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Abstract The flow past an obstacle is a fundamental object in fluid mechanics. In 1967 Finn and

Smith proved the unique existence of stationary solutions, called the physically reasonable solutions,

to the Navier–Stokes equations in a two-dimensional exterior domain modeling this type of flows when
the Reynolds number is sufficiently small. The asymptotic behavior of their solution at spatial infinity

has been studied in detail and well understood by now, while its stability has remained open due to

the difficulty specific to the two-dimensionality. In this paper, we prove that the physically reasonable
solutions constructed by Finn and Smith are asymptotically stable with respect to small and well-localized

initial perturbations.
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1. Introduction

The two-dimensional motion of viscous incompressible fluid past an obstacle is a classical

object of research in fluid mechanics. It is modeled by the two-dimensional Navier–Stokes

system: 
∂t u−

1
Re
1u+ u · ∇u+∇ p = 0, div u = 0, t > 0, x ∈ �,

u|∂� = 0, lim
|x |→∞

u = e1, t > 0,

u|t=0 = u0, x ∈ �.

(1.1)

Here the fluid domain � is assumed to be an unbounded domain in R2 with a smooth and

compact boundary, while u = u(t, x) = (u1(t, x), u2(t, x)) and p = p(t, x), x = (x1, x2)

are the unknown velocity field and the pressure field of the fluid, respectively, u0 =

(u0,1(x), u0,2(x)) is a given initial velocity field, and e1 = (1, 0). The complement of the

domain� represents the obstacle and is normalized in the following sense: diam(R2
\�)= 1

and the origin of the coordinates is located interior to R2
\� and dist({0}, ∂�) > 1/4. The

positive parameter Re represents the Reynolds number. We use the standard notation

for derivatives: ∂t =
∂
∂t , ∂ j =

∂
∂x j

, 1 =
∑2

j=1 ∂
2
j , div u =

∑2
j=1 ∂ j u j , u · ∇u =

∑2
j=1 u j∂ j u.
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By denoting u− e1 and u0− e1 by the same symbols u and u0, respectively, and also

by introducing the scaling of the time variable t 7→ αt with α = Re for simplicity of

notations, system (1.1) is equivalent with
∂t u−1u+α∂1u+αu · ∇u+∇ p = 0, div u = 0, t > 0, x ∈ �,

u|∂� = −e1, lim
|x |→∞

u = 0, t > 0,

u|t=0 = u0, x ∈ �.

(1.2)

Here αp is also denoted again by p. In this paper α is always assumed to be positive.

The important contribution to the study of (1.2) has been done by Finn and Smith

[22], where the unique existence of stationary solutions U = U (x;α) to (1.2) is established

when the Reynolds number α is sufficiently small, based on their analysis of the Oseen

linearization in [21]. The stationary solutions in [22] decay in the order O(|αx |−
1
2 ),

which comes from the decay of the Oseen fundamental solution, and they are called the

physically reasonable solutions. The asymptotic behavior of U as |x | → ∞ is studied by

Smith [49] and it is shown that the leading profile is described by the Oseen fundamental

solution. The results of [21, 22, 49] have been extended in various aspects by Galdi [24, 25].

The reader is also refereed to the book by Galdi [26] for further details on the results for

the stationary solutions to (1.2), and see also the work on Hillairet and Wittwer [34] for

the stationary exterior problem in a half-space setting.

In spite of its importance, few is known so far about the stability of the physically

reasonable solutions. This is contrasting with the three-dimensional case, where the

unique existence of physically reasonable solutions for small Reynolds numbers are proved

in the series of works by Finn [17–20], after a pioneering work of Leray [38] on the general

existence result but with less information on the estimate at spatial infinity; see also the

works by Fujita [23], Babenko [6], Farwig [16] about the stationary solutions to (1.1)

in three dimensions. For the three-dimensional case the physically reasonable solutions

decay in the order O(|x |−1) and are known to be asymptotically stable when the Reynolds

number is small enough. This asymptotic stability is proved by Heywood [30, 31] in the L2

framework, and the L2 stability is further studied and extended by many researches; see

Masuda [43], Heywood [32], Miyakawa [44], Maremonti [41], Miyakawa and Sohr [45], and

Borchers and Miyakawa [7]. In three dimensions another natural functional framework

is the Lebesgue space L3, for the physically reasonable solutions actually belong to L3

as observed in the work of Shibata [47]. The L3 stability is then established by Shibata

[47], based on the analysis of the Oseen semigroup by Kobayashi and Shibata [37]; see

also the work by Enomoto and Shibata [14, 15] for the L p theory in higher dimensions.

Finn’s starting problem is also settled in three dimensions; see Galdi, Heywood, and

Shibata [27].

In the two-dimensional case, recently the global well-posedness for nondecaying initial

data is obtained by Abe [2] and Maremonti and Shimizu [42]. However, the stability of

the physically reasonable solutions has been completely open, even when the Reynolds

number is sufficiently small and the initial perturbations are small enough and compactly

supported. The crucial difficulty comes from the slower spatial decay of U such as

O(|αx |−
1
2 ) as |x | → ∞, which is only in the slow variable αx rather than the original

variable x , while in the three-dimensional case it is at least in the order O(|x |−1) already
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in the original variable. In fact, even in the level of the Oseen semigroup the analysis

becomes rather complicated due to the logarithmic singularity of the resolvent near the

origin and also to the parabolic distribution of the continuous spectrum of the Oseen

operator. Indeed, it is very recent that the Oseen semigroup in two dimensions is shown

to define a bounded semigroup in the L p space for p ∈ (1,∞), which is established

by Hishida [35]. However, due to the slow decay of U , the L p estimate for the Oseen

semigroup in [35] does not yield either the linear or nonlinear stability of the physically

reasonable solution itself, even when α is small enough. In fact, the stability of the

physically reasonable solutions shares a common difficulty with the stability of the small

scale-critical stationary solution (decaying in the order O(|x |−1) for the Navier–Stokes

equations (α = 0) in a two-dimensional exterior domain, for which no general theory is

established yet and only some partial results are known for specific examples (see Guillod

[29], Y. M. [39], and Higaki [33] and references there in). A short discussion about this

scale-critical nature of the problem is given in Remark 1.4 below.

In this paper we shall prove that, when α is sufficiently small, the physically

reasonable solutions obtained by Finn and Smith are asymptotically stable for small and

well-localized initial perturbations. As far as the author knows, this is the first stability

result in the two-dimensional case. To be precise let (U,∇P) be the stationary solution

to (1.2): {
−1U +α∂1U +αU · ∇U +∇P = 0, div U = 0, x ∈ �,

U |∂� = −e1, lim
|x |→∞

U = 0. (1.3)

We study the evolution of the perturbation v = u−U , which obeys the system:
∂tv−1v+α∂1v+∇q = −α∇ · (U ⊗ v+ v⊗U + v⊗ v), t > 0, x ∈ �,

div v = 0, t > 0, x ∈ �,
v|∂� = 0, lim

|x |→∞
v = 0, t > 0,

v|t=0 = v0, x ∈ �.

(1.4)

Here v0 = (v0,1, v0,2) is a given initial perturbation, and f ⊗ g = ( fi g j )16i, j62. The decay

structure of U clearly plays an important role for its stability. The key observation here is

the well known wake structure of U , which gives the additional anisotropic spatial decay

other than O(|αx |−
1
2 ). In particular, the argument of [11, 22, 26, 49] gives the following

decay estimate of U , which will be assumed in this paper.

Assumption. The following statements hold for any sufficiently small α > 0.

(A1) The velocity U = U (α; ·) belongs to L∞(�)2 and satisfies

|U (x)| 6
C
|logα|

(
1

|αx |
1
2 (1+ |αx | −αx1)

3
4
+

1
1+ |αx |

)
, x ∈ �

with a constant C independent of α.

(A2) ∇U ∈ L4(�)2×2
∩ L∞(�)2×2 and ‖∇U‖L4(�)2×2∩L∞(�)2×2 6 C with a constant C

independent of α.
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Since the pointwise estimate in (A1) is not written explicitly in the literature, for

reader’s convenience, we give a sketch of the proof of (A1) in Appendix C for the solutions

constructed in [22].

Remark 1.1. (i) The decay of U is estimated in the rescaled variable X = αx , which is

compatible with (1.3). The factor (1+ |αx | −αx1) in (A1) represents the wake structure

behind the obstacle. The key point is that the slow decay O(|αx |−
1
2 ) appears together

with the wake structure, while the nowake part of U decays in the order O(|αx |−1). The

factor |logα|−1 gives the smallness of U in the rescaled variable when α is small enough

and plays a key role in constructing the stationary solutions in [22]. This smallness factor

is related to the Stokes paradox; cf. Chang and Finn [10].

(ii) The important property of the function 1

|αx |
1
2 (1+|αx |−αx1)

3
4

is that it still belongs to

a scale-critical space but in the anisotropic sense. Indeed, as proved in Lemma A.1, we

have
1

|αx |
1
2 (1+ |αx | −αx1)

1
2
6

C

|αx |
1
2 + |αx2|

, x ∈ R2
\ {0}, (1.5)

and thus, the function 1

|αx |
1
2 (1+|αx |−αx1)

1
2

is bounded in the anisotropic norm ‖x2 f ‖L∞

which is invariant under the scaling fλ(x) = λ f (λx); see Remark 1.4 for the discussion on

the criticality. Moreover, in virtue of the factor 1

(1+|αx |−αx1)
3
4

rather than 1

(1+|αx |−αx1)
1
2

,

the function 1

|αx |
1
2 (1+|αx |−αx1)

3
4

even belongs to L∞x1
L1

x2
, i.e., it is integrable in x2.

The main result of this paper is stated as follows. The precise definition of the function

spaces is stated in § 2. Let us define the function b(X) by the formula

1
b(X)

=
1

|X |
1
2 (1+ |X | − X1)

3
4
+

1
1+ |X |

. (1.6)

Theorem 1.2. For any β ∈ [0, 1) there exists a constant ᾱ = ᾱ(β) > 0 such that the

following statement holds for any α ∈ (0, ᾱ]. There exists a constant ε > 0 such that

for any v0 ∈ L4
σ (�) satisfying

‖v0‖L∞(�)+‖b(α·)v0‖L∞(�) 6 (1−β)ε, (1.7)

system (1.4) admits a unique mild solution v ∈ C([0,∞); L4
σ (�))∩C((0,∞);W 1,4

0 (�)2)

satisfying ( t
1+t )

1
2∇v(t) ∈ L∞(0,∞; L∞(�)2×2) and

‖v(t)‖L∞(�) 6
C |logα|

1+ (α2t)
β
2

‖(1+ b(α·))v0‖L∞ . (1.8)

Here ε and C are independent of α and β.

Remark 1.3. (i) One can check that any solenoidal vector field in � satisfying (1.7)

belong to L4
σ (�) (in virtue of the wake factor). The solutions treated in this paper are
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mild solutions, i.e., the solutions to the integral equation associated with (1.4), which is

well defined since the Oseen operator appearing in (1.4) generates the analytic semigroup

in L4
σ (�); see § 2 for details.

(ii) The condition (1.7) reflects the decay structure of U . Indeed, we are imposing the

same decay on the perturbations as U . It should be emphasized that the positive number

ε is small but is independent of α. Note that the estimate ‖v0‖L∞(�) 6
C

α
1
2
‖b(α·)v0‖L∞(�)

holds under the normalized condition of the domain � stated above, but in order to

make the smallness condition on ε uniformly in α, this estimate should not be used

in describing the condition (1.7). Another important remark is that U itself does not

satisfies the smallness condition of (1.7) in general. Indeed, for the physically reasonable

solutions in [22] one can only claim that

‖U‖L∞(�)+ |logα| ‖b(α·)U‖L∞(�) 6 C

for some constant C which is uniform in small α, but this constant C is not necessarily

small. In particular, ‖U‖L∞(�) is not necessarily small in general.

(iii) The weight function b can be slightly generalized. Indeed, Theorem 1.2 is valid even

if the definition of b in (1.6) is replaced by

1
b(X)

= d(X)+
1

1+ |X |
with (|X |

1
2 + |X2|) d(X) ∈ L∞(R2) and d(X) ∈ L∞X1

L1
X2
. (1.9)

In this case the number ε in Theorem 1.2 depends on ‖ρd‖L∞X
+‖d‖L∞X1

L1
X2

with ρ(X) =
|X |

1
2 + |X2|.

(iv) The number β represents the order of time decay and must be strictly less than 1 in

our analysis. As indicated in (1.7), the decay order O((α2t)−
1
2 ) exhibits a criticality in

the estimate. In fact, if v0 satisfies for some δ > 0,

ess.supx∈�(1+ |αx |
1
2 + |αx2|)

1+δ
|v0(x)| 6 ε(δ)� 1, (1.10)

then one can show ‖v(t)‖L∞(�) = o((α2t)−
1
2 ) as α2t →∞, that is, v decays in time faster

than the critical order in L∞. However, to achieve this faster temporal decay (under

stronger spatial decay of v0 as in (1.10)) requires an even more technical computations.

The discussion in this regime is stated in § 6.

Remark 1.4. It will be meaningful to point out here the scale-critical nature underlying

this problem, though the phrase ‘scale-critical’ for (1.4) is somewhat confusing since there

is no invariant rescaling for (1.4) even in the whole space setting, due to the presence of the

term α∂1. In fact, the criticality here is seen in the level of various estimates. One easy way

to glimpse it is to recall the Lq -Lr estimate of the Oseen semigroup in R2, which is given

by ‖e−tAα f ‖Lq (R2) 6 Ct−
1
r +

1
q ‖ f ‖Lr (R2) for 1 6 r 6 q 6∞ with C uniformly in α (here

Aα = Aα,R2 = −1+α∂1 is the Oseen operator in R2; see § 2.2). Thus, in the level of the

Lq -Lr estimate in R2, we do not see the effect of α, and then heuristically the borderline

whether one can treat the linearized term−α∇ · (U ⊗ v+ v⊗U ) in (1.4) as a perturbation

globally in time or not should be related to whether U is small in a scale-invariant norm

for the standard Navier–Stokes equation (α = 0), i.e., the norm which is invariant under

https://doi.org/10.1017/S1474748019000240 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000240


522 Y. Maekawa

the scaling f (x) 7→ λ f (λx). As stated in Remark 1.1, the physically reasonable solution

U formally satisfies this requirement in an anisotropic way. Unfortunately, this view is

of course too optimistic and naive in the actual proof, and we do not know whether U
is stable or not in the simple framework of Lq spaces. Another way to see the criticality,

which is indeed related to the actual proof, is to introduce the distance

ρ(X) = |X |
1
2 + |X2|, X = αx, (1.11)

where the parabolic aspect in the low frequency of the operator α∂1− ∂
2
2 is taken into

account. This distance is natural and useful in the analysis of (1.4). For example, as

shown in Lemma A.1, U satisfying (A1) obeys the bound

|U (x)| 6
C

|logα|ρ(X)
, (1.12)

that reminds us the scale-critical decay O( 1
|x | ) for the standard Navier–Stokes equations.

The criticality of the order O(ρ(X)−1) will be seen in the analysis of the bilinear form

in R2 in § 3.2. Roughly speaking, the result of § 3.2 is applied to the integral form of the

linearized term 3Aα [U, f ](t, ·) := α
∫ t

0 e−(t−s)AαP∇ · (U ⊗ f + f ⊗U ) ds, where P is the

Helmholtz projection in R2, and after some computation using Lemma 2.3, we can show

|3Aα [U, f ](t, x)| 6
C
|logα|

∫
R2

1
ρ(X − Y )2ρ(Y )1+γ

dY sup
s>0
‖ρ(α·)γ f (s)‖L∞(R2), (1.13)

where γ > 0 and X = αx . Here (1.12) is used and the function 1
ρ(X−Y )2 comes from the

time integral of the kernel e−(t−s)AαP∇·. Lemma 2.4 for the convolution of 1
ρ

implies that∫
R2

1
ρ(X − Y )2ρ(Y )γ ′+γ

dY 6
C

ρ(X)γ ′−1+γ

(
1

γ ′− 1+ γ
+

1
3− γ − γ ′

)
(1.14)

as long as 0 < γ ′− 1+ γ < 2, which yields by taking γ ′ = 1,

sup
t>0
‖ρ(α·)γ3Aα [U, f ](t)‖L∞(R2) 6

C
|logα|

(
1
γ
+

1
2− γ

)
sup
s>0
‖ρ(α·)γ f (s)‖L∞(R2).

This estimate indicates how to close the estimate when 0 < γ < 2 and α is small enough,

by making use of the decay of U in a crucial way. Although we need more weighted

norms (as stated below) and technical computations to achieve the nonlinear asymptotic

stability, the proof of the linear estimate for the whole space problem proceeds along this

basic idea. We observe from (1.14) that, if |U (x)| = O(ρ(X)−γ
′

) with γ ′ < 1, then there

is no hope to close the estimate in this approach: in this sense, the decay of U in (1.12)

is just in the critical order.

The key step of the proof of Theorem 1.2 is to study the linearized problem
∂tv−1v+α∂1v+∇q = α∇ · ( f ⊗ g+ g⊗ f ), t > 0, x ∈ �,

div v = 0, t > 0, x ∈ �,
v|∂� = 0, lim

|x |→∞
v = 0, t > 0,

v|t=0 = v0, x ∈ �.

