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In lubrication problems, which concern thin film flow, cavitation has been considered as a fun-

damental element to correctly describe the characteristics of lubricated mechanisms. Here, the

well-posedness of a cavitation model that can explain the interaction between viscous effects and

micro-bubbles of gas is studied. This cavitation model consists of a coupled problem between the

compressible Reynolds partial differential equation (PDE) (that describes the flow) and the Rayleigh–

Plesset ordinary differential equation (that describes micro-bubbles evolution). A simplified form

without bubbles convection is studied here. This coupled model seems never to be studied before

from its mathematical aspects. Local times existence results are proved and stability theorems are

obtained based on the continuity of the spectrum for bounded linear operators. Numerical results are

presented to illustrate these theoretical results.

Key words: Cavitation modelling, thin film lubrication, Reynolds equation, Rayleigh–Plesset

equation
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1 Introduction

Cavitation is observed in various engineering devices, ranging from hydraulic systems to turbo

pumps for space applications. It is a challenging issue linked with various phenomena: acous-

tic, thermodynamic and fluid dynamics. In the lubrication area, which is concerned with thin

film flow, cavitation has been considered as a fundamental element to correctly describe the

characteristics of lubricated mechanisms [1, 2]. Cavitation has often been primarily associated

with a diminution of the pressure p in the liquid falling below the vapour pressure. Numerous

models have been introduced to couple this unilateral condition with the Reynolds equation,

which is usually used to model the pressure evolution in thin film flow. Mathematical studies

of these models can be found in [3, 4, 5, 6, 7, 8] in which existence and uniqueness results are

given for both the stationary and transient cases. Another approach has been proposed in [9]

by considering cavitation as a multifluid problem with a free boundary between two immiscible
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FIGURE 1. Three-dimensional scheme of the physical framework.

fluids. However, it is physically recognised that the cavitation phenomenon is linked with the

existence and evolution of micro-bubbles in a liquid. This aspect has not been taken into account

in these models. It is, however, taken into account in the well-known FLUENT software for fluid

mechanics [10, 11, 12] in which micro-bubbles evolution is coupled with the Navier–Stokes sys-

tem for a three-dimensional flow. In the lubrication area, this phenomenon has been ignored until

the works of Someya’s group [13, 14] who proposed to couple the full Rayleigh–Plesset equa-

tion (which describes the evolution of a bubble) with the Reynolds equation (which describes

the fluid). Numerous works follow in the lubrication literature using simplified forms of the

Rayleigh–Plesset equation for various kinds of applications [15, 16, 17, 18, 19, 20]. The paper

of Snyder et al. [21] can be considered as a review paper in this field.

1.1 The Reynolds–Rayleigh–Plesset coupling

The fluid is contained in a domain �V ⊂R
3, limited by a domain �⊂R

2 in the x1-x2 plane, an

upper surface given by the gap function h (x1, x2) defined on � and by a vertical lateral bound-

ary as shown in Figure 1. The surfaces are in relative motion along the x1-x2 plane at velocity

U ∈R
2. It is also assumed that there is no relative motion of the surfaces along the x3 axis. In this

work, theoretical results on the well-posedness of the Reynold–Rayleigh–Plesset (RRP) cavita-

tion model for the flow of a fluid multicomponent mixture are presented. Here, a brief description

of that mathematical model is given, and the physical hypotheses and a heuristic justification are

given in the Appendix.

The mixture is composed by two phases: an incompressible liquid phase (with known density

ρℓ and viscosity µℓ) and a gas phase (with known density ρg and viscosity µg). It is assumed that

the gas phase is composed by a distribution of bubbles immersed on the liquid and that around a

point x at time t there can be bubbles of only one certain radius R(x, t). In addition, the dynamics

of the field R(x, t) are governed by the Rayleigh–Plesset equation (e.g., [22]):

ρℓ

[
3

2

(
DR

Dt

)2

+ R
D2R

Dt2

]
= P0

(
R0

R

)3k

− pm −
2σ

R
− 4

(
µℓ + κ s/R

R

)
DR

Dt
, (1.1)

where the terms at the left-hand side are called inertial terms, pm is the mixture’s pressure around

the bubble, P0 is the inner pressure of the bubble when its radius is equal to R0, k is the polytropic
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exponent (see the Appendix); σ is the coefficient of surface tension, κ s is the surface dilatational

viscosity [21]; and

D

Dt
=
∂

∂ t
+ (ub · ∇) , (1.2)

with ub ∈R
3 corresponding to the transport velocity of the bubbles. In the right-hand side of

equation (1.1), the first term models the pressure of the gas contained in the bubble.

As a first step in the mathematical analysis of this system, in this work, the transport velocity

of the bubbles is assumed to be null, ub = 0. This simplification can be found in some numerical

works involving squeeze film dampers [16]. In other studies, ub is taken as the average of the

surfaces velocities [23, 24] or as the average of the thin film velocity field [17, 18, 19, 21]. In

consequence, equation (1.1) relates two unknown fields: R and pm. A second equation is obtained

by introducing the local gas fraction (
volume of gas

total volume
) in terms of R:

α = α (R(x, t)) , (1.3)

for instance, assuming the number of bubbles per liquid volume unit to be a constant, denoted by

nℓb, statistical arguments (e.g., [25] Section 10.1.2) can be given to show that:

α(x, t) =
nℓb

4πR(x,t)3

3

1 + nℓb
4πR(x,t)3

3

. (1.4)

Then, the averaged mixture density ρ̄ can be related to α by means of (e.g., [25]):

ρ̄ (R(x, t))= ρg α (R(x, t))+ ρℓ (1 − α (R(x, t))) . (1.5)

It is also assumed some model for the mixture effective viscosity field, denoted by µeff, in terms

of the gas fraction α, so one may write µeff =µeff(α(R)). The RRP model assumes the mixture

pressure pm accomplishes the compressible Reynolds equation:

∇x ·

(
ρ̄h3

12µeff

∇pm

)
= ∇x ·

(
U

2
ρ̄h

)
+
∂ρ̄h

∂ t
in �. (1.6)

The RRP cavitation model consists in the coupling of equations (1.1) and (1.6) along with

suitable boundary conditions.

It is noteworthy that there exist many works in Mechanics’ literature concerning the numerical

resolution and modelling aspects of the coupling of the Rayleigh–Plesset equation with fluid flow

equations (e.g., [26, 27, 28, 29, 30, 31]). The well-known software FLUENT for fluid mechanics

uses also this type of modelling [10, 11, 12]. On the other hand, in the mathematical field, few

works are concerned with this problem. The Rayleigh–Plesset equation alone without coupling

(in which the pressure is a known data) has been subject of interest as differential equations with

singularities [32, 33]. However, to the knowledge of the authors, no mathematical analysis of the

full coupling of the Rayleigh–Plesset equation with a flow equation (Euler, Stokes or Reynolds)

so far appeared.

In this work, a mathematical analysis is carried on by first writing an abstract form of the

coupling RRP by means of auxiliary functions that depend on the unknown radii field R. Then,

some general properties of these auxiliary functions are identified from the physics and held as

hypotheses (e.g., positiveness, monotonicity, existence of critical points). Informally, a first step
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of the study consists in writing the coupled model as an ordinary differential equation (ODE) on

a Banach space and making use of a suitable version of the Cauchy–Lipschitz theorem. For this,

it is shown that the unknown p can be eliminated by writing it in terms of R and its derivatives.

A second step regards the well-posedness of the stationary problem: the existence of a trivial

stationary solution is established and then non-trivial solutions are found by continuity argu-

ments; finally, continuity arguments are also used to extend the stability of the trivial solution to

the stability of non-trivial cases. These two analysis steps are independently performed for two

scenarios: (1) including or (2) disregarding the inertial terms in the Rayleigh–Plessset equation.

