the fact that γ′ is a square: it remains to prove that
ω2 � 2M is never satisfied by an γ′ = ω2 such that all coefficients in ω2 are non-zero.
Let us first focus on M1. It follows quite easily that if all four coefficients in ω2 are

non-zero, then at least three coefficients in ω = 1
2 (a+ b

√
m+ c

√
s+ d

√
t) are non-zero.

By comparing traces of 2M and ω2, we get 1
4 (a

2 + b2m+ c2s+ d2t) ≤ 2 �√m�, which
implies

1 +m+ s ≤ 8
⌈√

m
⌉
. (4.9)

From this, we see that 1 +m+ (m+ 1) ≤ 8 �√m�, which holds only form ≤ 19; moreover,
for any fixed value of m, (4.9) yields an upper bound for s (e.g. for m = 19 we obtain
20 + s ≤ 40, which has no relevant solutions since s = 20 is not square-free). In this way
we obtain only a few fields that have to be handled by direct computations.
If M = M1/2 and the basis is not (B4), the same technique provides a stronger

result: the inequality obtained by comparing traces is in this case 1 +m+ s ≤ 4 �√m�odd;
however, the only m ≡ 1 (mod 4) satisfying 2 + 2m ≤ 4 �√m�odd is m = 5.
If the basis is (B4) but, nevertheless, there are no quarter-integer coefficients in

ω, then the inequalities from the previous paragraph still apply. If quarter-integers

are involved, we obtain a weaker inequality 1
16 (a

2 + b2m+ c2s+ d2t) ≤ �√m�odd; how-
ever, in that case all of a, b, c, d must be odd (in particular non-zero). Thus we get

1 +m+ s+ t ≤ 16 �√m�odd; this yields 1 +m+ (m+ 4) + (m+ 8) ≤ 16 �√m�odd, which
is actually satisfied only for m ≤ 33; together with the condition m ≡ 1 (mod 4) we only

have to consider m = 13, m = 17 and m = 21 with �√m�odd = 5 and m = 29 and m = 33

with �√m�odd = 7 (ignoring m = 5). However, in the former three cases, the inequality
1 +m+ s+ t ≤ 16 · 5 turns out to never hold for a field where s ≡ t ≡ 1 (mod 4); in the
latter two, 1 +m+ s+ t ≤ 16 · 7 has no solution where m = 29 or m = 33. �

4.5. Unary forms

When looking at representability of an element by a diagonal form, it is useful to have
some information on the possible representations of this element by the unary subforms. In
particular, if the considered element is a rational prime p, we need to understand expres-
sions of the form p = γα2 for some α ∈ OK and γ ∈ O+

K . But the following proposition
about biquadratic divisors of rational primes can be interesting on its own.

Proposition 4.18. Let p be a rational prime number divisible in a biquadratic field
K by α2 for an element α ∈ OK \ UK . Then p = μβ2 for some μ ∈ U+

K and β ∈ OK .

Proof. Recall that for a biquadratic number field K, the extension K/Q is Galois;
hence, invoking the so-called efg-theorem, we can write

pOK =

g∏
i=1

pei (4.10)

for some prime ideals p1, . . . , pg ⊆ OK with f = [OK/pi : Z/pZ] and efg = 4. Let (α2) =
q21 · · · q2t for some prime ideals q1, . . . , qt ⊆ OK (not necessary pairwise different). By
the assumption, (α2) | pOK ; therefore, e ≥ 2. Using that efg = 4, we have only three
possibilities for the values of e, f, g.
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First, assume that e = g = 2 and f = 1. Then either (α2) = p21p
2
2 = pOK , or (α2) = p21

(without loss of generality). In the first case, p and α2 differ by a unit μ ∈ UK , and
since both of p and α2 are totally positive, the unit μ has to be totally positive as well.
In the latter case it follows that the prime ideal p1 is principal; then p2 = σ(p1) for
some σ ∈ Gal(K/Q), and thus p2 = (σ(α)). Hence pOK = (ασ(α))2, and p = μα2σ(α)2

for some μ ∈ U+
K follows.

Second, consider the case e = f = 2 and g = 1. That means that pOK = p2 for some
prime ideal p; thus necessarily (α2) = p2, and it follows that p = μα2 for some μ ∈ U+

K .
Finally, suppose that e = 4 and f = g = 1, i.e. pOK = p4. In this case either (α2) = p2,

or (α2) = p4. The ideal pOK is generated by α4 or by α2, respectively, and thus p = μα4,
or p = μα2, for some μ ∈ U+

K . �

The previous proof also provides the information that the prime p is equal either to
μα2, or μα4, or μα2σ(α)2 (where μ = 1 is allowed). In particular, we can deduce the
following corollary.

Corollary 4.19. A rational prime p is divisible by a non-unit square in K if and only
if p = μβ2 for μ ∈ U+

K and β ∈ OK . Moreover, this can happen only if p ramifies in OK .

Recall that if a form Q represents a form R, then the set of elements represented by
Q includes all the elements, which are represented by R; in particular, if R is universal,
then Q must be universal, too. When dealing with universality of diagonal forms, we are
particularly interested in unary forms: for example, it is obvious that the form 〈1〉 repre-
sents the form 〈4〉 (and thus if Q0⊥〈4〉 is universal for some form Q0, then Q0⊥〈1〉 must
be universal as well). The following proposition provides some results in this direction.

Proposition 4.20. Let γ ∈ O+
K .

(1) If 〈γ〉 represents two elements α, β ∈ O+
K , then their product αβ is a square in K.

(2) If 〈γ〉 represents a unit μ, then γ itself has to be a totally positive unit. In particular,
if μ = 1, then 〈γ〉 ∼= 〈1〉.

(3) If 〈γ〉 represents μα2 with μ ∈ U+
K and α ∈ OK , then 〈μ〉 represents 〈γ〉.

(4) If 〈γ〉 represents α ∈ O+
K , then 〈γ〉 represents 〈α〉.

(5) If 〈γ〉 represents a rational prime number p, then either 〈γ〉 ∼= 〈p〉, or there exists
μ ∈ U+

K (possibly μ = 1) such that 〈μ〉 represents 〈γ〉.

Proof. The parts (1) and (4) are trivial.
(2) Assume γz2 = μ for some z ∈ OK ; the conclusion follows readily by comparing the

norms. As for the second part, if γz2 = 1, then clearly γ ∈ U�
K , and thus 〈γ〉 ∼= 〈1〉.

(3) Suppose γz2 = μα2 for some z ∈ OK . For an arbitrary t ∈ OK , we want to prove
that the number γt2 is represented by 〈μ〉: the equality γz2 = μα2 can be rewritten
as γt2 = μ(αt/z)2, where αt/z ∈ OK , because obviously γt2 ∈ OK and the unit μ is
invertible.
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(5) Let z ∈ OK be such that γz2 = p. If z is a unit, then obviously 〈γ〉 ∼= 〈p〉. Suppose
z /∈ UK ; combining Corollary 4.19 with part (3) of this proposition, we conclude the
proof. �

4.6. Direct-sum decomposition of a quadratic lattice

Until now we were mostly preparing tools to handle diagonal forms; nevertheless, not all
forms are diagonalizable. To deal with this problem, we have to work with the underlying
lattice and its bases. The presented results are usually known in some form—the stan-
dard reference is O’Meara’s book [21]; however, for the reader’s convenience, we include
simple proofs, which do not require any knowledge of the book. At several places in this
subsection, we exploit the fact that OK is a Dedekind domain by using the structure
theorem for finitely generated modules over a Dedekind domain, see e.g. [19, Th. 3.31].
For our purposes, the following simplified version suffices.

Theorem 4.21. Let M be a finitely generated torsion-free module over a Dedekind
domain R. Then M is isomorphic to a direct sum of finitely many projective modules of
rank one (which can be identified with fractional ideals):

M � I1 ⊕ · · · ⊕ I�.

The number � is uniquely determined by the isomorphism class of M . Further, if we
interpret the projective modules as fractional ideals, then M � J1 ⊕ · · · ⊕ J� if and only
if I1 · · · I�J−1

1 · · · J−1
� is a principal fractional ideal.

Before applying this theorem, we will use some more elementary tools. Recall that
vectors x1, . . . ,xn ∈ On

K form a basis of On
K if On

K = OKx1 + · · ·+OKxn. Observe that
in that case, the decomposition is a direct one.
If, for a given vector e ∈ On

K , its coordinates generate a proper ideal I in OK , then
the determinant of any matrix with entries from OK containing e as one of the columns
lies in I and thus is not invertible. This shows that such a vector cannot be part of a
basis of On

K . The following lemma claims that the converse holds as well. Note that all
statements in this subsection hold for any totally real number field K.

Lemma 4.22. A vector e can be extended to a basis ofOn
K if and only if its coordinates

generate the ring OK .

Proof. We have already seen a proof of one direction above the statement of the
lemma. As for the other implication, let us first prove that the submodule OKe has a
complement in On

K , i.e. there is a submoduleM such that On
K = OKe⊕M . If coordinates

of e generate OK , then there is some d ∈ On
K such that dTe = 1. Using one such d, we

define a map π : On
K → OKe by putting π(x) = (dTx)e. It is clearly a homomorphism of

modules and it acts as identity on OKe, whence its image is OKe and π2 = π. Therefore,
we can write On

K = Imπ ⊕Kerπ = OKe⊕Kerπ. It remains to show that Kerπ � On−1
K ;

this follows from Theorem 4.21. �

An invertible change of variables (i.e. a substitution) of an n-ary form corresponds to
choosing a different basis of the underlying lattice On

K . Bearing this in mind, we can use
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the above lemma to deduce the following corollary. The second part can also be deduced
from [21, 82:15a].