(1.15)
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The results for (1.15) are summarized in Propositions 4.3 and 4.4. We shall establish

the weighted L∞ estimate of the solution to (1.15), where the weight function is suitably

chosen in view of the wake structure of U and the Oseen operator so that we can close the

global estimate. The key idea is to introduce the weight function ρ(X) in (1.11), which

takes into account the anisotropic nature of the Oseen operator and the wake structure of

the physically reasonable solution. Then we introduce the space–time norm ‖ · ‖α,β with

α ∈ (0, 1
2 ) and β ∈ [0, 1] as

‖ f ‖α,β = sup
t>0
(‖ρ(α·) f (t)‖L∞ + (1−β)(α2t)

β
2 ‖ρ(α·)1−β f (t)‖L∞)

+ sup
t>0
(1+ (α2t)

β
2 )

(
1
|logα|

‖ f (t)‖L∞ +

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)
.

The first supremum in ‖ · ‖α,β exactly controls the critical quantity (for example, let us

recall (1.12) for ‖ρ(α·) f (t)‖L∞), while the second supremum is a subcritical quantity

when β < 1. The introduction of the prefactors 1−β and 1
|logα| is aimed to achieve the

result in a unified and sharp manner. The presence of 1−β is inevitable in the estimate

of the bilinear form, already in the whole space problem. It describes the difficulty in

achieving the critical temporal decay O((α2t)−
1
2 ) for solutions to (1.15) when f = U

merely under the condition ‖g‖α,1 <∞. The reason of the factor 1
|logα| is more specific to

the exterior problem, for it is related with the large-time control of the flow produced near

the boundary. Intuitively, the logarithmic order comes from the logarithmic singularity

of the resolvent for the Stokes or Oseen operator when the resolvent parameter tends to

zero.

We show the following estimate of the solution to (1.15):

‖v‖α,β 6 C‖(1+ b(α·))v0‖L∞

+
C

1−β
‖g‖α,β sup

t>0

(
‖ρ(α·) f (t)‖L∞ +α

1
2

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)
. (1.16)

Here C is independent of α ∈ (0, 1
2 ] and β ∈ [0, 1). This estimate is proved in

Propositions 4.3 and 4.4. In (1.16) the norm for f allows us to handle the case when

f = U which is independent of t .
As in the previous works of [35, 37] for the Oseen semigroup in the L p framework, our

approach to (1.15) consists of two steps:

(i) analysis of (1.15) in R2;

(ii) local energy decay estimate of e−tAα,� in the exterior domain;

where in (ii) the resolvent problem is considered with a compactly supported sourcing

term. In each step, however, obtaining the desired global bound is highly nontrivial, since

we have to work with f = U whose the spatial decay is not fast enough; it is just in a

critical regime in an anisotropic form and only in the slow variable X = αx .

In the step (i), to overcome the difficulty, we make full use of the anisotropic transport

effect of the Oseen semigroup and our specific choice of the weight norm as above. More
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precisely, the key is to apply Lemmas 2.3 and 2.4, which are compatible with the kernel

of the Oseen semigroup. Lemma 2.3 describes how the wake structure appears from the

time integral of the Oseen semigroup. Lemma 2.4 gives the convolution estimate of 1
ρ(X) .

It should be stressed that the use of the distance ρ(X) = |X |
1
2 + |X2| enables us to obtain

the sharp estimates in a unified manner. Another important lemma is Lemma A.1, which

connects the wake decay 1

|X |
1
2 (1+|X |−X1)

1
2

and 1
ρ(X) .

The step (ii) is handled in [40] independently of this paper, and the result is stated in

Theorem 4.1, which is a significant improvement of Hishida’s result [35]. The estimate

(1.16) in the exterior domain is obtained by combining the results from (i) and (ii)

through a standard cut-off argument using the Bogovskii operator.

This paper is organized as follows. In § 2, the function spaces are introduced and some

basic results on the Stokes semigroup and the Oseen semigroup are collected. In § 3,

we study the linearized problem (1.15) in R2. Section 4 is then devoted to the analysis

of (1.15) in the exterior domain. The nonlinear stability is proved in § 5 by applying a

standard fixed point argument. Some key estimates used in the proof are collected in the

appendix.

2. Preliminaries

In this section, we collect some notations frequently used in this paper and state some

basic results on the Stokes semigroup that are standard and thus whose proofs are not

given in details.

2.1. Function spaces of solenoidal vector fields

Let � be an exterior domain in R2 with smooth boundary. The class of smooth and

compactly supported functions in � is denoted by C∞0 (�), and the class of test functions

for solenoidal vector fields in� is defined by C∞0,σ (�) = { f ∈ C∞0 (�)
2
| div f = 0 in�}. We

denote by Lq(�), 1 6 q 6∞, the usual Lebesgue space of all measurable functions whose

Lq norm, ‖ f ‖Lq = (
∫
�
| f |qdx)

1
q for q <∞ and ‖ f ‖L∞ = ess.supx∈�| f (x)| for q = ∞, is

finite. For p ∈ (1,∞) and q ∈ [1,∞] the Lorentz space L p,q(�) is defined to be the set

of measurable functions f in � such that

‖ f ‖L p,q (�) =


(∫

∞

0
(R|{x ∈ � | | f (x)| > R}|

1
p )q

d R
R

) 1
q
, 1 6 q <∞,

sup
R>0

R|{x ∈ � | | f (x)| > R}|
1
p , q = ∞,

is finite. Here |A| denotes the Lebesgue measure of the measurable set A. It is well known

that ‖ · ‖L p,q (�) defines a quasi-norm and there exists a norm equivalent to it by which

L p,q(�) becomes a Banach space when p > 1; see [28, Ch. 1]. Moreover, by O’Neil [46]

the generalized Hölder inequality and the Young inequality are known: if 1 < p, q, r <∞
and 1 6 s1, s2 6∞ then

‖ f g‖Lr,s (�) 6 C‖ f ‖L p,s1 (�)‖g‖Lq,s2 (�),
1
p
+

1
q
=

1
r
,

1
s1
+

1
s2
=

1
s
, (2.1)
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and

‖ f ∗ g‖Lr,s (R2) 6 C‖ f ‖L p,s1 (R2)‖g‖Lq,s2 (R2),
1
r
=

1
p
+

1
q
− 1,

1
s1
+

1
s2
=

1
s
, (2.2)

where ( f ∗ g)(x) =
∫
R2 f (x − y)g(y) dy is the usual convolution in R2. Moreover, we also

have from [46, Theorem 3.6],

‖ f ∗ g‖L∞(R2) 6 C‖ f ‖L p,s1 (R2)‖g‖Lq,s2 (R2),

1
p
+

1
q
=

1
s1
+

1
s2
= 1, 1 < p, q <∞, 1 6 s1, s2 6∞.

(2.3)

The space of all Lq solenoidal vector fields in � is denoted by Lq
σ (�), which is

characterized as Lq
σ (�) = C∞0,σ (�)

‖ f ‖Lq
= { f ∈ Lq(�)2 | div f = 0 in �, f · n = 0 on ∂�}

for q <∞. Here n = n(x) is the exterior unit normal vector at x ∈ ∂�. The Lq Sobolev

space of order k in � is denoted by W k,q(�) and we also introduce the space W 1,q
0 (�) =

C∞0 (�)
‖ f ‖W 1,q

. As is well known, for q ∈ (1,∞), the space Lq(�)2 is written as the

direct sum Lq(�) = Lq
σ (�)⊕Gq(�), where Gq(�) = {∇ p ∈ Lq(�)2 | p ∈ Lq

loc(�)}. Then

the Helmholtz projection P� : Lq(�)2 → Lq
σ (�) is well defined, which is an orthogonal

projection when q = 2; see Miyakawa [44] and Simader and Sohr [48] for details. For

simplicity, the Helmholtz projection in R2 is denoted by P, instead of PR2 .

2.2. Oseen operator

For q ∈ (1,∞) the second order elliptic operator Aα,� in Lq(�) is defined by

DLq (Aα,�) = W 2,q(�)∩W 1,q
0 (�), Aα,� f = −1 f +α∂1 f, f ∈ DLq (Aα,�).

Then the perturbed Stokes operators Aα,� in Lq
σ (�) is defined by

DLq (Aα,�) = W 2,q(�)2 ∩W 1,q
0 (�)2 ∩ Lq

σ (�),

Aα,� f = P�Aα,� f, f ∈ DLq (Aα,�).
The operator Aα,� is known as the Oseen operator. To simplify the notations the

counterparts of these operators in Lq
σ (R2) are written as Aα, instead of Aα,R2 . As is well

known, the Stokes operator −A� = −A0,� generates a bounded C0-analytic semigroup

in Lq
σ (�); cf. Borchers and Varnhorn [9]. Since the terms αP�∂1 f is lower order, it is not

difficult to show that the Oseen operator −Aα,� also generates a C0-analytic semigroup

e−tAα,� in Lq
σ (�). Moreover, the following L p-Lq estimates have been recently established

by Hishida [35].

Proposition 2.1 (Hishida [35]). Let 1 < q 6 p <∞ and let f ∈ Lq
σ (�). Then for

α ∈ (0, 1],

‖e−tAα,� f ‖L p(�) 6
C

ακ t
1
q−

1
p

‖ f ‖Lq (�), t > 0. (2.4)

Here C depends only on �, p, and q, while κ > 1 depends on α, p, and q.

Remark 2.2. In the approach of [35] the singularity O(α−κ) in (2.4) for small α is crucial.

Estimate (2.4) is improved in [40], and in particular, it is shown in [40] that this singularity

can be completely removed. This improvement (in the level of local energy decay estimate)
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is essential in the proof of the stability of U , for the smallness of U in a weighted norm

is only in a logarithmic order O( 1
|logα| ).

On the other hand, the following L p-Lq estimates for the derivatives of the Stokes

semigroup e−tA� are classical:

‖∂k
t ∇

j e−tA� f ‖L p(�) 6 CT t−
j
2−k− 1

q+
1
p ‖ f ‖Lq (�), 0 < t 6 T <∞, (2.5)

for j = 0, 1, 2, k = 0, 1, 1 < q 6 p <∞ or 1 < q < p = ∞, and f ∈ Lq
σ (�). Here CT

depends on �, p, q, and also on T in general. Recently, the L∞ theory of the Stokes

semigroup has been developed by Abe and Giga [3, 4], Abe, Giga, and Hieber [5], and

Abe [1], and the following L∞ estimates have been established by now:

‖∂k
t ∇

j e−tA� f ‖L∞(�) 6 CT t−
j
2−k
‖ f ‖L∞(�), 0 < t 6 T <∞, (2.6)

‖e−tA�P�∇ · F‖L∞(�) 6 CT t−
σ
2 ‖F‖σL∞(�)‖∇F‖1−σL∞(�), 0 < t 6 T <∞, (2.7)

for j = 0, 1, 2, k = 0, 1, σ ∈ (0, 1], and f ∈ L∞σ (�) = { f ∈ L∞(�)2 | div f = 0 in �,

f · n = 0 on ∂�}. Note that the semigroup property e−tA�P�∇ · F = e−
t
2A�e−

t
2A�P�∇ · F

together with (2.7) and (2.8) also give the estimate

‖∇e−tA�P�∇ · F‖L∞(�) 6 CT t−
1+σ

2 ‖F‖σL∞(�)‖∇F‖1−σL∞(�), 0 < t 6 T <∞, (2.8)

Estimates (2.7) and (2.8) are useful in handling the inhomogeneous term of the form

∇ · ( f ⊗ g+ g⊗ f ). From (2.5), (2.6), and (2.7), it is not difficult to show that the

following L∞ estimates hold also for e−tAα,� :

‖∇
j e−tAα,� f ‖L∞(�) 6 CT t−

j
2 ‖ f ‖L∞(�), 0 < t 6 T <∞, j = 0, 1, (2.9)

for all f ∈ L∞σ (�). Indeed, estimate (2.9) is derived by solving the integral equation

v(t) = e−tA� f −α
∫ t

0
e−(t−s)A�P�∂1v ds (2.10)

in the function space

XT =
{

f ∈ Cw∗([0, T ]; L∞σ (�))
∣∣

t
1
2∇ f (t) ∈ L∞(0, T ; L∞(�)2×2), f (t) = 0 on ∂�, t ∈ (0, T ]

}
‖ f ‖XT = sup

0<t6T
(‖ f (t)‖L∞(�)+ t

1
2 ‖∇ f (t)‖L∞(�)),

where Cw∗ denotes the ∗-weak topology. Precisely, the second term of the right-hand side

of (2.10) is estimated by using (2.6), (2.7), (2.8) as∥∥∥∥∇ jα

∫ t

0
e−(t−s)A�P�∂1v ds

∥∥∥∥
L∞(�)

6 Cα
∫ t

0
(t − s)−

j+σ
2 ‖v(s)‖σL∞(�)‖∇v(s)‖

1−σ
L∞(�) ds

6 Cα
∫ t

0
(t − s)−

j+σ
2 s−

1−σ
2 ds‖v‖XT

6 CαT
1− j

2 ‖v‖XT , 0 < t 6 T, | j | = 0, 1.
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Here we have taken, for example, as σ = 1
2 . Thus, if T ∈ (0, 2] is sufficiently small then

there exists a unique solution v ∈ XT to (2.10). Repeating this argument, we obtain (2.9)

for any 0 < T <∞ with a constant CT depending on �, T , and α. In particular, if T = 2
and α is small enough then CT depends only on �.

2.3. Key integral inequalities

Our approach is built upon the weighted L∞ estimate of the Oseen semigroup which

reflects the transport term α∂1 and the wake decay structure of U . The following two

integral inequalities play a crucial role, where the integrand is related to the kernel of

the Oseen semigroup.

Lemma 2.3. For any M > 0 there exists a positive constant C = C(M) such that the

following statements hold for any γ j ∈ R with |γ j | 6 M, j = 1, 2.

(i) Let γ1 > −1. Then∫ τ

0
(τ − s)−1

(
1+
|X − Y − (τ − s)e1|

2

τ − s

)− 2+γ1
2

ds

6


−C log |X − Y |, if 0 < |X − Y | 6

1
e
,

C

(1+ γ1)|X − Y |
1
2 (1+ |X − Y | − (X1− Y1))

1+γ1
2

, if |X − Y | >
1
e
.

(2.11)

(ii) Let γ1 > −1, γ2 6= 0, and γ1− |γ2| > −2. Then∫ τ

0
(τ − s)−

2+γ2
2

(
1+
|X − Y − (τ − s)e1|

2

τ − s

)− 2+γ1
2

ds

6



C
|X − Y |γ2

(
1
γ2
+

1
2+ γ1− γ2

)
, if 0 < |X − Y | 6

1
e

and γ2 > 0,

C
(

1
|γ2|
+

1
2+ γ1− |γ2|

)
, if 0 < |X − Y | 6

1
e

and γ2 < 0,

C

|X − Y |
1+γ2

2 (1+ |X − Y | − (X1− Y1))
1+γ1

2

(
1

1+ γ1
+

1
2+ γ1− |γ2|

)
,

if |X − Y | >
1
e
.

(2.12)

Proof. Assume that γ1, γ2 ∈ R satisfy γ1 > −1 and γ1− |γ2| > −2. Then by changing the

variable s as |X−Y |
τ−s = r and using ds = |X−Y |

r2 dr , we have

∫ τ

0
(τ − s)−

2+γ2
2

(
1+
|X − Y − (τ − s)e1|

2

τ − s

)− 2+γ1
2

ds

=

∫
∞

|X−Y |
τ

(
r

|X − Y |

) 2+γ2
2
(

1+ |X − Y |
(

r +
1
r

)
− 2(X1− Y1)

)− 2+γ1
2 |X − Y |

r2 dr
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6
1

|X − Y |
γ2
2

∫
∞

0

(
1+ 2(|X − Y | − (X1− Y1))+

|X − Y |
r

(r − 1)2
)− 2+γ1

2 dr

r1− γ2
2

=
1

|X − Y |
γ2
2

(∫ 1
2

0
+

∫ 3
2

1
2

+

∫
∞

3
2

)
=:

1

|X − Y |
γ2
2
(I + II+ III).

(1) Estimate of I : We observe from |X − Y | − (X1− Y1) > 0 that

I 6
∫ 1

2

0

r
γ1+γ2

2

(r + |X − Y |(r − 1)2)
2+γ1

2

dr 6 22+γ1

∫ 1
2

0

r
γ1+γ2

2

(r + |X − Y |)
2+γ1

2

dr.

If |X − Y | > 1/e then it is easy to see that∫ 1
2

0

r
γ1+γ2

2

(r + |X − Y |)
2+γ1

2

dr 6
1

|X − Y |
2+γ1

2

∫ 1
2

0
r
γ1+γ2

2 dr 6
2

(2+ γ1+ γ2)|X − Y |
2+γ1

2

.

Next we consider the case 0 < |X − Y | 6 1/e. In this case we see∫ 1
2

0

r
γ1+γ2

2

(r + |X − Y |)
2+γ1

2

dr =
∫
|X−Y |

0
+

∫ 1
2

|X−Y |

6
1

|X − Y |
2+γ1

2

∫
|X−Y |

0
r
γ1+γ2

2 dr +
∫ 1

2

|X−Y |
r−1+ γ2

2 dr

6
2

2+ γ1+ γ2
|X − Y |

γ2
2 +


− log |X − Y | if γ2 = 0
2
γ2

if γ2 > 0

2
|γ2|
|X − Y |

γ2
2 if γ2 < 0.

The estimate of I is done.

(2) Estimate of II: We have

II 6 C
∫ 3

2

1
2

(1+ |X − Y | − (X1− Y1)+ |X − Y |(r − 1)2)−
2+γ1

2 dr.