The structure of this document is as it follows: after the introduction section, the mathemati-

cal framework is described in Section 2 where notations and some previous required results are

given. Section 3 is devoted to the study of the full system (1.1)–(1.6) including inertial terms;

existence of a stationary solution is gained by way of the Implicit Function theorem around some

particular data for which a stationary solution is easy to compute; a stability result is obtained

with a small data assumption by studying the spectrum of a differential operator, and the conti-

nuity of that spectrum around the particular data; at last, an instability result is gained by means

of the Routh–Hurwitz theorem. In Section 4, a simplified Rayleigh–Plesset equation neglecting

the inertial terms is considered; unlike the previous section, existence of the (local) solution of

the system is not obvious and requires to use the Freedholm Alternative theorem; stability results

of the stationary solution for small data are obtained using also the spectrum’s continuity of a

differential operator. In Section 5, some numerical examples are shown where time convergence

towards stationary solutions is observed. Finally, a heuristic justification of both equation (1.6)

and the RRP coupling is given in the Appendix.

2 Mathematical framework

In this section, we introduce some notations and previous results to be used along this document.

Let �⊂R
N , N = 1, 2 be a regular domain, and introduce the change of variables

p(x, t) = pm(x, t)/ρℓ , (2.1)

we consider the abstract problem of finding p(x, t), R(x, t)> 0, with x ∈� and t ≥ 0, such that

3

2

1

R

(
∂R

∂ t

)2

+
∂2R

∂ t2
=

f1 (R)− p

R
−
∂R

∂ t
f2 (R) (2.2)

and

∇x ·
(

f3 (R) h3 ∇p
)
= ∇x · ( f4 (R)U h )+ h f5 (R)

∂R

∂ t
,

p = 0 on ∂�,

(2.3)

where U ∈R
N . Along the initial conditions for every x ∈ �̄:

R(x, 0) = r1(x),

∂R

∂ t
(x, 0) = r2(x),

(2.4)

https://doi.org/10.1017/S0956792519000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000287


832 A. Jaramillo et al.

and r1, r2 are regular known functions. The terms in the left-hand side of equation (2.2) are named

inertial terms. In the next sections, we study the well-posedness of problem (2.2)–(2.3)–(2.4)

when including or disregarding the inertial terms.

For α, β ∈R with α <β, we define

Bα,β =
{
w ∈ L∞ (�) : α ≤ w ≤ β a.e. on �

}
.

We make also the following hypotheses:

H1: f1 ∈ C2
(
R

+
∗ ; R

)
, ∃R̄, δ1 ∈R

+
∗ such that f1

(
R̄
)
= 0 and f ′

1 (R) < 0 ∀R ∈ [R̄ − δ1, R̄ + δ1].

We denote m1 = min
R∈[R̄−δ1 ,R̄+δ1]

∣∣f ′
1 (R)

∣∣ and M1 = max
R∈[R̄−δ1 ,R̄+δ1]

∣∣f ′
1 (R)

∣∣;
H2: f2 ∈ C2

(
R

+
∗ ; R+

∗

)
;

H3: f3 ∈ C2
(
R

+
∗ ; R

)
and ∃m3, M3 > 0 such that m3 ≤ f3 (r)≤ M3 ∀r ∈R

+;

H4: f4 ∈ C2
(
R

+
∗ ; R+

)
, f ′

4 (r) < 0 ∀r> 0;

H5: f5 ∈ C2
(
R

+
∗ ; R−

∗

)
;

H6: h ∈ Bm0,M0
for 0<m0 <M0 constants. We denote h0 = ess-inf

�
h.

Remark 1 The physical model given by equations (1.1)–(1.6) is a particular case of problem

(2.2)–(2.4) for which

f1 (R)=
1

ρℓ

(
P0

(
R0

R

)3k

−
2σ

R

)
, (2.5)

f2 (R)=
4

ρℓ

(
µℓ + κ s/R

R2

)
, f3 (R)=

1

12

(1 − α(R)) + α(R)ρg/ρℓ

(1 − α(R))µℓ + α(R)µg

,

f4 (R)=
1

2

[
1 + α(R)

(
ρg/ρℓ − 1

)]
, f5 (R)= f ′

4 (α(R)) α′(R).

The hypothesis (H1) is related to the well-known (e.g., [22]) shape of function f1 (see Figure 3),

having a unique critical point Rcrit.

The next result is a particular case of Theorem 4.2 in [34].

Proposition 1 Let � be a smooth domain on R
N , f ∈ H−1 (�) and u ∈ H1

0 (�) be the unique

solution of the elliptic problem1

∇ · (a ∇ u)= f ,

u = 0 on ∂�,

for a ∈ Bα,β , 0<α < β. Then there exists q> 2 (which depends on α, β, � and the dimension

N) such that, if f ∈ W−1,q (�), then u belongs to W
1,q

0 (�) and satisfies

‖u‖
W

1,q
0
(�)

≤ C ‖f ‖−1,q ,

where C = C(α, β,�, N).

1Henceforth, we denote ‘∇x · ’ by ‘∇ · ’.
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Now, to fix henceforth a Sobolev space W 1,q (�), we define the open subset Q ⊂ C
(
�̄
)

as

Q =
{
R ∈ C

(
�̄
)

: R(x)> 0 ∀x ∈ �̄
}

, (2.6)

and set q> 2 given by Proposition 1 with α = m3
0 m3 min{m1, 1} and β = M3

0 M3 max{M1, 1}.

We define also the mapping

A : Q × C
(
�̄
)

−→ C
(
�̄
)

(R1, R2) −→ A1(R1) + A2 (R1, R2) ,
(2.7)

where A1 : Q 7→ C
(
�̄
)

is such that A1 (R1) is the unique solution of the elliptic problem

∇ ·
(
h3f3 (R1)∇A1 (R1)

)
= ∇ · (U h f4(R1)) in �,

A1 (R1)= 0 on ∂�,
(2.8)

and A2 : Q × C
(
�̄
)
7→ C

(
�̄
)

is such that A2 (R1, R2) is the unique solution of the elliptic problem

∇ ·
(
h3f3 (R1)∇A2 (R1, R2)

)
= h f5 (R1) R2 in �,

A2 (R1, R2)= 0 on ∂�.
(2.9)

Remark 2 Both the solutions of (2.8) and (2.9) are in C
(
�̄
)

since W 1,p (�)⊂ C
(
�̄
)

continuously for any p>N.

Remark 3 For any R1 ∈ Q, A2 (R1, ·) is a bounded linear operator.

Lemma 1 The application A is of class C2 from Q × C
(
�̄
)

into C
(
�̄
)
.

Proof Let us define φ : Q × C
(
�̄
)
× W

1,q

0 (�) 7→ W−1,q (�) by

φ (R1, R2, p)= ∇ ·
(
h3f3 (R1)∇ p

)
− ∇ · (U h f4(R1))− h f5 (R1) R2. (2.10)

We show first that φ is of class C2. Since f3, f4 and f5 are of class C2, it is enough to prove that

the application φ1 : C
(
�̄
)4

× W
1,q

0 (�) 7→ W−1,q (�) defined by

φ1 (ξ1, ξ2, ξ3, ξ4, w)= ∇ ·
(
h3ξ1∇ w

)
− ∇ · (U h ξ2)− h ξ3 ξ4

is of class C2, which follows from observing that its first and third terms are quadratic and the

second one is linear.

By the Lax–Milgram theorem and Proposition 1, we have also that the partial derivative

∂φ

∂p
(R1, R2, p) (z) : W

1,q

0 (�) −→ W−1,q (�)

z −→ ∇ ·
(
h3f3 (R1)∇ z

)
is an isomorphism. Therefore, the result follows from noticing that φ (R1, R2, A (R1, R2))=

0 ∀ (R1, R2) ∈ Q × C
(
�̄
)

and applying the Implicit Function theorem (e.g., [35]) to the

application φ.

For a linear operator L we denote by Vp (L) its set of eigenvalues and by Sp (L) its spectrum.

Let us recall the following classical results on ODE in Banach spaces:
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Proposition 2 Let X be a Banach space, let A be a bounded linear operator on X and ǫ > 0.

Then there exists δ > 0 such that, if B is a bounded linear operator on X and ‖A − B‖ < δ, then

for every λ ∈ Sp (B) there exists ξ ∈ Sp (A) such that |λ− ξ |< ǫ.

For a detailed proof of the previous result, the reader is referred to Lemma 3 in [36].