Corollary 4.23. Let Q be an n-ary quadratic form.

(1) IfQ represents α ∈ OK in such a way that α = Q(e) where coordinates of e generate
the ring OK , then there exists an n-ary quadratic form Q′ equivalent to Q such
that Q′(y1, y2, . . . , yn) =

∑
1≤i≤j≤n bijyiyj with b11 = α.

(2) If Q represents a unit μ ∈ U+
K (for example 1), then Q ∼= 〈μ〉⊥Q0 for some

(n− 1)-ary subform Q0.

Proof. To prove (1), use Lemma 4.22 and consider a basis (e,x2, . . . ,xn) of the lattice
On

K . Then Q(y1e+ . . .+ ynxn) has the desired form, since the coefficient in front of y21
is Q(e) = α.

The statement (2) can be deduced as follows: first observe that if Q(e) = μ, then the
coordinates of e generate the ideal (μ) = OK , so the first part of the statement can be
applied. Thus we transform the form so that the first diagonal coefficient is μ.

To erase the non-diagonal coefficients for the first variable, we need another basis
transformation (which corresponds to one step of Gram–Schmidt orthogonalization): we
replace the basis (e,x2, . . . ,xn) by (e, z2, . . . ,zn) where

zi := xi − μ−1 b1i
2
e;

indeed, for such a basis we compute

BQ(e, zi) = BQ(e,xi)− μ−1 b1i
2
BQ(e, e) =

b1i
2

− μ−1 b1i
2
μ = 0. �

Let us focus on the two-dimensional case. For a vector v ∈ K2 we denote by Iv the
coefficient of v in O2

K , i.e.

Iv =
{
η ∈ K | ηv ∈ O2

K

}
;

note that it is a fractional OK -ideal, and Ivv = Kv ∩ O2
K .

Lemma 4.24. Let v ∈ K2, v = ( v1
v2
). Then Iv = (v1, v2)

−1.

Proof. Consider a fractional OK-ideal J ; we have the following chain of equivalences:

J ⊇ (v1, v2) ⇐⇒ J ⊇ (v1) & J ⊇ (v2) ⇐⇒ J−1(v1) ⊆ OK & J−1(v2) ⊆ OK

⇐⇒ J−1 ( v1
v2
) ⊆ O2

K ⇐⇒ J−1 ⊆ Iv.

The choice J = (v1, v2) obviously satisfies J ⊇ (v1, v2); thus, (v1, v2)
−1 ⊆ Iv. On the other

hand, setting J = I−1
v and using the other direction, we obtain (v1, v2)

−1 ⊇ Iv. �

Finally, we arrive at a lemma that shows that any vector can be extended to a pseudo-
basis of O2

K . The first part of the statement also follows from [21, 81:3].
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Lemma 4.25. Let e be any non-zero vector from O2
K . Then there exists some f ∈ K2

such that O2
K = Iee⊕ Iff , Moreover, f can be chosen in such a way that If = I−1

e .
That is, if e = ( e1e2 ), then If = (e1, e2).

Proof. Consider the OK-module O2
K/Iee. As a factor of a finitely generated mod-

ule, it is finitely generated; it is simple to check that it is torsion-free as well. Over a
Dedekind domain, a module with these two properties is projective (this is a corollary of
Theorem 4.21). Using a well-known property of projective modules, there is a submodule
N of O2

K such that O2
K = Iee⊕N .

The next step is to observe that N must be a module of the form Kg ∩ O2
K for some

g ∈ O2
K ; this follows from simple linear algebraic considerations (g can be chosen as any

non-zero element of N).
So far we know N = Kg ∩ O2

K = Igg for some g, which even belongs to O2
K ; however,

we have not yet ensured that Ig = I−1
e . We have O2

K = Iee⊕ Igg. Since O2
K can also be

written as OKx1 ⊕OKx2 where x1,x2 is the standard basis, we have two decompositions
of a module into projective modules of rank one; in such a situation, Theorem 4.21 tells
us that the fractional ideals OKOK and IeIg are the same up to multiplication by
a principal fractional ideal, say OKOK = (δ)IeIg. Then we can define a new vector
f = δ−1g to obtain IeIf = OK . �

5. Proof in the main cases

In this section, we follow the proof strategy outlined in § 3. Recall that we assume
Q ∼= 〈1〉⊥Q0 to be a universal classic ternary quadratic form and that we distinguish the
following three cases:

(I)
∣∣U+

K/U�
K

∣∣ > 2; we have solved this case immediately in § 3;

(II)
∣∣U+

K/U�
K

∣∣ = 2 with a system of representatives {1, ε};

(III)
∣∣U+

K/U�
K

∣∣ = 1, where the only relevant unit is 1.

Cases (II) and (III) are further divided into subsections according to the whether 2ε
is a square, respectively according to the diagonalizability of Q0; see Appendix C for a
schematic structure of the proof. Moreover, every subsection requires its own additional
conditions on K; these are always listed at the very beginning of the subsection and from
the proof it will be evident why they are needed. All the omitted cases will be covered in
§ 6.

5.1. Case (I)

This case has been solved in § 3, but there is actually more to be said. In particular,
this part covers two different types of U+

K/U�
K , namely

∣∣U+
K/U�

K

∣∣ = 4 and
∣∣U+

K/U�
K

∣∣ = 8. In

the former case, as we have outlined in § 3, four units of U+
K/U�

K suffice to prove that
every universal form over OK must have at least four variables, which implies that no
ternary form is universal. In the latter, having eight such units, we can claim an even
stronger statement—in these fields, any universal form needs at least eight variables. In
the following example, we present some biquadratic fields with this property.
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Example 5.1. Considering possible systems of fundamental units in K, see [20], a
sufficient condition for

∣∣U+
K/U�

K

∣∣ = 8 to happen is that the fundamental units εm, εs and εt
of quadratic subfields are totally positive and non-square in K and none of the products
εmεs, εmεt, εsεt and εmεsεt is a square in K. For example, these conditions are satisfied
in the fields Q

(√
3,
√
910

)
, Q

(√
21,

√
55
)
and Q

(√
21,

√
110

)
.

5.2. Case (II) with 2ε not being a square

Throughout this subsection suppose
√
2 /∈ K. In the following, we shall repeatedly

exploit the first part of Proposition 4.20: the product of two numbers represented by the
same unary form is a square.
We assume the ternary quadratic form Q to be universal, and hence it must represent

both 1 and ε. Using the second part of Corollary 4.23 twice, we end up with a diagonal
form Q ∼= 〈1〉⊥〈ε〉⊥〈γ〉 (with γ ∈ O+

K not yet specified). This form is supposed to be
universal; hence, it represents 2. Noting that 〈ε〉 represents neither 1 nor 2 and using
Lemma 4.3, we see that 2 has to be represented by 〈1〉⊥〈γ〉. Using the same lemma
again, we find out that 〈γ〉 represents either 1 or 2, since 〈1〉 does not represent 2 (because√
2 /∈ K).
Similarly, we can consider the representation of 2ε. Observe that 2ε can be decomposed

only as 0 + 2ε or ε+ ε; otherwise multiplication by ε−1 ∈ O+
K would give a non-trivial

decomposition of 2, contradicting Lemma 4.3. Since, just as before, 〈1〉 represents neither
ε nor 2ε, the form 〈ε〉⊥〈γ〉 represents 2ε. Further, 〈ε〉 does not represent 2ε because if 2
is not a square, then 2ε2 is not a square either. Therefore, 〈γ〉 has to represent ε or 2ε.
We have deduced that 〈γ〉 represents either 1 or 2 and also either ε or 2ε; however,

this is impossible, since none of the four products 1 · ε, 1 · 2ε, 2 · ε and 2 · 2ε is a square.
Thus, Q cannot be universal.

Conclusion 5.2. Assuming that ε is a non-square totally positive unit and that 2ε is
not a square, and further requiring

√
2 /∈ K, we have seen that there does not exist any

ternary quadratic form that simultaneously represents 1, ε, 2, 2ε.

Note that the proof used neither the condition
∣∣U+

K/U�
K

∣∣ = 2 nor the fact that K is a
biquadratic field: we only needed to know that in K, all units are indecomposable and 2
decomposes only trivially as 1 + 1 or 0 + 2 (both of this holds in any totally real field,
see the unnumbered remark below Lemma 4.3), that

√
2 /∈ K and that K contains a

non-square totally positive unite ε such that 2ε is not a square. Thus, we have actually
proved the more general Theorem 1.2.

5.3. Case (II) with 2ε being a square

Observe that in this case m 
= 2 (i.e.
√
2 /∈ K): if both 2 and 2ε were squares, then so

would ε be. Furthermore, suppose K 
= Q
(√

3,
√
5
)
.

Just as in the previous subsection, the only potentially universal form is 〈1〉⊥〈ε〉⊥〈γ〉 for
some γ ∈ O+

K . Nevertheless, in this case the subform 〈1〉⊥〈ε〉 represents all the numbers
2, 3, 4. One natural way to go would be to consider representations of 5 and 5ε. However,
it turns out to be easier to use the elements M and εM, or, in the cases with m ∈ {3, 5},
the elements S and εS.
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First assume m 
= 3, 5. Note that both M and εM are indecomposable: For M this
is stated in Proposition 4.9, and any non-trivial decomposition of εM would yield a
decomposition of M. Furthermore, if εM was a square, then so would 2M; thus, by
Corollary 4.14, neither M nor εM is a square (in particular, M 
= ε) since m 
= 3, 5.
This can be rephrased as ‘M is represented by neither of the unary forms 〈1〉, 〈ε〉’. It is
easy to see that the same holds for εM as well.
Suppose now that M is represented by 〈1〉⊥〈ε〉⊥〈γ〉 for some γ ∈ O+

K . Due to its inde-
composability, it has to be represented by one of the unary subforms; from the previous
paragraph, we know that it must be 〈γ〉. The same argument holds for εM. But if the
unary form 〈γ〉 represents both M and εM, it means that their product, εM2, is a
square. Thus ε is a square, which is a contradiction.
Now let m ∈ {3, 5}; for K 
= Q

(√
3,
√
5
)
, neither S nor 2S is a square by Lemma 4.15,

and indecomposability of S follows from Proposition 4.10. Otherwise, we can use exactly
the same arguments as above, with M replaced by S.
Let us summarize the above discussion.