Here C is uniform in γ j ∈ R with |γ j | 6 M , j = 1, 2. Then, when 0 < |X − Y | 6 1/e it is

easy to see that II 6 C . Thus it suffices to consider the case |X − Y | > 1/e. In this case

we have ∫ 3
2

1
2

(1+ |X − Y | − (X1− Y1)+ |X − Y |(r − 1)2)−
2+γ1

2 dr

6
∫
R
(1+ |X − Y | − (X1− Y1)+ |X − Y |(r − 1)2)−

2+γ1
2 dr

=
2

|X − Y |
1
2

∫
∞

0
(1+ |X − Y | − (X1− Y1)+ η

2)−
2+γ1

2 dη

6
C

(1+ γ1)|X − Y |
1
2 (1+ |X − Y | − (X1− Y1))

1+γ1
2

.

The estimate of II is done.
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(3) Estimate of III: We have

III 6 C
∫
∞

3
2

1

(1+ r |X − Y |)
2+γ1

2

dr

r1− γ2
2
.

Here C is uniform in γ j ∈ R with |γ j | 6 M , j = 1, 2. If |X − Y | > 1/e then it is easy to

see that ∫
∞

3
2

1

(1+ r |X − Y |)
2+γ1

2

dr

r1− γ2
2

6
1

|X − Y |
2+γ1

2

∫
∞

3
2

dr

r2+ γ1−γ2
2

6
2

(2+ γ1− γ2)|X − Y |
2+γ1

2

.

When 0 < |X − Y | 6 1/e we have∫
∞

3
2

1

(1+ r |X − Y |)
2+γ1

2

dr

r1− γ2
2

=
1

|X − Y |
γ2
2

∫
∞

3
2 |X−Y |

1

(1+ s)
2+γ1

2 s1− γ2
2

ds

6
C

|X − Y |
γ2
2



− log |X − Y | +
1

2+ γ1
if γ2 = 0

1
γ2
+

1
2+ γ1− γ2

if γ2 > 0

|X − Y |γ2/2

|γ2|
+

1
2+ γ1− γ2

if γ2 < 0.

Finally we note that for |X − Y | > 1/e,

1

|X − Y |1+
γ1+γ2

2

6
C

|X − Y |
1+γ2

2 (1+ |X − Y | − (X1− Y1))
1+γ1

2

since 1+ γ1 > 0. Thus, collecting the estimates of I , II, and III, we obtain the desired

estimates. The proof is complete.

Next we set

ρ(X) = |X |
1
2 + |X2|. (2.13)

Note that ρ defines a distance in R2.

Lemma 2.4. Let −1 < γ3, γ4 < 2 and γ3+ γ4 > 1. Then for X 6= R2,∫
R2

1
ρ(X − Y )1+γ3ρ(Y )1+γ4

dY 6
C

ρ(X)γ3+γ4−1

(
1

2− γ3
+

1
2− γ4

+
1

γ3+ γ4− 1

)
. (2.14)

Here C is independent of γ3 and γ4.

Proof. We decompose the left-hand side of (2.14) into three parts:

L.H.S of (2.14) =
∫

2ρ(Y )6ρ(X)
+

∫
ρ(X)62ρ(Y )64ρ(X)

+

∫
2ρ(X)6ρ(Y )

= I + II+ III.
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From ρ(X − Y ) > ρ(X)/2 when 2ρ(Y ) 6 ρ(X), by 1+ γ3 > 0, I is estimated as

I 6
C

ρ(X)1+γ3

∫
2ρ(Y )6ρ(X)

dY
ρ(Y )1+γ4

6
C

ρ(X)1+γ3

∫
2|Y1|

1
2 6ρ(X),2|Y2|6ρ(X)

dY

(|Y1|
1
2 + |Y2|)1+γ4

6
C

ρ(X)1+γ3


C
γ4

∫
2|Y1|

1
2 6ρ(X)

dY1

|Y1|
γ4
2
,

1
2
6 γ4 < 2,

Cρ(X)
∫

2|Y1|
1
2 6ρ(X)

dY1

|Y1|
1+γ4

2

, −1 < γ4 6
1
2

6
C

(2− γ4)ρ(X)γ3+γ4−1 .

Here C is taken independently of γ3, γ4. As for II, we have

II 6
C

ρ(X)1+γ4

∫
ρ(Y )62ρ(X)

dY
ρ(X − Y )1+γ3

6
C

ρ(X)1+γ4

∫
|X1−Y1|

1
2 63ρ(X),|X2−Y2|63ρ(X)

dY

(|X1− Y1|
1
2 + |X2− Y2|)1+γ3

6
C

ρ(X)1+γ4


C
γ3

∫
|X1−Y1|

1
2 63ρ(X)

dY1

|X1− Y1|
γ3
2
,

1
2
6 γ3 < 2,

Cρ(X)
∫
|X1−Y1|

1
2 63ρ(X)

dY1

|X1− Y1|
1+γ3

2

, −1 < γ3 6
1
2

6
C

(2− γ3)ρ(X)γ3+γ4−1 .

Finally let us estimate III. We use ρ(X − Y ) > ρ(Y )/2, which gives

III 6 C
∫

2ρ(X)6ρ(Y )

dY
ρ(Y )2+γ3+γ4

= C
(∫

2ρ(X)6ρ(Y ),|Y |
1
2 6|Y2|

dY
ρ(Y )2+γ3+γ4

+

∫
2ρ(X)6ρ(Y ),|Y2|6|Y |

1
2

dY
ρ(Y )2+γ3+γ4

)
=: III1+ III2.

The term III1 is estimated from ρ(Y ) 6 2|Y2| for |Y |
1
2 6 |Y2| as

III1 6 C
∫
ρ(X)6|Y2|

dY

(|Y1| + Y 2
2 )

2+γ3+γ4
2

6 C
∫
ρ(X)6|Y2|

dY2

|Y2|γ3+γ4

6
C

(γ3+ γ4− 1)ρ(X)γ3+γ4−1 .

The term III2 is estimated as, by using the fact that 2ρ(X) 6 ρ(Y ) with |Y2| 6 |Y |
1
2 and

|Y2| > 8 implies 2ρ(X) 6 8|Y1|
1
2 ,
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III2 6 C
∫

2ρ(X)6ρ(Y ),|Y2|6|Y |
1
2 ,|Y2|68

dY
ρ(Y )2+γ3+γ4

+C
∫

2ρ(X)6ρ(Y ),|Y2|6|Y |
1
2 ,|Y2|>8

dY
ρ(Y )2+γ3+γ4

6
C

ρ(X)γ3+γ4−1

∫
|Y2|68

dY
ρ(Y )3

+C
∫
ρ(X)64|Y1|

1
2

dY
ρ(Y )2+γ3+γ4

6
C

ρ(X)γ3+γ4−1

∫
|Y2|68

dY

|Y |
3
2
+C

∫
ρ(X)64|Y1|

1
2

dY1

|Y1|
1+γ3+γ4

2

6
C

ρ(X)γ3+γ4−1 +
C

(γ3+ γ4− 1)ρ(X)γ3+γ4−1 .

Collecting these above, we obtain (2.14). The proof is complete.

3. Estimate of Oseen semigroup in R2

In this section we establish weighted L∞ estimates of the Oseen semigroup in R2, written

as e−tAα , and the Duhamel term
∫ t

0 e−(t−s)AαPF(s) ds. Here the operator e−tAαP is realized

as a convolution operator e−tAαP f = 8α(t) ∗ f , and the kernel 8α(t, x) is given by

8α(t, x) = 8(t, x −αte1), (3.1)

where e1 = (1, 0) and 8 is defined in terms of the Fourier transform

8(τ, X) = F−1
[

e−τ |ξ |
2
(
I−

ξ ⊗ ξ

|ξ |2

)]
(X). (3.2)

Here I = (δ jk)16 j,k62 and ξ ⊗ ξ = (ξ jξk)16 j,k62. Note that 8 is nothing but the kernel

of eτ1P. By its definition the pointwise estimate of 8α is available from that of 8, which

is well known by now as follows.

Proposition 3.1. Let k = 0, 1, . . . , and let j = ( j1, j2) be a multi-index. Then

|∂k
τ∇

j
X8(τ, X)| 6 Cτ−1− | j |2 −k

(
1+
|X |2

τ

)−1− | j |2 −k

. (3.3)

Here C depends only on k and j .

3.1. Estimate of semigroup in R2

We start from the estimates of e−tAα f in the weighted L∞ norm. Let us recall that b(X)
is defined as (1.6) and ρ(X) = |X |

1
2 + |X2|.

Proposition 3.2. Let β ∈ [0, 1]. Let b(α·) f ∈ L∞(R2)2 and div f = 0 in R2. Then

sup
t>0
(1+ (α2t)

β
2 )‖ρ(α·)1−βe−tAα f ‖L∞ 6 C‖(1+ b(α·)) f ‖L∞ , (3.4)

and

sup
t>0

t
1
2 ‖∇e−tAα f ‖L∞ 6 C‖ f ‖L∞ . (3.5)

Here C is independent of α and β.
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Proof. Let G(t, x) = 1
4π t e−

|x |2
4t be the Gauss kernel in R2. Then, in virtue of the condition

div f = 0 in R2, the following representation holds:

(e−tAα f )(x) =
∫
R2

G(t, x − y−αte1) f (y) dy. (3.6)

Then it is straightforward to see

‖∇
j e−tAα f ‖L∞ 6 Ct−

j
2 ‖ f ‖L∞ , t > 0, j = 0, 1. (3.7)

Next we observe that

|(e−tAα f )(x)| 6
∫
R2

G(t, x − y−αte1)

(
1

|αy|
1
2 (1+ |αy| −αy1)

3
4
+

1
1+ |αy|

)
dy

×‖b(α·) f ‖L∞ .

Let us recall from Lemma A.1 that 1

|Y |
1
2 (1+|Y |−Y1)

3
4
∈ L∞Y1

L1
Y2

, and we also note 1
1+|Y | ∈

L2,∞
Y (R2). Thus we conclude from ‖G(t, x − ·−αte1)‖L1

y1
L∞y2
+‖G(t, x − ·−αte1)‖L2,1

y
6

Ct−
1
2 that

‖e−tAα f ‖L∞ 6
C

αt
1
2
‖b(α·) f ‖L∞ , t > 0. (3.8)

Estimates (3.7) and (3.8) yield (3.4) with β = 1. Next, since ρ defines a distance in R2,

we have

ρ(αx)|(e−tAα f )(x)|

6
∫
R2
(ρ(αx −αy−α2te1)+ ρ(αy)+ ρ(α2te1))G(t, x − y−αte1)| f (y)| dy

6
∫
R2
(α

1
2 |x − y−αte1|

1
2 +α|x2− y2|)G(t, x − y−αte1)| f (y)| dy

+‖ρ(α·) f ‖L∞ +αt
1
2

∫
R2

G(t, x − y−αte1)| f (y)| dy

6 Cα
1
2 t

1
4

∫
R2

G(2t, x − y−αte1)
1

ρ(αy)
dy‖ρ(α·) f ‖L∞

+Cαt
1
2

∫
R2

G(2t, x − y−αte1)| f (y)| dy

+‖ρ(α·) f ‖L∞ +αt
1
2

∫
R2

G(t, x − y−αte1)| f (y)| dy.

Then, by using the fact that 1
ρ(αy) 6

1
|αy|1/2 with |y|−

1
2 ∈ L4,∞(R2) and also by arguing

as in the derivation of (3.8) (for the second and the forth terms), we obtain

ρ(αx)|(e−tAα f )(x)| 6 C(‖ρ(α·) f ‖L∞ +‖b(α·) f ‖L∞).

Thus the inequality ‖ρ(α·) f ‖L∞ 6 C‖b(α·) f ‖L∞ (by Lemma A.1) yields

‖ρ(α·)e−tAα f ‖L∞ 6 C‖b(α·) f ‖L∞ , t > 0. (3.9)

Here C is independent of α. Estimates (3.9) and (3.7) prove (3.4) with β = 1. Then the

case β ∈ (0, 1) of (3.4) follows from the interpolation of the endpoint cases β = 0, 1. The

proof is complete.
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3.2. Estimate of bilinear form in R2

We set the bilinear form 3Aα [ f, g] as

3Aα [ f, g](t) = α
∫ t

0
e−(t−s)AαP∇ · ( f ⊗ g+ g⊗ f ) ds. (3.10)

Our aim is to establish the weighted L∞ estimate of 3Aα [ f, g] globally in time by using

the scale-critical anisotropic norm.

Proposition 3.3. Let α ∈ (0, 1
2 ] and β ∈ [0, 1). Then the following estimates hold for any

f, g ∈ L∞(0,∞;W 1,∞(R2)2) such that ρ(α·) f, ρ(α·)g ∈ L∞(0,∞; L∞(R2)2).

sup
t>0
(α2t)

β
2 ‖ρ(α·)1−β3Aα [ f, g](t)‖L∞

6
C

1−β
sup
t>0
‖ρ(α·) f (t)‖L∞ sup

t>0
((α2t)

β
2 ‖ρ(α·)1−βg(t)‖L∞ +‖ρ(α·)g(t)‖L∞), (3.11)

sup
t>0
(1+ (α2t)

β
2 )‖3Aα [ f, g](t)‖L∞

6
C

1−β
sup
t>0
‖ρ(α·) f (t)‖L∞

× sup
t>0
((α2t)

β
2 ‖ρ(α·)1−βg(t)‖L∞ +‖ρ(α·)g(t)‖L∞ + (1+ (α2t)

β
2 )‖g(t)‖L∞), (3.12)

sup
t>0
(1+ (α2t)

β
2 )

(
t

1+ t

) 1
2
‖∇3Aα [ f, g](t)‖L∞

6 Cα
1
2 sup

t>0

(
‖ρ(α·) f (t)‖L∞ +α

1
2

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)

× sup
t>0
(1+ (α2t)

β
2 )

(
‖g(t)‖L∞ +

(
t

1+ t

) 1
2
‖∇g(t)‖L∞

)
. (3.13)

Here C is independent of α and β.

Remark 3.4. (i) In Proposition 3.3 the function f does not need to decay in time, which

is important to handle the linear term ∇ · (U ⊗ u+ u⊗U ) with the physically reasonable

solution U .

(ii) Estimate (3.13) is easier, for it is subcritical estimate in view of scaling. Estimate

(3.12) is still subcritical, but the proof requires a detailed computation in order to derive

the prefactor 1
1−β , which could be optimal. Estimate (3.11) is just critical in view of

scaling and is the most nontrivial estimate in Proposition 3.3. Its proof consists of the

pointwise estimate of the kernel given by (3.1) and Proposition 3.1, and the integral

inequalities obtained in Lemmas 2.3, 2.4.

Proof of Proposition 3.3. (i) Proof of (3.11) and (3.12): We observe that

3Aα [ f, g](t, x) = 3A1 [ f̃ , g̃](τ, X), τ = α2t, X = αx
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by the change of variables in the integral, where f̃ (τ, X) = f (t, x) and g̃(τ, X) = g(t, x)
with τ = α2t and X = αx . Then (3.11) and (3.12) are respectively equivalent with the

weighted estimate

sup
τ>0

τ
β
2 ‖ρ1−β3A1 [ f̃ , g̃](τ )‖L∞

6
C

1−β
sup
τ>0
‖ρ f̃ (τ )‖L∞ sup

τ>0
(τ

β
2 ‖ρ1−β g̃(τ )‖L∞ +‖ρ g̃(τ )‖L∞), (3.14)

and the L∞ estimate

sup
τ>0
(1+ τ

β
2 )‖3A1 [ f̃ , g̃](τ )‖L∞

6
C

1−β
sup
τ>0
‖ρ f̃ (τ )‖L∞ sup

τ>0
(τ

β
2 ‖ρ1−β g̃(τ )‖L∞ +‖ρ g̃(τ )‖L∞ + (1+ τ

β
2 )‖g̃(τ )‖L∞).

(3.15)

Let us first consider the L∞ estimate for a short time. To simplify the notation we set

K (τ, X − Y ) =

(
1+
|X − Y − τe1|

2

τ

)−1

. (3.16)

Then, from (3.1)–(3.3), the kernel of e−τA1P∇· is pointwise bounded from above

by Cτ−
3
2 K (τ, X − Y )

3
2 for all τ > 0, X, Y ∈ R2. Thus we have ‖e−τA1P∇ · F‖L∞ 6

Cτ−
3
2 ‖K (τ )‖

L
4
3 ,1
‖F‖L4,∞ 6 Cτ−

3
4 ‖F‖L4,∞ by (2.3) and the real interpolation. Then the

definition of 3A1 [ f̃ , g̃] implies

‖3A1 [ f̃ , g̃](τ )‖L∞ 6 C
∫ τ

0
(τ − s)−

3
4 ‖ f̃ ⊗ g̃(s)+ g̃⊗ f̃ (s)‖L4,∞ ds

6 Cτ
1
4 sup

s>0
‖g̃(s)‖L∞ sup

s>0
‖ρ f̃ (s)‖L∞ , 0 < τ 6 2. (3.17)

Here we have used ρ(X)−1 6 |X |−1/2
∈ L4,∞(R2), and hence, ‖ f̃ (s)‖L4,∞ 6 C‖ρ f̃ (s)‖L∞ .

