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The flow topology and leading-edge vortex (LEV) formation and detachment mechanism
of a pitching and plunging flat plate are experimentally investigated in this study. Focus
is placed on three novel aspects. First, to examine the differences between start-up and
cyclic motions, the flow fields of one-shot experiments are compared to cyclic cases. The
results show that the start cycle has very limited effect on the cyclic LEV development and
flow topology evolution. Next, the influence of the maximum effective angle of attack on
the LEV development in cyclic motion is introduced. Different secondary structures that
lead to the detachment of LEV are found with variation of maximum effective angle of
attack. Depending on the leading-edge shear-layer angle, three different flow topologies
develop on the plate: quasi-steady development, boundary-layer eruption and secondary
vortex formation. Which of these three topological scenarios occurs depends entirely on
the maximum effective angle of attack. A vortex Reynolds number based on the transition
time of the leading-edge shear-layer angle is defined to quantitatively assess which of the
flow topologies will appear. Finally, a simplified model to describe the observed LEV
growth is proposed, based on the assumptions that the velocity is constant at the outer
vortex boundary and that the vortex boundary is a circular arc starting from the leading
edge. The LEV circulation growth is found to increase linearly with the combination of
the effective inflow velocity and the effective angle of attack.

Key words: vortex dynamics, swimming/flying

1. Introduction

The leading-edge vortex (LEV) is a common flow structure in unsteady aerodynamics,
including flapping wings, wind turbines and helicopter rotors. It is well known that
the LEV can strongly augment the lift force acting on the lifting surface, as compared
to a steady-state flow (McCroskey 1982; Corke & Thomas 2015). This phenomenon,
commonly known as dynamic stall, results in high lift, even if the angle of attack is
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far beyond the static stall angle. Although this effect can be advantageous in some
applications, for instance, insect manoeuvring at low air speed (Ellington et al. 1996), it
can also be detrimental, leading to high loads and possible material fatigue, as with wind
turbine blades bearing cyclic loading (Lin et al. 2016). Thus, it is of interest to understand
the formation and detachment mechanism of the LEV to take better advantage of dynamic
stall or to control its existence and/or strength.

The study of unsteady flow phenomena on wings is often reduced to a two-dimensional
case, which is more amenable to analytic, experimental or numerical investigation.
For instance, the sinusoidal motion of a profile in steady flow was analytically solved
by Theodorsen (1935), assuming attached flow throughout the entire cycle. Sears
(1938) and later Atassi (1984) examined a stationary airfoil placed in a flow with
sinusoidal perturbations. These analytic solutions assumed cyclic motion, whereas many
experimental studies focused on one-shot motion, i.e. the start-up cycle. Nevertheless,
one-shot unsteadiness is of great interest for studying airfoil response to gust-like
excitation, as would occur under normal atmospheric conditions. Therefore, one of the
aims of the present study is to determine whether there are fundamental differences
between one-shot flow fields and cyclic flow fields.

Common to most studies is the choice of dimensionless parameters used to specify
the problem. These are the Reynolds number (Re = ρU∞c/μ), the Strouhal number
(St = 2fh/U∞) and the reduced frequency (k = πfc/U∞). Here, ρ is the fluid density, U∞
is the free-stream velocity, c is the chord length of the airfoil, μ is the dynamic viscosity,
f is the motion frequency and h is half of the maximum plunge height, often measured
on the pivot point (Widmann 2015; Eldredge & Jones 2019). The main influence of the
Reynolds number on dynamic stall is the earlier laminar-to-turbulent transition at higher
Re. Baik & Bernal (2012) found that, at high Re, the formation of an LEV was suppressed,
owing to the unstable boundary layer and rapid transition to the turbulent state. At lower
Re, the LEV was reduced to a separated shear layer (Ashraf, Young & Lai 2011), although
with increasing Re the LEV broke down because of a three-dimensional instability (Visbal
2011; Li et al. 2019). Baik et al. (2012) comprehensively examined the effects of St and k
and found that St had a limited influence on the LEV development, whereas an increase in
k suppressed the formation of the LEV completely.

Besides the three dimensionless parameters discussed above, LEV development has
also been characterized using other dimensionless parameters (Anderson et al. 1998;
Read, Hover & Triantafyllou 2003; Yu, Wang & Hu 2013; Tian et al. 2016). Furthermore,
Dabiri (2009) introduced the optimal vortex formation time to predict the LEV detachment
time. The optimal vortex formation time was defined as the maximum circulation that a
vortex can reach at the same feeding shear-layer velocity. Rival, Prangemeier & Tropea
(2009) confirmed that the optimal formation time was constant in their chosen ranges
of parameters. However, Baik et al. (2012) also found that the optimal vortex formation
time changed under certain conditions. In addition to the optimal vortex formation time,
Rival et al. (2014) postulated that the chord length limited LEV development. Based on
these results, Widmann & Tropea (2015) proposed two LEV detachment mechanisms,
called ‘bluff-body detachment mechanism’ and ‘boundary-layer eruption detachment
mechanism’. The distinction between these mechanisms was whether detachment was
triggered by the trailing-edge vortex or the secondary vortex. However, according to the
Lagrangian coherent structure results of Huang & Green (2015), Eldredge & Jones (2019)
surmised that there might be other LEV detachment mechanisms that were a combination
of these two known mechanisms. Therefore, the exact explanation for LEV detachment is
still unclear. The present research focuses therefore on the LEV development over a larger
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test matrix, with the express aim to reveal and examine the different LEV detachment
mechanisms.

