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Abstract

In this paper we continue the examination of inventory control in which the inventory is
modeled by a diffusion process and a long-term average cost criterion is used to make
decisions. The class of such models under consideration has general drift and diffusion
coefficients, and boundary points that are consistent with the notion that demand should
tend to reduce the inventory level. The conditions on the cost functions are greatly
relaxed from those in Helmes et al. (2017). Characterization of the cost of a general
(s, S) policy as a function of two variables naturally leads to a nonlinear optimization
problem over the ordering levels s and S. Existence of an optimizing pair (s∗, S∗) is
established for these models under very weak conditions; nonexistence of an optimizing
pair is also discussed. Using average expected occupation and ordering measures and
weak convergence arguments, weak conditions are given for the optimality of the (s∗, S∗)
ordering policy in the general class of admissible policies. The analysis involves an
auxiliary function that is globally C2 and which, together with the infimal cost, solves a
particular system of linear equations and inequalities related to but different from the long-
term average Hamilton–Jacobi–Bellman equation. This approach provides an analytical
solution to the problem rather than a solution involving intricate analysis of the stochastic
processes. The range of applicability of these results is illustrated on a drifted Brownian
motion inventory model, both unconstrained and reflected, and on a geometric Brownian
motion inventory model under two different cost structures.
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1. Introduction

In this paper we further develop our examination of the long-term average cost criterion for
inventory models of diffusion type in which the only control over the inventory levels is through
the action of ordering additional stock; see Helmes et al. (2017) for our previous investigation.
It identifies weak sufficient conditions for optimality of an (s, S) ordering policy in the general

Received 30 January 2017; revision received 14 September 2018.
The supplementary material for this article can be found at http://doi.org/10.1017/apr.2018.50.
∗ Postal address: Institute for Operations Research, Humboldt University of Berlin, Spandauer Street 1, 10178, Berlin,
Germany. Email address: helmes@wiwi.hu-berlin.de
∗∗ Postal address: Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201,
USA.
∗∗∗ Email address: stockbri@uwm.edu
∗∗∗∗ Email address: zhu@uwm.edu

1032

https://doi.org/10.1017/apr.2018.50 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:helmes@wiwi.hu-berlin.de?subject=Adv. Appl. Prob.%20paper%2016548
mailto:stockbri@uwm.edu?subject=Adv. Appl. Prob.%20paper%2016548
mailto:zhu@uwm.edu?subject=Adv. Appl. Prob.%20paper%2016548
https://doi.org/10.1017/apr.2018.50


Long-term average inventory control 1033

class of admissible policies as well as providing some sufficient conditions for nonexistence of
an optimal (s, S) policy.

We model the inventory processes (in the absence of orders) as solutions to a stochastic
differential equation

dX0(t) = μ(X0(t)) dt + σ(X0(t)) dW(t), X0(0) = x0, (1.1)

taking values in an interval I = (a, b); negative values of X0(t) represent back-ordered
inventory. The detailed discussion in Chen et al. (2010) indicates the validity of state-dependent
diffusion models for inventory management.

An ordering policy (τ, Y ) is a sequence of pairs {(τk, Yk) : k ∈ N} in which τk denotes the
(random) time at which the kth order is placed and Yk denotes its size. Since order k +1 cannot
be placed before order k, {τk : k ∈ N} is an increasing sequence of times. The inventory level
process X resulting from an ordering policy (τ, Y ) therefore satisfies the equation

X(t) = x0 +
∫ t

0
μ(X(s)) ds +

∫ t

0
σ(X(s)) dW(s) +

∞∑
k=1

1{τk≤t} Yk. (1.2)

Note the initial inventory level X(0−) = x0 may be such that an order is placed at time 0,

resulting in a new inventory level at time 0; this possibility occurs when τ1 = 0. Also, observe
that X(τk−) is the inventory level just prior to the kth order being placed, while X(τk) is the
level with the new inventory. Thus, this model assumes that orders are filled instantaneously.

Let (τ, Y ) be an ordering policy, and let X be the resulting inventory level process satisfying
(1.2). Let c0 and c1 denote the holding/back-order cost rate and ordering cost functions,
respectively. We assume there is some constant k1 > 0 such that c1 ≥ k1; this constant
represents the fixed cost for placing each order. The long-term average expected holding/back-
order plus ordering costs is

J0(τ, Y ) := lim sup
t→∞

t−1
E

[∫ t

0
c0(X(s)) ds +

∞∑
k=1

1{τk≤t} c1(X(τk−), X(τk))

]
.