Proposition 3 (Cauchy–Lipschitz) Let f ∈ C(U ; E), where U is an open set of E and u0 ∈ U,

and assume that f is of class Cr, r ∈N
∗. Then the next properties hold

• There exists T > 0 and u in C1([t0 − T , t0 + T]; U) solution to the Cauchy problem:{
u′ = f (u) ,

u(t0) = u0 .
(2.11)

• If v is another solution of (2.11). Then v = u on the intersection of the intervals of definition

of v and u.

• u is of class Cr+1.

Definition 1 A solution u ∈ C1([0, T]; E) of the autonomous Cauchy problem u′ = f (u),

u(0) = u0 is called maximal if u cannot be extended to a solution on an interval

containing [0, T].

Definition 2 Let f ∈ C(U ; E) and v ∈ U . The point v such that f (v) = 0 is said to be an asymp-

tomatically stable solution for the ODE u′ = f (u) if there exist ǫ > 0 such that for any u0 such

that ‖u0 − v‖ ≤ ǫ, the maximal solution of u′ = f (u), u(0) = u0 is well defined for every t ≥ 0,

‖u(t) − v‖ ≤ ǫ for every t ≥ 0 and limt→∞ ‖u(t) − v‖ = 0.

Definition 3 Let f ∈ C(U ; E) and v ∈ U . The point v such that f (v) = 0 is said to be an unstable

stationary solution for the ODE u′ = f (u) if there exists ǫ0 > 0 such that for every η > 0 there

exists T > 0 and a solution u ∈ C1([0, T], E) of u′ = f (u) that accomplishes ‖u(0) − v‖ ≤ η and

‖u(T) − v‖ ≥ ǫ0.

Proposition 4 Let f ∈ C2(U ; E) and v ∈ U be such that f (v) = 0. Assume that Sp (Df (v))⊂ {λ ∈

C : Re λ < 0}. Then v is an asymptomatically stable solution for the ODE u′ = f (u).

Proposition 5 Let f ∈ C2(U ; E) and v ∈ U be such that f (v) = 0. Suppose that max{Re λ : λ ∈

Sp (Df (v))} is reached at an eigenvalue of Df (v) with real part strictly positive. Then v is an

unstable solution for the ODE u′ = f (u).

These proofs of propositions 3–5 can be found in [37], Sections 5.4, 8.1 and 8.2.

3 Well-posedness with inertial terms

Due to the fact that the unknown field p in equation (2.2) can be expressed as an operator depend-

ing on R and ∂R
∂ t

according to (2.3), the theory of ODE on Banach spaces can be applied to study

the system (2.2)–(2.4).
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3.1 Existence of a local solution

Let us denote R1 = R, R2 = ∂R
∂ t

and R̃ =

(
R1

R2

)
. Then, the problem (2.2)–(2.3)–(2.4) can be

rewritten as

dR̃

dt
= F(R̃),

R̃(0) = R̃0,

(3.1)

where R̃0 =

(
r1

r2

)
∈ Q × C

(
�̄
)

and F : Q × C
(
�̄
)
7→
(
C
(
�̄
))2

with

F(R1, R2) =

(
R2

− 3
2

R2
2

R1
− R2f2 (R1)+

f1(R1)−A(R1,R2)

R1

)
. (3.2)

By means of Lemma 1, we have that F is of class C2. Thus, from the Cauchy–Lipschitz theorem

we obtain the next local existence and uniqueness result:

Theorem 1 There exists T > 0 such that the problem (3.1) has a unique solution in

C3
(
[0, T]; Q × C

(
�̄
))

.

3.2 Existence of stationary solutions

Observe that a stationary solution (Rs, ps) of problem (2.2)–(2.3) satisfies ps = f1 (Rs). For the

next result, we denote h+ = h − h0 (notice that h+ = 0 if and only if h is constant). Thus, (Rs, ps)

is solution of the system

∇ ·
((

h+ + h0

)3
f3 (Rs)∇ps

)
= ∇ ·

(
U
(
h+ + h0

)
f4 (Rs)

)
in �,

ps = f1 (Rs) in �,

ps = 0 on ∂�.

(3.3)

Notice that in the particular case h+ = 0 or U = 0, (Rs, ps)=
(
R̄, 0

)
is solution of (3.3), with R̄

given in (H1).

Theorem 2 Fix U ∈R
2 and h0 > 0. Then the problem (3.3) has a unique solution (Rs, ps) with

Rs > 0 whenever
∥∥h+

∥∥
∞

is small enough. Moreover, the solution (Rs, ps) depends continuously

on h+.

Proof First, we use the relation ps = f1 (Rs) to rewrite the stationary problem. Since ∇ps =

f ′
1 (Rs)∇Rs, making the change of variable Rs = R̄ + ξ , the problem (3.3) can be written in terms

of ξ as

−∇ ·
((

h+ + h0

)3
a0 (ξ)∇ ξ

)
= ∇ ·

(
Uh+ b0(ξ )

)
+ ∇ · (Uh0 b0(ξ )) in �,

ξ >−R̄ in �,

ξ = 0 on ∂�,

(3.4)
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where a0 (ξ)= −f3
(
R̄ + ξ

)
f ′
1

(
R̄ + ξ

)
, and b0(ξ ) = f4

(
R̄ + ξ

)
. We introduce the set

W =

{
ξ ∈ W

1,q

0 (�) : ess-inf
�

ξ >−R̄

}
,

which is open since the continuous embedding W
1,q

0 ⊂ C
(
�̄
)
, and the application

φ2 : W × L∞ (�) 7−→ W−1,q (�)

(ξ , δ) 7−→ ∇ ·
(
(δ + h0)

3 a0 (ξ)∇ ξ
)
+ ∇ · (Uδ b0(ξ ))+ ∇ · (Uh0 b0(ξ )) .

(3.5)

Using an argument analogous to the one used in Lemma 1 to prove that φ1 is of class C2, it

is possible to prove that φ2 is of class C2. Now noticing that φ2 (0, 0)= 0, let us assume that
∂φ2

∂ξ
(0, 0) is invertible. Then, by means of the Implicit Function theorem, we have that

• ∃V1 ⊂ W neighbourhood of 0 on W
1,q

0 (�); V2 neighbourhood of 0 on L∞ (�);

• ∃ψ : V2 7−→ V1 function of class C1 such that ∀δ ∈ V2, ψ(δ) is solution of problem (3.4).

Equivalently, (Rs, ps)=
(
R̄ +ψ(δ), f1

(
R̄ +ψ(δ)

))
is solution of problem (3.3),

which is the result we want as the existence of V2 can also be described as
∥∥h+

∥∥
∞

small enough.

It only remains to show that
∂φ2

∂ξ
(0, 0) is invertible. Indeed, we have ∀z ∈ W

1,q

0 (�)

∂φ2

∂ξ
(0, 0) (z)= ∇ ·

(
(h0 + δ)3

(
a0 (ξ)∇z + a′

0 (ξ) z ∇ξ
)
+ (h0 + δ) b′

0 (ξ)Uz
)∣∣
(ξ ,δ)=(0,0)

= ∇ ·
(
h3

0 a0 (0)∇z + h0 b′
0 (0)Uz

)
.

Fixing an arbitrary g ∈ W−1,q (�) and denoting ℓ= h0b′
0 (0)U ∈R

2, we will prove that there

exists a unique z ∈ W
1,q

0 (�) such that

∇ ·
(
h3

0 a0 (0)∇z + ℓ z
)
= g in �.

Since g ∈ H−1 (�), a0(0)> 0 and h0 > 0 (see (H1) and (H3)), by means of the Lax–Milgram

theorem the variational problem

−

∫
�

(
h3

0 a0 (0)∇z + ℓ z
)
· ∇φ d�=

∫
�

g φ d� ∀φ ∈ H1
0 (�) ,

has a unique solution z ∈ H1
0 (�). Moreover, from the continuous inclusion H1 (�)⊂ Lq (�), we

have ∇ · (ℓ z) ∈ W−1,q (�) and thus by Proposition 1, we obtain z ∈ W
1,q

0 (�).