Conclusion 5.3. Suppose ε is a non-square totally positive unit such that 2ε is a
square. Except possibly for the field K = Q

(√
3,
√
5
)
, there does not exist any universal

ternary quadratic form.
In particular, if m 
= 3, 5, then no ternary quadratic form is able to simultaneously

represent 1, ε, M and εM, and if m ∈ {3, 5} but s 
= 5, then no ternary quadratic form
is able to simultaneously represent 1, ε, S and εS.

If we put the previous two conclusions together, we obtain the following.

Conclusion 5.4 (Case (II)). If the field K contains a non-square totally positive
unit ε and if m 
= 2 and K 
= Q

(√
3,
√
5
)
, there is no universal ternary form over K.

5.4. Case (III) with Q0 diagonalizable

We assume throughout this subsection that
√
2,

√
3 and

√
5 are not in K.

In this case, the form 〈1〉 already represents all totally positive units; nonetheless, we
assume the binary quadratic subform Q0 to be diagonalizable. Thus, we have a universal
ternary quadratic form Q ∼= 〈1〉⊥〈β〉⊥〈γ〉 with unspecified β, γ ∈ O+

K . Note that if both
β and γ are rational integers, then the quadratic form Q cannot be universal by the result
of Siegel [25] invoking

√
5 /∈ K. (Alternatively, to present a self-contained proof, we can

observe that 〈n〉 cannot represent M since M is not a square and M/n for n ≥ 2 is never
in OK .)

The form Q has to represent 2; using Lemma 4.3, we can see that 〈β〉⊥〈γ〉 has to
represent either 1 or 2.
First, assume that 〈β〉⊥〈γ〉 represents 1; we can put β = 1 by Proposition 4.20(2). Since

the form 〈1〉⊥〈1〉⊥〈γ〉 has to represent 3, by invoking Lemma 4.3 again we get that 〈γ〉
represents 1, 2 or 3. Using parts (2) and (5) of Proposition 4.20, we get that γ ∈ {1, 2, 3},
as 1 is the only totally positive unit up to multiplication by a square; but a quadratic form
with rational integer coefficients cannot be universal by the above mentioned argument.
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Second, let 〈β〉⊥〈γ〉 represent 2; by Lemma 4.3, we have two possibilities for the
additive decomposition of 2: either 2 = 1 + 1 or 2 = 2 + 0. The first leads to the non-
universal quadratic form 〈1〉⊥〈1〉⊥〈1〉; the latter together with part (5) of Proposition 4.20
yields the quadratic form 〈1〉⊥〈2〉⊥〈γ〉. This form has to represent 5; note that all the
possible summands can be obtained by considering the inequality 5 � ω2 for ω ∈ OK

(because if 5 � 2ω2, then 5 � ω2)—thus, using Remark 4.4 together with the assumption√
2,
√
3,
√
5 /∈ K, we get that 〈γ〉 has to represent at least one of the numbers 1, 2, 3, 4, 5.

Invoking Proposition 4.20, each of these possibilities leads to a quadratic form with inte-
gral coefficients: more specifically, we use part (2) of this proposition to handle the case
when 〈γ〉 represents 1, part (5) for the primes 2, 3, 5, and finally part (3) for 4. Thus,
none of the possibilities for 〈γ〉 leads to a universal form.

Conclusion 5.5. If U+
K = U�

K holds and
√
2,
√
3,
√
5 /∈ K, then there is no diagonaliz-

able universal ternary form over the biquadratic field K.
In particular, we use the representations of 1, 2, 3 and 5 to transform each of the

potential diagonalizable universal quadratic forms to a form with integral coefficients.
Such a form cannot be universal by the result of Siegel [25], and also because it does not
represent M.

5.5. Case (III) with Q0 non-diagonalizable

This subsection requires the conditions
√
2,
√
3,
√
5,
√
6,
√
7,
√
10,

√
13,

√
17,

√
21 /∈ K

and m 
= 33, 65, 85.
In this case we assume that the binary subform Q0 is not diagonalizable. In particular,

it does not represent 1 (because if it did, we could use part (2) of Corollary 4.23 to obtain
a diagonal form). Since Q ∼= 〈1〉⊥Q0 represents 2 and there are only trivial additive
decompositions of 2 by Lemma 4.3,

√
2 /∈ K implies that 2 has to be represented by Q0.

Denote e = ( e1e2 ) a vector from O2
K such that Q0(e) = 2. To put 2 as one of the diagonal

coefficients of the form Q0, we would need to extend the vector e to a basis of O2
K .

Referring to Lemma 4.22, we can see that this is possible only if the ideal (e1, e2) is equal
to OK , but that may not always be the case: in general, (e1, e2) is an ideal the square of
which divides (2), because 2 = Q0(e) means that 2 is a combination of e21, e1e2 and e22.

Thanks to Lemma 4.25, we can at least find a vector f =
( f1
f2

)
from K2, which forms

together with e a ‘pseudo-basis’ of O2
K in the sense that O2

K = Iee⊕ Iff ; recall that f is
usually not an element of O2

K and it is chosen so that IeIf = OK . We have If = (e1, e2)
and Ie = (f1, f2); note that it follows from the discussion above that I2

f divides (2).
Denote Q0(f) = γ and BQ0

(e,f) = β, where BQ0
is the polar form of the quadratic

form Q0. Thus, taking a general vector ye+ zf ∈ O2
K with y ∈ Ie and z ∈ If , we have

Q0(ye+ zf) = 2y2 + 2βyz + γz2. (5.1)

Multiplying by 2 and completing the square, we get

2Q0(ye+ zf) = (2y + βz)2 + (2γ − β2)z2. (5.2)

The total positive definiteness of Q0 implies 2γ − β2 � 0. Note that it is not clear whether
β and γ belong to OK . As it turns out, for γ it is not always the case; see Appendix A
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for an example. This was overlooked in [5]; however, for both their and our proof, the
following lemma is sufficient.

Lemma 5.6. For any y ∈ Ie and z ∈ If , we have the following.

(1) 2γ ∈ OK ;

(2) 2γ − β2 ∈ O+
K ;

(3) β ∈ OK ;

(4) 2y ∈ If ⊆ OK ;

(5) 2y + βz ∈ If ⊆ OK .

Proof. Obviously, (3) follows readily from (1) and (2) using β ∈ K; (5) is an immediate
consequence of (3), (4), and the assumption on z. Thus we only need to prove (1), (2)
and (4).
Since the form Q0 represents only elements of OK (when plugging in vectors from O2

K ,
which the vector eif certainly fulfills), we have thatQ0(eif) = γe2i ∈ OK for both i = 1, 2.
Then the product γ2e21e

2
2 ∈ OK , and thus γe1e2 ∈ OK as well. Therefore, (γ)(e1, e2)

2 ⊆
OK . As (2) ⊆ (e1, e2)

2, we obtain (2γ) ⊆ (γ)(e1, e2)
2 ⊆ OK , thus concluding (1).

As for (2), note that 2γ − β2 is the determinant of the matrix
( 2 β
β γ

)
. This is the Gram

matrix of vectors e, f , which can be obtained from the original matrix of our form,

M =

(
Q0(x1) BQ0

(x1,x2)
BQ0

(x1,x2) Q0(x2)

)
,

(where x1,x2 are the vectors of the standard basis), as
( 2 β
β γ

)
= ETME for E =

( e1 f1
e2 f2

)
.

Taking determinants yields 2γ − β2 = (e1f2 − e2f1)
2 · detM . Since Q0 is an integral

form, clearly detM ∈ O+
K . Thanks to e1f2 − e2f1 ∈ (e1, e2)(f1, f2) and (e1, e2)(f1, f2) =

If (f1, f2) = OK , we have (e1f2 − e2f1)
2 ∈ O�

K and (2) is proven.
To prove (4), combine (2y) ⊆ (2)I−1

f and (2) ⊆ I2
f to obtain (2y) ⊆ If . �

Let us now take a look at how 5 can be represented by Q. Taking Remark 4.4 and the
assumptions m 
= 2, 3, 5 into account, it turns out that Q0 has to represent 4 or 5; thus,
2Q0 represents 8 or 10. Invoking Lemma 5.6, both 2y + βz and 2γ − β2 are elements of
OK ; hence, we are allowed to use Lemma 4.5. Since we suppose

√
2,

√
3,

√
5,

√
6,

√
7,√

10,
√
13,

√
17,

√
21 /∈ K, we obtain the following possible representations:

2Q0(ye+ zf) (2y + βz)2 (2γ − β2)z2 Case
10 0 10 (i)

1 9 (ii)
4 6 (iii)
9 1 (iv)

8 0 8 (v)
1 7 (vi)
4 4 (vii).

