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Continuum modelling of dense gas–solid flows strongly depends on the constitutive
relations used, including the interphase drag force, particle phase stress and the
boundary condition for particle–wall interactions. The lack of scale separation
is usually claimed to cause the breakdown of the Navier–Stokes (NS) order
continuum theory. In this study, computational fluid dynamics–discrete element
method (CFD-DEM) simulations of bubbling, turbulent and fast fluidization of
smooth, inelastic spheres were conducted to systematically analyse the valid range
of NS theory. An entropy-based criterion Is and Knudsen numbers defined using
different characteristic length scales (Knfrac, Kngran and Knvel) were quantified. It was
found that (i) except at the centre of bubbles where the solid concentration is quite
low, NS theory for discrete particles was valid for bubbling fluidization irrespective
of the breakdown criterion. Even at the boundary of the bubbles, values of Is and Kn
were small; and (ii) the conclusion depended on the criterion used in turbulent and
fast fluidization. If Knfrac was used, NS theory would be generally valid. If Is was
chosen, NS theory would be still valid but with lower confidence. However, if Knvel or
Kngran was selected, NS theory broke down. Because Is includes the non-equilibrium
effects caused by the gradient of hydrodynamic fields and particle inelasticity, we may
conclude that NS theory was valid for all tested cases. This means that the continuum
description of discrete particles is not the main source of the breakdown of NS theory.

Key words: fluidized beds, granular media, particle/fluid flow

1. Introduction
Gas–solid fluidized beds are common in industry because they are useful for

catalytic reactions, granulation, particle coating processes, drying and mixing.
Although fluidization technology has been widely used in industry for many years,
our understanding of gas–solid hydrodynamics is still far from complete because
of the complex nature of gas–solid flows. In recent decades, computational fluid
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The non-equilibrium characteristics of heterogeneous gas–solid flow 777

dynamics (CFD) has been used extensively to explore the physics of gas–solid flows.
However, gas–solid flows are notoriously difficult to model, primarily because of the
spatio-temporal scale gap that exists between the micro- and/or mesoscales where
physical laws are given and the much larger macroscale phenomena that we wish to
understand. This gap implies that multiscale simulation strategies are necessary (Li
& Kwauk 1994; Van der Hoef et al. 2008). Numerous methods have been developed
to explore the nature of gas–solid flow at different spatio-temporal scales, amongst
which the Navier–Stokes order continuum theory (NS theory for short) is one of the
most popular approaches (Anderson & Jackson 1967; Gidaspow 1994).

NS theory treats both the gas and solid phases in a gas–solid flow as interpenetrating
continua. The conservation equations of mass, momentum and energy are obtained
through an appropriate averaging process and the constitutive relations for particle
phase stress are usually closed using the kinetic theory of granular flow (KTGF)
(Gidaspow 1994; Rao & Nott 2008). According to the classical thermodynamics of
irreversible processes (De Groot & Mazur 1984), the NS theory has been established
based on the local thermodynamic equilibrium (LTE) postulate; however, the LTE
postulate breaks down if the states of local systems are far from equilibrium. The NS
theory is normally valid for the gas phase, except for certain extreme circumstances
such as rarefied flow, shock waves, flow under very large shear or flow in sufficiently
small devices. However, because of the lack of scale separation and formation of
bubbling and/or clustering structures, NS theory is usually claimed to be insufficient
for the solid phase (Tan & Goldhirsch 1998). Therefore, it is important to quantify
the valid range of NS theory for the solid phase.

The LTE postulate (De Groot & Mazur 1984) assumes that the parameters of the
studied system vary in space and time so slowly that the system under study can
be split into a series of representative volume elements, each of which is sufficiently
large to allow it to be treated as a macroscopic thermodynamic system at equilibrium.
Qualitatively, the LTE postulate is valid for systems that are sufficiently close to
equilibrium. However, continuum theory provides no information on how small these
deviations from equilibrium should be; instead, the problem should be explored using
statistical mechanics. Studies using statistical mechanics like kinetic theory have
shown that the LTE postulate is satisfactory provided that the velocity distribution
function of the particles in the representative volume element is nearly Maxwellian.
More precisely, it is the first-order Chapman–Enskog expansion of the Maxwellian
velocity distribution in terms of a small parameter, such as the ratio of the mean
free path of molecules to a characteristic length of macroscopic inhomogeneities
(referred to as the Knudsen number) or the ratio of the molecular relaxation time
to the characteristic macroscopic time (Chapman & Cowling 1970). Assuming the
validity of the LTE postulate, the resultant constitutive relations are Newton’s law
of viscosity used in the momentum equation, Fourier’s law of heat conduction used
in the granular temperature equation and Fick’s law of diffusion used in the species
equation. All of these constitutive relations are used extensively in NS theory.