Next we prove the weighted (3.14), and the L∞ estimate (3.15) for the case τ > 2 is

discussed later. To this end we recall that

|3A1 [ f̃ , g̃](τ, X)| 6 C
∫ τ

0

∫
R2
(τ − s)−

3
2 K (τ − s, X − Y )

3
2 | f̃ ⊗ g̃+ g̃⊗ f̃ (τ, Y )| dY ds,

(3.18)

and then, by splitting the time integral
∫ τ

0 into
∫ τ

2
0 and

∫ τ
τ
2
,

|3A1 [ f̃ , g̃](τ, X)|

6 Cτ−
β
2

∫ τ
2

0

∫
R2
(τ − s)−

3−β
2 K (τ − s, X − Y )

3
2

1
ρ(Y )2

dY ds

× sup
τ>0
‖ρ g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞
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+Cτ−
β
2

∫ τ

τ
2

∫
R2
(τ − s)−

3
2 K (τ − s, X − Y )

3
2

1
ρ(Y )2−β

dY ds

× sup
τ>0

τ
β
2 ‖ρ1−β g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞ . (3.19)

Now we apply Lemma 2.3 with γ1 = 1 and γ2 = 1−β, 1, which is the key in our argument.

Then it follows that

|3A1 [ f̃ , g̃](τ, X)|

6 Cτ−
β
2

{
1

1−β

∫
{|X−Y |6 1

e }

1
|X − Y |1−β

1
ρ(Y )2

dY

+

∫
{|X−Y |> 1

e }

1

|X − Y |
2−β

2 (1+ |X − Y | − (X1− Y1))

1
ρ(Y )2

dY
}

× sup
τ>0
‖ρ g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞

+Cτ−
β
2

∫
R2

1
|X − Y |(1+ |X − Y | − (X1− Y1))

1
ρ(Y )2−β

dY

× sup
τ>0

τ
β
2 ‖ρ1−β g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞ .

As for the first term, by decomposing as
∫
{|X−Y |6 1

e }
=
∫
{|X−Y |6 1

e , |Y |61}+
∫
{|X−Y |6 1

e ,|Y |>1}

and by using 1
ρ(Y )2 6 1

|Y | and the triangle inequality ρ(X)1−β 6 ρ(X − Y )1−β + ρ(Y )1−β ,

it is not difficult to see that
∫
{|X−Y |6 1

e }
1

|X−Y |1−βρ(Y )2 dY 6 C
ρ(X)1−β with C independent of

β. As for the second and the third terms, we recall the inequality

1

|X − Y |
1
2 (1+ |X − Y | − (X1− Y1))

1
2
6

C
ρ(X − Y )

,

which follows from Lemma A.1 (the square root of (A 3)). Then we arrive at

|3A1 [ f̃ , g̃](τ, X)|

6 Cτ−
β
2

{
1

(1−β)ρ(X)1−β
+

∫
R2

1
ρ(X − Y )2−βρ(Y )2

dY
}

× sup
τ>0
‖ρ g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞

+Cτ−
β
2

∫
R2

1
ρ(X − Y )2ρ(Y )2−β

dY sup
τ>0

τ
β
2 ‖ρ1−β g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞ . (3.20)

Note that
∫
R2

1
ρ(X−Y )2ρ(Y )2−β dY =

∫
R2

1
ρ(X−Y )2−βρ(Y )2 dY . Then Lemma 2.4 with γ3 = 1−

β and γ4 = 1 gives

|3A1 [ f̃ , g̃](τ, X)|

6
C

(1−β)τ
β
2 ρ(X)1−β

sup
τ>0
(‖ρ g̃(τ )‖L∞ + τ

β
2 ‖ρ1−β g̃(τ )‖L∞) sup

τ>0
‖ρ f̃ (τ )‖L∞ ,
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that is,

sup
τ>0

τ
β
2 ‖ρ1−β3A1 [ f̃ , g̃](τ )‖L∞

6
C

1−β
sup
τ>0
(‖ρ g̃(τ )‖L∞ + τ

β
2 ‖ρ1−β g̃(τ )‖L∞) sup

τ>0
‖ρ f̃ (τ )‖L∞ . (3.21)

This proves the weighted estimate (3.14). The L∞ estimate (3.15) is proved in the similar

manner. Indeed, instead of (3.19), we compute as

|3A1 [ f̃ , g̃](τ, X)|

6 Cτ−
β
2

∫ τ
2

0

∫
R2
(τ − s)−

3−β
2 K (τ − s, X − Y )

3
2

1
ρ(Y )(1+ ρ(Y ))

dY ds

× sup
τ>0
‖(1+ ρ)g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞

+Cτ−
β
2

∫ τ

τ
2

∫
R2
(τ − s)−

3
2 K (τ − s, X − Y )

3
2

1
ρ(Y )(1+ ρ(Y )1−β)

dY ds

× sup
τ>0

τ
β
2 ‖(1+ ρ1−β)g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞ . (3.22)

Then the above argument using Lemma 2.3 yields

|3A1 [ f̃ , g̃](τ, X)|

6 Cτ−
β
2

{
1

1−β

∫
{|X−Y |6 1

e }

1
|X − Y |1−β

1
ρ(Y )(1+ ρ(Y ))

dY

+

∫
{|X−Y |> 1

e }

1
ρ(X − Y )2−βρ(Y )(1+ ρ(Y ))

dY
}

sup
τ>0
‖(1+ ρ)g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞

+Cτ−
β
2

∫
R2

1
ρ(X − Y )2ρ(Y )(1+ ρ(Y ))1−β

dY

× sup
τ>0

τ
β
2 ‖(1+ ρ1−β)g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞ . (3.23)

The difference from (3.20) is that the singularity around Y = 0 is relaxed thanks to the

factor 1
1+ρ(Y ) rather than 1

ρ(Y ) . Then it is not difficult to show that for |X | 6 1,∫
{|X−Y |6 1

e }

1
|X − Y |1−β

1
ρ(Y )(1+ ρ(Y ))

dY 6 C,∫
{|X−Y |> 1

e }

1
ρ(X − Y )2−βρ(Y )(1+ ρ(Y ))

dY 6
C

1−β
,∫

R2

1
ρ(X − Y )2ρ(Y )(1+ ρ(Y ))1−β

dY 6
C

1−β
.

On the other hand, we already know from Lemma 2.4 that∫
{|X−Y |6 1

e }

1
|X − Y |1−β

1
ρ(Y )(1+ ρ(Y ))

dY 6
C

ρ(X)1−β
,
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{|X−Y |> 1

e }

1
ρ(X − Y )2−βρ(Y )(1+ ρ(Y ))

dY 6
C

(1−β)ρ(X)1−β
,∫

R2

1
ρ(X − Y )2ρ(Y )(1+ ρ(Y ))1−β

dY 6
C

(1−β)ρ(X)1−β
.

These three bounds are applied for |X | > 1. Thus we have shown for τ > 2,

τ
β
2 ‖3A1 [ f̃ , g̃](τ )‖L∞ 6

C
1−β

sup
τ>0
‖(1+ ρ)g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞

+
C

1−β
sup
τ>0

τ
β
2 ‖(1+ ρ1−β)g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞ . (3.24)

Combining (3.17) and (3.24), we obtain (3.15).

(ii) Proof of (3.13): We estimate in the original variables t and x . We denote

by χB the characteristic function of the set B. Let us recall the estimate

‖∇e−tAαPh‖L∞ 6 Ct−
1
2 ‖h‖L∞ , ‖∇e−tAαPh‖L∞ 6 Ct−

3
4 ‖h‖L4,∞ , and ‖∇e−tAαP∇ · F‖L∞ 6

Ct−
5
4 ‖F‖L4,∞ , which yield by using ‖ f∇ j g‖L4,∞ 6 C‖ f ‖L4,∞‖∇

j g‖L∞ and ‖ f ‖L4,∞ 6

Cα−
1
2 ‖ρ(α·) f ‖L∞ ,

‖∇3Aα [ f, g](t)‖L∞

6 Cα
∫ t

0
χ{t−s61}(t − s)−

1
2 ‖g∇ f (s)‖L∞ ds

+Cα
∫ t

0
χ{t−s61}(t − s)−

3
4 ‖ f∇g(s)‖L4,∞ ds

+Cα
∫ t

0
χ{t−s>1}(t − s)−

5
4 ‖ f g(s)‖L4,∞ ds

6 Cα
∫ t

0
χ{t−s61}(t − s)−

1
2 (1+ (α2s)

β
2 )−1(

1+ s
s
)

1
2 ds

× sup
s>0
(1+ (α2s)

β
2 )‖g(s)‖L∞ sup

s>0

(
s

1+ s

) 1
2
‖∇ f (s)‖L∞

+Cα
1
2

∫ t

0
χ{t−s61}(t − s)−

3
4 (1+ (α2s)

β
2 )−1

(
1+ s

s

) 1
2

ds

× sup
s>0
‖ρ(α·) f (s)‖L∞ sup

s>0
(1+ (α2s)

β
2 )

(
s

1+ s

) 1
2
‖∇g(s)‖L∞

+Cα
1
2

∫ t

0
χ{t−s>1}(t − s)−

5
4 (1+ (α2s)

β
2 )−1 ds

× sup
s>0
‖ρ(α·) f (s)‖L∞ sup

s>0
(1+ (α2s)

β
2 )‖g(s)‖L∞ . (3.25)

Thus (3.13) follows. The proof is complete.
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3.3. Estimate for compactly supported data

In this subsection we consider the estimate of the term

ϒAα [R](t) =
∫ t

0
e−(t−s)AαPR(s) ds, (3.26)

when R(s) is compactly supported for each s. The term of this kind naturally appears in

the cut-off procedure near the boundary in the exterior problem. We note that estimate

(3.28) in Proposition 3.5 below is valid for 0 6 β 6 1 (including β = 1), but with the

logarithmic singularity |logα| in the coefficient. This logarithmic singularity is inevitable

in general, for the kernel of
∫ t

0 e−(t−s)AαP ds has a similar behavior as the one of A−1
α for

t � 1. Indeed, the kernel of A−1
α is uniformly bounded in the regime |αx | > O(1) in virtue

of the transport term α∂1, while, as indicated by (2.11), it contains the term C log |αx |
in the regime |αx | 6 O(1) and this is responsible for the singularity |logα| in (3.28).

Proposition 3.5. Let α ∈ (0, 1
2 ] and β ∈ [0, 1]. Suppose that R(t) ∈ L4(R2)2 and

supp R(t) ⊂ {|x | 6 6} for all t > 0. Then

sup
t>0
(α2t)

β
2 ‖ρ(α·)1−βϒAα [R](t)‖L∞ 6

C
1−β

sup
t>0
(1+ (α2t)

β
2 )

(
t

1+ t

) 3
4
‖R(t)‖L4 , (3.27)

sup
t>0
(1+ (α2t)

β
2 )‖ϒAα [R](t)‖L∞ 6 C |logα| sup

t>0
(1+ (α2t)

β
2 )

(
t

1+ t

) 3
4
‖R(t)‖L4 , (3.28)

sup
t>0
(1+ (α2t)

β
2 )

(
t

1+ t

) 1
2
‖∇ϒAα [R](t)‖L∞ 6 C sup

t>0
(1+ (α2t)

β
2 )

(
t

1+ t

) 3
4
‖R(t)‖L4 .

(3.29)

Here C is independent of α and β.

Proof. (i) Proof of (3.27) and (3.28): Let 0 < t 6 2. Then from the pointwise estimate of

the kernel stated in (3.1) and Proposition 3.1, it is straightforward to show for h ∈ L4(R2)2

with supp h ⊂ {|x | 6 6},

‖(1+ ρ(α·)1−β)e−tAαPh‖L∞ 6 Ct−
1
4 ‖h‖L4 , 0 < t 6 2, β ∈ [0, 1]. (3.30)

The details are omitted here. Thus we have for t ∈ (0, 2],

‖(1+ ρ(α·)1−β)ϒAα [R](t)‖L∞ 6 C
∫ t

0
(t − s)−

1
4 ‖R(s)‖L4 ds

6 C sup
s>0

(
s

1+ s

) 3
4
‖R(s)‖L4 . (3.31)

Next we consider the case t > 2. In this case we can write

ϒAα [R](t) =
∫ t

t−1
e−(t−s)AαPR(s) ds+

∫ t−1

0
e−(t−s)AαPR(s) ds =: I (t)+ II(t). (3.32)
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The term I (t) is handled as in the proof of (3.31), and we have for β ∈ [0, 1],

‖(1+ ρ(α·)1−β)I (t)‖L∞

6 C
∫ t

t−1
(t − s)−

1
4 (1+ (α2s)

β
2 )−1 ds sup

s>0
(1+ (α2s)

β
2 )

(
s

1+ s

) 3
4
‖R(s)‖L4

6 C(1+ (α2t)
β
2 )−1 sup

s>0
(1+ (α2s)

β
2 )

(
s

1+ s

) 3
4
‖R(s)‖L4 . (3.33)

To estimate II(t) let us recall that e−tAα = e−t Aα (on the space of solenoidal vector fields)

and P are convolution operator in the spatial variables and hence we have the identity

e−tAαPh = e−t AαPh = e−(t−1)AαPe−Aαh. When h ∈ L4(R2)2 with supp h ⊂ {|x | 6 6}, due

to the exponential decay of the Gaussian, we have

‖(1+ |x |2)4e−Aαh‖L∞ 6 C‖h‖L1 6 C‖h‖L4 . (3.34)

Here we have used supp h ⊂ {|x | 6 6} in the last line. Set R̃(s) = e−Aα R(s). Then (3.34)

and the pointwise estimate of the kernel for e−(t−s−1)AαP stated in (3.1) and Lemma 3.1

imply

|II(t, x)| =

∣∣∣∣∣
∫ t−1

0
e−(t−s−1)AαPR̃(s) ds(x)

∣∣∣∣∣
6 C

∫ t−1

0

∫
R2
(t − s− 1)−1

(
1+
|x − y−α(t − s− 1)e1|

2

t − s− 1

)−1
dy

1+ |y|8
‖R(s)‖L4 ds

6 C
∫ t−1

0

∫
R2
(t − s− 1)−1

(
1+
|x − y−α(t − s− 1)e1|

2

t − s− 1

)−1
dy

1+ |y|8

× (1+ (α2s)
β
2 )−1

(
1+ s

s

) 3
4

ds

× sup
t>0
(1+ (α2t)

β
2 )

(
t

1+ t

) 3
4
‖R(t)‖L4 .

To estimate the integral in the last term we set

II1 =

∫ t−1
2

0

∫
R2
(t − s− 1)−1

(
1+
|x − y−α(t − s− 1)e1|

2

t − s− 1

)−1
dy

1+ |y|8

× (1+ (α2s)
β
2 )−1

(
1+ s

s

) 3
4

ds,

II2 =

∫ t−1

t−1
2

∫
R2
(t − s− 1)−1

(
1+
|x − y−α(t − s− 1)e1|

2

t − s− 1

)−1
dy

1+ |y|8

× (1+ (α2s)
β
2 )−1

(
1+ s

s

) 3
4

ds.
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Let us estimate II1 for t > 2. When αt1/2 > ρ(αx) we compute as

II1 6
C

t
1
2

∫
R2

∫ t

1
4

(t − s)−
1
2

(
1+
|x − y−α(t − s)e1|

2

t − s

)−1

ds
dy

1+ |y|8

+
C
t

∫
R2

∫ 1
4

0

(
1+
|x − y−α(t − s)e1|

2

t − s

)−1

s−
3
4 ds

dy
1+ |y|8

, (3.35)

while when ρ(αx) > αt1/2 we use the bound

II1 6 C
∫
R2

∫ t

1
4

(t − s)−1

(
1+
|x − y−α(t − s)e1|

2

t − s

)−1

ds
dy

1+ |y|8

+
C
t

∫
R2

∫ 1
4

0

(
1+
|x − y−α(t − s)e1|

2

t − s

)−1

s−
3
4 ds

dy
1+ |y|8

. (3.36)

In each case the second term (the time integral over [0, 1
4 ]) is not a leading term in large

time and we may focus on the estimate of the first term in the right-hand side of (3.35)

and (3.36). Let κ ∈ [0, 1]. We observe that from the change of the variable s̃ = α2s and

Lemma 2.3 with γ1 = 0 and γ2 = −κ,∫ t

0
(t − s)−1+ κ2

(
1+
|x − y−α(t − s)e1|

2

t − s

)−1

ds

=
1
ακ

∫ τ

0
(τ − s̃)−1+ κ2

(
1+
|X − Y − (τ − s̃)e1|

2

τ − s̃

)−1

ds̃, τ = α2t

6
C
ακ


−χ{|X−Y |61/e} log |X − Y | +

χ{|X−Y |>1/e}

|X − Y |
1
2 (1+ |X − Y | − (X1− Y1))

1
2
, κ = 0,

χ{|X−Y |61/e}

κ
+

χ{|X−Y |>1/e}

|X − Y |
1−κ

2 (1+ |X − Y | − (X1− Y1))
1
2
, κ ∈ (0, 1].