(5.3)
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Furthermore, the form Q has to represent M. Since M is non-square by Corollary 4.14
whenever m 
= 5, and indecomposable by Proposition 4.9, we conclude that M has to be
represented by Q0, and thus the form 2Q0 represents 2M.
Recall that the OK -ideal I2

f must divide (2). Now we distinguish between two cases:

either If = OK , or If is a proper ideal such that I2
f divides (2).

(a) First, assume that If = OK ; then necessarily Ie = OK as well.
In cases (ii), (iv) and (vii), we have that (2γ − β2)z2 is a square of a rational integer,

and thus 2γ − β2 is a square in K. Looking at (5.2), we see that 2Q0 can represent
only those elements of 2OK which can be written as a sum of two squares. This yields
a contradiction because 2Q0 represents 2M, which cannot be written as a sum of two
squares by Lemma 4.17 as we have m 
= 2, 3, 5.

The case (vi) can be rephrased as ‘the form 〈2γ − β2〉 represents 7’; part (5) of Proposi-
tion 4.20 yields then that either 〈2γ − β2〉 ∼= 〈7〉 or the unary form 〈2γ − β2〉 is represented
by 〈1〉 (as there is no non-square totally positive unit). Hence, one of the binary forms
〈1〉⊥〈7〉 or 〈1〉⊥〈1〉 represents the form 2Q0. But neither of these forms represents 2M:
the latter is excluded in Lemma 4.17 explicitly, the former is ruled out by using the same
lemma and noting that neither 2M/7 nor (2M− 1)/7 is an element of OK . Therefore,
2Q0 does not represent 2M either.

To deal with the cases (i), (iii) and (v), let us look at the representation of 2M by the
form 2Q0; suppose

2M = (2ỹ + βz̃)2 + (2γ − β2)z̃2

for some ỹ, z̃ ∈ OK . Invoking Lemma 4.17 along with the assumptions m 
= 2, 3, 5, we
have two possibilities for the value of 2ỹ + βz̃, namely 0 and ±1. First, suppose that
2ỹ + βz̃ = 0; then necessarily (2γ − β2)z̃2 = 2M. Moreover, we have assumed that (2γ −
β2)z2 = 10, 6, 8 (in cases (i), (iii), (v), respectively); therefore, we obtain that 20M, 12M,
16M, respectively, is a square in K. After reducing the integral squares, 5M, 3M, M,
respectively, is a square in K. In all cases, it is a contradiction to Corollary 4.14 since the
conditions for this subsection imply that m /∈ {5, 21, 33, 65, 85} and K 
= Q

(√
3,
√
10
)
.

Thus, we must have 2ỹ + βz̃ = ±1; in such a case, the ideal (2, β) is equal to the whole
ring OK . Simultaneously, we have 2y + βz = 0 or ±2, which can be rewritten as βz =
2(k − y) for k = 0 or ±1. If q is a prime ideal dividing the principal ideal (2), then q � (β),
because otherwise q would divide the ideal (2, β) = OK , which is impossible. It follows
(2) | (z); in other words, z ∈ (2), and there exists z′ ∈ OK such that z = 2z′. Applying
this to the equality (2γ − β2)z2 = 10, 6, 8 implies (2γ − β2)z′2 = 10

4 , 6
4 ,

8
4 in cases (i), (iii),

(v), respectively. Obviously, this is absurd in cases (i) and (iii), as (2γ − β2)z′2 ∈ OK

but 10
4 , 6

4 /∈ OK . To deal with the case (v), we rewrite the equality (2γ − β2)z′2 = 2 as
2(γz′2 − 1) = β2z′2 and use the same argument again to show (2) | (z′2), i.e. 1

2z
′2 ∈ OK .

Then the equality (2γ − β2) 12z
′2 = 1 means that 1

2z
′2 is a unit and thus a square, implying

that 2 is a square as well, which is absurd.
(b) Now assume that If 
= OK . Recall that Ie = I−1

f and I2
f = (e1, e2)

2 | (2). Note
that in this case, 2 has to be ramified in K, and thus this cannot happen for fields with
integral basis (B4), i.e. those where p, q, r ≡ 1 (mod 4): indeed, the discriminant of such
fields, which is equal to pqr, is not divisible by 2, and hence 2 is not ramified in OK .
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Recall that we have

2Q0(ye+ zf) = (2y + βz)2 + (2γ − β2)z2,

with y ∈ Ie and z ∈ If = (e1, e2) � OK ; in particular, z /∈ UK .
In the cases (ii), (iv) and (vii), we have again that 2γ − β2 is a square in K, and thus

this case can be solved by using the same argument as in part (a), i.e. that 2M cannot
be written as a sum of two squares for m 
= 2, 3, 5. Alternatively, the impossibility of the
case (iv) can also be seen immediately, as (2γ − β2)z2 = 1 obviously implies z ∈ UK .
In the case (vi), we have an odd rational integer in the right column, i.e. (2γ − β2)z2 =

7. Since z ∈ If , we obtain that the ideal
(
(2γ − β2)z2

)
= (7) is contained in the ideal I2

f ,

and hence (2, 7) ⊆ I2
f as well. But that is absurd, as obviously (2, 7) = OK . (Note that

the same method could have been used to deal with the case (ii) as well.)
In the remaining cases (i), (iii) and (v), we consider the representation of 2M by 2Q0,

i.e. we find ỹ ∈ Ie and z̃ ∈ If such that

2M = (2ỹ + βz̃)2 + (2γ − β2)z̃2;

as m 
= 2, 3, 5, Lemma 4.17 yields that 2ỹ + βz̃ is equal either to 0 or ±1. The latter is
impossible, since 2ỹ + βz̃ ∈ If , and If does not contain any unit. The former possibil-
ity implies (2γ − β2)z̃2 = 2M; recall that we have (2γ − β2)z2n = n for some zn ∈ If
and n = 10, 6, 8 in cases (i), (iii), (v), respectively. Multiplying together the equali-
ties (2γ − β2)z̃2 = 2M and (2γ − β2)z2n = n, we get that 2nM is a square in K for
n = 10, 6, 8, respectively, i.e. that 5M, 3M, M, respectively, is a square in K. But that
is a contradiction to Corollary 4.14, since the assumptions for this subsection implym 
= 5,
21, 33, 65, 85 and K 
= Q

(√
3,
√
10
)
.

Conclusion 5.7. Let K be a biquadratic field such that U+
K = U�

K , and assume
√
2,√

3,
√
5,

√
6,

√
7,

√
10,

√
13,

√
17,

√
21 /∈ K and m 
= 33, 65, 85. Then no

non-diagonalizable ternary form over OK is universal. In particular, no such form can
represent all of 1, 2, 5 and M.

Note that at this point, we have proven Theorem 1.1 for all biquadratic fields K such
that

√
2,
√
3,
√
5,
√
6,
√
7,
√
10,

√
13,

√
17,

√
21 /∈ K and m 
= 33, 65, 85.

6. Proof in the special cases

In this section, we focus on the ‘special cases’ of Theorem 1.1 which are not included
in the main proof in § 5. In particular, we are now interested in the fields that contain√
2,

√
3,

√
5,

√
6,

√
7,

√
10,

√
13,

√
17,

√
21 or where m ∈ {33, 65, 85}. Note that in many

of these cases, a problem arises only in one branch of the tree structure of the proof
(for a basic overview, see Conclusions 5.4, 5.5 and 5.7). Hence, our approach is to detect
the problems and solve them ‘locally’. The exception are the cases m = 2 and m = 5;
they need to be solved by a different method and we postpone them to §§ 6.8 and 6.9.
Moreover, seven most problematic fields will be treated in § 6.10.
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6.1.
√
3 ∈ K

If the field contains
√
3, then the main proof fails at several places; however, we can use

the fact that the fundamental unit ε3 = 2 +
√
3 is totally positive and it is a square only

in the field Q
(√

2,
√
3
)
(which has to be handled separately). Moreover, 2ε3 = (1 +

√
3)2

is a square, and thus we can use Conclusion 5.3, provided
√
5 /∈ K. All in all, only two

cases remain to be treated separately: Q
(√

2,
√
3
)
and Q

(√
3,
√
5
)
; this will be done in

§ 6.10.

6.2.
√
6 ∈ K,

√
7 ∈ K,

√
21 ∈ K or

√
33 ∈ K

The cases where m = 2 are handled in § 6.8. Otherwise, by Conclusion 5.4 it suffices
to show that if K contains any of the aforementioned numbers

√
6,

√
7,

√
21 and

√
33, it

contains a non-square totally positive unit.
Indeed, ε6 = 5 + 2

√
6, ε7 = 8 + 3

√
7, ε21 = 1

2 (5 +
√
21) and ε33 = 23 + 4

√
33 are all

totally positive, and as they are equal to (
√
2 +

√
3)2, ( 12 (3

√
2 +

√
14))2, ( 12 (

√
3 +

√
7))2

and (2
√
3 +

√
11)2 respectively, they are not squares with the exception of the fields

Q
(√

2,
√
6
)
, Q

(√
2,
√
7
)
, Q

(√
3,
√
7
)
and Q

(√
3,
√
11
)
, respectively. But the first two of

these exceptional fields belong to the case m = 2, which is handled in § 6.8, and the latter
two contain the non-square totally positive unit ε3 = 2 +

√
3.

6.3.
√
10 ∈ K

This case is more challenging than the ones in the previous subsections since ε10 is
not totally positive, so we are not sure to which branch of the main proof the field K
belongs. However, the only problem with

√
10 ∈ K arises from the fact that Lemma 4.5

allows more decompositions of 8 and 10 than usual.
Thus the only place where the main proof of non-universality breaks down is one spot in

§ 5.5 where this particular lemma is invoked. It means that here we only have to consider
fields K, where all the totally positive units are squares, and forms Q = 〈1〉⊥Q0, where
2Q0(ye+ zf) = (2y + βz)2 + (2γ − β2)z2 for suitable vectors e and f . For the sake of
brevity, denote Δ = 2γ − β2. Let us stress that although y and γ do not necessarily belong
to OK , both z and 2γ − β2 always do (see Lemma 5.6).