Criteria have been proposed to quantify the local non-equilibrium characteristics
of single-phase flow. Following the studies on kinetic theory (Chapman & Cowling
1970), researchers have used the Knudsen number as the criterion for the breakdown
of the LTE postulate. The Knudsen number Kn = λ/L should be smaller than 0.05,
0.1 or 0.2 (those values are the thresholds used by different researchers) to ensure the
validity of NS theory with appropriate velocity-slip and temperature-jump boundary
conditions (if no-velocity-slip and no-temperature-jump boundary conditions are used,
the Kn should be smaller than 0.001) (Boyd, Chen & Candler 1995; Lockerby, Reese
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& Struchtrup 2009). There is a consensus that the microscopic length scale should be
chosen as the mean free path λ, but the macroscopic characteristic length scale L has
different choices. L can be defined on a length scale in terms of the gradient of local
temperature, velocity, density or pressure. Different choices of L result in different
Kn; therefore, it remains generally unclear how to properly select L in a specific
case. To address this issue, criteria based on entropy-related quantities (Camberos &
Chen 2003; Carr, Branam & Camberos 2007; Niazmand, Mohammadzadeh & Roohi
2013) have been proposed, where all of the non-equilibrium effects can be included
in a single formula. In addition, extensive molecular dynamics simulations have been
performed to test the valid range of the LTE postulate. It has been consistently
concluded that the LTE postulate is valid far beyond its formally expected range of
validity; see Hansen et al. (2015) and references therein for details.

Quantification of the non-equilibrium characteristics of dissipative granular flow and
gas–solid flow is far less advanced. A study on shear granular flows has suggested that
NS theory is not a good option for rapid granular flow because of its inherent lack of
scale separation (Tan & Goldhirsch 1998). Another study on thermally driven granular
flow also indicated that higher-order effects might be important (Hrenya, Galvin &
Wildman 2008). In contrast, research on a highly simplified homogeneous cooling
system indicated that NS theory has the ability to predict the critical length for the
onset of vortex instabilities in granular systems (Mitrano et al. 2011, 2012). Other
work (Mitrano et al. 2014) suggested that the NS theory may still be valid when Kn
is not small, meaning that the theory is valid outside its expected range of validity.
Recently, Kn-based criteria have been used to quantify the non-equilibrium features of
gas–solid two-phase flow (Chen & Wang 2017; Fullmer et al. 2017; Chen & Wang
2018). It has also been concluded that NS theory is valid beyond its normal validity
range (small Kn) in gas–solid flows (Fullmer et al. 2017). Theoretical analysis using
kinetic theory (Zhao, Wang & Wang 2017) has also been conducted to develop an
entropy-based criterion (Is) for the validity of NS theory. The non-equilibrium effects
of the gradient of granular temperature, gradient of particle velocity, and dissipative
particle–particle collisions have been unified into Is. However, a systematic analysis
of these criteria in gas–solid flow has not yet been reported.

In this study, a CFD-DEM method is used to systematically analyse the distance that
a system is from the LTE state by quantifying Is and Kn-based criteria with different
definitions of the macroscopic characteristic length scale. The authors believe that this
study will shed light on the non-equilibrium nature of gas–solid flows and aid the
selection of proper CFD methods to model heterogeneous gas–solid flows.

2. CFD-DEM method

Pseudo three-dimensional (two-dimensional (2-D) for gas phase and 3-D for
particles) CFD-DEM simulations or the discrete particle model (DPM) were used
to investigate the non-equilibrium characteristics of gas–solid flow in fluidized beds.
DEM is similar to molecular dynamics simulation and the work done here resembles
that using molecular dynamics simulations to check the validity of the NS equation
in single-phase flow. However, because the motion of individual particles is tracked
in DEM simulations, the computational cost is quite high. Pseudo 3-D CFD-DEM
simulation is a widely used strategy to lower computational cost but still capture
the main physics of gas–solid fluidization (Müller et al. 2008; Feng & Yu 2010).
Two-dimensional simulation of the gas phase means that there was only one cell
in the depth of the simulation domain. A soft sphere CFD-DEM method (Tsuji,
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Equations of motion for every particle:

ma
d2ra

dt2
=−Va∇p+

Vaβ

1− εg
(ug − vs)+ma g+ Fcontact,a

Contact force between two particles:
Fab,n =−knδnnab − ηnvab,n

δn = (Ra + Rb)− |rb − ra|

Gas phase mass conservation equation:
∂(εgρg)