The goal is to identify an admissible ordering policy so as to minimize the cost.
As mentioned earlier, we revisit the problem examined in Helmes et al. (2017). We thus

refer the reader to that paper for a discussion of the existing literature related to this problem;
see also Bensoussan (2011). In this paper we relax the assumptions imposed on c1, such as the
concavity requirement in Yao et al. (2015). We focus the remainder of our comments on that
which distinguishes this paper from our earlier publication.

The present paper differs from Helmes et al. (2017) in three significant respects: solution
approach, technical requirements, and generality of the class of admissible policies. Here,
we employ weak convergence of the average expected occupation and ordering measures to
analyze the long-term average costs, whereas Helmes et al. (2017) relied heavily on intricate
pathwise analysis of the stochastic inventory processes. The benefit of the weak convergence
approach lies in the ease of establishing the tightness of the expected occupation measures
and, hence, their sequential compactness. This compactness ensures the existence of long-term
average limiting measures that are key to the analysis of the costs. Quite surprisingly, tightness
is not required of the average expected ordering measures, so there may not exist any limiting
ordering measures. Nevertheless, a limiting argument establishes optimality in the general
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class of admissible policies of an (s∗, S∗) policy. In Appendix C we present an example of
an ordering policy having finite cost for which the average expected occupation measures are
tight, but the average expected ordering measures are not tight.

From a technical point of view, the weak convergence approach allows conditions on both
cost functions c0 and c1 to be considerably relaxed by removing many structural requirements
(compare Condition 2.2 below with Condition 2.3 of Helmes et al. (2017)). For example,
the requirement that c0 approaches ∞ at each boundary and the rather restrictive modularity
condition (2.6) of that paper on c1 are unnecessary. In their places, we merely require that these
functions be continuous, with c0 continuous at the boundaries, an integrability condition on c0
at the boundary b, as well as other boundedness relations contained in Conditions 2.3 and 5.1.

Most significantly, the two papers differ in how the auxiliary function is defined, which,
together with the infimal cost, form a solution of a particular system of linear equations and
inequalities (see Proposition 4.1) related to but different from the long-term average Hamilton–
Jacobi–Bellman equation. In the present paper, the auxiliary function G0 is a C2 function
defined globally on I, contrasting with the function G in the earlier paper in which C1-smoothly
pastes two functions at a significant point in I. Moreover, frequently in the literature, the long-
term average auxiliary function is obtained from the value functions of discounted problems
using the method of vanishing discount. The function G0 in this paper is not obtained in this
manner.

The functions G and G0 in the two papers play a central role in establishing general optimality
of an (s, S) ordering policy. In this paper we provide an analytic solution for the general model
that applies to all admissible policies. In contrast, in Helmes et al. (2017) we showed optimality
in a smaller class of ordering policies for the general models under a more restrictive set of
conditions. Optimality of (s, S) policies for the general class of admissible policies for two
examples from He et al. (2017) and Helmes et al. (2017) was established using ad hoc methods
specifically tuned to the examples.

The initial steps to the solution of the inventory control problem are similar to those in
Helmes et al. (2017). In the next section we briefly develop the model formulation, identify two
important functions, and analyze (s, S) ordering policies with an emphasis on the differences
between the papers. In particular, we concentrate on the more relaxed conditions in the current
paper and we provide some new results that are required for the weak convergence analysis.
Some results are common to both papers; we refer to Helmes et al. (2017) for those results
whose proofs remain valid, but we provide a complete proof in Appendix A for Theorem 2.1
since the previous proof is no longer valid for the general models of this paper. Section 2 is
designed to briefly set some of the common foundations in the two papers so as to allow the
reader to quickly access the new ideas and approaches in succeeding sections of this paper. In
Section 3 we introduce the expected occupation and expected ordering measures, and discuss
their tightness (or not).