Parallel to examining LEV detachment, several models for LEV growth have been put
forward. Panah, Akkala & Buchholz (2015) proposed the vorticity transport budget of
LEV circulation, and their analysis utilized properties of the separating shear layer to
express the rate of change in LEV circulation. Akkala & Buchholz (2017) followed this line
with experiments designed to assess the accuracy of these influencing factors in two- and
three-dimensional cases. Wong, Kriegseis & Rival (2013) postulated a two-dimensional
vorticity-flux model for the growth of the LEV. In their model, the LEV was approximated
as a semicircle at the leading edge, and the feeding shear layer was assumed to be parallel
to the effective inflow and was located on the half-cylinder streamline. The results showed
good agreement with the LEV circulation during the development phase. Wong & Rival
(2015) further improved the vorticity-flux model by assuming that the shear-layer velocity
related with the effective inflow velocity. The LEV circulation growth rate could then be
scaled by using the square of the effective inflow velocity.

In summary, these studies provided insight into the LEV development mechanism
and the LEV growth. However, there are still numerous unknowns. First, the difference
between one-shot and cyclic cases remains unclear, making comparison between such
studies questionable. Second, although the maximum effective angle of attack is known to
be instrumental in governing dynamic stall, investigations with systematic changes of this
parameter are rare. Therefore, in the present study, the influence of maximum effective
angle of attack on LEV development under St and k variations for the cyclic case is
carefully studied. Finally, an existing LEV growth model could be verified and improved
over the investigated parameter range.

2. Experimental apparatus and methods

2.1. Experimental parameters
The experiment was conducted in the water tunnel of Beijing University of Aeronautics
and Astronautics (BUAA). The cross-section of the test section is 1000 mm × 1200 mm
and the maximum free-stream velocity is 0.5 m s−1. The model profile was a flat plate
made of duralumin with sharp leading and trailing edges of angle 30°. It had a chord
length of c = 120 mm and a thickness of 7.2 mm. This is the same profile geometry as
used by Widmann & Tropea (2015), with the sharp leading edge ensuring that separation
is fixed at the leading edge. The Reynolds number based on the chord length was 24 000 at
a free-stream velocity of 200 mm s−1. The turbulence level in the test section of the water
tunnel was less than 1.3 %.

A schematic of the experimental set-up is shown in figure 1. One endplate was fixed
to the model to suppress the influence of the surface waves. The other endplate was fixed
to the bottom of the test section to better approximate two-dimensionality of the flow.
The distance between the bottom of the model and the lower endplate was approximately
3 mm. The profile was able to undergo a combined pitching and plunging motion. The
pitching motion was driven by a rotating shaft, including a servo motor (Yaskawa SGM7J)
and a decelerator (Kamo JFR90). The plunging motion was driven by a servo motor
(Yaskawa SGM7J) and a ball screw rod (THK LC-EA-030A). A programmable multi-axes
controller (Delta Tau Clipper) was used to control the motion and synchronize with other
experimental equipment. The point of rotation was located at the leading edge to avoid the
influence of the leading-edge rotation on the flow field.
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FIGURE 1. Schematic diagram of the experimental set-up: (a) end view looking downstream
and (b) side view. The yellow arrows indicate the plunging and pitching motion directions.

The present research focused on the influence of the maximum effective angle of attack
(αeff ,max ), the Strouhal number and the reduced frequency. The effective angle of attack
is defined using the geometrical angle αgeo(t) undergoing pitching motion and the angle
induced by the sinusoidal plunging motion αplunge(t):

αeff (t) = αgeo(t) + αplunge(t) ≈ αeff ,max sin(2πft), (2.1)

where
αgeo(t) = αgeo,max sin(2πft) (2.2)

and

αplunge(t) = atan

(
−Uplunge(t)

U∞

)
≈ αplunge,max sin(2πft). (2.3)

Here Uplunge(t) is the vertical velocity of the leading edge because of the plunging motion;
and αplunge(t) describes the influence of plunging velocity on the effective angle-of-attack
variation. An overview of the entire test matrix is given in table 1. The relative phase
between the plunging motion and the pitching motion is zero in all cases.