(3.37)

Here χB denotes the characteristic function of the set B. Thus, when αt1/2 > ρ(αx) we

have from (3.35) and (3.37) with κ = 1 that

ρ(αx)1−β II1(t, x) 6 (α2t)
1−β

2 II1(t, x) 6
C

(α2t)
β
2

, (3.38)

and when αt1/2 6 ρ(αx) we have from (3.36) and (3.37) with κ = 0, by writing X = αx
and Y = αy,

ρ(αx)1−β II1(t, x) 6
1

(α2t)
β
2

ρ(αx)II1(t, x)

6
C

(α2t)
β
2

∫
R2

ρ(X − Y )+ ρ(Y )

|X − Y |
1
2 (1+ |X − Y | − (X1− Y1))

1
2

dy
1+ |y|8

https://doi.org/10.1017/S1474748019000240 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000240


On stability of physically reasonable solutions 541

6
C

(α2t)
β
2

∫
R2

(
1+

1

|x − y|
1
2

)
dy

1+ |y|7

6
C

(α2t)
β
2

. (3.39)

Here we have used
ρ(X − Y )

|X − Y |
1
2 (1+ |X − Y | − (X1− Y1))

1
2
6 C,

which follows from Lemma A.1, and

ρ(Y )

|X − Y |
1
2 (1+ |X − Y | − (X1− Y1))

1
2
6
|αy|

1
2 + |αy|

|X − Y |
1
2

6
C(1+ |y|)

|x − y|
1
2
.

Hence (3.38) and (3.39) shows

‖ρ(α·)1−β II1(t)‖L∞ 6
C

(α2t)
β
2

. (3.40)

Next we estimate II2 for t > 2. Since

II2 6
C

1+ (α2t)
β
2

∫
R2

∫ t

0
(t − s)−1

(
1+
|x − y−α(t − s)e1|

2

t − s

)−1

ds
dy

1+ |y|8
, (3.41)

the computation as above and (3.37) with κ = 0 imply

ρ(αx)1−β II2(t, x)

6
C

1+ (α2t)
β
2

∫
R2
(ρ(X − Y )1−β + ρ(Y )1−β)

×

(
−χ{|X−Y |61/e} log |X − Y | +

χ{|X−Y |>1/e}

|X − Y |
1
2 (1+ |X − Y | − (X1− Y1))

1
2

)
dy

1+ |y|8
.

By using the inequality of the form supa∈(0,1] a
1−β(− log a) 6 C

1−β one can check that

ρ(X − Y )1−β
(
−χ{|X−Y |61/e} log |X − Y | +

χ{|X−Y |>1/e}

|X − Y |
1
2 (1+ |X − Y | − (X1− Y1))

1
2

)

6
C

1−β
,

while from ρ(Y )1−β 6 Cα
1−β

2 (1+ |y|)1−β and

−χ{|X−Y |61/e} log |X − Y | 6 C(|logα| +χ{|x−y|61}|log|x − y| |),

we have

ρ(Y )1−β
(
−χ{|X−Y |61/e} log |X − Y | +

χ{|X−Y |>1/e}

|X − Y |
1
2 (1+ |X − Y | − (X1− Y1))

1
2

)

6
C

1−β
(1+ |y|)(1+χ{|x−y|61}|log|x − y||).
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Hence we have arrived at

‖ρ(α·)1−β II2(t)‖L∞ 6
C

(1−β)(1+ (α2t)
β
2 )
. (3.42)

Estimates (3.40) and (3.42) give

‖ρ(α·)1−β II(t)‖L∞ 6
C

(1−β)(α2t)
β
2

sup
s>0
(1+ (α2s)

β
2 )

(
s

1+ s

) 3
4
‖R(s)‖L4 , t > 2. (3.43)

Then, (3.32), (3.33), and (3.43) for t > 2 and (3.31) for t ∈ (0, 2] prove (3.27). The proof

of (3.28) is similar to the one of (3.27). Indeed, in virtue of (3.31) for t ∈ (0, 2] and of

(3.32) with (3.33) for t > 2, it suffices to consider the estimate of ‖II(t)‖L∞ for t > 2. Let

us recall that II(t) is bounded from above in term of II1 and II2. Then II1 is estimated

as

II1(t, x) 6
C

t − 1

∫ t−1
2

0

∫
R2

dy
1+ |y|8

(1+ (α2s)
β
2 )−1

(
1+ s

s

) 3
4

ds

6
C

1+ (α2t)
β
2

, t > 2. (3.44)

As for II2, we have from (3.41) and (3.37) with κ = 0,

II2(t, x) 6
C

1+ (α2t)
β
2

×

∫
R2

(
−χ{|X−Y |61/e} log |X − Y | +

χ{|X−Y |>1/e}

|X − Y |
1
2 (1+ |X − Y | − (X1− Y1))

1
2

)
dy

1+ |y|8

6
C

1+ (α2t)
β
2

∫
R2
(|logα| +χ{|x−y|61}|log|x − y| |)

dy
1+ |y|8

6
C |logα|

1+ (α2t)
β
2

. (3.45)

Thus, (3.44) and (3.45) give the desired estimate of II(t) for t > 2. The proof of (3.28) is

complete.

(ii) Proof of (3.29): from the estimate ‖∇e−tAαPh‖L∞ 6 Ct−
1
2−

1
q ‖h‖Lq , t > 0, 1 6 q 6∞,

we have

‖∇ϒAα [R](t)‖L∞

6 C
∫ t

0
(χ{t−s61}(t − s)−

3
4 ‖R(s)‖L4 +χ{t−s>1}(t − s)−

3
2 ‖R(s)‖L1) ds

6 C
∫ t

0
(χ{t−s61}(t − s)−

3
4 +χ{t−s>1}(t − s)−

3
2 )(1+ (α2s)

β
2 )−1

(
1+ s

s

) 3
4

ds

× sup
s>0
(1+ (α2s)

β
2 )

(
s

1+ s

) 3
4
‖R(s)‖L4 .

Here we have used supp R(s) ⊂ {|x | 6 6}. Hence (3.29) easily follows. The proof is

complete.
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4. Estimate of Oseen semigroup in exterior domain

In this section we establish the stability estimates for the Oseen semigroup {e−Aα,�}t>0,

which extends the estimates in the whole space case in the previous sections. Let us

recall that � is normalized so that diam (R2
\�) = 1 and the origin is in the interior of

the obstacle R2
\� and dist ({0}, ∂�) > 1

4 .

In establishing the estimate of {e−tAα,�}t>0 in large time, it is important to obtain

the local (in space) estimate taking into account the flow produced from the boundary.

This estimate is called the local energy decay estimate in the literature for the exterior

problem, and is a key step for the global L p-Lq estimates of the Stokes semigroup in

exterior domains (Iwashita [36] for 3D case, Dan and Shibata [12, 13] for 2D case) or of

the Oseen semigroup {e−tAα,�}t>0 (Kobayashi and Shibata [37] for 3D case, Hishida [35]

for 2D case). Let us consider the Stokes system
∂t u−1u+α∂1u+∇ pu = 0, t > 0, x ∈ �,

div u = 0, t > 0, x ∈ �,
u = 0, t > 0, x ∈ ∂�,

u|t=0 = P� f, x ∈ �.

(4.1)

Our analysis relies on the following theorem, which gives the temporal decay estimate of

the solution u(t) = e−tAα,�P� f and the associated pressure pu(t) = p[P� f ](t) near the

boundary when the given data f ∈ Lq(�)2, 1 < q <∞, is compactly supported.

Theorem 4.1 (Local energy decay estimate [40, Theorem 1.2]). Set �4 = �∩ {|x | 6 4}.
Let α ∈ (0, 1

2 ] and 1 < q <∞. Assume that f ∈ Lq(�)2 and supp f ⊂ {|x | 6 5}. Then for

j = 0, 1, 2,

‖∇
j e−tAα,�P� f ‖Lq (�4) 6



C

t
j
2

‖ f ‖Lq (�), 0 < t 6 3,(
C

t (log t)2
+

Cα2

|log t |

)
‖ f ‖Lq (�), 2 6 t 6 α−2,

C
t2α2|logα|

‖ f ‖Lq (�), t > α−2,

(4.2)

and the associated pressure field p[P� f ](t) = pu(t),
∫
�4

p[P� f ](t) dx = 0, satisfies

‖p[P� f ](t)‖Lq (�4) 6



C

t
1
2 (1+

1
q )
‖ f ‖Lq (�), 0 < t 6 3,(

C
t (log t)2

+
Cα2

|log t |

)
‖ f ‖Lq (�), 2 6 t 6 α−2,

C
t2α2|logα|

‖ f ‖Lq (�), t > α−2,

(4.3)

Here the constant C depend only on q and �.

Remark 4.2. (i) The constant C in Theorem 4.1 is independent of α ∈ (0, 1
2 ]. Hence,

by taking the limit α→ 0, we recover the local energy decay estimate of the Stokes
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semigroup e−tA� established by Dan and Shibata [12]. Note that Theorem 4.1 is a

significant improvement of [35], where the algebraic singularity in α−1 is present.

(ii) The key point of (4.2)–(4.3) is that the quantities
∫
∞

1 ‖∇
j e−tAα,�P� f ‖Lq (�4) dt and∫

∞

1 ‖p[P� f ](t)‖Lq (�4) dt are estimated uniformly in small α. Such bounds are essential to

obtain the estimate in the exterior domain as in the whole space case and to handle the

term α∇ · (U ⊗ v+ v⊗U ) with U whose scale-critical (anisotropic) norm is small only in

the logarithmic order.

4.1. Estimate of semigroup in exterior domain

In this subsection we establish the weighted L∞ estimate of the Oseen semigroup e−tAα,� .

Let us recall that the function b(X) is defined as (1.6).

Proposition 4.3. Let α ∈ (0, 1
2 ] and β ∈ [0, 1). Let f ∈ L4

σ (�) satisfy b(α·) f ∈ L∞(�)2.

Then

sup
t>0
(α2t)

β
2 ‖ρ(α·)1−βe−tAα,� f ‖L∞ 6

C
1−β

‖(1+ b(α·)) f ‖L∞ , (4.4)

sup
t>0
(1+ (α2t)

1
2 )‖e−tAα,� f ‖L∞ 6 C | logα| ‖(1+ b(α·)) f ‖L∞ , (4.5)

sup
t>0
(1+ (α2t)

1
2 )

(
t

1+ t

) 1
2
‖∇e−tAα,� f ‖L∞ 6 C‖(1+ b(α·)) f ‖L∞ . (4.6)

Here C is independent of α and β.

Proof. Let us introduce a cut-off function χ ∈ C∞0 (R
2), 0 6 χ 6 1, such that χ(x) = 1

for |x | 6 1 and χ(x) = 0 for |x | > 2. Then we set

v(t) = (1−χ)e−tAα,� f +B[∇χ · e−tAα,� f ].

Here B is the Bogovskii operator in the annulus D0 = {x ∈ R2
| 1 < |x | < 2}, that is, B[g]

satisfies

divB[g] = g in D0, B[g] = 0 on ∂D0

for a given function g ∈ C∞0 (D0) with
∫

D0
gdx = 0. As is well known (see, e.g., Borchers

and Sohr [8]), the Bogovskii operator B is extended to a bounded operator from W k,q
0 (D0)

to W k+1,q
0 (D0)

2 for any 1 < q <∞ and k = 0, 1, . . . , together with the estimate

‖∇
k+1B[g]‖Lq (D0) 6 C‖∇k g‖Lq (D0), 1 < q <∞, k = 0, 1, . . . . (4.7)

Then v(t) is regarded as a solenoidal vector field in R2, and satisfies the equations

∂tv+ Aαv+∇ pv = R, div v = 0, t > 0, x ∈ R2 (4.8)

and v|t=0 = (1−χ) f +B[∇χ · f ], with a suitable pressure pv and

R(t) = (1χ)e−tAα,� f + 2∇χ · ∇e−tAα,� f −α(∂1χ)e−tAα,� f

− (∇χ)p�(t)+ (∂t + Aα)B[∇χ · e−tAα,� f ]. (4.9)
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Here p� is the pressure associated with e−tAα,� f , while R(t) is supported in D0. Thus v

satisfies the integral equation

v(t) = e−tAαv0+ϒAα [R](t), ϒAα [R](t) =
∫ t

0
e−(t−s)AαPR(s) ds,

v0 = (1−χ) f +B[∇χ · f ].
(4.10)

By Proposition 3.2 we have

sup
t>0

(
‖ρ(α·)e−tAαv0‖L∞ + (1+ (α2t)

β
2 )‖ρ(α·)1−βe−tAαv0‖L∞

+ (1+ (α2t)
1
2 )‖e−tAαv0‖L∞ + t

1
2 ‖∇e−tAαv0‖L∞

)
6 C‖(1+ b(α·))v0‖L∞

6 C‖(1+ b(α·)) f ‖L∞ . (4.11)

Here we have used in the last line that ‖(1+ b(α·))B[∇χ · f ]‖L∞ 6 C‖B[∇χ · f ]‖L∞ 6
C‖B[∇χ · f ]‖W 1,3 6 C‖∇χ · f ‖L3 6 C‖ f ‖L∞ . On the other hand, Proposition 3.5 implies

sup
t>0

(
‖ρ(α·)ϒAα [R](t)‖L∞ + (1−β)(α2t)

β
2 ‖ρ(α·)1−βϒAα [R](t)‖L∞

+
(1+ (α2t)

1
2 )

|logα|
‖ϒAα [R](t)‖L∞ + (1+ (α2t)

1
2 )

(
t

1+ t

) 1
2
‖∇ϒAα [R](t)‖L∞

)

6 C sup
t>0
(1+ (α2t)

1
2 )

(
t

1+ t

) 3
4
‖R(t)‖L4 , (4.12)

since supp R(t) ⊂ {|x | 6 2}. For the estimate of R(t) we have

‖R(t)‖L4 6 C(‖e−tAα,� f ‖W 1,4(D0)
+‖p�(t)‖L4(D0)

). (4.13)

Estimate (4.13) is apparently nontrivial, due to the presence of the time derivative in the

definition of R. This difficulty is overcome by applying the estimate for the Bogovskii

operator in Sobolev spaces with a negative order, which is obtained by [8]. The details

of the proof of (4.13) are postponed to the appendix. Admitting (4.13), let us focus on

the estimate near the boundary. To this end we take a smooth cut-off denoted again by

χ such that χ = 1 for |x | 6 2 and χ = 0 for |x | > 3, and set

u(t) = (1−χ)e−tAα f +B[∇χ · e−tAα f ], (4.14)

where f is extended to R2 by zero in R2
\�. The operator B denotes the Bogovskii

operator but in the annulus D1 = {x ∈ R2
| 2 < |x | < 3} in this case. Since div f = 0 in

R2, we have e−tAα f = e−t Aα f , and in particular, the associated pressure is zero. Then

the direct calculation shows that w(t) = e−tAα,� f − u(t) satisfies
∂tw+ Aαw+∇ pw = −R̃, t > 0, x ∈ �,

divw = 0, t > 0, x ∈ �,
w = 0, t > 0, x ∈ ∂�,

w|t=0 = w0, x ∈ �,
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with pw = p�, w0 = χ f −B[∇χ · f ], and

R̃(t) = (1χ)e−tAα f + 2∇χ · ∇e−tAα f −α(∂1χ)e−tAα f + (∂t + Aα)B[∇χ · e−tAα f ].

Thus w is written as

w(t) = e−tAα,�w0−

∫ t

0
e−(t−s)Aα,�P� R̃(s) ds

= w(1)(t)+w(2)(t). (4.15)

Then the associated pressure pw is written in the form pw = pw(1) + pw(2) , where

pw(1)(t) = p[w0](t), pw(2)(t) = −
∫ t

0
p[P� R̃(s)](t − s) ds (4.16)

by following the notation used in Theorem 4.1. Since e−tAα,� f = w(t) for |x | 6 2, it

suffices to estimate w(t).

(i) Estimate of w(1): from the L∞ estimate of the Oseen semigroup, see (2.9), we have

‖∇
jw(1)(t)‖L∞ 6

C

t
j
2

‖w0‖L∞ 6
C

t
j
2

‖ f ‖L∞ , 0 < t 6 3, j = 0, 1, (4.17)

while Theorem 4.1 and the Sobolev embedding inequality yield

‖w(1)(t)‖W 1,∞(�∩{|x |63}) 6
C
t
‖w0‖L4 6

C
t
‖ f ‖L∞ , t > 3. (4.18)

Here C is independent of α.

(ii) Estimate of w(2): From the estimate of the Oseen semigroup it is easy to see that

‖∇
jw(2)(t)‖L∞ 6 C

∫ t

0
(t − s)−

j
2−

1
4 ‖P� R̃(s)‖L4 ds

6 C
∫ t

0
(t − s)−

j
2−

1
4 ‖R̃(s)‖L4 ds, 0 < t 6 3, j = 0, 1. (4.19)

When t > 3 we have also from Theorem 4.1,

‖w(2)(t)‖W 1,∞(�∩{|x |63})

6
∫ t

t−2
‖e−(t−s)Aα,�P� R̃(s)‖W 1,∞ ds

+C
∫ t−2

0
‖e−(t−s)Aα,�P� R̃(s)‖W 2,4(�∩{|x |63}) ds

6 C
∫ t

t−2
(t − s)−

3
4 ‖R̃(s)‖L4 ds

+C
∫ t−2

0

(
1

(t − s)(log(t − s))2
+
α2χ{t−s6α−2}

| log(t − s)|
+

χ{t−s>α−2}

(t − s)2α2|logα|

)
‖R̃(s)‖L4 ds.