∂t
+∇ · (εgρgug)= 0

Gas phase momentum conservation equation:
∂(εgρgug)

∂t
+∇ · (εgρgugug)=−εg∇p− Sp +∇ · (εgτg)

Gas–solid drag force density:

Sp =
1

Vcell

Npart∑
a=1

βVa

1− εg
(ug − vs)δ(r − ra)

where (Beetstra et al. 2007)

β = 180
µg(1− εg)

2

dp
2εg

+ 18
µgεg

3(1− εg)(1+ 1.5
√

1− εg)

dp
2

+ 0.31
µg(1− εg)Re

εgdp
2

εg
−1
+ 3εg(1− εg)+ 8.4Re−0.343

1+ 103(1−εg)Re−0.5−2(1−εg)

and

Re=
εgρgdp|ug − vs|

µg

Gas phase density ρg from the ideal gas law:

ρg =
Mg

RTg
p

Gas phase stress–strain tensor:
τg =µg(∇ug +∇uT

g )−
2
3µg(∇ · ug)I

TABLE 1. Governing equations of CFD-DEM method.

Kawaguchi & Tanaka 1993) was used here. A summary of the main equations is
provided in table 1. The contact force resulting from particle–particle and particle–wall
interactions was calculated using the linear spring and dashpot model proposed by
Cundall & Strack (1979), and the interphase drag force correlation proposed by
Beetstra, van der Hoef & Kuipers (2007) was used.

We studied bubbling, turbulent and fast fluidization of Geldart A particles (particle
diameter dp = 75 µm, particle density ρp = 1500 kg m−3), Geldart B particles
(dp = 600 µm, ρp = 1500 kg m−3) and Geldart D particles (dp = 1.2 mm, ρp =

1500 kg m−3) that were fluidized by air (Tg = 293 K, R = 8.314 J (mol K)−1,Mg =

28.8× 10−3 kg mol−1, µg= 1.8× 10−5 Pa s). Turbulent fluidization is a term used to
describe the fluidization regime where both particle clusters and gas bubbles can be
found simultaneously in a fluidized bed. Turbulent fluidization has no relation with
the turbulence of the gas phase; actually, the gas phase was laminar in this study.
The spring stiffness constant and other parameters used in the CFD-DEM simulations
are summarized in table 2.
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Particle diameter, dp (m) 7.5× 10−5 6.0× 10−4 1.2× 10−3

Particle number, Npart 90 000 90 000 90 000
Particle density, ρp(kg m−3) 1500 1500 1500
Restitution coefficient, en 0.9 0.9 0.9
Normal spring stiffness, kn (N m−1) 7 7000 14 000
Tangential spring stiffness, kt(N m−1) 2 2000 4000
CFD time step, s 1.0× 10−5 1.0× 10−5 1.0× 10−5

Particle dynamic time step, s 1.0× 10−6 1.0× 10−6 1.0× 10−6

Domain heighta, (m) 4.05× 10−2 3.24× 10−1 6.48× 10−1

Domain width, (m) 6.75× 10−3 5.40× 10−2 1.08× 10−1

Domain depth, (m) 4.575× 10−4 3.66× 10−3 7.32× 10−3

Number of grid cellsa 180× 30× 1 180× 30× 1 180× 30× 1
Minimum bubbling or fluidization velocity,

umb or umf (m s−1) 0.007 0.160 0.450
Superficial gas velocity, Ug (m s−1) 0.02, 0.12, 0.3 0.45, 1.5, 3.0 0.9, 1.8, 6.0
Solid circulation flux, Gs (kg m−2 s−1) 0.0, 0.0, 12.0 0.0, 0.0, 45.0 0.0, 0.0, 45.0

TABLE 2. Summary of the parameters used in CFD-DEM simulations.
aValues of the domain height and the number of grid cells in the z direction were

doubled, in the case of high superficial gas velocities.