According to this definition, αplunge(t) depends only on the free-stream velocity and the
plunging velocity. The constant free-stream velocity resulted in αplunge(t) being adjusted
solely by St. Therefore, changing the geometrical angle through pitch changed αeff ,max

without any other parameter variation. Similarly, the geometrical angle function could
be used to keep αeff (t) constant when isolating the influence of St and k. Since αplunge(t)
was not strictly a sinusoidal function, the effective angle of attack deviates slightly from
the sinusoidal form. Therefore, St was kept smaller than 0.1 to keep this deviation small,
as elaborated by Read et al. (2003). Time was normalized by the full cycle time (T) to
unify the presentation of results from one-shot and cyclic kinematics, using only the first
half-cycle for one-shot experiments. Therefore, the upper limit of dimensionless time for
the one-shot case is t/T = 0.5. The average effective angle of attack was kept at 0° for
all cases. The Strouhal number was chosen either as 0.04 or 0.08. Note that St = 0.08
represents the upper value cited in the literature for obtaining dynamic stall and the lower
limit for birds under forward flight conditions (Baik 2011). Thus, this range of Strouhal
number is of practical significance.
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Motion type αeff ,max (deg.) St k h (mm) αgeo,max (deg.)

Cyclic 12 0.04 0.3 25 4.84
Cyclic/one-shot 16 0.04 0.3 25 8.84
Cyclic/one-shot 20 0.04 0.3 25 12.84
Cyclic 24 0.04 0.3 25 16.84
Cyclic/one-shot 16 0.08 0.3 50 1.89
Cyclic 20 0.08 0.3 50 5.89
Cyclic 24 0.08 0.3 50 9.89
Cyclic 16 0.04 0.45 16.7 8.84
Cyclic 16 0.08 0.45 33.5 1.89
Cyclic 16 0.04 0.6 12.5 8.84
Cyclic 16 0.08 0.6 25 1.89

TABLE 1. Summary of test matrix.

2.2. Particle image velocimetry measurements
The particle image velocimetry (PIV) system comprised a continuous-wave Nd:YAG laser
with a power of 8 W and a high-speed complementary metal oxide semiconductor (CMOS)
camera (Photron Fastcam SA2/86K-M3) fitted with a Nikon lens (AF 50 mm). Hollow
glass beads with median diameter of 20 μm and density of 1.05 g cm−3 were used as tracer
particles. The measurement plane was horizontal and positioned at the span midpoint of
the flat plate. The magnification of the raw images was approximately 0.17 mm pixel−1

over the entire flow field. Before image processing, the background was subtracted and
plate edge identification techniques were used to enhance the particle contrast ratio and
to suppress measurement errors arising from the shaded part of the image. A multi-pass
iterative Lucas–Kanade method (Champagnat et al. 2011) was applied to the images to
obtain the velocity fields. The size of the final interrogation window was 16 × 16 pixels
with 50 % overlap. The spatial resolution of the interrogation window was 2.27 % of the
chord length.

For cyclic cases, phase-locked PIV was used. The motion controller sent a trigger signal
to the camera whenever the flat plate was in the desired phase. The first five cycles of
every set were removed to avoid any start-up effects. A total of 114 cycles for each case
with 100 velocity fields per cycle were used to conduct the phase averaging process for the
cyclic case. For one-shot cases, time-resolved PIV was used. The sampling frequency was
400 Hz, which corresponds to 2512 velocity fields per cycle. A total of 25 one-shot tests
were recorded, and the results were ensemble-averaged to obtain a final velocity field.
A local regression low-pass filter was used in the velocity fields of the same phase to
remove outliers. Ultimately, the uncertainties of the instantaneous velocity and vorticity
were 9.6 mm s−1 and 7 s−1, respectively. It should be mentioned that the cross-correlation
coefficient between the velocity components was set to zero, making the actual uncertainty
of vorticity less than the computed vorticity uncertainty (Sciacchitano & Wieneke 2016).

2.3. Vortex identification method
To study the LEV evolution, a vortex identification method was necessary to extract
the vortex boundary from the vorticity field. The λci criterion proposed by Zhou et al.
(1999) was used in this study to distinguish the vortex. The connected domain with
λci ≥ 1 s−1 was taken as the limits of a vortex. The chosen identification threshold was
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able to capture the main vortex structure and avoid the influence of measurement noise
inherent in flow velocity values. A polygon line fit to the connected domain was used as
the vortex boundary. The vortex circulation was then calculated as a surface integral of
vorticity normal to the surface:

Γ =
∫

S
ω · n dS. (2.4)

To reduce the error brought about by interpolation on the measurement mesh, an
auxiliary mesh proposed by Onu, Huhn & Haller (2015) was used to calculate λci. The
auxiliary mesh included four points placed symmetrically around each point on the
original mesh. These points were used to achieve a higher accuracy in a finite-difference
approximation (Onu et al. 2015). The spacing of the auxiliary mesh was set to 1 % of the
main mesh spacing to increase the accuracy. The value of velocity at the auxiliary mesh
was evaluated by spline interpolation method.

Besides the LEV circulation, the LEV position was also important. Therefore, the Γ 1
criterion proposed by Graftieaux, Michard & Grosjean (2001) was used to find the centre
of the LEV. The calculation of Γ 1 at a given point is Γ 1 = ∑

sin(θM)/N. Here, θM is the
angle between the velocity vector and the radius vector starting from the given point, and
N is the number of neighbouring points used in the calculation. The maximum absolute
value of Γ 1 within the vortex boundary, determined by the λci criterion, was taken as the
vortex centre.