Note that all fields with m < 10 are handled elsewhere, namely in §§ 6.1, 6.2, 6.8
and 6.9, and the respective proofs do not require

√
10 /∈ K, since they do not depend on

Lemma 4.5; hence, here we may assume m = 10.
As in the main proof, we know that since Q represents the non-square indecomposable

element M = 4 +
√
10, Q0 has to represent M, and thus 2Q0 represents 2M. Invoking

Lemma 4.17, we know that there is a z ∈ OK such that Δz2 is either 2M = 8 + 2
√
10

or 2M− 1 = 7 + 2
√
10. Moreover, the element M = 4−

√
10 has the same algebraic

properties as M, and hence there is also a z′ ∈ OK such that Δz′2 is either 2M =
8− 2

√
10 or 2M− 1 = 7− 2

√
10.

Let us go through the possibilities: if the unary form 〈Δ〉 represents both 2M and
2M, then MM = 42 − (

√
10)2 = 6 must be a square—a contradiction. Similarly, if it

represents 2M and 2M− 1, then 2M
(
2M− 1

)
= 16− 2

√
10 should be a square, but it
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is not (the field Q
(√

16− 2
√
10
)
is not biquadratic). The case with 2M and 2M− 1 is

analogous.
The only remaining possibility is when Δz2 = 2M− 1 = 7 + 2

√
10 and Δz′2 =

2M− 1 = 7− 2
√
10, in which case (2M− 1)

(
2M− 1

)
= 9 is indeed a square. Apply-

ing the norm on the equalities Δz2 = 2M− 1 = 7 + 2
√
10 and Δ(z2 + z′2) = (2M−

1) +
(
2M− 1

)
= 14, it follows that NK/Q (Δ) divides both NK/Q (2M− 1) = 34 and

NK/Q (14) = 24 · 74; therefore, NK/Q (Δ) = ±1. However, this would mean that Δ =
2γ − β2 is a totally positive unit, and hence a square. But then 2M− 1 must be a
square as well; according to Lemma 4.16, this never happens.

6.4.
√
13 ∈ K

Just as in the previous subsection, the only problem caused by
√
13 arises from another

possible decomposition in Lemma 4.5, so we only have to fix the case of non-diagonalizable
forms. In particular, we may again assume that the only totally positive units in the field
are the squares of units.
Furthermore, the proofs of the cases with m < 10 as well as m = 10 do not require the

above mentioned lemma. Thus the only potentially problematical field containing
√
13

with m 
= 13 could be Q
(√

11,
√
13
)
; however, in this field we have a non-square totally

positive unit ε11 = 10 + 3
√
11, and so Conclusion 5.4 applies. Therefore, we can suppose

m = 13.
Denoting as before Δ = 2γ − β2, we can find z ∈ OK such that Δz2 is either 2M =

5 +
√
13 or 2M− 1 = 4 +

√
13 and z′ ∈ OK such that Δz′2 is either 2M = 5−

√
13 or

2M− 1 = 4−
√
13. Again we go through all possibilities: if Δz2 = 2M and Δz′2 = 2M,

then MM = 1
4

(
52 − (

√
13)2

)
= 3 must be a square, which it is not. If Δz2 = 2M− 1

and Δz′2 = 2M− 1, then (2M− 1)
(
2M− 1

)
= 42 − (

√
13)2 = 3 gives a contradiction

in the same way. If Δz2 = 2M and Δz′2 = 2M− 1, then 2M(2M− 1) = 7−
√
13 =

( 12 (
√
2−

√
26))2 is a square only in Q

(√
2,
√
13
)
where m = 2. The case with 2M− 1

and 2M is analogous and also collapses only in the field Q
(√

2,
√
13
)
.

6.5.
√
17 ∈ K

We use the same technique as in the previous two subsections (
√
10 ∈ K and

√
13 ∈ K),

as the problem with
√
17 ∈ K is again only in the use of Lemma 4.5, and hence it arises

only when dealing with the non-diagonalizable form Q0.
Similarly as above, we may put aside fields with small values of m: all the cases with

m ≤ 10 have been solved without any application of this lemma, and hence are valid
also when

√
17 is contained in the field. The same holds for the field Q

(√
13,

√
17
)
.

Thus it remains to consider the fields Q
(√

11,
√
17
)
, Q

(√
14,

√
17
)
and Q

(√
15,

√
17
)
; but

the corresponding units ε11 = 10 + 3
√
11, ε14 = 15 + 4

√
14 and ε15 = 4 +

√
15 are here

totally positive and non-square, enabling us to use Conclusion 5.4. Thus, there is no harm
in assuming m = 17.

Just as before, we denote Δ = 2γ − β2 and use the non-squareness and indecomposabil-
ity of M = 1

2 (5 +
√
17). Moreover, note that in this case 2M− 1 is not totally positive,

and thus we get only one possibility from Lemma 4.17: there is a z ∈ OK such that
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Δz2 = 2M = 5 +
√
17, and also a z′ ∈ OK such that Δz′2 = 2M = 5−

√
17. Putting

the two equalities together, we find that MM = 1
4

(
52 − (

√
17)2

)
= 2 must be a square,

which is a contradiction.

6.6. m = 65

The problem with m = 65 is that in this case, for M = M1/2 = 1
2 (9 +

√
65) we have

5M1/2 = ( 12 (5 +
√
65))2 (see also Corollary 4.14). The only part of the main proof that

fails here is if there is no non-square totally positive unit in K and we have a non-
diagonalizable form, i.e. in § 5.5 (see also Conclusion 5.7). Thus we have to use a modified
approach in this branch of the proof.
The solution is simple since we do not have to change almost anything. We consider

the representations of 2 and 5 in exactly the same way as before, and in the place where
we used M = M1/2, we use the number A = 1

2 (25 + 3
√
65); the rest of the proof remains

word by word the same. But we have to check the required properties of A by hand.

Lemma 6.1. Let K = Q
(√

65,
√
s
)
where t > s > 65; for the element A = 1

2 (25 +

3
√
65) the following holds:

(1) A is totally positive;

(2) A is indecomposable;

(3) 2A � ω2 implies ω = 0;

(4) A, 3A and 5A are not squares.

Proof. The claim (1) is trivial and (4) can be seen by checking that the three fields
generated by

√
A,

√
3A and

√
5A are all of degree 4 but not biquadratic.

(2) In Q(
√
65), A is a semiconvergent of 1

2 (
√
65− 1), and thus it is indecomposable in

Q(
√
65). Since 65 ≡ 1 (mod 4), then except for basis (B4) we have m = q, and thus A

remains indecomposable in K according to Theorem 2.4. In the case of basis (B4), we
have to check the inequality

√
t > 7

√
65 to be able to use Theorem 2.4 (7 is the biggest

coefficient in the continued fraction of 1
2 (
√
65− 1). If m and s are coprime, then this is

clearly always satisfied thanks to t = 65s. If, however, they are not, we have s = 5m0 and
t = 13m0, which means that the mentioned theorem can be used only if

√
13m0 > 7

√
65,

i.e. if m0 > 72 · 5. The indecomposability of A in the remaining fields Q
(√

65,
√
5m0

)
with

m0 ≡ 1 (mod 4), 13 < m0 ≤ 72 · 5 can be checked directly, e.g. by a computer program.
(3) Denote ω = 1

4a+ 1
4b
√
65 + 1

4c
√
s+ 1

4d
√
t for integers a, b, c, d, and suppose ω 
= 0;

note that either all of a, b, c, d are even, or all of them are odd. By comparing the traces
of 2A and ω2 we obtain the inequality 25 · 16 ≥ a2 + 65b2 + sc2 + td2. It is immediate
that

|b|, |c|, |d| ≤
√

25 · 16
65

< 3,
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which leaves the possibilities b, c, d ∈ {0,±1,±2}. It is easy to check that all b, c, d cannot
be zeros at once. If one of these numbers equals ±2, the remaining two must be zeros,
and the rest of the computation is easy. If, on the other hand, one of them is ±1, then
so must be the remaining two (this follows from the form of the integral basis (B4)) and
s ≡ 1 (mod 4). But then we have 25 · 16 ≥ 1 + 65 + s+ t; clearly, if 65 and s are coprime,
then t = 65s, which is too large. If they are not, then we have s = 5m0 and t = 13m0,
which gives 334 ≥ 18m0; together with the condition m0 ≡ 1 (mod 4) and m0 > 13 the
only theoretically possible case is m0 = 17, i.e. the field Q

(√
65,

√
85
)
. But none of the

possibilities in 25 + 3
√
65 � ( 14 (1±

√
65±

√
85±

√
221))2 holds, as one can easily check.

Thus, the only ω ∈ OK with the required property is ω = 0. �

6.7. m = 85

The problem with m = 85 is just the same as with m = 65, and it appears only in § 5.5.
The solution is very similar to that for m = 65 (even slightly easier): in the place of the
main proof where we used M = M1/2, we use M1 = 2M1/2 − 1 = 10 +

√
85 instead.

The properties of M1 for m = 85 that we need are the following:

(1) M1 is totally positive (this is immediate);

(2) M1 is indecomposable (this follows from Proposition 4.11);

(3) 2M1 � ω2 implies ω2 ∈ {0, 1} (which can be checked just as in Lemma 6.1(3); note
that Lemma 4.17 cannot be used since here M 
= M1);

(4) M1, 3M1 and 5M1 are all non-square in K (this comes directly from Lemma 4.13).