(4.20)
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Note that the function 1
t (log t)2 +

α2χ
{t6α−2}
|log t | +

χ
{t>α−2}

t2α2|logα| is integrable over (2,∞) and its L1

norm is uniformly bounded in α ∈ (0, 1
2 ]. Next, as in the estimate of R, by recalling that

the associated pressure of e−tAα f is zero, we have

‖R̃(t)‖L4 6 C‖e−tAα f ‖W 1,∞({|x |63}) 6
C

1+ (α2t)
1
2
(1+ t−

1
2 )‖(1+ b(α·)) f ‖L∞ . (4.21)

Here we have also used Proposition 3.2 in the last line. Thus, (4.19) and (4.21) give

‖w(2)(t)‖L∞ + t
1
2 ‖∇w(2)(t)‖L∞ 6 C‖(1+ b(α·)) f ‖L∞ , 0 < t 6 3, (4.22)

while it is not difficult to see from (4.20) and (4.21) that

‖w(2)(t)‖W 1,∞(�∩{|x |63}) 6
C

1+ (α2t)
1
2
‖(1+ b(α·)) f ‖L∞ , t > 3. (4.23)

(iii) Estimate of pw(1) : By Theorem 4.1,

‖pw(1)(t)‖L4(�∩{|x |63}) 6
C

t
3
4
‖w0‖L4 6

C

t
3
4
‖ f ‖L∞ , t > 0,

which implies

(1+ (α2t)
1
2 )

(
t

1+ t

) 3
4
‖pw(1)(t)‖L4(�∩{|x |63}) 6 C‖ f ‖L∞ , t > 0. (4.24)

(iv) Estimate of pw(2) : By Theorem 4.1 we have

‖pw(2)(t)‖L4(�∩{|x |63}) 6 C
∫ t

0

(
χ{t−s62}

(t − s)
3
4
+

χ{26t−s6α−2}

(t − s)(log(t − s))2

+
α2χ{26t−s6α−2}

| log(t − s)|
+

χ{t−s>α−2}

(t − s)2α2|logα|

)
‖R̃(s)‖L4 ds,

and then, combining with (4.21),

(1+ (α2t)
1
2 )

(
t

1+ t

) 3
4
‖pw(2)(t)‖L4(�∩{|x |63}) 6 C‖(1+ b(α·) f ‖L∞ , t > 0. (4.25)

Let us recall that e−tAα,� f = w(1)(t)+w(2)(t) and p� = pw(1) + pw(2) for |x | 6 2. Then,

from estimate (4.13) for ‖R(t)‖L4 and (4.17), (4.18), (4.22), (4.23), (4.24), and (4.25), we

have

‖R(t)‖L4 6 C

(
1

t
3
4
+

1

1+ (α2t)
1
2

)
‖(1+ b(α·)) f ‖L∞ .

Therefore, the right-hand side of (4.12) is bounded from above by C‖(1+ b(α·)) f ‖L∞ with

C independent of α and β, as desired. Then, by recalling (4.10) and (4.11), we obtain

(4.4), (4.5), and (4.6) but with L∞ norm in the left-hand side replaced by L∞({|x | > 2})
norm (since v(t) = e−tAα,� f for |x | > 2). The estimates in {|x | 6 2} follow from (4.17),

(4.18), (4.22), and (4.23). The proof is complete.
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For α ∈ (0, 1
2 ] and β ∈ [0, 1] let us introduce the space/time norm ‖ · ‖α,β as

‖ f ‖α,β = sup
t>0
(‖ρ(α·) f (t)‖L∞ + (1−β)(α2t)

β
2 ‖ρ(α·)1−β f (t)‖L∞)

+ sup
t>0
(1+ (α2t)

β
2 )

(
1
|logα|

‖ f (t)‖L∞ +

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)
. (4.26)

Note that the factors (1−β) and 1
|logα| in (4.26) are compatible with the estimates in

Proposition 4.3 for e−tAα,� . The choice of the weight (α2t)
β
2 rather than (α2t)

1
2 in front

of ‖ f (t)‖L∞ and ‖∇ f (t)‖L∞ even in the case β < 1 is due to the bilinear estimate in the

next subsection, although we have the critical decay O((α2t)−
1
2 ) in (4.5) for the Oseen

semigroup. In this sense the norm

sup
t>0
(1+ (α2t)

β
2 )

(
1
|logα|

‖ f (t)‖L∞ +

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)
is subcritical when β < 1. Proposition 4.3 implies

‖e−·Aα,� f ‖α,β 6 C‖(1+ b(α·)) f ‖L∞ . (4.27)

Here C is independent of α and β.

4.2. Estimate of bilinear form in exterior domain

In this subsection we establish the estimate of the bilinear form

3Aα,� [ f, g](t) = α
∫ t

0
e−(t−s)Aα,�P�∇ · ( f ⊗ g+ g⊗ f ) ds. (4.28)

Note that the norm ‖ · ‖α,β is defined as (4.26).

Proposition 4.4. Let α ∈ (0, 1
2 ] and β ∈ [0, 1). Let b(α·) f, b(α·)g ∈ L∞(0,∞; L∞(�)2),

and ∇ f,∇g ∈ L∞loc((0,∞); L
∞(�)). Then we have

‖3Aα,� [ f, g]‖α,β 6
C

1−β
‖g‖α,β sup

t>0

(
‖ρ(α·) f (t)‖L∞ +α

1
2

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)
.

(4.29)

Here C is independent of α and β.

Proof. The proof is similar to the proof of Proposition 4.3. We first take a cut-off function

χ ∈ C∞0 (R
2), 0 6 χ 6 1, such that χ(x) = 1 for |x | 6 1 and χ(x) = 0 for |x | > 2. Then

we set

v(t) = (1−χ)3Aα,� [ f, g](t)+B[∇χ ·3Aα,� [ f, g](t)].

Here B is the Bogovskii operator in the annulus D0 = {x ∈ R2
| 1 < |x | < 2}. Then v(t)

is regarded as a solenoidal vector field in R2, and satisfies the equations
∂tv+ Aαv+∇ pv = α∇ · ((1−χ) f ⊗ g+ g⊗ (1−χ) f )+ R, t > 0, x ∈ R2,

div v = 0, t > 0, x ∈ R2,

v|t=0 = 0, x ∈ R2,
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with a suitable pressure pv and

R(t) = (1χ)3Aα,� [ f, g](t)+ 2∇χ · ∇3Aα,� [ f, g](t)−α(∂1χ)3Aα,� [ f, g](t)

− (∇χ)p�(t)+ (∂t + Aα)B[∇χ ·3Aα,� [ f, g](t)]

+α(∇χ) · ( f ⊗ g+ g⊗ f ). (4.30)

Here p� is the pressure associated with 3Aα,� [ f, g], while R(t) is supported in D0. Thus

v satisfies the integral equation

v(t) = 3Aα [(1−χ) f, g](t)+ϒAα [R](t),

3Aα [ f, g](t) = α
∫ t

0
e−(t−s)AαP∇ · ( f ⊗ g+ g⊗ f ) ds,

ϒAα [R](t) =
∫ t

0
e−(t−s)AαPR(s) ds.

(4.31)

By Proposition 3.3 we have

‖3Aα [(1−χ) f, g]‖α,β

6
C

1−β
‖g‖α,β sup

t>0

(
‖ρ(α·)(1−χ) f ‖L∞ +α

1
2

(
t

1+ t

) 1
2
‖∇(1−χ) f ‖L∞

)

6
C

1−β
‖g‖α,β sup

t>0

(
‖ρ(α·) f ‖L∞ +α

1
2

(
t

1+ t

) 1
2
‖∇ f ‖L∞

)
. (4.32)

Here we have also used in the last line that α
1
2 ‖(∇χ) f ‖L∞ 6 C‖ρ(α·) f ‖L∞ . On the other

hand, Proposition 3.5 implies

‖ϒAα [R]‖α,β 6 C sup
t>0
(1+ (α2t)

β
2 )

(
t

1+ t

) 3
4
‖R(t)‖L4 , (4.33)

since supp R(t) ⊂ {|x | 6 2}. For the estimate of R(t) we have from (4.30),

‖R(t)‖L4 6 C(‖3Aα,� [ f, g](t)‖W 1,4(D0)
+‖p�(t)‖L4(D0)

+α‖ f g(t)‖L4(D0)
). (4.34)

The proof of (4.34) is exactly the same as the proof of (4.13). As in the proof of

Proposition 4.3, next we derive the estimate near the boundary. To this end we take

a smooth cut-off denoted again by χ such that χ = 1 for |x | 6 2 and χ = 0 for |x | > 3,

and set

u(t) = (1−χ)3Aα [(1−χ) f, g](t)+B[∇χ ·3Aα [(1−χ) f, g](t)], (4.35)

where f, g are extended to R2 by zero in R2
\�. The operator B denotes the Bogovskii

operator but in the annulus D1 = {x ∈ R2
| 2 < |x | < 3} in this case. Then the direct

calculation shows that w(t) = 3Aα,� [ f, g](t)− u(t) satisfies
∂tw+ Aαw+∇ pw = −R̃, t > 0, x ∈ �,

divw = 0, t > 0, x ∈ �,
w = 0, t > 0, x ∈ ∂�,

w|t=0 = 0, x ∈ �,
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with pw = p�− (1−χ)pR2 , where pR2 is the pressure field associated with 3Aα [(1−χ)
f, g], and

R̃(t) = (1χ)3Aα [(1−χ) f, g](t)+ 2∇χ · ∇3Aα [(1−χ) f, g](t)

−α(∂1χ)3Aα [(1−χ) f, g](t)+ (∂t + Aα)B[∇χ ·3Aα [(1−χ) f, g](t)]

− (∇χ)pR2 −α∇ · (χ f ⊗ g+ g⊗χ f )+αχ∇ · ((1−χ) f ⊗ g+ g⊗ (1−χ) f ).

Thus w is written as

w(t) = −
∫ t

0
e−(t−s)Aα,�P� R̃(s) ds, (4.36)

while the associated pressure pw is written in the form

pw(t) = −
∫ t

0
p[P� R̃(s)](t − s) ds (4.37)

by following the notation used in Theorem 4.1. Since 3Aα,� [ f, g](t) = w(t) for |x | 6 2, it

suffices to estimate w(t).

(i) Estimate of w: from the estimate of the Oseen semigroup, see (2.9), it is easy to see

that

‖∇
jw(t)‖L∞ 6 C

∫ t

0
(t − s)−

j
2−

1
4 ‖P� R̃(s)‖L4 ds

6 C
∫ t

0
(t − s)−

j
2−

1
4 ‖R̃(s)‖L4 ds, 0 < t 6 3, j = 0, 1. (4.38)

When t > 3 we have also from Theorem 4.1,

‖w(t)‖W 1,∞(�∩{|x |63})

6
∫ t

t−2
‖e−(t−s)Aα,�P� R̃(s)‖W 1,∞ ds

+C
∫ t−2

0
‖e−(t−s)Aα,�P� R̃(s)‖W 2,4(�∩{|x |63}) ds

6 C
∫ t

t−2
(t − s)−

3
4 ‖R̃(s)‖L4 ds

+C
∫ t−2

0

(
1

(t − s)(log(t − s))2
+
α2χ{t−s6α−2}

|log(t − s)|
+

χ{t−s>α−2}

(t − s)2α2|logα|

)
‖R̃(s)‖L4 ds.

(4.39)

Next, Proposition 3.3 for the bilinear form 3Aα [(1−χ) f, g] yields

‖R̃(t)‖L4 6 C(‖3Aα [(1−χ) f, g](t)‖W 1,∞({|x |63})+‖pR2(t)‖|L4({|x |63})

+α‖χ∇( f g)‖L4 +α‖ f g∇χ‖L4)

6
C(1+ t−

1
2 )

(1−β)(1+ (α2t)
β
2 )
‖g‖α,β sup

t>0

(
‖ρ(α·) f (t)‖L∞ +α

1
2

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)
+C‖pR2(t)‖L4 . (4.40)
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To estimate pR2 we recall that

∂t3Aα [ f, g] + Aα3Aα [ f, g] +∇ pR2

= α∇ · ((1−χ) f ⊗ g+ g⊗ (1−χ) f ), t > 0, x ∈ R2,

and thus, from div3Aα [ f, g] = 0, pR2 is given by the formula

pR2 = −α(−1R2)
−1
∇ ·∇ · ((1−χ) f ⊗ g+ g⊗ (1−χ) f ). (4.41)

Since (−1R2)−1
∇ ·∇· defines a singular integral operator, we have from the

Calderon–Zygmund inequality

‖pR2(t)‖L8(R2) 6 Cα‖ f ⊗ g(t)+ g⊗ f (t)‖L8(R2)

= Cα
3
4 ‖ f ⊗ g(t)+ g⊗ f (t)‖L8

X
, X = αx

and then, using

‖ f ⊗ g(t)+ g⊗ f (t)‖L8
X
6 C‖ f (t)‖L8

X
‖g(t)‖L∞

6 C
∥∥∥∥ 1
ρ

∥∥∥∥
L8

X ({|X |>α/4})
‖ρ(α, ·) f (t)‖L∞‖ ‖g(t)‖L∞

due to f = 0 for |x | 6 1/4 (since f is zero extension to R2), by using ‖ 1
ρ
‖L8

X ({|X |>α/4})
6

Cα−
1
4 , we end up with the estimate

‖pR2(t)‖L4(D0)
6 Cα

1
2 ‖ρ(α·) f (t)‖L∞‖g(t)‖L∞

6
Cα

1
2 |logα|

1+ (α2t)
β
2

‖g‖α,β sup
t>0
‖ρ(α·) f (t)‖L∞ . (4.42)

Collecting (4.40) and (4.42), we obtain

‖R̃(t)‖L4 6
C(1+ t−

1
2 )

(1−β)(1+ (α2t)
β
2 )
‖g‖α,β sup

t>0

(
‖ρ(α·) f (t)‖L∞ +α

1
2

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)
.

(4.43)

Hence, combining (4.38) and (4.39) with (4.43), we arrive at

‖w(t)‖L∞(�∩{|x |63})+

(
t

1+ t

) 1
2
‖∇w(t)‖L∞(�∩{|x |63})

6
C

(1−β)(1+ (α2t)
β
2 )
‖g‖α,β sup

t>0

(
‖ρ(α·) f (t)‖L∞ +α

1
2

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)
.

(4.44)

(ii) Estimate of p� in D0: Recall that p� = pw + (1−χ)pR2 . From (4.37) and Theorem

4.1 we have

‖pw‖L4(�∩{|x |63}) 6 C
∫ t

0

(
χ{t−s62}

(t − s)
3
4
+

χ{26t−s6α−2}

(t − s)|log(t − s)|2

+
α2χ{26t−s6α−2}

|log(t − s)|
+

χ{t−s>α−2}

(t − s)2α2|logα|

)
‖R̃(s)‖L4 ds,
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and then, combining with (4.43), we obtain

(1+ (α2t)
β
2 )

(
t

1+ t

) 3
4
‖pw(t)‖L4(�∩{|x |63})

6
C

1−β
‖g‖α,β sup

t>0

(
‖ρ(α·) f (t)‖L∞ +α

1
2

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)
. (4.45)

Thus, (4.42) and (4.45) yield

(1+ (α2t)
β
2 )

(
t

1+ t

) 3
4
‖p�(t)‖L4(D0)

6
C

1−β
‖g‖α,β sup

t>0

(
‖ρ(α·) f (t)‖L∞ +α

1
2

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)
. (4.46)

Estimates (4.34) with α‖ f g‖L4(D0)
6 Cα

1
2 |logα|

1+(α2t)
β
2
‖g‖α,β supt>0 ‖ρ(α·) f (t)‖L∞ , (4.44), and

(4.46) give

(1+ (α2t)
β
2 )

(
t

1+ t

) 3
4
‖R(t)‖L4

6
C

1−β
‖g‖α,β sup

t>0

(
‖ρ(α·) f (t)‖L∞ +

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)
. (4.47)

Since 3α,�[ f, g] = v for |x | > 2, estimates (4.32), (4.33), and (4.47) yield (4.29) away

from the boundary (|x | > 2), while (4.44) yields (4.29) near the boundary (|x | 6 2). The

proof is complete.

5. Nonlinear stability

Based on the linear analysis in the previous sections we solve the integral equation of the

Navier–Stokes equations

v(t) = e−tAα,�v0−α

∫ t

0
e−(t−s)Aα,�P�∇ · (U ⊗ v+ v⊗U ) ds

−α

∫ t

0
e−(t−s)Aα,�P�∇ · (v⊗ v) ds

= e−tAα,�v0−3α,�[U, v](t)−
1
2
3α,�[v, v](t). (5.1)

Proof of Theorem 1.2. Let α ∈ (0, 1
2 ] and β ∈ [0, 1), and let ‖ · ‖α,β be the norm defined

as (4.26). Let X be the Banach space defined by

X = { f ∈ C([0,∞); L4
σ (�))∩C((0,∞);W 1,4

0 (�)2) | ‖ f ‖α,β <∞}.

Then we define the nonlinear map N on X as

N [ f ](t) = e−tAα,�v0−3α,�[U, f ](t)− 1
23α,�[ f, f ](t), (5.2)
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and our aim is to show that N defines a contraction map in a small closed ball of X .