3. Results and discussion

3.1. One-shot versus cyclic motion
To compare the flow fields evolving from one-shot or cyclic kinematics, three cases
with different αeff ,max and St are studied. Figure 2 shows the evolution of normalized
vorticity (ωc/U∞) fields for the case of k = 0.3, St = 0.04 and αeff ,max = 20°. To equalize
the stochastic uncertainty in each measurement, the phase averaging of the cyclic case
was limited to 25 cycles, and the same number of one-shot repetitions was used. The
flow structure between the two cases is very similar. At t/T = 0.15, the negative vorticity
is concentrated around the leading edge. The LEV cannot be easily distinguished from
the leading-edge shear layer until about t/T = 0.25. Meanwhile, positive vorticity develops
behind the leading edge, representing the formation of secondary structures between the
leading-edge shear layer and the LEV. At t/T = 0.35, the connection between the LEV
and the leading-edge shear layer is weak, indicating that the LEV no longer accumulates
vorticity from the feeding shear layer. By the end of the downstroke, the LEV has passed
beyond the trailing edge.

Figure 3 illustrates a similar comparison, but for a lower maximum effective angle of
attack: k = 0.3, St = 0.04 and αeff ,max = 16°. Again, the flow field developments for the
two kinematic cases are very similar; however, differences from the αeff ,max = 20° case
(figure 2) are apparent. The size and the strength of LEV for αeff ,max = 16° are smaller and
the secondary structure with positive vorticity is almost imperceptible.

A quantitative comparison of profile kinematic influences on the flow field development
is presented in figure 4, where the vortex centre trajectories are compared for various
test matrix cases in the same dimensionless time interval. First, the vortex trajectories of
different motion kinematics are quite similar. This means that the motion kinematics has
limited influence on the LEV development. Second, the trajectories remain similar for
different St, confirming the findings of Baik et al. (2012). Third, it can be found that
the LEV generated with a higher maximum effective angle of attack convects further
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FIGURE 2. Normalized vorticity fields and velocity vectors at different dimensionless times
for (a) one-shot and (b) cyclic kinematics (k = 0.3, St = 0.04 and αeff ,max = 20°).

(b)

(a)

0

0 0 00.5

t/T = 0.15 t/T = 0.25 t/T = 0.35 t/T = 0.45

0.5 0.5 0.51.0 1.0 1.0 1.0

–30

–20

–10

0

10

20

30

0

0 0 00.5 0.5 0.5 0.51.0 1.0 1.0 1.00

0.5y/c

x/c x/c x/c x/c

1.0

0

0.5y/c

1.0

FIGURE 3. Normalized vorticity fields and velocity vectors at different dimensionless times
for (a) one-shot and (b) cyclic kinematics (k = 0.3, St = 0.04 and αeff ,max = 16°).

downstream during the same dimensionless time. In conclusion, the flow topologies
of one-shot and cyclic kinematics are very similar. The influence of dimensionless
parameters on the flow structure development is also similar for the one-shot and cyclic
cases. Therefore, in further analyses of flow field development, results from the cyclic
experiments have been used.

3.2. Influence of maximum effective angle of attack
Figure 5 shows the normalized vorticity fields under different maximum effective angles
of attack. In the case of αeff ,max = 12°, only a recirculation zone is observed on the
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FIGURE 4. The LEV centre trajectories shown in the plate coordinate system for the two
motion kinematics over the dimensionless time interval 0.12 < t/T < 0.35 for various test matrix
cases.

suction side of the flat plate, with no visible secondary structure. There is no rotational
centre identifiable in the flow field. With increasing maximum effective angle of attack
to αeff ,max = 16°, the LEV exhibits higher circulation and positive vorticity appears below
the LEV on the plate and behind the leading edge. For αeff ,max = 20° and 24°, the LEV
becomes much stronger in circulation and the secondary vortex forms much earlier.
Moreover, a trailing-edge vortex (TEV) forms when the LEV detaches from the shear layer
and passes the trailing edge. The formation of the TEV is independent of the secondary
vortex. These phenomena imply that an increase of the maximum effective angle of attack
facilitates the formation of vortex structures during plate motion. Because the LEV is a
typical flow structure associated with dynamic stall, the following discussion now focuses
on the cases of αeff ,max = 16°–24°.

A more graphic representation of the flow topology development is presented in
figure 6, showing the normalized near-wall tangential velocity along the plate (ut/U∞)
as a function of dimensionless time. The near-wall velocity is taken as the mean of the
three wall-adjacent PIV interrogation areas. In this representation, the reattachment point
of the LEV on the plate, xrp, corresponding to a half-saddle point, is indicated by the black
line separating positive and negative near-wall velocities. This plot has been presented for
St = 0.04, k = 0.3 and three maximum effective angles of attack αeff ,max = 16°, 20° and 24°.
The flow field topology and development are similar for all cases. The secondary vortex is
easily distinguishable as positive velocities between the separating shear layer and the LEV
for the cases of αeff ,max = 20° and 24°. The positive velocity is much weaker for the case of
αeff ,max = 16°; this suggests that there is no strong secondary vortex during the downstroke
under this condition. Furthermore, the reattachment point of the LEV reaches the trailing
edge earlier for the higher maximum effective angle of attack, as will be discussed below.