In CFD-DEM simulations, boundary and initial conditions should be specified. At
the bottom inlet, a uniform gas velocity (Ug) was imposed, whereas atmospheric
pressure (101 325 Pa) was assumed at the top outlet. No-slip conditions were applied
to the walls for the gas phase. Because the gas phase was solved in two dimensions,
only the left and right walls were no slip; there were no front and back walls for
gas flow. The front and back walls for the solid phase were set as periodic boundary
conditions with which the strong effects of front and back walls could be removed.
However, a previous study has shown that the depth of the bed cannot be too small
(such as one particle diameter); otherwise, some important physics will be lost (Feng
& Yu 2010). The depth of the simulation domain in the present study was selected
as 6.1dp following previous reports (Müller et al. 2008; Feng & Yu 2010; Wang, Van
der Hoef & Kuipers 2010). Of course, the physics of a pseudo 3-D bed will not be
completely consistent with those of a fully 3-D bed; however pseudo 3-D CFD-DEM
simulations are still useful. For example, Feng & Yu (2010) showed that pseudo
3-D CFD-DEM simulations with a bed thickness of 4.05dp can achieve quantitative
agreement with experimental results. Müller et al. (2008) also used similar settings
to compare with experimental measurements and the simulation results were in good
agreement with experimental data. The particles were initially packed at the bottom
of the bed with zero mean velocity, attached with random fluctuating velocity in the
cases of bubbling and turbulent fluidization. Particles were continuously inserted from
the bottom of the bed with a given inlet velocity that was determined by the given
solid circulation flux Gs in the case of fast fluidization. The top was not periodic;
particles that went outside the top were deleted from the systems. In view of the
fact that Is is only for smooth and inelastic particles (Zhao et al. 2017), we assumed
that particles in the CFD-DEM simulations were smooth and inelastic by setting the
friction coefficient µf = 0 and tangential restitution coefficient et = 1.0 (Pöschel &
Schwager 2005). Furthermore, the parameters for particle–wall interaction were equal
to those for particle–particle interactions. The grid size used to solve the fluid solver
was 3dp, which is necessary to correctly capture the hydrodynamics of gas–solid flow
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The non-equilibrium characteristics of heterogeneous gas–solid flow 781

in fluidized beds (Wang, Van der Hoef & Kuipers 2009; Wang et al. 2010; Radl &
Sundaresan 2014).

The 3-D DPM code developed by Professor J.A.M. Kuipers’ group was used to
carry out all simulations. More details of the code can be found elsewhere (Hoef et al.
2006). Both the CFD-DEM method and code used in the present study have been
extensively proved to be very useful to explore the physics of gas–solid flow, therefore,
validation of the model and verification of the code were not performed here.

3. Overview of criteria
3.1. Entropy-based criterion

Studies of the microscopic foundation of non-equilibrium thermodynamics using
kinetic theory of dilute gases have shown that the entropy density of a non-equilibrium
system s can be defined as (De Groot & Mazur 1984)

εsρss=−kB

∫
f ln f dc=−m

∫
f ln f dc, (3.1)

where εs, ρs and m are the solid concentration, solid density and mass of a single
particle, respectively; kB is a Boltzmann-like constant, and kB = m is determined
following the monograph of Chapman & Cowling (1970). According to the
Chapman–Enskog method, the distribution function f was expressed in the form
of infinite series that were supposed to converge uniformly (Sela & Goldhirsch 1998;
Rao & Nott 2008),

f = f eq
[1+ φ(K) + φ(ε) + φ(Kε) + φ(K

2)
+ φ(ε

2)
+ · · ·], (3.2)

where f eq is the equilibrium distribution function (Maxwellian distribution) and φ(K),
φ(ε), φ(Kε), φ(K2), φ(ε2)

· · · are expressed in terms of two small parameters: one is
K ≡π

√
2Kn, the other is related to the inelasticity of particle–particle collisions, ε ≡

(1− e2), where e is the restitution coefficient. Substituting (3.2) into (3.1), we have
the entropy density up to the second order (Zhao et al. 2017),