Once we have these properties, we can replace M by M1 and then use the same
procedure as in the main proof.

6.8.
√
2 ∈ K

In any fieldK containing
√
2, i.e. in fields wherem = 2, we exhibit four explicit elements

λ1, λ2, λ3, λ4 ∈ O+
K and show that no ternary form over OK can represent these four

elements at the same time. (In the next subsection we do the same for all fields containing√
5.) The proof uses the key idea of the method of escalation developed in [1]. Exceptional

cases are handled in § 6.10.
Contrary to the rest of the paper, this subsection, as well as the next two, uses computer

programs significantly. As we will see, in an explicit field, the problem can be reduced to
a finite computation. Thus, we first find a relatively small integer N , such that all fields
Q
(√

2,
√
s
)
with s ≥ N can be solved uniformly via computing determinants of a few

hundreds or thousands of matrices (we used a program in Mathematica)—this reduces
the infinite family to a finite one. All the remaining cases can then be solved after making
some individual adjustments.
To show that four elements λ1, . . . , λ4 ∈ O+

K cannot be represented by the same ternary
form Q, it suffices to prove the following:

There exists no 4× 4 symmetric, totally positive semidefinite matrix with entries in
OK whose diagonal elements are λ1, . . . , λ4 and which is singular.
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The reason is as follows: suppose that all four elements are represented, i.e. Q(�i) =
λi for �i ∈ O3

K , i = 1, . . . , 4, and consider the Gram matrix G of �1, . . . , �4 (defined as
G = (gij), gij = BQ(�i, �j)). As a Gram matrix of a totally positive definite form, G is
symmetric and totally positive semidefinite, and from the definition it is clear that the
λi’s are its diagonal entries. Since regularity of G would imply linear independence of
�1, . . . , �4, it follows that G must be singular.

Therefore, our strategy is to check all possible totally positive semidefinite matrices G
with the given diagonal and to prove that they are necessarily regular. If the matrix

G =

⎛
⎜⎜⎝

λ1 ρ12 ρ13 ρ14
ρ12 λ2 ρ23 ρ24
ρ13 ρ23 λ3 ρ34
ρ14 ρ24 ρ34 λ4

⎞
⎟⎟⎠

is totally positive semidefinite, Sylvester’s criterion applied to 2× 2 subdeterminants
yields the necessary condition ρ2ij � λiλj for all non-diagonal entries ρij . It turns out
that on each of the six positions (i, j), i < j, there are only finitely many numbers ρij
that satisfy this condition (explicit lists for our choice of diagonal coefficients are provided
in Lemma 6.2). Thus altogether we obtain only finitely many candidates for matrix G.
By checking their determinant, we prove them all to be regular.

The method described so far can be used for any totally real field K (and will be used
in the next two subsections as well). Now let us start with

√
2 ∈ K, i.e. m = 2. It also

means that s is odd and t = 2s. In this case, we put

λ1 = 1, λ2 = M = 2 +
√
2, λ3 = 3 and λ4 = S.

Our next aim is to determine all the possible coefficients ρij which satisfy λiλj � ρ2ij for

all i, j. In this case, it follows that ρ12 = 0 since λ1λ2 = M = 2 +
√
2 is indecomposable

in K and not a square, see Proposition 4.9 and Corollary 4.14. In the same manner, we
can see that ρ14 = 0, which is a consequence of the indecomposability of S in K, see
Proposition 4.10, and of the fact that S is not a square except for the cases when s = 3
or 5, see Lemma 4.15. These cases will be resolved separately in § 6.10. Lemma 4.3 claims
that possible values of ρ13 belong to the set {0,±1,±

√
2} for s 
= 3, 5. The remaining

coefficients ρij are examined in the following lemma.

Lemma 6.2. Let s be an odd square-free positive integer such that s 
= 3, 5, 7, 11, 13,
15, 17, 19, 21, 29, 33, and K = Q

(√
2,
√
s
)
.

(1) If 3(2 +
√
2) � ω2 where ω ∈ OK , then ω ∈ {0,±1,±(1 +

√
2)}.

(2) If (2 +
√
2)S � ω2 where ω ∈ OK , then ω = 0.

(3) If 3S � ω2 where ω ∈ OK , then ω ∈ {0,±1,±
√
2}.

Proof. We will show only part (3) of this lemma, the proofs of the other statements
are analogous. First of all, let s ≡ 3 (mod 4), which implies that S = S1 = �√s�+√

s. If

ω =
a

2
+

b

2

√
2 +

c

2

√
s+

d

2

√
2s
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for some a, b, c, d ∈ Z, then by comparing the traces of 3S and ω2 we can conclude that

3
⌈√

s
⌉
≥ a2

4
+

b2

2
+

c2

4
s+

d2

2
s.

If 1
4s > 3 �√s�, then necessarily c = d = 0 and ω belongs to the quadratic subfield Q(

√
2);

this occurs whenever s ≥ 168. In such a case, it follows that ω = a′ + b′
√
2 where a′, b′ ∈ Z,

which means that

3
⌈√

s
⌉
+ 3

√
s � a′2 + 2b′2 + 2a′b′

√
2.

This inequality can be satisfied only if

3
⌈√

s
⌉
− 3

√
s ≥ a′2 + 2b′2,

from which follows that a′2 + 2b′2 < 3. Hence ω ∈ {0,±1,±
√
2}. It is easy to verify by a

computer program that this is in fact also true for all s < 168 except of the ones listed in
the statement of this lemma. We can use similar argumentation for s ≡ 1 (mod 4). �

Knowing all possible values of ρij , we are able to construct all totally positive semidef-
inite matrices with the given diagonal—so to finish our task, it suffices to check their
determinants. A minor problem that has to be handled is that the value of S depends on
the chosen field K, but this can easily be overcome.

Lemma 6.3. There are no singular 4× 4 totally positive semidefinite matrices with
diagonal entries λ1 = 1, λ2 = 2 +

√
2, λ3 = 3 and λ4 = S over OK for K = Q

(√
2,
√
s
)

where s 
= 3, 5, 7, 11, 13, 15, 17, 19, 21, 29, 33.

Proof. From Lemma 6.2 and the discussion above it we already know all the possible
matrices G, so it suffices to show that none of them has determinant zero: observe that
S is the only element in the matrix that does not lie in Q(

√
2). If we denote by Δ the

determinant of the upper left 3× 3 matrix, then expansion of the determinant of G along
the last column gives an equality of the form ΔS + α = detG for some α ∈ Q(

√
2).

Suppose that detG = 0. By running a computer program we easily check that Δ 
= 0
for all the candidate matrices, so the above equality is a non-trivial linear equation for
S /∈ Q(

√
2) with coefficients in Q(

√
2); this is a contradiction. �

By this we have proven the non-existence of universal ternary forms over Q
(√

2,
√
s
)

except for 11 specific values of s. We postpone s = 3, 5, 21, 33 to § 6.10 and consider all
the other remaining values: the only difference for s = 7, 11, 13, 15, 17, 19, 29 is that we
get more possibilities for the coefficient ρ34 (i.e. the corresponding fields contain more
elements ω such that 3S � ω2), whereas parts (1) and (2) of Lemma 6.2 still hold even for
these values of s. For some possible choices of ρ34 we cannot use the procedure introduced
in the proof of Lemma 6.3, as they do not belong to Q(

√
2). However, now we work in

concrete fields, and in each of them, there are only finitely many possibilities for ρ34
(compare the traces of 3S and ρ234); thus, we can compute explicitly all the corresponding
4× 4 determinants to check that they are non-zero. This extends Lemma 6.3, and thus
also resolves the non-existence of a universal ternary quadratic form, to all the values of
s except for s = 3, 5, 21, 33.
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Thus, we have proven the following conclusion.

Conclusion 6.4. In a biquadratic field K = Q
(√

2,
√
s
)

with s 
= 3, 5, 21, 33, no

ternary form can simultaneously represent all the numbers 1, M = 2 +
√
2, 3 and S

at the same time.

6.9.
√
5 ∈ K

Since we postpone the fields Q
(√

2,
√
5
)
and Q

(√
3,
√
5
)
(together with a few other

fields) to § 6.10, we shall require m = 5. We use exactly the same strategy as for m = 2,
which was outlined at the beginning of § 6.8. The only difference lies in the exact choice
of the four elements to perform the escalation with; this time, we put

λ1 = 1, λ2 = 2, λ3 = 6 +
√
5 and λ4 = S.

Recall that we need to compute all values of ρij satisfying λiλj � ρ2ij . Clearly, ρ12 ∈
{0,−1, 1} and ρ14 = 0 except for s = 3, 5 (see Lemma 4.15), which we have postponed to
the next subsection. The sets for other coefficients are computed in the following lemma.

Lemma 6.5. Let s be a square-free positive integer such that 5 � s and s 
= 2, 3, 6, 7,
13, 17, 21, 29, 33, 37, 53, and let K = Q

(√
5,
√
s
)
.

(1) If 6 +
√
5 � ω2 where ω ∈ OK , then

ω ∈
{
0,±1,±

(1 +√
5

2

)
,±
(
1−

√
5

2

)
,±
(
3 +

√
5

2

)}
.

(2) If 2(6 +
√
5) � ω2 where ω ∈ OK , then

ω ∈
{
0,±1,±2,±

√
5,±(1 +

√
5),±

(
1 +

√
5

2

)
,±
(
1−

√
5

2

)
,

±
(
3 +

√
5

2

)
,±
(
5 +

√
5

2

)}
.

(3) If 2S � ω2 where ω ∈ OK , then ω ∈ {0,−1, 1}.