Figure 7 shows the normalized circulation of the LEV (Γ LEV /cU∞) and secondary
vortex (Γ SV /cU∞) against dimensionless time. The vertical dashed lines indicate the time
when the LEV reattachment point reaches the trailing edge. For αeff ,max = 16°, the LEV
circulation reaches its maximum far before the reattachment point reaches the trailing
edge. The time difference between these two moments reduces with increasing maximum
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FIGURE 5. Normalized vorticity fields and velocity vector development with time for different
maximum effective angles of attack, (a) αeff ,max = 12°, (b) αeff ,max = 16°, (c) αeff ,max = 20° and
(d) αeff ,max = 24°, under St = 0.04 and k = 0.3.

effective angle of attack. For αeff ,max = 24°, the LEV circulation just starts to decrease
when the reattachment point reaches the trailing edge.

The secondary vortex circulation of αeff ,max = 16° remains low throughout the entire
half-cycle and is only detectable after the LEV circulation reaches its maximum. This
suggests that the secondary vortex does not significantly influence the development of the
LEV. For the cases of αeff ,max = 20° and 24°, the secondary vortex is much stronger. The
secondary vortex continues to grow even after the LEV circulation reaches its maximum.
The simultaneous increase of both the LEV and the secondary vortex circulation implies
that the formation and growth of the secondary vortex is dependent on the strength of the
LEV. The continuous increase of secondary vortex circulation suggests that the backflow
induced by the LEV may be a key influencing factor.

In both the LEV detachment mechanisms proposed by Rival et al. (2014) and Widmann
& Tropea (2015), namely boundary-layer eruption detachment and bluff-body detachment,
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FIGURE 6. (a) Diagram of LEV reattachment point. (b–d) Normalized surface tangential
velocity (ut/U∞) for different maximum angles of attack: (b) αeff ,max = 16°, (c) αeff ,max = 20°
and (d) αeff ,max = 24°, under St = 0.04 and k = 0.3. The black line is the trajectory of the LEV
reattachment point.

respectively, the time when the reattachment point behind the LEV reaches the trailing
edge and the time when secondary vortex is formed are important criteria. The unique
feature of boundary-layer eruption detachment is that the formation of a secondary vortex
and the decrease of LEV circulation occur earlier in time than when the reattachment
point behind the LEV reaches the trailing edge. For bluff-body detachment, the LEV
circulation starts to decrease after the LEV reaches the trailing edge, without a strong
influence of the secondary vortex. Accordingly, the cases investigated in the present study
belong to the boundary-layer eruption category because the LEV circulation starts to
decrease before the reattachment point reaches the trailing edge. However, differences do
exist. For αeff ,max = 16°, the LEV circulation starts to decrease in the absence of a visible
secondary vortex and a TEV. For αeff ,max = 20° and 24°, the LEV circulation continues
to increase, while not directly decreasing after the formation of the secondary vortex.
Therefore, it cannot be concluded that the LEV detachment is based solely on the growth
of the secondary vortex. Another LEV detachment mechanism may exist for the present
experimental cases, especially for the case of αeff ,max = 16°.

Before continuing the discussion, the concept of a separated shear-layer angle is
introduced. Figure 8(a) illustrates the method used to calculate the shear-layer angle. First,
points displaying the highest negative vorticity are identified in the shear layer (marked
green in figure 8a). Then a linear fit to these points is used, whereby the number of points
used (between 7 and 10) is chosen according to which fit results in the largest correlation
coefficient R2. The angle between the fitting line and the plate surface is taken as the
shear-layer angle.
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FIGURE 7. Normalized LEV and secondary vortex circulation developments for different
maximum effective angles of attack. The vertical dashed lines represent the time when the LEV
reattachment point reaches the trailing edge.

Figure 8(b–d) shows the evolution of shear-layer angle for different maximum effective
angles of attack. The magnitude of the error bars depends on the standard deviation
of shear-layer angle fluctuations, observed as fluctuations of phase-averaged values. All
curves exhibit a similar development and, accordingly, three phases can be identified:
the growth phase, the steady phase and the decreasing phase. These three phases are
demarcated in figure 8(b–d) using a grey background.

In considering these three phases of shear-layer angle development, the final phase,
i.e. the decreasing phase, is rather obviously a consequence of LEV detachment from the
feeding shear layer. For the case of αeff ,max = 16°, the third phase begins around the time
when the LEV reaches the trailing edge, while the third phase begins after the LEV reaches
the trailing edge for the cases of αeff ,max = 20° and 24°.