A proof analogous to the one of Theorem 2 may be written for the next result:

Theorem 3 Fix h ∈ Bm0,M0
, 0<m0 <M0. Then there exists ǫ (h) > 0 such that the problem (3.3)

has a unique solution (Rs, ps) with Rs > 0 whenever ‖U‖ < ǫ (h). Moreover, the solution (Rs, ps)

depends continuously on U.

3.3 Stability analysis

Recalling the application F given by (3.2) and the stationary solution (Rs, ps) introduced in the

previous section, we denote by LF the differential of F at (Rs, 0), i.e.,

LF :
(
C
(
�̄
))2

7−→
(
C
(
�̄
))2

(S1, S2) 7−→ D F (Rs, 0) (S1, S2) .
(3.6)
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We will show the stability of the stationary solution in some particular cases. For this, it is proved

that, for such particular cases, the spectrum of LF is such that Re (λ) < 0 ∀λ ∈ Sp (LF) \ {0}.

Previously, we perform some computations.

Recalling that f1 (Rs)= ps = A (Rs, 0), we obtain:

(LF (S1, S2))1 = S2, (3.7)

(LF (S1, S2))2 =
f ′
1 (Rs) S1

Rs

−
1

Rs

(D1A (Rs, 0) (S1)+D2A (Rs, 0) (S2))+
1

R2
s

A (Rs, 0) S1−f2 (Rs) S2.

(3.8)

Now, since A2 (R, 0)= 0 for any R in Q, we have that D1A (Rs, 0)= DA1 (Rs). With this, deriving

(2.8) with respect to R1 and denoting π1 (S1)= D1A (Rs, 0) (S1) we obtain that π1 (S1) satisfies

−∇ ·
(
h3f3 (Rs) ∇π1 (S1)

)
= ∇ ·

(
h3f ′

3 (Rs) S1 ∇A1 (Rs)− Uhf ′
4 (Rs) S1

)
,

π1 (S1)= 0 on ∂�.
(3.9)

Similarly, we have D2A (Rs, 0) (S2)= D2A2 (Rs, 0) (S2)= A2 (Rs, S2). Thus, denoting π2 (S2)=

D2A (Rs, 0) (S2) we have that π2 (S2) accomplishes

−∇ ·
(
h3f3 (Rs) ∇π2 (S2)

)
= −hf5 (Rs) S2 in �,

π2 (S2)= 0 on ∂�.
(3.10)

For the next results, denote b1 = −f ′
1(R̄)R̄−1 > 0, b2 = f2

(
R̄
)
> 0, br = 1/R̄, b3 = f3

(
R̄
)
, b4 =

−f ′
4

(
R̄
)

and b5 = −f5
(
R̄
)
, all positive constants as follows from (H1) to (H5).

Remark 4 If h+ = 0 or U = 0, we have A1 (Rs)= 0. Thus A(Rs, 0) = ps = 0, Rs = R̄ and

LF (S1, S2) can be written

LF (S1, S2)= B

(
S1

S2

)
− br

(
0

π1 (S1)+ π2 (S2)

)
, (3.11)

where B =

(
0 1

−b1 −b2

)
, and equation (3.9) reads

−b3∇ ·
(
h3 ∇π1 (S1)

)
= b4∇ · (UhS1) in �,

π1 (S1)= 0 on ∂�.
(3.12)

We denote by {λB
1 , λB

2 } the set of eigenvalues of B and notice that Re
(
λB

1

)
< 0 and Re

(
λB

2

)
< 0.

Lemma 2 Let h+ = 0 or U = 0. Then

Sp (LF)⊂ Vp (LF)∪ {λB
1 , λB

2 }.

Moreover, if λ ∈ Vp (LF) \ {λB
1 , λB

2 } with associated eigenfunction (S1, S2) ∈ C
(
�̄
)2

, then

(S1, S2) ∈ H1
0 (�)

2, S2 = λS1 and S1 is solution of the problem

b3

br

ξ (λ)∇ ·
(
h3∇S1

)
= b4U · ∇ (hS1)+ λ b5h S1 in �, (3.13)

S1 = 0 on ∂�, (3.14)
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where ξ (λ)= λ2 + b2λ+ b1 with roots {λB
1 , λB

2 }.

Proof Remind that ps = A(Rs, 0) = 0 and Rs = R̄. For any λ∈C \ {λB
1 , λB

2 }, from equation (3.11)

we have

(LF − λI)

(
S1

S2

)
= (B − λI)

[(
S1

S2

)
− br (B − λI)−1

(
0

π1 (S1)+ π2 (S2)

)]
.

Since the map (S1, S2) 7→ π1 (S1)+ π2 (S2) is compact, by means of the Fredholm’s Alternative

theorem the mapping at the right-hand side of this equation (from C
(
�̄
)2

into itself) is injective

if and only if it is surjective, from where we have the inclusion Sp (LF)⊂ Vp (LF)∪ {λB
1 , λB

2 }.

Fix now λ ∈ Vp (LF) \ {λB
1 , λB

2 } with associated eigenvector (S1, S2) 6= (0, 0), so we can

write

S2 = λS1,

−b1S1 − b2S2 − br [π1 (S1)+ π2 (S2)] = λS2.

Then we obtain

π2 (λS1)+ π1 (S1)= −
ξ (λ)

br

S1.

Since ξ (λ) 6= 0 and from the definitions of π1 and π2, we deduce that (S1, S2) ∈ H1
0 (�)

2.

Thus, using this last equation, equations (3.10) and (3.12), we obtain the equations (3.13) and

(3.14).

Theorem 4 Let h be as in Theorem 3. Then there exists ǫ = ǫ (h) > 0 such that if ‖U‖∞ < ǫ, the

solution (Rs, ps) of problem (3.3) is asymptotically stable for the evolution problem (3.1).

Proof Assume first U = 0 and denote L0
F = LF |U=0. Then due to Lemma 2 it is enough to study

the eigenvalues of LF . Thus, take λ ∈ Vp (LF) \ {λB
1 , λB

2 } with associated eigenfunction (S1, S2),

from Lemma 2 we have S2 = λS1 and S1 ∈ H1
0 (�) accomplishing equations (3.13) and (3.14),

which read

b3

br

ξ (λ)∇ ·
(
h3∇S1

)
= λ b5h S1 in �,

S1 = 0 on ∂�.

Since ξ (λ) is not null we deduce that λ 6= 0, otherwise (S1, S2) would be null. Then we obtain

that S1 accomplishes the next variational formulation

−
b3

br

ξ (λ)

λ

∫
�

h3∇S1 · ∇φ d�= b5

∫
�

hS1 φ d� ∀φ ∈ H1
0 (�) . (3.15)

Taking φ = S̄1 we obtain that γ = −ξ (λ) /λ∈R
+ and since λ accomplishes the equation λ2 +

(γ + b2) λ+ b1 = 0 we conclude that Re (λ) < 0. We have shown the result for the case U = 0.

For the general case, we observe from Theorem 3 that the mapping U 7→ Rs (U) is continuous

in a neighbourhood V1 ∋ 0 in R
2, thus if U → 0 in R

2 then
∥∥DF (Rs (U) , 0)− DF

(
R̄, 0

)∥∥→ 0

in the space of linear continuous operators from C
(
�̄
)2

into itself. Then the result follows from

Proposition 2.
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We give now a result of instability for ‖U‖ big enough.

Theorem 5 Let us assume h+ = 0 and �= ]0, 1[×]0, 1[. Then the solution (Rs, ps) of problem

(3.3) is asymptotically unstable for the evolution problem (3.1) for ‖U‖ big enough.

Proof Due to Lemma 2 it is enough to study the eigenvalues of LF . Fix now λ ∈ Vp (LF) \

{λB
1 , λB

2 } with associated eigenvector (S1, S2) 6= (0, 0). Now defining γ1, γ2 ∈C by

γ1 = −
b4 br

h2
0b3ξ (λ)

, γ2 = −
b5 br

h2
0b3ξ (λ)

,

then from equations (3.13) to (3.14), we have

1S1 + γ1U · ∇ (S1)+ λγ2 S1 = 0 in �,

S1 = 0 on ∂�.