(4) If (6 +
√
5)S � ω2 where ω ∈ OK , then

ω ∈
{
0,±1,±

(
1 +

√
5

2

)
,±
(
1−

√
5

2

)
,±
(
3 +

√
5

2

)}
.

Proof. We can use analogous argumentation as for m = 2: in all four cases, comparing
traces yields an inequality that clearly allows only finitely many choices of ω; moreover,
for s sufficiently large, ω ∈ Q(

√
m) can be proven. The rest is only a straightforward

checking of inequalities, readily handled by a computer program. �

The previous lemma together with the knowledge of possible choices for ρ12 and ρ14
allows us to prove that none of the resulting Gram matrices has determinant zero by the
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Table 1. Chosen diagonal coefficients.

m s t λ2 λ3 λ4

2 3 6 4 + 5
2

√
2 + 2

√
3 + 3

2

√
6 3 +

√
6 3− 3

2

√
2−√

3 + 1
2

√
6

2 5 10 2 +
√
2 3 5

2 + 1
2

√
2 + 1

2

√
5 + 1

2

√
10

2 21 42 2 +
√
2 5

2 + 1
2

√
21 5 + 5

2

√
2 +

√
21 + 1

2

√
42

2 33 66 2 +
√
2 7

2 + 1
2

√
33 6 +

√
33

3 5 15 2 +
√
3 5

2 + 1
2

√
3 + 1

2

√
5 + 1

2

√
15 3 + 1

2

√
3 + 1

2

√
15

5 13 65 5
2 + 1

2

√
13 4 +

√
13 13

4 + 3
4

√
5 + 3

4

√
13 + 1

4

√
65

5 17 85 5
2 + 1

2

√
17 29

2 + 7
2

√
17 13

4 + 1
4

√
5 + 1

4

√
17 + 1

4

√
85

same small trick as in Lemma 6.3. Thus, under the assumptions of the previous lemma,
we cannot find any ternary universal quadratic form over OK .
If s = 7, we obtain more choices of ω for 2(6 +

√
5), while the other sets of coefficients

remain unchanged; for s = 29, 37, 53, we get a larger set only in part (4), i.e. for (6 +
√
5)S.

However, even after including these modifications, the regularity of all the resulting 4× 4
matrices over these concrete fields can be checked by a direct computation. Thus, we have
proven the following statement.

Conclusion 6.6. In a biquadratic field K where m = 5 and s 
= 6, 13, 17, 21, 33,
no ternary form can simultaneously represent all the numbers 1, 2, 6 +

√
5 and S at the

same time.

It remains to solve the cases when s = 2, 3, 6, 13, 17, 21, 33. Of course, s = 2, 3 is
absurd if m = 5. Moreover, the cases with s = 6, 21, 33 have already been solved in § 6.2.
The only remaining fields Q

(√
5,
√
13
)
and Q

(√
5,
√
17
)
will be handled in § 6.10.

6.10. Remaining biquadratic fields

For the remaining biquadratic fields, we use the procedure introduced in § 6.8. We
find elements λ1, λ2, λ3, λ4 ∈ O+

K such that every symmetric totally positive semidefinite
matrix over OK with them on the diagonal is regular, thereby showing that no ternary
form can represent them all. In fact, we put λ1 = 1 and conveniently choose the other λi’s;
if possible, we prefer indecomposable integers in these fields. Consequently, by solving
inequalities ρ2ij � λiλj with the help of a computer (upper bounds on coefficients ρ2ij
are, as always, obtained by comparing traces, so there are only finitely many values to
be checked), we obtain all possible non-diagonal entries of totally positive semidefinite
matrices with the given diagonal. To complete the proof, it suffices to compute all the
determinants. In Table 1, we exhibit the quadruples of λi’s that we used and for which
all the resulting candidates for totally positive semidefinite Gram matrices are regular.
It implies that even in these fields, there cannot exist a ternary universal quadratic form,
and we even explicitly know four elements that are never represented by the same form.
Note that Q

(√
2,
√
3
)
was already solved in [6, Subsec. 5.1] by the same method; here we

list the diagonal coefficients, which were used in that article.
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By this, the proof of Theorem 1.1 is finished.

Open questions

Although we achieved our goal and proved that no totally real biquadratic field admits a
ternary universal quadratic form, there are many very natural open problems. One may
want to generalize this result to non-classic forms; however, the corresponding problem
is, to our best knowledge, still open even for the much simpler case of quadratic fields. A
more interesting question is, which (if any) biquadratic fields admit a quaternary universal
form, and more generally, what is the lowest number of variables n such that there is a
biquadratic field that admits an n-ary universal form. And for which n are there infinitely
many such fields? Tools developed in this paper should prove useful in investigating these
problems. A bolder generalization of our result, namely the non-existence of universal
ternary forms for all totally real multiquadratic fields, would provide strong evidence
towards Kitaoka’s conjecture.
Theorem 1.3 significantly extended our knowledge about indecomposable integers in

biquadratic fields; however, there is a very natural open question: is it possible for an
element from the subfields Q(

√
m) or Q(

√
s) to decompose in the biquadratic extension,

or can this happen only for the subfield Q(
√
t), as evidence seems to suggest?
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Appendix A. Ternary forms over the quadratic field Q(
√
10)

The main source of inspiration for this article is the beautiful paper [5], which proves
that real quadratic fields except for Q(

√
2), Q(

√
3) and Q(

√
5) admit no universal ternary

forms, and fully describes universal ternary forms over those three fields. We have found
two discrepancies in the proof of non-universality given there; this appendix is devoted
to their corrections. Both of the problems arise when dealing with a non-diagonalizable
form 〈1〉 ⊥ Q0 (denoted there as 〈1〉 ⊥ L0; the analogous part in this paper is § 5.5) over a
totally real quadratic field F . Just as in our proof, e ∈ O2

F is a vector such that Q0(e) = 2,
and f ∈ F 2 is a ‘complementing vector’ such that OF = Iee⊕ Iff and Ie = I−1

f .

The first problem was the claim that γ = Q0(f) ∈ OF ; that is not always the case,
as we shall see in Example A.1. However, for the rest of the proof, it is sufficient that
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2γ ∈ OF ; this we have proven in Lemma 5.6. (We also show there that β = BQ0
(e,f)

belongs to OF , which was stated but not proven in [5].)

Example A.1. In F = Q(
√
10), consider the binary form

Q0(v, w) = 7v2 − 2 · 3
√
10vw + 13w2. (A.1)

Note that it is totally positive definite, since 7 ∈ O+
F and detQ0 = 7 · 13− (3

√
10)2 =

1 ∈ O+
F . We show that Q0 is not diagonalizable: if it is, then by comparing determinants

it follows that Q0
∼= 〈1〉⊥〈1〉 (using the fact that, in this field, U+

F = U�
F ); however, Q0

represents 7 while it is easy to check that 〈1〉⊥〈1〉 does not.
For e = (

√
10, 2)T we see that Q0(e) = 2 and Ie = (

√
10, 2)−1 =

(
1
2

√
10, 1

)
. Set f =(

1, 1 + 1
2

√
10
)T

; clearly If = (
√
10, 2), so indeed IeIf = OF , and it is routine to check

Iee+ Iff = O2
F . Further, we compute

γ = Q0(f) =
45

2
+ 7

√
10, β = BQ0

(e,f) = −4−
√
10;

obviously, γ /∈ OF (but 2γ ∈ OF ) and β ∈ OF .
On a side note, there are altogether four vectors that represent 2, namely ±(

√
10, 2)T

and ±(4,
√
10)T; the property Ie = (

√
10, 2)−1 holds for all of them.

The second problem in the paper [5] is that the proof is not completely correct in the
case of F = Q(

√
10). The problematic claim is as follows: if the number 10 is represented

by the form 2Q0 as 2Q0(ye+ zf) = (2y + βz)2 + (2γ − β2)z2, then (2y + βz)2 is neces-
sarily a square of an integer (compare with Lemma 4.5). This is not true; it can also
happen that (2y + βz)2 = (±

√
10)2.

Note that 2y + βz = ±
√
10 and (2γ − β2)z2 = 0 if and only if z = 0 and y = ± 1

2

√
10.

Since y ∈ Ie, this implies Ie 
= OF . Moreover, (
√
10, 2) is a prime ideal satisfying

(
√
10, 2)2 = (2); since the square of the ideal If = I−1

e divides (2) and here we have
If 
= OF , it follows that necessarily If = (

√
10, 2). Then Ie = (

√
10, 2)−1 =

(
1
2

√
10, 1

)
,

hence indeed ± 1
2

√
10 ∈ Ie, and the vector ± 1

2

√
10e+ 0f belongs to O2

F .

Remark A.2. In the above paragraph, we have actually proven the following: if Q0

is a (totally positive definite, classic) binary form over Q(
√
10) and e ∈ O2

F is such that
Q0(e) = 2 and Ie 
= OF , then Ie = (

√
10, 2)−1.

Now we proceed to illustrate the problem on the form Q0 given in the example above.

Example A.3. Let us continue with Example A.1; we consider the form Q0 given by

(A.1), e = (
√
10, 2)T and f =

(
1, 1 + 1

2

√
10
)T

. For y ∈ Ie and z ∈ If , we compute

Q0(ye+ zf) = 2y2 + 2βyz + γz2 = 2y2 + 2(−4−
√
10)yz +

(45
2

+ 7
√
10
)
z2;

thus,

2Q0(ye+ zf) = (2y + βz)2 + (2γ − β2)z2 =
(
2y + (−4−

√
10)z

)2
+ (19 + 6

√
10)z2.