To give possible explanations for the growth phase and the steady phase, the change of
the LEV boundary with phase is examined. Figure 9(a) depicts the measured boundary and
the vortex centre of the LEV at different dimensionless times in the plate coordinate system
of the case of k = 0.3, St = 0.04 and αeff ,max = 24°. This boundary has been fitted at each
time to an ellipse form. The ratio of minor axis to major axis for the fitting ellipse, namely
the inverse of the aspect ratio of the LEV (1/ARLEV), is calculated and shown in figure 9(b).
The gradual increase of 1/ARLEV in the growth phase clearly shows that the shape of the
LEV changes from elliptic to circular. The overall trend for 1/ARLEV develops in a similar
time frame as the shear-layer angle. The small deviation is because the shear-layer angle
depends not only on the LEV shape deformation, but also on the movement of the vortex
centre. However, the simultaneous variation suggests that the change of the LEV shape is
the main reason for the shear-layer angle phase transition.
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FIGURE 8. (a) Principle for computing the shear-layer angle from the normalized vorticity field.
The green points are those with highest negative vorticity. The yellow line is the fitted line used
to represent the leading-edge shear layer. (b–d) The development of shear-layer angle for k = 0.3
and St = 0.04 with different maximum angles of attack: (b) αeff ,max = 16°, (c) αeff ,max = 20° and
(d) αeff ,max = 24°.

In the growth phase (t/T < 0.2), the vertical growth of the LEV, including the change of
shape and the movement of the vortex centre, results in a higher angle of the leading-edge
shear layer, as shown in figure 9(c). This explains the first phase observed in figure 8(b–d).
In the steady phase (0.2 < t/T < 0.4), the LEV grows not only vertically, but also in the
chord-wise direction. The balance between the growth in the vertical and chord-wise
directions of the LEV results in an almost constant value of the leading-edge shear-layer
angle, as shown in figure 9(d).

The time at which the shear-layer angle changes from the growth phase to the steady
phase is denoted ‘transition time’. According to Doligalski, Smith & Walker (1994),
the movement of the vortex occurs because of the boundary-layer response, when the
vortex Reynolds number is large enough. Hence, the transition time represents the
time when boundary-layer response starts to interrupt the LEV development. Figure 10
shows a high-resolution depiction of the vorticity field near the leading edge for cases
of αeff ,max = 16° and 24° around the transition time. This representation reveals that
different secondary structures exist at the transition time, which are the different types
of boundary-layer response to the LEV. For the case of αeff ,max = 16°, a positive vorticity
layer under the LEV erupts just after the transition time, as the yellow circle shows. Akkala
& Buchholz (2017) also found this positive vorticity layer in their high-resolution result.
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FIGURE 9. (a) The fitted elliptic boundary of the LEV at different times for the case of k = 0.3,
St = 0.04 and αeff ,max = 24°. (b) The variation of the inverse of the aspect ratio of the LEV,
which is defined as the ratio between the minor axis and the major axis for the fitted boundary of
the LEV. The red dashed line denotes the time when the first phase transits to the second phase.
(c,d) Schematic diagrams of the evolution of the LEV in (c) the growth phase and (d) the steady
phase of shear-layer angle development.

The vorticity-layer eruption is a consequence of the downstream convection of the LEV.
For the case of αeff ,max = 24°, an obvious secondary vortex replaces the vorticity-layer
eruption as the dominant influencing structure. Therefore, it can be concluded that
the growth of the secondary structure increases the convective velocity of the LEV
downstream. Thus, different secondary structures play the role of interrupting the LEV
development for different maximum effective angles of attack.

As a consequence of the no-slip condition on the plate surface, it is reasonable to
assume that a stronger LEV creates more positive vorticity in the near-wall vorticity layer.
Therefore, the surface tangential velocity at a position that is below the vortex centre, ui, is
calculated, as shown in figure 11(a). Figure 11(b) shows the induced velocity development
at different αeff ,max values. The leading-edge shear-layer transition times are also shown
by vertical dashed lines. The induced velocity increases with an increase in the maximum
effective angle of attack. This suggests that the strong LEV in the case of high αeff ,max

would induce a strong vorticity layer, which finally produces the secondary vortex to
interrupt the LEV development. For the case of αeff ,max = 16°, the weak LEV can only
induce vorticity-layer eruption from the vorticity layer.

Furthermore, the critical vortex Reynolds number, which is the vortex Reynolds number
(Reν =Γ /2πν, where ν is the kinematic viscosity) of the LEV at the transition time
is calculated, as listed in table 2. The critical vortex Reynolds number in the case of
αeff ,max = 16° is far smaller than that in other cases. The nearly same transition time means
that the time for LEV uninterrupted development is similar. Because the LEV development
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FIGURE 10. Normalized vorticity field with velocity vectors near the leading edge of
(a) αeff ,max = 16°, t/T = 0.20, (b) αeff ,max = 16°, t/T = 0.22, (c) αeff ,max = 24°, t/T = 0.19, and
(d) αeff ,max = 24°, t/T = 0.21, under k = 0.3 and St = 0.04.
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FIGURE 11. (a) Schematic diagram of the LEV induced velocity. (b) The normalized induced
velocity for different maximum effective angles of attack. The vertical dashed lines mark the
leading-edge shear-layer transition time.
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αeff ,max = 16° αeff ,max = 20° αeff ,max = 24°

Transition time, t/T 0.21 0.22 0.2
Reν 2959 4221 4390

TABLE 2. Shear-layer angle transition time and corresponding critical vortex Reynolds number.