εsρss= εsρsseq
−

1
2

∫
mf eq
[φ(K) + φ(ε)]2 dc, (3.3)

where the perturbation functions φ(K) and φ(ε) are measures of the deviation of the
actual distribution function f from the local equilibrium distribution function f eq. From
(3.3), it is clear that the first term on the right-hand side is the entropy density at the
equilibrium state, and the second term is the entropy density related to the second-
order correction, which is the first nonlinear term. Because the analysis of the entropy
density used the Chapman–Enskog method with the assumption of small Knudsen
number and small inelasticity, higher-order corrections were assumed to be negligible
compared to this term; therefore, it represents the effect of nonlinearity. The entropy-
based criterion Is is defined as (Zhao et al. 2017):

Is =

−
1
2

∫
mf eq
[φ(K) + φ(ε)]2 dc

εsρsseq

=

(
5dp

64εsg0

)2 (π

θ

){(
1+

12
5
εsg0

)2 [5θ
2
(∇ ln θ)2

]
+

4
9

(
1+

8
5
εsg0

)2 ( 4
3

W1 +W2

)}
+ 1.45(1− e2

p)
2

[
2 ln

n
(2πθ)3/2

− 3
] ,

(3.4)
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where

W1 =
1
2

[(
∂usx

∂x
−
∂usy

∂y

)2

+

(
∂usx

∂x
−
∂usz

∂z

)2

+

(
∂usy

∂y
−
∂usz

∂z

)2
]
,

W2 =

(
∂usx

∂y
+
∂usy

∂x

)2

+

(
∂usx

∂z
+
∂usz

∂x

)2

+

(
∂usy

∂z
+
∂usz

∂y

)2

.

 (3.5)

Is is an indicator of the relative importance of higher (second) order correction or
nonlinear effects, where the deviation from the local equilibrium state is measured via
the terms related to the gradient of granular temperature, gradient of particle velocity
and inelasticity of particle–particle collisions. Equation (3.4) is the entropy-based
criterion for the validity of NS theory obtained from kinetic theory analysis; Is
should be small to ensure that the LTE postulate is valid; i.e. Is� 1.

3.2. Knudsen number
Previous studies on gas–solid flow (Chen & Wang 2017; Fullmer et al. 2017;
Chen & Wang 2018) have used the Knudsen number to quantify the degree of
non-equilibrium. In Knudsen-number-based criteria, the parameter characterizing the
inelasticity of particle–particle collisions (e) is not explicitly included, although the
particle restitution coefficient e is the only parameter used to characterize the nature
of particle–particle collisions. The Knudsen number is defined as

Kn=
dp

6
√

2g0εsL
, (3.6)

where dp is the particle diameter, L is the macroscopic characteristic length scale and
the radial distribution function at contact g0 is (Gidaspow 1994)

g0 =

[
1.0−

(
εs

εs,max

)1/3
]−1

, (3.7)

where εs,max= 0.63 is the solid concentration at the maximum packing state. However,
L is often selected based on entirely different macroscopic length scales. Some studies
have selected the width of the simulation channel as the characteristic macroscopic
length scale (Chen & Wang 2017, 2018); this choice has the advantage that L is
known before carrying out simulations. However, we are interested in L defined
according to the gradient length scale of differently macroscopic fields, because this
is consistent with KTGF. The disadvantage of choosing the gradient length scale of
different macroscopic fields as L is that Knudsen numbers cannot be obtained unless
one performs simulations. In this study, we test three Knudsen numbers by choosing
L of L= εs/|∇εs|, L= θs/|∇θs| and L= |us|/|∇us|, which respectively give (Chen &
Wang 2017; Fullmer et al. 2017; Chen & Wang 2018):

Knfrac =
dp|∇εs|

6
√

2g0εs
2
, (3.8)

Kngran =
dp|∇θ |

6
√

2g0εsθ
, (3.9)
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Knvel =
dp|∇us|

6
√

2g0εs|us|
. (3.10)

The granular temperature θ is defined as θ = (θx + θy + θz)/3, and θk (k = x, y, z) is
defined as θk = (

∑Npart
i=1 (vk,i − us,k)

2)/Npart with us,k = (
∑Npart

i=1 vk,i)/Npart, where Npart is
the number of particles in the computational cell under consideration. After mapping
the Lagrangian data of particles into the Eulerian data of computational cells, the
gradients of hydrodynamic variables can then be extracted.