We deduce from this that λ 6= 0. In fact, if λ= 0 then one may compute that S1 = 0, S2 = λS1 = 0,

which is a contradiction. Assuming S1(x1, x2) = ϕ1(x1) ϕ2(x2) with both ϕ1 and ϕ2 non-nulls and

ϕ1(0) = ϕ1(1) = ϕ2(0) = ϕ2(1) = 0 it is possible to obtain

ϕ′′
1 (x1)

ϕ1(x1)
+ γ1U1

ϕ′
1(x1)

ϕ1(x1)
= −

ϕ′′
2 (x1)

ϕ2(x2)
− γ1U2

ϕ′
2(x2)

ϕ2(x2)
− λγ2.

Therefore, there exists µ ∈C such that

ϕ′′
1 (x1) + γ1U1 ϕ

′
1(x1) −µ ϕ1(x1) = 0, (3.16)

ϕ′′
2 (x2) + γ1U2 ϕ

′
2(x2) + (λγ2 +µ)ϕ2(x2) = 0. (3.17)

Denote by r1, r2 the roots of the characteristic polynomial P (r)= r2 + γ1U2r + λγ2 +µ of the

last equation. Then r1 6= r2, otherwise ϕ2 would be null, and so ϕ2 can be written

ϕ2 (x2)= C1 exp (r1x2)+ C2 exp (r2x2) .

Thus, the conditions ϕ2(0) = ϕ2(1) = 0 imply

C1 + C2 = 0,

C1 exp r1 + C2 exp r2 = 0.

Thus, since (C1, C2) 6= (0, 0) we have

det

(
1 1

exp r1 exp r2

)
= 0,

hence r1 and r2 satisfy the equation r2 − r1 = 2k2π i ∀k2 ∈N
∗, from which we deduce that

γ 2
1 U2

2 − 4(λγ2 +µ) = −4 k2
2π

2, ∀k2 ∈N
∗, (3.18)

where we have used the fact that r1 + r2 = −γ1U2 and r1r2 = λγ2 +µ. Analogously, from the

characteristic polynomial of equation (3.16), one may obtain

γ 2
1 U2

1 − 4(−µ) = −4 k2
1π

2, ∀k1 ∈N
∗. (3.19)

https://doi.org/10.1017/S0956792519000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000287


840 A. Jaramillo et al.

Denoting k = (k1, k2) ∈N
∗ ×N

∗, the addition of these two equations implies

γ 2
1 ‖U‖2 − 4 λγ2 = −4 ‖k‖2π2.

Recalling the definitions of γ1 and γ2, one concludes that λ is root of the fourth-degree

polynomial given by

Pk (λ)= 4‖k‖2π2λ4 +
(
4σ2 + 8π2‖k‖2b2

)
λ3 +

(
4σ2b2 + 4π2‖k‖2

(
b2

2 + 2b1

))
λ2+

+
(
4σ2b1 + 8π2‖k‖2b1b2

)
λ+ 4π2‖k‖2b2

1 + σ1‖U‖2,

where σ1 =
b2

4
b2

r

b2
3
h4

0

and σ2 = b5br

b3h2
0

are both positive constants. Rewriting this polynomial as

Pk (λ)= α0λ
4 + β0λ

3 + α1λ
2 + β1λ+ α2, let us now denote the Hurwitz determinants associated

with Pk :

11 = det
(
β0

)
, 12 = det

(
β0 β1

α0 α1

)
, 13 = det

β0 β1 0

α0 α1 α2

0 β0 β1

 , 14 = det


β0 β1 0 0

α0 α1 α2 0

0 β0 β1 0

0 α0 α1 α2

 .

Then, one obtains11= 4σ2 + 8π2‖k‖2b2,12 =
(
4σ2 + 8π2‖k‖2b2

)(
4σ2b2 + 4π2‖k‖2

(
b2

2 + b1

))
,

13 =
(
320 b1b2

2π
2‖k‖2 − 16σ1‖U‖2

)
σ 2

2 +
(
512b1b3

2π
4‖k‖4 − 64b2π

2σ1‖k‖2‖U‖2
)
σ2−

−64b2
2π

4σ1‖k‖4‖U‖2 + 256 b1b4
2π

6‖k‖6 + 64b1b2σ
3
2 ,

and14 = α213. According to the Routh–Hurwitz theorem [38], the number of roots of the poly-

nomial Pk with positive real part is equal to the total number of changes of sign in the sequence

{α0,11,
12

11
,
13

12
,
14

13
}. One may compute α0 > 0,11 > 0,

12

11
> 0,

14

13
> 0 and

13

12
< 0 for ‖U‖ big

enough, which ends the proof using Proposition 5.

4 Well-posedness without inertial terms

Disregarding the inertial terms in equation (2.2) (as done in [14, 21, 39]), we obtain the following

simplified version of the Rayleigh–Plesset equation

∂R

∂ t
=

f1 (R)− p

Rf2 (R)
, (4.1)

along the initial condition

R (x, 0)= r1 (x) ∀x ∈�, (4.2)

where r1 ∈ C
(
�̄
)

known and p ∈ W
1,q

0 (�) is the solution of (2.3).

4.1 Existence of a local solution

Let us prove that we can express ∂R/∂ t as a function of R from (4.1). Denoting R1 = R, R2 = ∂R
∂ t

,

we recall the decomposition

p = A (R1, R2)= A1(R1) + A2(R1, R2),
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with A1 and A2 as in (2.8) and (2.9), respectively. Now, defining5 : Q × C
(
�̄
)
7→ C

(
�̄
)

by

5 (R1, R2)=
f1 (R1)− A1(R1) − A2(R1, R2)

R1f2 (R1)
, (4.3)

we have the next result:

Lemma 3 Given R ∈ Q, there exists a unique G (R)∈ C
(
�̄
)

such that

G (R)=5 (R, G (R)) ,

and the mapping R 7→ G (R) is of class C2.

Proof Let us fix R ∈ Q, we will show that there exists a unique S ∈ C
(
�̄
)

such that S =5 (R, S).

Using (4.3), we first notice that the equation S =5 (R, S) is equivalent to

S +
A2 (R, S)

Rf2 (R)
=

f1 (R)− A1 (R)

Rf2 (R)
.

We denote by J : C
(
�̄
)
7→ C

(
�̄
)

the linear mapping S 7→ S + A2 (R, S) / (Rf2 (R)). To prove

the existence of a unique solution for the last equation we will show that J is bijective, which

will give us the existence of G by taking G (R)= S. Now, since the mapping S 7→ A2 (R, S) is

compact, by means of the Fredholm’s Alternative theorem it is enough to prove that J is injective.

Indeed, let us take w ∈ C
(
�̄
)

such that J (w)= 0, then we have

Rf2 (R)w + A2 (R, w)= 0.

Multiplying this equation by −f5 (R) hw and integrating by parts, we obtain∫
�

Rf2 (R) (−f5 (R)) hw2 d�+

∫
�

(−f5 (R)) hA2 (R, w) w d�= 0. (4.4)

Now, multiplying (2.9) by A2 (R1, R2), integrating and using (H5), we have for any (R1, R2) ∈

Q × C
(
�̄
)

∫
�

(−f5 (R1)) h A2(R1, R2) R2 d�≥ 0. (4.5)

Taking R1 = R and R2 = w in the last equation and carrying that into equation (4.4), we obtain

w = 0, so we conclude J is injective.

Next, we prove that G is of class C2. Let us define the mapping8 : Q × C
(
�̄
)
7→ C

(
�̄
)

such

that

8 (R, S)= S −5 (R, S) ,

which is of class C2 since all the involved functions are regular enough. Now, fixing some

arbitrary (R0, S0) ∈ Q × C
(
�̄
)

such that 8 (R0, S0)= 0 we have for any w ∈ C
(
�̄
)

∂8

∂S
(R0, S0) (w)= w +

A2 (R0, w)

R0f2 (R0)
= J (w) .

From where we obtain that ∂8
∂S
(R0, S0) is an automorphism on C

(
�̄
)
. Thus, we conclude that G

is of class C2 by means of the Implicit Function theorem.
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Theorem 6 There exists T > 0 such that problem (2.3)–(4.1)–(4.2) has a unique solution in

C3 ([0, T]; Q).

Proof The result follows directly from applying the Cauchy–Lipschitz theorem to the equiva-

lent evolution problem

∂R

∂ t
= G(R), (4.6)

along the initial condition (4.2).