Set w0(t) = e−tAα,�v0, which belongs to C([0,∞); L4
σ (�))∩C((0,∞);W 1,4

0 (�)2) since

v0 ∈ L4
σ (�). We observe from (4.27) that

‖w0‖α,β 6 C1‖(1+ b(α·))v0‖L∞ . (5.3)

Here C1 is independent of α and β. On the other hand, we have from Proposition 4.4,

‖3α,�[U, f ]‖α,β 6
C

1−β
‖ f ‖α,β(‖ρ(α·)U‖L∞ +α

1
2 ‖∇U‖L∞)

6
C

1−β

(
1
|logα|

+α
1
2

)
‖ f ‖α,β

6
1
8
‖ f ‖α,β , (5.4)

where we have used the assumptions (A1)–(A2) for U , and we have taken α small enough

depending on β ∈ [0, 1). We also have

‖3α,�[ f, g]‖α,β 6
C

1−β
‖g‖α,β sup

t>0

(
‖ρ(α·) f (t)‖L∞ +α

1
2

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)

6
C2

1−β
‖g‖α,β‖ f ‖α,β . (5.5)

Here C2 is independent of α and β. We note that ∇ · ( f ⊗ g) ∈ L4(�) when ‖ρ(α·) f ‖L∞ +

‖ρ(α·)g‖L∞ +‖∇ f ‖L∞ +‖∇g‖L∞ <∞. Therefore, we have for 0 < t < T with any T > 0
and j = 0, 1,∥∥∥∥∇ j

∫ t

0
e−(t−s)Aα,�P�∇ · ( f ⊗ g) ds

∥∥∥∥
L4

6 CT

∫ t

0
(t − s)−

j
2 ‖P�∇ · ( f ⊗ g)‖L4 ds

6 CT

∫ t

0
(t − s)−

j
2 (‖ f∇g(s)‖L4 +‖g∇ f (s)‖L4) ds

6 CT,α

∫ t

0
(t − s)−

j
2 (‖ρ(α·) f (s)‖L∞‖∇g(s)‖L∞ +‖ρ(α·)g‖L∞‖∇ f (s)‖L∞) ds. (5.6)

Here the constant CT,α depends on T and α. From the estimate of the form (5.6) it

is not difficult to show that 3α,�[U, f ] and 3α,�[ f, g] belong to C((0,∞);W 1,4
0 (�)2)

and limt→0(‖3α,�[U, f ](t)‖L4 +‖3α,�[ f, g](t)‖L4) = 0 when f, g ∈ X . The details are

omitted here. Thus we have proved that the nonlinear map N is a map from X into X .

Estimates (5.3), (5.4), and (5.5) imply that N is a contraction map in the ball{
f ∈ X | ‖ f ‖α,β 6

1−β
8C2

}
if C1‖(1+ b(α·))v0‖L∞ 6 1−β

16C2
. Hence, if this smallness condition is satisfied, by the

Banach fixed point theorem there exists a unique fixed point v of N in this ball, which is

the solution to (5.1). Note that the proof of the Banach fixed point theorem also implies

‖v‖α,β 6 2‖w0‖α,β 6 2C1‖(1+ b(α·))v0‖L∞ . (5.7)
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By the definition of ‖ · ‖α,β we have

‖v(t)‖L∞ 6
|logα|

(1+ (α2t)
β
2 )
‖v‖α,β 6

2C1|logα|

(1+ (α2t)
β
2 )
‖(1+ b(α·))v0‖L∞ .

Thus (1.8) follows. The proof is complete.

6. Note on the class of perturbations and temporal decay

In Theorem 1.2 and the key linear estimate (1.16) the solution decays in time with

the rate O((α2)−
β
2 ), β < 1, in L∞x . In this section we discuss how to obtain the critical

or supercritical rate β > 1 under the additional condition on the initial data. In fact,

in this regime we need more complicated weighted norm. Let α ∈ (0, 1
2 ], δ ∈ (0, 1), and

β ∈ [1, 1+ δ). Then we set ‖ f ‖α,β,δ as

‖ f ‖α,β,δ = sup
t>0

(
‖ρ(α·)1+δ f (t)‖L∞ +

δ(1+ δ−β)
1+ 2δ−β

(α2t)
β
2 ‖ρ(α·)1+δ−β f (t)‖L∞

)

+ sup
t>0
(1+ (α2t)

β
2 )

(
2−β

(2−β)|logα| + 1
‖ f (t)‖L∞ +

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)
.

(6.1)

As in ‖ f ‖α,β , the first two terms in the right-hand side lie in the same scale, while the last

two terms are in the subscale compared with the first ones (in view of time and spatial

decay). Then, instead of the linear estimate (1.16), we have for α ∈ (0, 1
2 ], δ ∈ (0, 1),

β ∈ [1, 1+ δ) with β > 2δ, and for the solution v to (1.15),

‖v‖α,β,δ 6
C

δ(1− δ)
‖(1+ ρ(α·))1+2δv0‖L∞

+C
(

1
1+ δ−β

+
1
δ

)
‖g‖α,β,δ sup

t>0

(
‖ρ(α·) f (t)‖L∞ +α

1
2

(
t

1+ t

)1
2
‖∇ f (t)‖L∞

)
.

(6.2)

Here C is independent of α, β, δ. The main difference with (1.16) is that (i) there are

additional singularity on δ near δ = 0 and δ = 1, and (ii) the norm ‖(1+ ρ(α·))1+2δv0‖L∞

is needed, rather than ‖(1+ ρ(α·))1+δv0‖L∞ . The proof of (6.2) proceeds in the same

manner as in the proof of (1.16): (Step 1) obtain the estimates in the whole space problem,

(Step 2) invoke the local energy decay estimate in Theorem 4.1, (Step 3) obtain the

estimates in the exterior problem by combining the results of Step 1 and Step 2 through

a cut-off argument. Step 2 and Step 3 are exactly the same as discussed in § 4, and the

modifications are needed only for Step 1, i.e., the estimates in the whole space problem.

Thus we state here the counterparts of Propositions 3.2, 3.3, and 6.3, but without details

of the proof.

Proposition 6.1. Let δ ∈ (0, 1) and β ∈ [0, 1+ δ]. Let ρ(α·)1+2δ f ∈ L∞(R2)2 and

div f = 0 in R2. Then

sup
t>0
(1+ (α2t)

β
2 )‖ρ(α·)1+δ−βe−tAα f ‖L∞ 6

C
δ(1− δ)

‖(1+ ρ(α·))1+2δ f ‖L∞ , (6.3)
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and

sup
t>0
(1+ (α2t)

β
2 )t

1
2 ‖∇e−tAα f ‖L∞ 6 C‖(1+ ρ(α·))1+2δ f ‖L∞ . (6.4)

Here C is independent of α, β, and δ.

Proof. We give a proof only for (6.3) with β = 1+ δ. Since div f = 0 ensures that the

kernel of e−tAα is given by the heat kernel, we have

|(e−tAα f )(x)| 6
∫
R2

G(t, x − y−αte1)
dy

(1+ ρ(αy))1+2δ ‖(1+ ρ(α·))
1+2δ f ‖L∞ .

From the definition ρ(Y ) = |Y |
1
2 + |Y2|, we have

∫
R

dy2
(1+ρ(αy))1+2δ 6

C
δ|αy1|δ

, which yields

|(e−tAα f )(x)| 6
C

αt
1
2 δ

∫
R

e−
|x1−y1−αt |2

4t
dy1

|αy1|δ
‖(1+ ρ(α·))1+2δ f ‖L∞

6
C

δ(1− δ)(α2t)
1+δ

2
‖(1+ ρ(α·))1+2δ f ‖L∞ .

Note that we need the norm ‖(1+ ρ(α·))1+2δ f ‖L∞ rather than ‖(1+ ρ(α·))1+δ f ‖L∞ . The

proof is complete.

Proposition 6.2. Let α ∈ (0, 1
2 ], δ ∈ (0, 1), and β ∈ [1, 1+ δ). Then the following

estimates hold for any f, g ∈ L∞(0,∞;W 1,∞(R2)2) such that ρ(α·) f, ρ(α·)1+δg ∈
L∞(0,∞; L∞(R2)2).

sup
t>0
(α2t)

β
2 ‖ρ(α·)1+δ−β3Aα [ f, g](t)‖L∞

6 C
(

1
1+ δ−β

+
1

1− δ
+

1
δ

)
sup
t>0
‖ρ(α·) f (t)‖L∞

× sup
t>0
((α2t)

β
2 ‖ρ(α·)1+δ−βg(t)‖L∞ +‖ρ(α·)

1+δg(t)‖L∞), (6.5)

sup
t>0
(1+ (α2t)

β
2 )‖3Aα [ f, g](t)‖L∞

6 C
(

1
1+ δ−β

+
1

1− δ
+

1
δ

)
sup
t>0
‖ρ(α·) f (t)‖L∞

× sup
t>0
((α2t)

β
2 ‖ρ(α·)1+δ−βg(t)‖L∞ +‖ρ(α·)

1+δg(t)‖L∞ + (1+ (α2t)
β
2 )‖g(t)‖L∞),

(6.6)

sup
t>0
(1+ (α2t)

β
2 )

(
t

1+ t

) 1
2
‖∇3Aα [ f, g](t)‖L∞

6 Cα
1
2 sup

t>0

(
‖ρ(α·) f (t)‖L∞ +α

1
2

(
t

1+ t

) 1
2
‖∇ f (t)‖L∞

)

× sup
t>0
(1+ (α2t)

β
2 )

(
‖g(t)‖L∞ +

(
t

1+ t

) 1
2
‖∇g(t)‖L∞

)
. (6.7)

Here C is independent of α, β, and δ.
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Note that 1− δ > 1+ δ−β when β > 2δ. The proof of Proposition 6.2 is very parallel

to the proof of Proposition 3.3, which is based on Lemmas 2.3 and 2.4. The singularity 1
δ

is related to the case when β is close to 1, and if β > 1 then this factor can be replaced by
1

β−1 . Indeed, these singularities are originated from the computation of the form (3.19),

which now reads as

|3A1 [ f̃ , g̃](τ, X)| 6 Cτ−
η
2

∫ τ
2

0

∫
R2
(τ − s)−

3−η
2 K (τ − s, X − Y )

3
2

1
ρ(Y )2+δ

dY ds

× sup
τ>0
‖ρ1+δ g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞

+Cτ−
β
2

∫ τ

τ
2

∫
R2
(τ − s)−

3
2 K (τ − s, X − Y )

3
2

1
ρ(Y )2+δ−β

dY ds

× sup
τ>0

τ
β
2 ‖ρ1+δ−β g̃(τ )‖L∞ sup

τ>0
‖ρ f̃ (τ )‖L∞ . (6.8)

Here the number η must be taken suitably to meet our purpose. If β > 1 then we may

take η = β, which yields the singularity 1
β−1 when β > 1 by the application of Lemma 2.3

for the kernel estimate in the regime |X − Y | 6 1
e . When β > 1, in order to replace the

factor 1
β−1 by 1

δ
we may assume β 6 1+ δ

2 (otherwise the replacement to 1
δ

is trivial) and

then consider two cases τ
1
2 > ρ(X) and τ

1
2 6 ρ(X). When τ

1
2 > ρ(X) we take η = 1+ δ

2

and then apply Lemma 2.3. By using τ−
η
2 6 τ−

β
2 ρ(X)−η+β we finally obtain the desired

estimate, after the similar computation as in the proof of Proposition 3.3. If τ
1
2 6 ρ(X)

then we take η = 0, which yields the decay 1
ρ(X)1+δ from the first term in the right-hand

side of (6.8) and thus we obtain the decay τ−
β
2 ρ(X)−1−δ+β . One can check that the

singularity 1
δ

appears through the applications of Lemmas 2.3 and 2.4 in this argument.

Since these are technical issues, we omit the details.

The nontrivial modification is required in obtaining the estimate of the inhomogeneous

term with a compactly supported data, as stated below.

Proposition 6.3. Let α ∈ (0, 1
2 ], δ ∈ (0, 1), β ∈ [1, 1+ δ), and β > 2δ. Suppose that R(t) ∈

L4(R2)2 and supp R(t) ⊂ {|x | 6 6} for all t > 0. Then

sup
t>0
(α2t)

β
2 ‖ρ(α·)1+δ−βϒAα [R](t)‖L∞ 6

C
1+ δ−β

sup
t>0
(1+ (α2t)

β
2 )

(
t

1+ t

)3
4
‖R(t)‖L4 ,

(6.9)

sup
t>0
(1+ (α2t)

β
2 )‖ϒAα [R](t)‖L∞ 6 C

(
|logα| +

1
2−β

)
sup
t>0
(1+ (α2t)

β
2 )

(
t

1+ t

)3
4
‖R(t)‖L4 ,

(6.10)

sup
t>0
(1+ (α2t)

β
2 )

(
t

1+ t

) 1
2
‖∇ϒAα [R](t)‖L∞ 6 C sup

t>0
(1+ (α2t)

β
2 )

(
t

1+ t

)3
4
‖R(t)‖L4 .

(6.11)

Here C is independent of α, β, and δ.
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Proof. It suffices to focus on the estimate for t > 2; the estimate for t ∈ (0, 2] is proved

in the same way as in the proof of Proposition 3.5 without difficulty. We decompose

ϒAα [R](t) into I (t)+ II(t) as in (3.32), and the term I (t) is handled in parallel to (3.33).

As for the term II(t), we argue as in the proof of Proposition 3.5, which gives

|II(t, x)| 6 C
∫ t−1

0

∫
R2
(t − s− 1)−1

(
1+
|x − y−α(t − s− 1)e1|

2

t − s− 1

)−1
dy

1+ |y|8

× (1+ (α2s)
β
2 )−1

(
1+ s

s

) 3
4

ds

× sup
t>0
(1+ (α2t)

β
2 )

(
t

1+ t

) 3
4
‖R(t)‖L4 .

Thus, the proof is reduced to the computation of

II1 =

∫ t−1
2

0

∫
R2
(t − s− 1)−1

(
1+
|x − y−α(t − s− 1)e1|

2

t − s− 1

)−1
dy

1+ |y|8

× (1+ (α2s)
β
2 )−1

(
1+ s

s

) 3
4

ds

II2 =

∫ t−1

t−1
2

∫
R2
(t − s− 1)−1

(
1+
|x − y−α(t − s− 1)e1|

2

t − s− 1

)−1
dy

1+ |y|8

× (1+ (α2s)
β
2 )−1

(
1+ s

s

) 3
4

ds.

The estimate of II2 is obtained in the same way as in the proof of (3.42), and we have

‖ρ(α·)1+δ−β II2(t)‖L∞ 6
C

(1+ δ−β)(1+ (α2t)
β
2 )
.

We omit the details and focus on the estimate of II1. When αt
1
2 6 4 we have from (3.37)

with κ = 0 that

II1 6 C
∫ 1

4

0

∫
R2
(t − s− 1)−1

(
1+
|x − y−α(t − s)e1|

2

t − s

)−1
dy

1+ |y|8
s−

3
4 ds

+C
∫ t

1
4

∫
R2
(t − s)−1

(
1+
|x − y−α(t − s)e1|

2

t − s

)−1
dy

1+ |y|8
ds

6 C
∫ 1

4

0

∫
R2
(t − s− 1)−1

(
1+
|x − y−α(t − s)e1|

2

t − s

)−1
dy

1+ |y|8
s−

3
4 ds

+C
∫
R2

(
−χ{|X−Y |61/e} log |X − Y | +

χ{|X−Y |>1/e}

|X − Y |
1
2 (1+ |X − Y | − (X1− Y1))

1
2

)

×
dy

1+ |y|8
,
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which leads to the bound for αt
1
2 6 4 as

(1+ (α2t)
β
2 )‖ρ(α·)1+δ−β II1(t)‖L∞ 6

C
1+ δ−β

.

Thus we consider the case αt
1
2 > 4. In this case we further decompose II1 into∫ t

1
2 /4α

0 +
∫ t−1

2

t
1
2 /4α
= II1,1+ II1,2, and then it is not difficult to see

ρ(αx)1+δ−β II1,1(t, x) 6
C
t
(α2t)

1+δ−β
2

∫ t
1
2

4α

0
(1+ (α2s)

β
2 )−1

(
1+ s

s

) 3
4

ds

6
C

(2−β)(α2t)
β
2+β−δ

6
C

(2−β)(α2t)
β
2

.

It remains to estimate II1,2. We have from (3.37) with κ = β
2 ,

II1,2 6
C

(1+ (α2t)
β
4 )

t−
β
4

∫
R2

∫ t

0
(t − s)−1+ β4

(
1+
|x − y−α(t − s)e1|

2

t − s

)−1

ds
dy

1+ |y|8

6
C

(1+ (α2t)
β
4 )

t−
β
4 α−

β
2

×

∫
R2

χ{|X−Y |61/e}+
χ{|X−Y |>1/e}

|X − Y |
1− β2

2 (1+ |X − Y | − (X1− Y1))
1
2

 dy
1+ |y|8

.

Then, under the condition 2δ 6 β < 2 we have 1+ δ−β 6 1− β
2 and 1− β

2 > 0, and thus,

ρ(X − Y )1+δ−β χ{|X−Y |>1/e}

|X − Y |
1− β2

2 (1+ |X − Y | − (X1− Y1))
1
2

6 C <∞

holds with a universal constant C . Hence, by also recalling αt
1
2 > 4,

‖ρ(α·)1+δ−β II1,2(t)‖L∞ 6
C

1+ (α2t)
β
2

.

The proof of (6.9) is complete, for 2−β > 1− δ > 1+ δ−β under the condition on the
parameters. The proof of (6.10) and (6.11) is similar to the proof of (3.28) and (3.29).

Note that the factor 1
2−β in (6.10) comes from the time integral in (3.44). The proof of

Proposition 6.3 is complete.

Remark 6.4. Once the linear estimate (6.2) is obtained, the application to the nonlinear

stability is a routine work. If the initial data is localized enough so that (1+ ρ(α·)1+2δ)v0 ∈

L∞(�)2 with δ > 0 and if this weighted L∞ norm is small enough (depending also on δ),

then the solution v(t) decays with the rate o((α2t)
1
2 ) in L∞x as t →∞.
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Appendix A. Key inequality

Lemma A.1. There exists κ ∈ (0, 1) such that

|X | − X1 >


C |X |, if |X2| > κ|X1|,

X2
2

4|X1|
, if |X2| 6 κ|X1|.