Studies of single-phase flow have indicated that the flow can be divided into
different regimes: the regime where Kn < 0.001 is defined as continuous, which
can be described by NS theory with no-slip wall boundary conditions. The NS
theory with proper slip-wall boundary conditions has been applied to the region
of 0.001 6 Kn 6 0.1. When Kn > 0.1, NS theory fails (note that a higher-order
continuum theory such as Burnett-order continuum theory may still be valid) and
a more fundamental description such as kinetic theory should be used. Because the
use of a (partial) slip-wall boundary condition (Johnson & Jackson 1987) is widely
accepted in NS theory for gas–solid flow, we used a value of 0.1 as the threshold.
That is, Is 6 0.1 or Kn 6 0.1 should be satisfied to ensure that NS theory is valid.

4. Simulation results
Figure 1(a) shows a representative snapshot of the solid concentration distribution

obtained from bubbling fluidization of Geldart A particles. Bubbling structures
formed in the beds and the solid concentration distribution are highly heterogeneous.
Figure 1(b) shows a snapshot of the corresponding distribution of Is. It can be seen
that even at the boundaries of the bubble and emulsion phases, the values of Is
are still quite small. This means that, from a thermodynamic viewpoint, the driving
forces are small even at the boundaries of bubbles. The values of Is are large only
at the centre of bubbles where the solid concentration is quite low; here, NS theory
fails. These observations suggest that local solid concentration may be used as the
criterion of the failure of NS theory. However, detailed analysis indicated that solid
concentration alone is not a proper criterion to measure the validity of NS theory, as
illustrated in figure 1(c), which shows that the values of Is can vary by three to four
orders of magnitude even at the same solid concentration.

The value of Is contains three different mechanisms that contribute to the
non-equilibrium effects, which are related to the gradient of granular temperature,
gradient of particle velocity and dissipation caused by inelastic particle–particle
collisions. Therefore, we studied the relative importance of these three contributions:

IT
s =

(
5dp

64εsg0

)2 (π

θ

)(
1+

12
5
εsg0

)2 [5θ
2
(∇ ln θ)2

]
[

2 ln
n

(2πθ)3/2
− 3
] , (4.1)

Ivel
s =

4
9

(
5dp

64εsg0

)2 (π

θ

)(
1+

8
5
εsg0

)2 (4
3

W1 +W2

)
[

2 ln
n

(2πθ)3/2
− 3
] , (4.2)

Ie
s =

1.45(1− e2)2[
2 ln

n
(2πθ)3/2

− 3
] . (4.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

15
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.156


784 J. Wang, X. Chen, W. Bian, B. Zhao, J. Wang

4.6

3.4

2.3

1.1

0

(÷ 10-1)

Ós

Ós
IsIs

101

100

10-1

10-2

10-3

101

100

10-1

10-2

10-3

10-4
0 0.1 0.2 0.3 0.4 0.5

(a) (b)

(c)

FIGURE 1. (Colour online) Snapshots of (a) solid concentration distribution and (b) the
corresponding distribution of Is. (c) Plot of Is against the solid concentration for data
obtained from bubbling fluidization of Geldart A particles (dp = 7.5 × 10−5m and ug =

0.02 m s−1).

Figure 2(a–c) presents snapshots of the spatial distribution of the relative
contribution of each mechanism. The relative importance of the three mechanisms
varies spatio-temporally. It seems that all three mechanisms provide important
contributions; there is no dominant one. When we examined all simulation results,
even in the fast fluidization regime where the solid concentrations in computational
cells are low, we found that Ie

s still made an important contribution to the non-
equilibrium characteristics of heterogeneous gas–solid flow. In general, the conclusions
based on this kind of observation were similar; thus, other results have not been
reported here. Figure 2(d) displays the proportion of the quantitative contribution of
the three mechanisms to all computational cells at t= 10 s as a function of Is. When
Is is small, Ie

s is the main contribution. With increasing Is, Ivel
s and IT

s increased, and
Ivel

s became the main source of the non-equilibrium effect at moderate values of Is.
At higher Is, in most of the computational cells, IT

s was the dominant contribution.
Moreover, when Is > 0.1, IT

s was the dominant contribution; therefore, IT
s was the

main source of the failure of NS theory.
The probability distribution functions (PDFs) of Is, Knfrac, Kngran and Knvel are