4.2 Stability analysis

Let us notice the stationary solution of (4.1) is also the couple (Rs, ps) obtained in Section 3.2.

Here we study the stability of that solution for the evolution problem (4.6).

For that, denote the derivative

LG : C
(
�̄
)

7−→ C
(
�̄
)

w 7−→ D G (Rs) (w) .
(4.7)

Using the definition of 5 (R, S) we compute the derivative with respect to R in the equation

S =5 (R, S) and make the evaluation at R = Rs, S = 0, so we obtain that LG (w) satisfies

Rs f2 (Rs)LG (w)− f ′
1 (Rs)w + π1 (w)+ π2 (LG (w))= 0, (4.8)

with π1 and π2 as in equations (3.9) and (3.10), respectively.

For the next results, we denote d1 = −f ′
1

(
R̄
)
/
(
R̄f2

(
R̄
))

, d2 =
(
R̄f2

(
R̄
))−1

, d3 = R̄ f3
(
R̄
)

f2
(
R̄
)
,

d4 = −f ′
4

(
R̄
)

and d5 = −f5
(
R̄
)
. All these constants are positive as follows from (H1) to (H5).

Lemma 4 Asumme h+ = 0 or U = 0. Then

Sp (LG)⊂ Vp (LG)∪ {−d1}.

Moreover, if w ∈ C
(
�̄
)

is an eigenvector of LG with associated eigenvalue λ, then w ∈ H1
0 (�)

and it satisfies

d3 (d1 + λ)∇ ·
(
h3∇w

)
= d4 U · ∇ (hw)+ λ d5 hw in ∂�,

w = 0 on ∂�.
(4.9)

Proof From Remark 4, we have (Rs, ps)=
(
R̄, 0

)
. Putting this into equation (4.8), we obtain

that for any λ ∈C:

LG (w)− λw = (λ+ d1)

[
−w −

d2

λ+ d1

[π1 (w)+ π2 (LG (w))]

]
, (4.10)

with π1 (w) given by (3.12). Since the map w 7→ π1 (w)+ π2 (LG (w)) is compact, by means of

the Fredholm’s Alternative theorem, we obtain that Sp (LG)⊂ Vp (LG)∪ {−d1}.

Take now w ∈ C
(
�̄
)

eigenvector of LG with associated eigenvalue λ, carrying this into

equation (4.10) we obtain

λ+ d1

−d2

w = π1 (w)+ λ π2 (w) ,
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then w ∈ H1
0 (�) and equation (4.9) follows from this last relation and equations (3.12) and

(3.10).

Theorem 7 For every U ∈R
2 there exists ǫ = ǫ (U) > 0 such that if

∥∥h+
∥∥

∞
< ǫ, then the

solution (Rs, ps) of problem (3.3) is asymptotically stable for the evolution problem (2.3)–

(4.1)–(4.2).

Proof Let us assume first that h+ = 0. By Lemma 4, it is enough to study the eigenvalues of

LG. Hence, take λ ∈C \ {−d1} such that LG (w)= λw for some w 6= 0. Then (4.9) reads

h2
0 d3 (d1 + λ) 1w = d4 U · ∇w + λ d5 w in �, (4.11)

w = 0 on ∂�.

We notice that λ 6= 0. In fact, if λ= 0 then multiplying the equation (4.11) by w and

integrating by parts we obtain w = 0, which is not possible. Decomposing λ= λ1 + i λ2 and

w = w1 + i w2, writing the differential equation for the real and imaginary parts we obtain the

equations

−h2
0 d3 (d1 + λ1) 1w1 + h2

0 d3λ21w2 + d4U · ∇w1 + d5 (λ1w1 − λ2w2)= 0,

−h2
0 d3 (d1 + λ1) 1w2 − h2

0 d3λ21w1 + d4U · ∇w2 + d5 (λ1w2 + λ2w1)= 0.

Multiplying the first equation by w1, the second equation by w2 and integrating by parts we may

obtain

h2
0 d3 (d1+λ1)

∫
�

|∇w1|
2 d�− h2

0 d3λ2

∫
�

∇w2·∇w1 d�+ d5λ1

∫
�

w2
1 d�− d5λ2

∫
�

w1 w2 d�= 0,

h2
0 d3 (d1+λ1)

∫
�

|∇w2|
2 d�+ h2

0 d3λ2

∫
�

∇w2·∇w1 d�+ d5λ1

∫
�

w2
2 d�+ d5λ2

∫
�

w1 w2 d�= 0.

Adding up both equations we have

h2
0 d3 (d1 + λ1)

∫
�

(
|∇w1|

2 + |∇w2|
2
)

d�+ d5λ1

∫
�

(
|w1|

2 + |w2|
2
)

d�= 0.

Observing that λ1 ≥ 0 implies w = 0, which is not possible, we conclude that Re (λ)= λ1 < 0.

We have shown the stability for h+ = 0. Now from Theorem 2, we have that the mapping

h+ 7→ Rs

(
h+
)

is continuous in a neighbourhood V1 ∋ 0 in L∞ (�). Thus, if h+ → 0 in L∞ (�)

then ∥∥DG
(
Rs

(
h+
)

, 0
)
− DG

(
R̄, 0

)∥∥→ 0

in the space of linear continuous operators from C
(
�̄
)

into itself. Then the result follows from

Proposition 2.

Theorem 8 Fix h ∈ Bm0,M0
, 0<m0 <M0. Then there exists ǫ > 0 such that if ‖U‖ < ǫ then the

solution (Rs, ps) of problem (3.3) is asymptotically stable for the evolution problem (2.3)–(4.1)–

(4.2).

Proof Let us assume first that U = 0. By Lemma 4, it is enough to study the eigenvalues of LG.

Hence, take λ ∈C \ {−d1} such that LG (w)= λw for some w 6= 0. If λ= 0 then from equation

(4.9) we obtain w = 0, which is a contradiction. Thus, we have λ 6= 0 and this time equation (4.9)
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in its variational version reads

−d3

(λ+ d1)

λ

∫
�

h3 ∇w · ∇φ d�= d5

∫
�

hwφ d� ∀φ ∈ H1
0 (�) .

Along the same arguments used in Theorem 4, this implies λ∈R
−. The result follows analo-

gously to the end of Theorem 7 proof, this time using the continuity of the mapping U 7→ Rs (U)

asserted in Theorem 3.

Remark 5 Theorem 7 highlights the difference between the model without or with inertial terms.

If h+ = 0, when disregarding the inertial terms stability is proved by Theorem 7 for any velocity

U, while when considering the inertial terms instability is gained for U sufficiently large from

Theorem 5.

5 Numerical examples

In this section, we show some numerical examples for the evolution problem (2.3)–(4.1)–(4.2)

(disregarding the inertial terms). The computations are separated in two stages: (1) the Reynolds

equation (2.3) is integrated by means of a Finite Volume Method and (2) the Rayleigh–Plesset

equation (4.1) is integrated by means of the backward Euler scheme. Special care must be taken

when discretising the time derivative in equation (2.3). In fact, for this particular system, the

simple approximation ∂R
∂ t

≈ Rn+1−Rn

1t
is prone to instabilities. This issue was exposed in [19] where

instead of such approximation the time derivative ∂R
∂ t

is substituted in equation (2.3) by the right-

hand side of equation (4.1). To provide the resulting discretised equations, let us first divide the

domain �= [0, 2πJr] × [0, B] into cells of size 1x1 = 2πJr/512 and 1x2 = B/64 in the x1 and

x2 axis, respectively, where JR = B = 25.4 × 10−3 m. The time step was taken as 1t = 0.3 ms.