(b)

(a)

Recirculation zone

LEV
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TEV

Vorticity-layer eruption

Secondary vortex(c)

FIGURE 12. Three different flow topology scenarios with increase in the maximum effective
angle of attack: (a) quasi-steady development scenario, (b) vorticity-layer eruption scenario, and
(c) secondary vortex formation scenario.

is determined by the inflow condition, it can be assumed that the αeff (t) function has
the main influence on the transition time. However, this assumption still needs further
research. Following the approach of Doligalski et al. (1994), the vortex Reynolds number
is used to distinguish the viscous response provoked by a vortex in the near-wall flow.
Therefore, the different vortex Reynolds numbers observed at the transition time determine
which kind of secondary structure, namely the vorticity-layer eruption or the secondary
vortex, will interrupt the LEV development and lead to LEV detachment.

The observed flow topology exhibits different characteristics for different maximum
effective angles of attack. Three scenarios, shown in figure 12, can be concluded from the
previous analysis, namely a quasi-steady development scenario, a vorticity-layer eruption
scenario and a secondary vortex formation scenario, which correspond to the cases
of αeff ,max = 12°, αeff ,max = 16° and αeff ,max = 20°–24°, respectively. In the quasi-steady
development scenario, a single recirculation zone is the main flow feature and no obvious
LEV can be observed. With the vorticity-layer eruption scenario, despite the formation
of the LEV, the vortex strength is only sufficient to provoke vorticity-layer eruption. In
the secondary vortex formation scenario, the LEV is sufficiently strong to induce the
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FIGURE 13. Normalized vorticity field and velocity vector development with time for different
St: (a) St = 0.04 and (b) St = 0.08 under k = 0.3 and αeff ,max = 24°.

formation of a secondary vortex. To quantitatively determine which of the latter two
scenarios will occur, the vortex Reynolds number at the transition time of the shear-layer
angle is a good indicator.

3.3. Discussion on flow topology scenarios
Subsequent to the results discussed above, the influence of k and St on the flow topology
scenario is also studied in figures 13 and 14. Figure 13 shows the development of the
normalized vorticity field at different values of St at k = 0.3 and αeff ,max = 24°. The
flow topology for different St values does not exhibit significant differences. The LEV
circulation variations for different St values are also similar to each other, as shown in
figure 15(a). The secondary vortex is observed during the LEV development. Baik et al.
(2012) indicated that St had a limited influence on the LEV development in the larger range
(St > 0.1). Therefore, the same flow topology scenario at different St values with constant
αeff ,max is expected.

The normalized vorticity fields at different values of k at St = 0.04 and αeff ,max = 16° are
shown in figure 14. With an increase in k, the LEV development is significantly postponed,
which is also validated by LEV circulation variation, as shown in figure 15(b). The time
when the reattachment point of the LEV reaches the trailing edge is delayed with an
increase in the reduced frequency. Although the LEV for higher k has a higher vorticity,
the extent of the LEV is much smaller. The secondary structure at t/T = 0.35 for k = 0.6
is stronger than the one for k = 0.3. The distinct secondary structure for the case of higher
reduced frequency indicates that it contributes to the detachment of LEV from the feeding
shear layer.

The critical vortex Reynolds number is used to quantitatively distinguish the flow
topology scenario at different St and k values. Figure 16 shows the critical vortex
Reynolds numbers under different experimental parameters. Two values, a higher one at
approximately 4500 for the secondary vortex formation and a lower one at approximately
2500 for the vorticity-layer eruption, can be clearly identified in the results. This indicates
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FIGURE 14. Normalized vorticity field and velocity vector development with time for different
k: (a) k = 0.3, (b) k = 0.45 and (c) k = 0.6 under St = 0.04 and αeff ,max = 16°.
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FIGURE 15. Normalized LEV circulation development for (a) different Strouhal numbers and
(b) different reduced frequencies.

that the flow topology development is mainly dependent on the maximum effective angle
of attack. Although k would postpone the development of LEV, the flow topology scenario
does not change with the same maximum effective angle of attack.
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FIGURE 16. Flow topology scenario and the corresponding critical vortex Reynolds number
for all cases studied.