(A 1)

Here C is independent of X . As a consequence, there exists C ′ > 0 such that

1

|X |
1
2 (1+ |X | − X1)

3
4
6

C ′

|X |
1
2 + |X2|

(
1

1+ |X |
1
4
+min

{
1,
|X1|

1
4

|X2|
1
2

})
, X 6= 0, (A 2)

1
|X |(1+ |X | − X1)

6
C ′

|X | + X2
2
, X 6= 0. (A 3)

In particular, the function 1

|X |
1
2 (1+|X |−X1)

3
4

belongs to L∞X1
L1

X2
.

Proof. Fix sufficiently small κ > 0. If |X2| > κ|X1| we have for any ε > 0,

|X | − X1 = ε|X | + (1− ε)|X | − X1 > ε|X | + (1− ε)
√
(1+ κ2)|X1| − X1.

Thus, by taking ε > 0 sufficiently small but depending only on κ, we obtain |X | − X1 >
ε|X | in this case. Next we consider the case |X2| 6 κ|X1|. In this case we have from the

smallness of | X2
X1
|,

|X | − X1 = |X1|

(
1+

(
X2

X1

)2
) 1

2

− X1

> |X1|

(
1+

1
4

(
X2

X1

)2
)
− X1 >

X2
2

4|X1|
.

This proves (A 1). To show (A 2) we set g(X) =
1

|X |
1
2 (1+ |X | − X1)

3
4

. It is obvious that

|X |
1
2 g(X) ∈ L∞(R2), and moreover, if |X2| > κ|X1| then (A 1) gives the bound

g(X) 6
C

|X |
1
2 (1+ |X |)

3
4
.

Hence, it suffices to consider the case |X2| 6 κ|X1|. In this case (A 1) implies

g(X) 6
2|X1|

1
2

|X |
1
2 |X2|(1+ |X | − X1)

1
4
6

2

|X2|(1+ |X | − X1)
1
4
,

which gives |X2|g(X) ∈ L∞(R2). Thus we have (|X |
1
2 + |X2|)g(X) ∈ L∞(R2), and

(|X |
1
2 + |X2|)g(X) 6

C

(1+ |X | − X1)
1
4
6 C

(
1

1+ |X |
1
4
+min

{
1,
|X1|

1
4

|X2|
1
2

})
.
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Thus, estimate (A 2) holds. Estimate (A 3) is also proved in the same manner. Finally, it

is clear that (|X |
1
2 + |X2|)

−1(1+ |X |
1
4 )−1 belongs to L∞X1

L1
X2

, and since∫
R

1

(|X1|
1
2 + |X2|)|X2|

1
2

d X2 = 2
∫
∞

0

1

(|X1|
1
2 + r)r

1
2

dr

=
2

|X1|
1
4

∫
∞

0

1

(1+ s)s
1
2

ds =
C

|X1|
1
4
,

the right-hand side of (A 2) belongs to L∞X1
L1

X2
, and hence, so does g. The proof is

complete.

Appendix B. Estimate of localized terms R

We give a proof of (4.13). Note that the support of ∇χ is included in D0 = {1 6 |x | 6 2}.
To simplify the notation we set u(t) = e−tAα,� f . In virtue of the estimate for the Bogovskii

operator stated in (4.7), it is easy to see

‖(1χ)u(s)+ 2∇χ · ∇u(s)−α(∂1χ)u(s)− (∇χ)p�(s)− LαB[∇χ · u(s)]‖L4

6 C(‖u(s)‖W 1,4(D0)
+‖p�(s)‖L4(D0)

).

Thus, what is nontrivial in the estimates of R(t) defined by (4.9) is the estimate of the

term ∂sB[∇χ · u(s)]. To estimate this we observe that

∂tB[∇χ · u] = B[∇χ · (1u−α∂1u−∇ p�)]

= B[∇ · (∇χ∇u)] +B[(∇2χ)∇u]

−αB[∇χ · ∂1u] −B[∇(p�∇χ)] −B[(∇2χ)p�].

Since ∇χ vanishes on ∂D0 we can apply the estimate for the Bogovskii operator in the

Sobolev space with a negative order (cf. [8]), which yields

‖B[∇ · (∇χ∇u)]‖L4(D0)
+‖B[∇(p�∇χ)]‖L4(D0)

6 C(‖∇χ∇u‖L4(D0)
+‖p�(∇χ)‖L4(D0)

)

6 C(‖∇u‖L4(D0)
+‖p�‖L4(D0)

).

The other terms are estimated by applying the standard estimate for the Bogovskii

operator, and (4.13) follows. The proof is complete.

Appendix C. Estimate of Finn and Smith solutions

In this appendix we show that the stationary solutions constructed by Finn and Smith

[22] obey the condition (A1). The result and the argument stated here are not essentially

new, so we only give a sketch of the proof. We note that the subcritical bound (A2) easily

follows from [22] and thus the details are omitted here. First we observe that the solution

(U, P) to (1.3) of Finn and Smith satisfies the global bound

‖∇U‖L2(�) 6 C, (C 1)
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where C is independent of small α [22, Lemma 5.2]. Then from the bootstrap argument

and the local elliptic regularity for the Stokes system it is not difficult to see that U is

smooth on � and satisfies the local bound

‖U‖W 2,4(�∩B4(0))+‖P‖W 1,4(�∩B4(0)) 6 C, (C 2)

where C is independent of small α. Furthermore, we have already known from [22] that

U obeys the pointwise estimate

|Ui (x)| 6
C
|logα|

hi (αx), (C 3)

where

hi (X) = log
2
|X |

, 0 < |X | 6 1,

h1(X) = |X |−
1
2 , h2(X) = |X |−

5
6 , |X | > 1.

Therefore, it suffices to consider the estimate of U (x) for |αx | = |X | > 1. To this end let

us recall the representation formula

U j (x) = −α
∑

16i,l62

∫
�

∂l Ei j (x − y;α)Ul(y)Ui (y) dy

−

∑
16i,l62

∫
∂�

Ei j (x − y;α)Til(U, P)(y)nl(y) dσy

+α

∫
∂�

E1 j (x − y;α)n1(y) dσy . (C 4)

Here we have used the fact U |∂� = −e1, and E(x − y;α) = (Ei j (x − y;α))16i, j62 is the

Oseen fundamental solution. The tensor T (U, P) is defined as T (U, P) = (∇U +∇U>)−
PI, where I is the identity matrix. Thus U solves the integral equation

U = U 0
+Nα(U,U ),

where

U 0
j (x) = −α

∑
16i,l62

∫
�∩|αy|61

∂l Ei j (x − y;α)Ul(y)Ui (y) dy

−

∑
16i,l62

∫
∂�

Ei j (x − y;α)Til(U, P)(y)nl(y) dσy

+α

∫
∂�

E1 j (x − y;α)n1(y) dσy

and

Nα(U,U ) =

−α ∑
16i,l62

∫
|αy|>1

∂l Ei j (x − y;α)Ul(y)Ui (y) dy


j

.
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Noting the homogeneous property Ei j (x;α) = Ei j (X; 1) =: Ei j (X) for X = αx and setting

V (X) = U (x) and V 0(X) = U 0(x), we see that the above integral equation is equivalent

with

V = V 0
+ N (V, V ),

where

N (V, V ) =

− ∑
16i,l62

∫
|Y |>1

∂l Ei j (X − Y )Vl(Y )Vi (Y ) dY


j

.

Let us write V = V 0
+ Ṽ , then the equation for Ṽ is

Ṽ = N (V, V 0)+ N (V, Ṽ ). (C 5)

We now regard V and V0 in (C 5) as given terms, and then try to reconstruct Ṽ as the

solution to (C 5) in {|X | > 1}. To this end let introduce the norm

‖Ṽ ‖ = sup
|X |>1
|X1|

1
4 |Ṽ (X)|,

‖Ṽ ‖′ = sup
|X |>1
|X |

1
2 (1+ |X | − X1)

3
4 |Ṽ (X)|.

(C 6)

Our aim is to solve (C 5) in the closed ball { f ∈ L∞({|X | > 1}) | ‖ f ‖′ 6 C
|logα| } and also

to show the uniqueness in { f ∈ L∞({|X | > 1}) | ‖ f ‖ <∞} for small α. The key is the

following pointwise estimate of ∇E(X):∑
(i, j,l)6=(1,1,2)

|∂l Ei j (X)| 6
C

|X |(1+ |X |)
1
2 (1+ |X | − X1)

1
2
,

|∇E(X)| 6
C

|X |(1+ |X | − X1)
.

(C 7)

This can be shown from the expansion of Ei j (X) for |X | � 1; see, e.g., [49, equation (13)]

and also [11, equation (22)] for details. The crucial point is that ∂l Ei j with (i, j, l) 6=
(1, 1, 2) has a slightly faster isotropic decay than ∂2 E11, while V2 decays isotropically

faster than V1 as stated in (C 3).

Step 1. |V 0(X)| 6 C
|logα|

(
1

|X |
1
2 (1+|X |−X1)

3
4
+

1
1+|X |

)
for |X | > 1.

By the definition of U 0 the velocity V 0 is written as V 0
= V 0,1

+ V 0,2
+ V 0,3 in the natural

manner, and we observe from (C 3) that

|V 0,1(X)| 6
C

|logα|2

∫
|Y |61

|∇E(X − Y )|(1+ |log|Y ||2) dY.

Hence it is easy to see from (C 7) that ‖V 0,1
‖
′ 6 C

|logα|2 . As for V 0,2, we see

V 0,2
j (X) = −

∑
16i,l62

∫
∂�

Ei j (X −αy)Til(U, P)(y)nl(y) dσy,
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and thus, when |X | > 1 and α is small enough, we can see that the leading term in the

estimate of V 0,2
j is given by the term∑

16i,l62

Ei j (X)
∫
∂�

Til(U, P)(y)nl(y) dσy .

The key point here is that we have∣∣∣∣∣∣
∑

16l62

∫
∂�

Til(U, P)(y)nl(y) dσy

∣∣∣∣∣∣ 6 C
|logα|

, (C 8)

which reflects the Stokes paradox; see [22, equation (5.4)]. On the other hand, we have

the pointwise estimate for Ei j (X) such that

|Ei j (X)| 6 C

(
1

|X |
1
2 (1+ |X | − X1)

3
4
+

1
1+ |X |

)
, |X | > 1, (C 9)

which can be checked from the expansion of Ei j (X) for |X | � 1; see, e.g., [49,

equation (13)]. Thus, V 0,2 satisfies the desired pointwise estimate stated above. The

estimate for V 0,3
j (X) = α

∫
∂�

E1 j (X −αy)n1(y) dσy also follows from (C 9). Step 1 is

proved.

Step 2: ‖N (V, f )‖′ 6 C
|logα|‖ f ‖′.

We have from (C 3) for V and (C 7) for ∇E ,

|N (V, f )(X)|

6
C
|logα|

∫
|Y |>1

1

|X − Y |(1+ |X − Y |)
1
2 (1+ |X − Y | − (X1− Y1))

1
2

×
1

|Y |(1+ |Y | − Y1|)
3
4

dY‖ f ‖′

+
C
|logα|

∫
|Y |>1

1
|X − Y |(1+ |X − Y | − (X1− Y1))

1

|Y |
4
3 (1+ |Y | − Y1|)

3
4

dY‖ f ‖′.

The triangle inequality for the weight |X | − X1 implies that

(1+ |X | − X1)
3
4

∫
|Y |>1

1

|X − Y |(1+ |X − Y |)
1
2 (1+ |X − Y | − (X1− Y1))

1
2

×
1

|Y |(1+ |Y | − Y1|)
3
4

dY

6 C
∫
|Y |>1

1

|X − Y |(1+ |X − Y |)
1
4

1

|Y |(1+ |Y | − Y1|)
3
4

dY

+C
∫
|Y |>1

1

|X − Y |(1+ |X − Y |)
1
2 (1+ |X − Y | − (X1− Y1))

1
2

1
|Y |

dY

= I1+ I2,
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and

(1+ |X | − X1)
3
4

∫
|Y |>1

1
|X − Y |(1+ |X − Y | − (X1− Y1))

1

|Y |
4
3 (1+ |Y | − Y1|)

3
4

dY

6 C
∫
|Y |>1

1

|X − Y |(1+ |X − Y | − (X1− Y1))
1
4

1

|Y |
4
3 (1+ |Y | − Y1|)

3
4

dY

+C
∫
|Y |>1

1
|X − Y |(1+ |X − Y | − (X1− Y1))

1

|Y |
4
3

dY

= I3+ I4.

We see from Lemma A.1 that

|X |
1
2 I1(X) 6 C

∫
|Y |>1

1

|X − Y |
3
4

1

|Y |(1+ |Y | − Y1)
3
4

dY

+C
(∫
|Y |>1,|X−Y |<1

+

∫
|Y |>1,|X−Y |>1

)
×

1

|X − Y |(1+ |X − Y |)
1
4

1

|Y |
1
2 (1+ |Y | − Y1)

3
4

dY

6 C
∫
R

1

|X1− Y1|
3
4

1

(1+ |Y1|)
1
2

dY1

+C +C
∫
R

1

(1+ |X1− Y1|)
5
4

dY1

6 C <∞.

Similarly, by using the bound 1

|X−Y |
1
3 (1+|X−Y |−(X1−Y1))

1
2
∈ L∞Y1

(R; L
3
2
Y2
(R)), which follows

again from Lemma A.1, it is not difficult to see that |X |
1
2 I2(X) 6 C . The bound for I3

and I4 is obtained in the same manner, and we have

|X |
1
2 (I3(X)+ I4(X)) 6 C <∞.

The details are omitted here. Step 2 is proved.

Step 3: ‖N (V, V 0)‖′ 6 C
|logα|2 .

Thanks to Step 1 and the proof of Step 2 it suffices to show∥∥∥∥∥∥
∫
|Y |>1

∑
(i, j,l)6=(1,1,2)

|∂l Ei j (X − Y )|(1+ |Y |)−
1
2−1 dY

∥∥∥∥∥∥
′

6 C <∞, (C 10)

∥∥∥∥∫
|Y |>1
|∂2 E11(X − Y )|(1+ |Y |)−

5
6−1 dY

∥∥∥∥′ 6 C <∞. (C 11)

Here we only give a proof of (C 10), for (C 11) is easier. In order to show (C 10) we observe

from (C 7) that

|X |
1
2 (1+ |X | − X1)

3
4

∫
|Y |>1

∑
(i, j,l)6=(1,1,2)

|∂l Ei j (X − Y )|(1+ |Y |)−
1
2−1 dY
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6 C
∫
|Y |>1

1

|X − Y |
3
4

1

(1+ |Y |)
3
2

dY +C
∫
|Y |>1

1

|X − Y |(1+ |X − Y |)
1
4

1
(1+ |Y |)

dY

+C
∫
|Y |>1

1

|X − Y |
1
2 (1+ |X − Y |)

1
2 (1+ |X − Y | − (X1− Y1))

1
2

1

(1+ |Y |)
3
4

dY

+C
∫
|Y |>1

1

|X − Y |(1+ |X − Y |)
1
2 (1+ |X − Y | − (X1− Y1))

1
2

1

(1+ |Y |)
1
4

dY.

In these four terms the most delicate one is the last term, for which it suffices to consider

I5 =

∫
|Y |>1,|X−Y |>1

1

(1+ |X − Y |)
3
2 (1+ |X − Y | − (X1− Y1))

1
2

1

(1+ |Y |)
1
4

dY.

Then, from

1

(1+ |X − Y | − (X1− Y1))
1
2 (1+ |Y |)

1
4

6
1

(1+ |X − Y | − (X1− Y1))
3
4 (1+ |Y |)

3
2 ε
+

1

(1+ |Y |)(
1
4−ε)3

for 0 < ε < 1
12 and from Lemma A.1, one can check that the integral I5 converges. The

other terms are easier to bound and the details are omitted. Step 3 is proved.

Step 4: ‖N (V, f )‖ 6 C
|logα|‖ f ‖.

We have from (C 3) for V and (C 7) for ∇E ,

|N (V, f )(X)|

6
C
|logα|

∫
|Y |>1

1
|X − Y |(1+ |X − Y | − (X1− Y1))

1

|Y |
1
2 |Y1|

1
4

dY‖ f ‖.

Thus, Lemma A.1 implies

|N (V, f )(X)| 6
C
|logα|

∫
R

1

|X1− Y1|
1
2 |Y1|

3
4

dY1‖ f ‖ 6
C

|X1|
1
4 |logα|

‖ f ‖.

This proves ‖N (V, f )‖ 6 C
|logα|‖ f ‖.

In virtue of Step 2 and Step 3 above, we see from the standard fixed point theorem

that there exists a unique solution W to (C 5) (i.e., W = N (V, V 0)+ N (V,W )) satisfying

‖W‖′ 6 C
|logα|2 if α is small enough. Moreover, Step 4 ensures the uniqueness of the

solution to (C 5) in the space { f ∈ L∞({|X | > 1}) | ‖ f ‖ <∞}, which implies V − V 0
= W

since we have already known that V − V 0 satisfies ‖V − V 0
‖ 6 ‖V ‖+‖V 0

‖ <∞, in virtue

of (C 3) and Step 1. Hence, V = V 0
+W satisfies the bound in (A1) by recalling the

estimate of V 0 in Step 1.
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