The number of time steps, denoted by N∗, is taken big enough in order to observe temporal

convergence for each case. Thus, tN∗
=1t N∗ corresponds to the final time simulated. This way,

for a certain time step tn, one solves the equations:

1. For the discrete pressure field at each cell:

c
i− 1

2
,j

pn
i−1,j −

(
c

i− 1
2

,j
+ c

i+ 1
2

,j

)
pn

i,j + c
i+ 1

2
,j

pn
i+1,j

1x2
1

+
c

i,j− 1
2

pn
i,j−1 −

(
c

i,j− 1
2
+ c

i,j+ 1
2

)
pn

i,j + c
i,j+ 1

2
pn

i,j+1

1x2
2

+ hi,j

f5

(
Rn

i,j

)
Rn

i,jf2

(
Rn

i,j

)pn
i,j =

=
ωJr

2

f4

(
Rn

i,j

)
hi,j − f4

(
Rn

i−1,j

)
hi−1,j

1x1

+ hi,jf5

(
Rn

i,j

) f1

(
Rn

i,j

)
Rn

i,jf2

(
Rn

i,j

) − u1
bD̂1(Rn

i,j) − u2
bD̂2(Rn

i,j)

,

(5.1)

with

c
i± 1

2
,j

=
f3

(
Rn

i,j

) (
hn

i,j

)3

+ f3

(
Rn

i±1,j

) (
hn

i±1,j

)3

2
,

c
i,j± 1

2
=

f3

(
Rn

i,j

) (
hn

i,j

)3

+ f3

(
Rn

i,j±1

) (
hn

i,j±1

)3

2
;
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and D̂1, D̂2 correspond to upwind discretisations of the partial derivatives ∂R
∂x1

and ∂R
∂x2

,

respectively.

2. Then for the discrete bubbles radii field at each cell:

Rn+1
i,j = Rn

i,j +1t

 f1

(
Rn

i,j

)
− pn

i,j

Rn
i,jf2

(
Rn

i,j

) − u1
bD̂1(Rn

i,j) − u2
bD̂2(Rn

i,j)

 . (5.2)

It is worth noticing that due to the substitution mentioned above, the negative quantity

hn
i,j

f5

(
Rn

i,j

)
Rn

i,jf2

(
Rn

i,j

)pn
i,j (recall that f5 < 0 and f2 > 0) appears at the left-hand side of equation (5.1), so

it can be seen as a stabilising term. Notice also that pn depends only on the values of R at time tn.

For more details on the numerical method, the reader is referred to [19].

Remark 1 For the results presented here, the bubbles transport velocity ub has been set to

zero. Nevertheless, the numerical procedure has been also used for non-null fields of the form

ub = δ ωJr ê1, with ê1 being the unit vector along the circumferential direction (thus δ= 1/2

corresponds to setting ub to the average velocity of the surfaces). For small values of δ (δ≈ 1/2),

the numerical simulations appear to be stable and convergence towards a stationary regime is

obtained. Moreover, when diminishing δ the results tend continuously to the ones for the case

ub = 0. However, for larger values of δ, numerical instabilities can be observed, particularly at

the boundaries, and numerical convergence is lost. Therefore, it is of interest to study whether

the loss of numerical well-posedness is due to a numerical phenomenon or is due to a possible

ill-posedness of the coupled model for a non-null velocity ub, generalising the analysis made in

this work by further research.

The gap function h is set as h(x1, x2) = h0 (1 − ǫ cos(x1)) with h0 > 0 and ǫ ∈ [0, 1[ (the

eccentricity of the journal). Dirichlet boundary conditions are imposed, reading

p (x1, 0, t = 0)= p(x1, B, t = 0) = 0 ∀x1 ∈ [0, 2πJR],

and the next periodic conditions for all time t ≥ 0

p (0, x2, t)= p(2πJR, x2, t),
∂p

∂x1

(0, x2, t)=
∂p

∂x1

(2πJR, x2, , t) ∀x2 ∈ [0, B].

The initial conditions are R̂(x, t = 0) = R(x, t = 0)/R0 = 1 and ∂R
∂ t

= 0 in �.

Here the gas fraction is written as (see Appendix)

α(R) =
α0 (R/R0)

3

1 + α0 (R/R0)
3

∀R> 0, (5.3)

where α0 is a data corresponding to the gas fraction for R = R0, and R0 is a reference radius.

The geometrical setting corresponds to a journal bearing device, which scheme is shown in

Figure 2. The physical parameters setting is given in Table 1. For the next results, we will

use the non-dimensional variables R̂ = R/R0, x̂1 = x1/JR (longitudinal direction) and x̂2 = x2/B

(transverse direction) and for some function f (R) we denote f̂ (R̂) = f (R0 R̂).
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Table 1. Parameter values for the journal bearing

Symbol Value Units Description

ρℓ 854 kg/m3 Liquid density

µℓ 7.1 × 10−3 Pa·s Liquid viscosity

ρg 1 kg/m3 Gas density

µg 1.81 × 10−5 Pa·s Gas viscosity

κ s 7.85 × 10−5 Pa·s·m Surface dilatational viscosity

k 1.4 Gas polytropic exponent

σ 3.5 × 10−2 N/m Liquid surface tension

P0 1 atm Reference pressure

R0 3.85 × 10−7 m Bubbles’ equilibrium radius at 1 atm

α0 0.1 Reference gas fraction

Jr 25.4 × 10−3 m Journal radius

B 25.4 × 10−3 m Journal width

h0 0.001 × Jr m Journal clearance

ǫ [0, 1[ Journal eccentricity

ω 2π 1000
60

rad/s Journal rotational speed

FIGURE 2. Scheme of the journal bearing.

5.1 Time convergence towards a stationary solution

Here the journal eccentricity is fixed to ǫ = 0.4 and the other physical parameters are set as in

Table 1. For the physical cases computed here, the function f̂1 has a unique critical point R̂crit

such that f̂ ′
1(R)< 0 for R̂< R̂crit and f̂ ′

1(R)> 0 for R̂> R̂crit (see Figure 3), so we denote

p̂cav = min
r>0

f̂1 (r)= f̂1(R̂crit).
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FIGURE 3. Typical shape of f̂1, having a unique critical point R̂crit ≈ 1.8 for the parameters set in Table 1.

(a) (b)

FIGURE 4. Time convergence of the fields pressure (a), and bubbles dimensionless radii and gas fraction

(b) for ǫ = 0.4 projected along x̂2 = 0.5.

To simplify the exposition, these two-dimensional pressure and bubbles’ radii fields are shown

in Figure 4 by fixing x̂2 = 0.5 for different time steps. For the configuration set in this example

a numerical convergence in time is obtained, meaning that for t ≥ 300 ms the profiles are not

observed to change. It is worth noticing that for some time steps (t ≈ 2 ms), there is a region

of � where p̂< p̂cav but the converged profile accomplishes p̂(x1, x2, 300 ms) ≥ p̂cav on �. Also,

one observes that in the pressurized region (where p̂> 0), the bubbles radii is such that α̂(R̂) is

low and then ρ̂(R̂) ≈ ρℓ. On the other hand, in the region where p̂ ≈ p̂cav the gas fraction α̂(R̂)

can reach values as high as 0.4, lowering the mixture average density and effective viscosity (see

(A5) and (A9)).

5.2 Stationary solutions varying the eccentricity

A series of simulations were performed for increasing values of the eccentricity ǫ. Until a

value of ǫ around 0.41 time convergence of the transient solution towards the stationary one is
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(a) (b)

FIGURE 5. Stationary pressure (a), dimensionless radii and gas fraction (b) for different eccentricities of

the Journal Bearing.

numerically observed, while for ǫ > 0.41 the time convergence towards a stationary solution is

no longer obtained. Let us remark that the same loss of time convergence is numerically observed

when increasing the journal rotational speed ω.

As can be observed from Figure 5(b), the maximum value of R̂ on the domain increases

as the eccentricity increases, reaching the value R̂crit for ǫ ≈ 0.41. Thus, the loss of time con-

vergence could be related to the change in the sign of f̂ ′
1 from negative to positive and then

violating hypothesis (H1), which was essential to obtain the stability of the stationary solutions

in Section 4.2.
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A Appendix

Here heuristic arguments to justify equations (1.1) and (1.6) are presented. This presentation

is based in the Theory of Multicomponent Fluids [25], which has been used by Carrica and

coworkers to study the dynamics of a bubbly mixture around a surface ship [40, 41, 42, 43].