shown in figure 3. Data obtained from 100 different snapshots were used to construct
the PDFs. In the cases of bubbling and turbulent fluidization, there were no particles
at the tops of the fluidized beds (εs = 0), which means that the values of Is and Kn
are infinitely large. To ensure that the PDFs had a good appearance, when Is > 10 or
Kn> 10, we used Is = 10 or Kn= 10, respectively, in the analysis of the CFD-DEM
results. Of course, it is also possible that for some computational cells Is > 10 or
Kn > 10, but there are solid particles inside the cells. The value of p is the ratio
of the number of cells that have Is 6 0.1 or Kn 6 0.1 to the total number of cells,
not counting the cells without solid particles. For example, at each moment, data
for 5400 computational cells were available in the case of bubbling fluidization of
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FIGURE 2. (Colour online) Snapshots of the proportion of the three mechanisms
contributing to Is obtained from bubbling fluidization of Geldart A particles: (a) IT

s , (b)
Ivel

s and (c) Ie
s . (d) The proportion of quantitative contribution of the three mechanisms in

all computational cells at t= 10 s plotted as a function of Is. Each computational cell has
a value of Is, which has values of its three contributions of IT

s (red), Ivel
s (blue) and Ie

s
(grey). Therefore, if the region is mainly filled with a certain colour, the corresponding
mechanism is the main contribution to Is.

Geldart A particles. There were 3040 computational cells with Is 6 0.1, 13 cells
with 0.1< Is < 10.0, 37 cells containing solid particles with Is = 10.0 and 2310 cells
without solid particles (εs = 0.0); therefore, p= 3040/(3040+ 13+ 37)≈ 0.98.

For bubbling fluidization of Geldart A, B and D particles, regardless of the criterion
selected, p > 0.93 even though there were extensive bubbling structures. This means
that the LTE postulate is valid in most places of the bed with solid particles and
the driving force cannot be regarded as large from a thermodynamic viewpoint. We
were not able to prove rigorously that the remaining cells (67 %) with a value larger
than 0.1 did not inhibit the success of NS theory. However, many studies (Wang
et al. 2009, 2010; Fullmer & Hrenya 2016) have shown that the results of continuum
modelling are in good agreement with those of CFD-DEM simulations. Therefore, we
suppose that the failure of NS theory in a few computational cells will not prevent
the success of NS theory as a whole. The PDFs reveal that the values of Kngran and
Knvel are typically one order of magnitude larger than those of Is and Knfrac. These
observations can explain why previous highly resolved simulations using NS theory
can reasonably predict the hydrodynamics of gas–solid flow in bubbling fluidized beds
(Wang et al. 2009), because the underlying assumption of NS theory is valid.

When the fluidization regime transitioned to turbulent and fast fluidization, the
number of computational cells in which the value of Is, Kngran, Knfrac or Knvel was
larger than 0.1 increased gradually. This indicates that NS theory broke down in
more computational cells than was the case for bubbling fluidization. The value of p
strongly depended on the chosen criterion. If Knfrac was chosen, p> 0.96 irrespective
of the fluidization regime and type of particle. When Is was selected as the criterion,
the minimum value of p in all cases was 0.86. Therefore, we may still conclude
that NS theory is valid for all cases, although with less confidence, compared to the
conclusions drawn from the criterion of Knfrac. However, when Knvel or Kngran was
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FIGURE 3. (Colour online) Probability distributions of Is, Knfrac, Kngran and Knvel. Data
were obtained from bubbling, turbulent and fast fluidization simulations of Geldart A, B
and D particles.

chosen, NS theory was clearly violated in the fast fluidization regime. The PDF peak
of Is appeared at O(10−3) irrespective of the fluidization regime and type of particle,
but when other criteria were selected, the PDF peak varied considerably. Finally,
we note that simulations using realistic particles resulted in similar conclusions, as
presented in the Appendix.

5. Discussion
It has long been recognized that bubbling and/or clustering structures are important

to the correct understanding of gas–solid hydrodynamics. State-of-the-art studies
have demonstrated two different ways to model bubbling and/or clustering structures
using NS theory: explicit resolution (Agrawal et al. 2001; Wang et al. 2009) and
implicit modelling (Yang et al. 2003; Igci et al. 2008; Wang, Ge & Li 2008). If
the size of computational cells is sufficiently small to explicitly resolve the dynamic
evolution of bubbling and/or clustering structures, there is no complex structure inside
computational cells, but the thermodynamic driving forces might be large. Large
thermodynamic driving forces then result in the breakdown of the LTE postulate
underpinning NS theory. If the size of the computational cells is larger than the
typical length scale of bubbling and/or clustering structures, the bubbling and/or
clustering structures inside computational cells are the reason for the violation of
the LTE postulate (but the thermodynamic driving forces are possibly not large).
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The present study and those reviewed in § 1 have focused on the former situation.
From the viewpoint of CFD simulations, the results presented and conclusions drawn
here are only applicable to cases where the bubbling and/or clustering structures are
explicitly resolved using highly resolved NS theory (Agrawal et al. 2001; Wang 2008;
Wang et al. 2009, 2010; Fullmer & Hrenya 2016; Fullmer et al. 2017). The situation
where the bubbling and/or clustering structures are implicitly modelled is beyond the
scope of the present study.