By plugging in y = ± 1
2

√
10 and z = 0, we indeed get 10 = (

√
10)2 + 0.
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Actually, for an arbitrary form Q0, if 2 is represented by Q0 by a vector e such that
Ie 
= OF , then 5 is automatically represented by Q0 as well, because we have just seen
that 1

2

√
10e ∈ O2

F , and

Q0

(√
10

2
e

)
=

(√
10

2

)2

·Q0(e) =
10

4
· 2 = 5.

Therefore, if Ie 
= OF , no new information can be gained by considering representations
of 10 by 2Q0. Instead of that, we have to consider another element of O+

F to show the
non-existence of a universal form.

Proposition A.4. No ternary form 〈1〉 ⊥ Q0 over F = Q(
√
10) such that Q0(e) = 2

for a vector e ∈ O2
F with Ie 
= OF is universal; in fact, such a form never represents

M = 4 +
√
10.

Proof. Since Ie 
= OF , Remark A.2 implies Ie = (
√
10, 2)−1. Suppose that 〈1〉 ⊥ Q0

represents M. Just as in the proof of Theorem 1.1, since M is indecomposable and non-
square, it has to be represented by the binary formQ0, and therefore 2M is represented by
2Q0; using the representation 2Q0(ye+ zf) = (2y + βz)2 + (2γ − β2)z2, we see that 2M
decomposes as a sum of a square and a totally non-negative number. Lemma 4.17 (or a
simple direct computation) shows that the square is either 0 or 1. However, since 2 ∈ I−2

e ,
y ∈ Ie, β ∈ OF and z ∈ I−1

e , we get 2y + βz ∈ I−1
e = (

√
10, 2), which is a non-trivial

ideal, so it cannot contain ±1.
Therefore, the only choice is 2y + βz = 0 and (2γ − β2)z2 = 2M; denote Δ = 2γ − β2.

Observe that since z ∈ (
√
10, 2), we getNF/Q (z) ∈ 2Z. It is also easy to compute the norm

NF/Q (M) = NF/Q

(
4 +

√
10
)
= 6. Now let us apply norms on the equation Δz2 = 2M:

we obtain

NF/Q (Δ)NF/Q (z)
2
= 4 · 6.

Since this equals 23 · 3, it means that NF/Q (z) can only be ±1 or ±2; since the former
possibility is excluded by our observation that the norm of z is even, it must hold that
NF/Q (z) = ±2. However, there is no element of norm ±2 in F : the equality x2 − 10y2 =
±2 would mean x2 ≡ ±2 (mod 5), which is a contradiction. �

Appendix B. Units in biquadratic fields

In this appendix, we present some results on units in totally real biquadratic fields. In
particular, we are interested in the existence of a non-square totally positive unit. If such
a unit exists, then one of the simplest parts of the proof of Theorem 1.1 contained in
§§ 5.1 and 5.2 is applicable. Indeed, as we will see, this is often the case.

The units of a quadratic field are well understood: a quadratic field Q(
√
n) contains

a non-square totally positive unit if and only if its fundamental unit εn has (quadratic)
norm +1 (in which case every unit is either totally positive or totally negative). That
happens for almost all fields—a necessary condition for NQ(

√
n)/Q (εn) = −1 is that n is

divisible by no prime of the form 4k + 3, because clearly −1 must be a quadratic residue
modulo every divisor of n.
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The situation in a biquadratic field is a bit more difficult (see, e.g. [20]). Note that
a totally positive fundamental unit of a quadratic subfield may become a square in the
biquadratic field; in such a case, its square root is not totally positive anymore (this
follows from Lemma 4.1(1), since no element of zero trace can be totally positive).
We start by showing that in most biquadratic fields, at least one non-square totally

positive unit exists. Remember that the meaning of m, s, t and n1, n2, n3 is fixed by
Convention 2.2.

Lemma B.1. If K = Q
(√

m,
√
s
)
, then the following holds:

• the fundamental unit of Q(
√
m) is not a square in K;

• if m 
= 2, then the fundamental unit of Q(
√
s) is not a square in K.

More generally, let K be a biquadratic number field. If gcd(n2, n3) ≥ 3, then the
fundamental unit of Q(

√
n1) is not a square in K.

Proof. The last, most general statement follows directly from Corollary 4.2: Since
gcd(n2, n3) ≥ 3 is square-free, it has some non-trivial odd divisor. However, no unit can
have a non-trivial rational integer divisor.
The claims about Q(

√
m) and Q(

√
s) are simple corollaries: if gcd(n2, n3) ≤ 2, then it

holds that n1 = n2n3/ gcd(n2, n3)
2 > n2, n3 (i.e. n1 = t) unless one of n2, n3 equals 2. �

Note that although Lemma B.1 shows that in most cases, εm as well as εs are non-
square units (and we already know that in most cases they are totally positive), it does
not mean that then there are at least two independent non-square totally positive units
in OK . It is quite possible that εmεs is a square.
Another important piece of information for the proof of Theorem 1.1 is whether 2ε is a

square or not. Note that since in a quadratic field the fundamental unit differs from any
other positive non-square unit only by multiplication by a square, the following lemma
actually generalizes to any positive non-square unit:

Lemma B.2. Let F = Q(
√
n1) and ε ∈ F be the fundamental unit.

• If n1 
= 2, then 2ε is a square in F if and only if OF contains an element of (quadratic)
norm ±2 with integer coefficients, i.e. if and only if at least one of the Pell’s equations
x2 − n1y

2 = ±2 is solvable.

• Suppose 2ε is not a square in F, and the biquadratic field K ⊇ F satisfies
gcd(n2, n3) ≥ 3. Then 2ε is not a square in K either.

Proof. The second part is a simple consequence of Corollary 4.2 (clearly 2ε cannot
have any odd rational integer divisors). As for the first one, start by observing that for
an element 1

2a+ 1
2b
√
n1 with a, b odd integers, n1 ≡ 1 (mod 4), its square is of the same

form. Thus, since 2ε has always integer coefficients, its potential square root must have
the form a′ + b′

√
n1 for some a′, b′ ∈ Z.
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If
√
2ε exists in OF , then clearly NF/Q

(√
2ε
)
= ±2, which proves one implication. As

for the other, take α = x+
√
n1y where NF/Q (α) = x2 − n1y

2 = ±2. Then

α2 = (x2 + n1y
2) + 2xy

√
n1 = (±2 + 2n1y

2) + 2xy
√
n1,

and thus 1
2α

2 ∈ OF . Moreover, 1
2α

2 is a unit, and thus α2 = 2εk for some k ∈ Z (it cannot
be −2εk, since α2 is positive whereas −2εk is negative due to ε being fundamental).
Clearly, if k was even, then 2 would be a square, i.e. n1 = 2. Therefore, k = 2l + 1 and
we have 2ε = (αε−l)2. �

From the previous two lemmas we can make a simple but strong conclusion: suppose
that in K = Q

(√
m,

√
s
)
, the square-free integer m satisfies the following: Pell’s equation

x2 −my2 = a has no solution for all three right-hand sides a = −1, a = −2 and a = 2.
Then the fundamental unit of Q(

√
m), εm, is totally positive and neither εm nor 2εm is

a square in K.
By considering quadratic residues, it is easy to see that a sufficient condition for non-

solvability of all three equations is that m is divisible by

• at least one prime of the form 4k + 3 (because of a = −1); and

• at least one prime of the form 8k + 3 or 8k − 3 (due to a = 2); and

• at least one prime of the form 8k − 1 or 8k − 3 (regarding a = −2).

All in all, the only potentially ‘bad-behaving’ m’s are those that contain in their prime
decomposition only primes 2, 8k + 1 and one more residue class modulo 8. Clearly, the
density of such integers is zero.
Of course, it is possible to continue this examination by deriving some analogy of

Lemmas B.1 and B.2 for fields containing
√
2; however, the already presented results are

sufficient to illustrate that fields not containing any non-square totally positive unit are
rare and that mostly this unit multiplied by 2 is not a square either. We conclude this
part by showing that for some integral bases, there is always a non-square totally positive
unit in K.

Corollary B.3. If K contains no non-square totally positive unit, then either m = 2,
or the integral basis is one of (B2) and (B4a).

Proof. Ifm 
= 2, by Lemma B.1 neither εm nor εs is a square. Thus, for a contradiction,
it suffices to show that at least one of them is totally positive. It turns out that for all
bases except (B2) and (B4a), at least one of the numbers m and s contains a prime
divisor of the form 4k + 3, which shows that the corresponding field contains no unit of
norm −1. �
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Main cases

Case (I)
|U+

K/U�
K | > 2

Case (II)
|U+

K/U�
K | = 2

Q ∼= 〈1〉⊥〈ε〉⊥〈γ〉

2ε 
= � 2ε = �

m 
= 3, 5 m = 3, 5

Case (III)
|U+

K/U�
K | = 1

Q ∼= 〈1〉⊥Q0

Q0 diagonalizable
Q ∼= 〈1〉⊥〈β〉⊥〈γ〉

〈β〉⊥〈γ〉 repr. 1 〈β〉⊥〈γ〉 repr. 2

Q0 nondiagonalizable
Q0(e) = 2

(a) Ie = OK

2Q0 repr. 8 or 10

(ii): 1 + 9,

(iv): 9 + 1,

(vii): 4 + 4

(vi): 1 + 7 (i): 0 + 10,

(iii): 4 + 6,

(v): 0 + 8

(b) Ie 
= OK

2Q0 repr. 8 or 10

(ii): 1+9,

(iv): 9+1,

(vii): 4+4

(vi): 1+7 (i): 0+10,

(iii): 4+6,

(v): 0+8
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