A.1 The mass and momentum conservation equations

The fluid mixture is composed by two phases: an incompressible liquid phase (with density ρℓ

and viscosity µℓ) and a gas phase (with reference density ρg and viscosity µg). The mixture

density and velocity vector are denoted by ρ and u, and the pressure field is denoted by p. The

characteristic functions of the phases are denoted by Xk(x, t), k = ℓ, g for the liquid and gas

phase, respectively. That is, Xk(x, t) = 1 if the phase k is present in x at time t, and Xk(x, t) = 0

otherwise.
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An ensemble of physical realisations is assumed to exist. Each of these realisations corre-

sponds to an evolution of the physical system (fluid mixture – limiting surfaces – boundary

conditions) for which the initial conditions are near enough to a set of ideal smooth initial condi-

tions. A probability of occurrence for each realisation is assumed. Here 〈·〉 denotes the statistical

averaging with respect to this distribution function at the point x ∈�V and time t. The fields

αg (x, t)=
〈
Xg

〉
, αℓ(x, t) = 〈Xℓ〉 (A1)

are called the gas fraction, and the liquid fraction, respectively. In the statistical model, the

phases occupy the whole domain, thus αg + αℓ = 1. With this, the averaged density, velocity

vector and stress tensor for each phase k = ℓ, g are defined as

ρ̄k(x, t) =
〈ρXk〉

αk

, ūk(x, t) =
〈ρu Xk〉

αk ρ̄k

, T̄k =
〈T Xk〉

αk

. (A2)

Observe that as the liquid phase is incompressible and so one has that ρ̄ℓ = ρℓ. Applying the

averaging process to the conservation equations of mass and momentum, one obtains [25]

∂(αk ρ̄k)

∂ t
+ ∇ · (αk ρ̄k ūk)= Ŵk in �V , (A3)

and

∂(αk ρ̄k uk)

∂ t
+ ∇ · (αk ρ̄k ūk ⊗ ūk)= ∇ ·

(
αk T̄k

)
+ Mk + vki Ŵk in �V , (A4)

where Mk is the interfacial momentum source and, vki is the interfaces speed and Ŵk is the

interfacial mass generation source. In the literature, a series of hypotheses are made to simplify

these equations:

• Averaged quantities are smooth;

• Interfacial mass sources are negligible (Ŵk ≃ 0);

• Interfacial momentum sources are negligible (Mk ≃ 0);

• The gas phase average velocity is equal to the liquid phase average velocity, ūg = ūℓ;

• The gas phase density is equal to the gas reference density ρg, ρ̄g = ρg.

With these hypotheses, adding up equation (A3) for both phases, simplifying the notation by

setting α
def
= αg, and introducing the variable

ρ̄ (α)= α(x, t) ρℓ + (1 − α(x, t)) ρg (A5)

yields the conservation law:

∂ρ̄

∂ t
+ ∇ · (ρ̄ ūℓ)= 0 in �V . (A6)

Similarly, adding up equation (A4) for both phases we have

∂(ρ̄ ūℓ)

∂ t
+ ∇ · (ρ̄ ūℓ ⊗ ūℓ)= −∇p̄ +µeff ∇2ūℓ in �V , (A7)

where it has been assumed the existence of an effective fluid viscosity µeff (that depends

smoothly on α, the liquid viscosity and the gas viscosity) such that

∇ ·
(
α T̄g + (1 − α)T̄ℓ

)
≃ −∇p̄ +µeff ∇2ūℓ in �V . (A8)
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An example off µeff is given by [44]

µeff(α) = α(x, t)µg + (1 − α(x, t))µℓ. (A9)

To our knowledge, there is a lack of works justifying (A8) or some similar relation, and further

research on the topic is needed.

The thin film hypothesis allows to approximate the Navier–Stokes equations (A7) along

equation (A6) by the incompressible Reynolds equation [45, 46]:

∇x ·

(
ρ̄h3

12µeff

∇p̄

)
= ∇x ·

(
U

2
ρ̄h

)
+
∂ρ̄h

∂ t
in �. (A10)

Appendix A.2 The field Rayleigh–Plesset equation

In the literature regarding the Rayleigh–Plesset equation to model the evolution of bubbly fluids,

the following hypotheses are generally made:

• The liquid phase of the mixture is continuous while the gas phase corresponds to a high

number of spherical bubbles dispersed in the liquid [14, 19, 21, 40, 41, 42, 43];

• The Rayleigh–Plesset procedure is locally applicable;

• The number of bubbles per volume unit, nb(x, t), is locally constant;

• The evolution of the field R(x, t) is related to the mixture’s pressure pm by means of the

Rayleigh–Plesset equation

ρℓ

[
3

2

(
DR

Dt

)2

+ R
D2R

Dt2

]
= P0

(
R0

R

)3k

− pm −
2σ

R
− 4

(
µℓ + κ s/R

R

)
DR

Dt
, (A11)

where ρℓ and ρg (µℓ and µg) are the densities (viscosities) of the liquid and the gas,

respectively, P0 is the inner pressure of the bubble when its radius is equal to R0, k is the

polytropic exponent, σ is the coefficient of surface tension and κ s is the surface dilatational

viscosity [21]. Regarding the material derivative

D

Dt
=
∂

∂ t
+ (ub · ∇) . (A12)

Let us remark that the convective field ub = (u1
b, u2

b, u3
b) is three-dimensional when asso-

ciated with the Stokes field velocity field. However, as the velocity field associated with

the Reynolds equation has third component equal to zero (see [45]), a two-dimensional

convective field with u3
b = 0 is used when transporting the bubbles field R.

In general, the energy equation must be considered in this kind of modelling. However, in

this work, the polytropic exponent is set to k = 1 or 1.4 (air specific heat), the former value

corresponds to an isothermal process while the latter one corresponds to an adiabatic process, in

both cases the energy equation is not needed. Nevertheless, it is worth noticing that there exist

related works where the energy equation is also considered (e.g., [24, 39]).

It can be proved that the three variables nb(x, t), α(x, t) and R(x, t) accomplish the geometric

relation (e.g., [25] Section 10.1.2)

α(x, t) = nb(x, t)
4πR(x, t)3

3
. (A13)
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To couple (A11) with equation (A10), there remains to give and additional model for nb(x, t).

Two approaches may be found in the literature:

1. To assume that nb(x, t) is a known constant.

2. To assume that the number of bubbles per liquid volume unit denoted by nℓb, is constant

(e.g., [12]) and so

nb(x, t) = nℓb αℓ(x, t) = nℓb(1 − α(x, t)),

that combined with equation (A13) implies

α(x, t) =
nℓb

4πR(x,t)3

3

1 + nℓb
4πR(x,t)3

3

. (A14)

Notice that this expression is bounded by 1 and it grows monotonically with R. In the litera-

ture, it is typically introduced the parameter α0 = nℓb
4π
3

R3
0 which corresponds to a reference

gas fraction. Doing so, this last equation may be written

α(R) =
α0 (R/R0)

3

1 + α0 (R/R0)
3

,

that corresponds to the formula used in Section 5 for the numerical examples.

The boundedness of α obtained from the second approach is one of the hypotheses made in

Section 2. Thus, the theoretical results proved in this work remain valid for other definitions of

α(R) accomplishing that property.

Remark 2 If it is assumed that locally the bubbles can have several possible sizes, one may

adapt the multigroup approach used by Carrica and coworkers for the modelling on the inter-

action of ocean polydispersed air bubbles with a surface ship [41, 42, 43], where a Population

Balance Equation is written and a discrete group of possible bubbles radii is assumed. The use

of this methodology for the context of the Reynolds–Rayleigh–Plesset cavitation model is an

ongoing research topic.

Remark 3 The use of the Rayleigh–Plesset equation (1.1) for thin film flow assumes that even for

small gaps each spherical bubble is small enough such that there is a sufficiently large domain

around it (with respect to the bubbles radii) for which the Rayleigh–Plesset approximation is

valid. This assumption is not always fulfilled. For example, in [47], a direct numerical computa-

tion of cavitation bubbles using Navier–Stokes equations shows the deformation of such initial

spherical bubbles due to large shear flows or interaction with the solid surfaces.

Remark 4 It is known that Reynolds equation is valid for homogeneous thin flow only for a small

Reynolds number [23, 46]. Thus, the present study cannot consider as high Reynolds number

flow.
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