It has been concluded that NS theory provides good predictions of the characteristics
of rapid granular gases even far beyond its supposed validity limits (Mitrano et al.
2011, 2012, 2014). Because in these studies the maximal value of Knfrac, Kngran or
Knvel was selected as the criterion, the value of Kn was normally not small. But
as has been discussed above, Is might be a better criterion than Kn and Is is small
even when there are bubbling/clustering structures. Therefore, it is not surprising
that NS theory is valid, thus offering an explanation of the ‘unexpected’ successes
reported in the literature. The conclusion that NS theory is valid for rapid granular
gases also indicates that the intuition that large thermodynamic driving forces exist
at the boundary of bubbling and/or clustering structures might be incorrect; the
thermodynamic driving forces may actually be small.

With respect to the modelling of heterogeneous gas–solid flow, it is usually
concluded that simulation results obtained from NS theory, CFD-DEM simulation
and direct numerical simulation are in good agreement (Wang et al. 2009; Fullmer
& Hrenya 2016; Fullmer et al. 2017; Lu et al. 2017, 2018), thus validating NS
theory. The reported failure of NS theory is based on comparison with experimental
data. In simulations, the particles used are ideal (typically smooth, inelastic and
monodisperse spheres), whereas actual particles are normally non-spherical, rough
and polydisperse. Furthermore, it has long been recognized that the success or failure
of NS theory heavily depends on the interphase drag force, particulate phase stress
and boundary conditions for particle–wall interactions. The findings of the present
study indicate that NS theory is a reasonable choice for discrete particles. Therefore,
further studies should focus on the following issues: (i) if the interphase drag force
correlation and boundary conditions for particle–wall interactions used are sufficient
to capture the physical nature of gas–solid and particle–wall interactions, and/or
(ii) when the numerical results are directly compared to experimental data, if the
non-ideal particle properties (such as roughness, non-sphericity, polydispersity and
cohesion) are considered properly, and if other aspects such as bed geometry and
spatial dimensions (two vs three dimensions) are exactly the same in numerical
simulations and experiments.

6. Conclusion
CFD-DEM simulations of bubbling, turbulent and fast fluidization of idealized

Geldart A, B and D particles were carried out to systematically analyse the validity
of NS theory by quantifying Is, Knfrac, Kngran and Knvel. It was shown that NS
theory is valid for bubbling fluidization, but the validity or breakdown of NS theory
for turbulent and fast fluidization depends on the choice of criterion. Because Is
includes the non-equilibrium effects of both the gradient of the hydrodynamic field
and dissipative particle–particle collisions, we concluded that NS theory for discrete
particles is not the main source of the uncertainty. The benchmark data in this study
were generated using a CFD-DEM method, which needs the interphase drag force
as an input. Further study is needed to determine if the used interphase drag force
correlation can reliably capture the physics of gas–solid interactions.
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FIGURE 4. (Colour online) Probability distributions of Is, Knfrac, Kngran and Knvel at t=7 s
determined using realistic spheres (en = et = 0.9 and µf = 0.3) in bubbling fluidization of
Geldart A particles.
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Appendix

We also carried out CFD-DEM simulations of bubbling fluidization of Geldart A
and D particles with en = et = 0.9 and µf = 0.3, where en, et and µf are the normal
restitution coefficient, tangential restitution coefficient and friction coefficient of the
particles, respectively. Is and Kn were also analysed, but it should be noted that the
dissipations caused by the inelastic collisions in the tangential direction and particle–
particle friction were not considered in the derivation of Is. The results for bubbling
fluidization of Geldart A particles are presented in figure 4; the results for Geldart D
particles were similar, and therefore are not reported. The inclusion of particle friction
and inelastic tangential contact had a minor effect on the PDFs of Is and Kn, but the
overall conclusions drawn in the main text remained the same.
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