3.4. LEV growth model
A simplified model describing the growth of circulation in the LEV is now introduced. In
previous models, the mass flow from the feeding shear layer into the vortex determined
the vortex growth rate (Kaden 1931). Using the same assumption, Sattari et al. (2012)
and Wong et al. (2013) proposed a model for the steady flux of vorticity from the shear
layer into a two-dimensional vortex. These theories and results are modified in the present
model. First, a new coordinate system fixed on the plate, with the origin at the leading
edge, is introduced. Second, the outer contour of the LEV is approximated as a circular
arc projecting from the leading edge, as depicted in figure 17(a). Third, the shear layer
is assumed to be oriented tangential to this circular arc at the leading edge. Fourth, the
velocity on the vortex outer contour is assumed to be constant, following Sattari et al.
(2012). Then the circulation of the LEV can be expressed as

Γ (t) ≈ 2αeff (t)R(t)Ub(t), (3.1)

where the R(t) is the radius of the arc and Ub(t) is the velocity at the vortex outer boundary.
Since the velocity Ub(t) is assumed constant along the arc, then it can take the value of
the effective inflow velocity at the leading edge, Ueff (t). The Ueff (t) is the vector sum of
the free-stream velocity U∞ and the plunge velocity Uplunge(t). The model now requires
specification of the radius R(t). Figure 6 indicates that the LEV reattachment point moves
along the chord linearly in time; hence, the LEV radius can also be assumed to grow
linearly in time, i.e. R(t) = Kt. Here, K is a constant which represents the growth rate of
the radius. Thus, the LEV circulation can be expressed as

Γ (t) ≈ 2Ktαeff (t)Ueff (t). (3.2)
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FIGURE 17. Diagram of (a) LEV outer vortex boundary approximated using a circular arc and
(b) polynomial fitting of the LEV circulation, yielding the LEV onset time.
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FIGURE 18. The normalized LEV circulation as a function of cycle time from LEV onset.

This model can only be applied after the onset of an LEV; thus the onset time of the LEV,
tonset, is required. For this, a polynomial fitting of the LEV circulation is used to locate the
onset time of the LEV, as was also used by Buchner et al. (2018). This approach can be
illustrated graphically, as shown in figure 17(b).

In this manner, the evolution of the normalized LEV circulation, Γ ∗(t) =
Γ/2cαeff (t)Ueff (t), relative to the normalized time from LEV onset, (t − tonset)/T, can be
obtained for all cases, as shown in figure 18. A linear relationship between the normalized
circulation and dimensionless time, namely Γ * ∼ K*t/T, can be found with St, k and
αeff variations. Here, K* represents the dimensionless growth rate of the vortex radius,
which is normalized based on the chord length and the full cycle time. It is suggested
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that all cases presented here have similar normalized growth rates. Consequently, the
effective inflow velocity Ueff and the effective angle of attack αeff can be considered as
two key parameters in determining the LEV growth. The most important improvement
of this model is the quantitative connection between effective inflow condition, Ueff
and αeff , and LEV circulation development. This reveals that the common plate motion
parameters, including St, k and αeff , influence the dynamic stall characteristics by changing
the effective inflow condition. The plates with pure plunging motion, pure pitching motion,
and combined pitching and plunging motion can all use this model to describe the LEV
circulation development. Besides, this model shows that the radius of the vortex increases
linearly with time. This assumption helps to simplify the calculation of the radius and
vortex strength during plate motion.

4. Conclusion

The flow around a pitching and plunging flat plate has been experimentally studied for
both one-shot and cyclic motion kinematics and over wide ranges of maximum effective
angle of attack, Strouhal number and reduced frequency. The results indicate that there is
very little difference in flow field topology between the one-shot and cyclic cases.

The LEV development for different maximum effective angles of attack under cyclic
motion is then studied in more detail, leading to three different topological scenarios,
depending on the magnitude of the maximum effective angle of attack. The quasi-steady
development scenario corresponds to a single recirculation zone as the main flow
characteristic. The vorticity-layer eruption and the formation of a secondary vortex are
the main features of the two other scenarios. The influence of these secondary structures
on LEV development is reflected in the variation of the leading-edge shear-layer angle. In
addition, it is found that the tangential velocity induced by the LEV on the plate determines
the different secondary structures. Because the vortex circulation is based on the velocity
distribution at the vortex boundary, the vortex Reynolds number, which normalizes the
vortex circulation at the shear-layer angle transition time, is studied. It is found to be an
efficient method to distinguish between the vorticity-layer eruption and secondary vortex
formation scenarios. These two scenarios occur at a critical vortex Reynolds number of
around 2500 and 4500, respectively. According to a comprehensive variation of St and k,
the vortex Reynolds number at the shear-layer angle transition time is demonstrated to be
mainly dependent on the maximum effective angle of attack.

Finally, a simplified model for the LEV growth is proposed. This model is based on the
transport of vorticity into the vortex through the shear layer. The velocity is assumed to be
constant at the vortex outer boundary. The outer boundary is approximated by a circular
arc, projecting from the leading edge. The simplified model reveals that the LEV growth
is primarily determined by the effective inflow velocity and the effective angle of attack.
It describes well the experimental results of circulation growth over time for all cases.
Based on this model, it is possible to predict the LEV evolution with more studies on the
prediction of the LEV onset time. It should be noted that the proposed model is based on
flow over a flat plate. The sharp leading edge ensures that the separation point is fixed at
the leading edge during motion, which is conducive for the growth of the LEV. However,
the movement of the separation point when the leading edge is not sharp, like the leading
edge of an airfoil, would delay the formation of the LEV (Rival et al. 2014). The onset
time of the LEV would also be delayed in this case. Future study of different leading-edge
geometries is suggested to clarify this behaviour.
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