The main contributions of this paper are contained in Sections 4 and 5. In Section 4 we define
a particular auxiliary function G0 at the heart of our analytical approach and give two important
results related to G0. In Section 5 we then approximate G0 by functions in a subclass and use
these approximations to establish optimality of the (s∗, S∗) ordering policy in the general class
of admissible policies. Finally, in Section 6 we illustrate the ease of application of these results
on examples involving a drifted Brownian motion, both unconstrained and with reflection at {0},
and a geometric Brownian motion having two different cost structures. These examples are
chosen to illustrate the more general applicability of this paper’s results over those in Helmes
et al. (2017).
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2. Formulation and preliminary results

In this section we briefly establish the models under consideration, which are more general
than those in Helmes et al. (2017). The approach is very similar to that taken in Sections 2
and 3 of that paper, so we refer the reader to those sections for more details. We emphasize
the differences between the conditions. Some proofs must be modified for the more general
models of this paper. Also, some new results are required for our weak convergence arguments.
This overview will be kept brief so that the reader may reach the new ideas of this paper with
a minimum of effort. The reader may also find Chapter 15 of Karlin and Taylor (1981) to be
a good reference for the boundary classifications of one-dimensional diffusions, especially for
properties of the scale function and speed measure.

2.1. Formulation

Let I = (a, b) ⊆ R. In the absence of ordering, the inventory process X0 satisfies (1.1)
and is a regular diffusion. Throughout the paper, we assume that the functions μ and σ are
continuous on I, and that (1.1) is nondegenerate. The initial position of X0 is taken to be x0
for some x0 ∈ I. Let {Ft } denote the filtration generated by X0, augmented so that it satisfies
the usual conditions. We place the following assumptions on the underlying diffusion model.

Condition 2.1. (a) Both the speed measure M and the scale function S of the process X0 are
absolutely continuous with respect to Lebesgue measure.

(b) The left boundary a is attracting and the right boundary b is nonattracting. Moreover, when
b is a natural boundary, M[y, b) < ∞ for each y ∈ I. The boundaries a = −∞ and b = ∞
are required to be natural.

When b is a natural boundary, the requirement that M[y, b) < ∞ for each y ∈ I is imposed
in this paper as this is required for our general approach and does not hold in general. Lemma 2.4
of Helmes et al. (2017) shows that this condition follows from the more restrictive assumptions
in that paper.

Associated with the scale function S of Condition 2.1, we can define the scale measure on
the Borel sets of I by S[y, z] = S(z) − S(y) for [y, z] ⊂ I.

From the modeling point of view, Condition 2.1(b) is reasonable since it essentially says that,
in the absence of ordering, demand tends to reduce the size of the inventory. The boundary point
a may be regular, exit, or natural with a being attainable in the first two cases and unattainable
in the third. In the case that a is a regular boundary, its boundary behavior must also be specified
as being either reflective or sticky. The boundary point b is either natural or entrance and is
unattainable from the interior in both cases. Following the approach in Helmes et al. (2017),
we define the state space of possible inventory levels to be the interval E which excludes any
natural boundary point, and includes a when it is attainable and b when it is entrance. Since
orders typically increase the inventory level, define R = {(y, z) ∈ E2 : y < z} in which y

denotes the pre-order and z the post-order inventory levels, respectively.
Since we are using weak convergence methods for measures on E and R, we will need their

closures as well. Define E to be the closure in R of E ; thus, when a boundary is finite and natural,
it is not an element of E but is in E . Note that ±∞ /∈ E . Also, set R = {(y, z) ∈ E2 : y ≤ z}; in
contrast to R, the set R includes orders of size 0. Note the subtle distinction between E , which
includes boundaries that are finite and natural, and R, which does not allow either coordinate
to be such a point. The reason for this distinction lies in the fact that the expected ordering
measures are not required to be tight.
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We adopt the standard assumptions on the class A of admissible ordering policies; namely
that {τk : k ∈ N} is an increasing sequence of {Ft }-stopping times and, for each k ∈ N, Yk is
nonnegative, Fτk

-measurable, and satisfies X(τk) ∈ E .
Turning to the cost functions, we impose the following standing assumptions throughout the

paper.

Condition 2.2. (a) The holding/back-order cost function c0 : I → R
+ is continuous. More-

over, at the boundaries

lim
x→a

c0(x) =: c0(a) exists in R+ and lim
x→b

c0(x) =: c0(b) exists in R+;

we require c0(±∞) = ∞. Finally, for each y ∈ I,∫ b

y

c0(v) dM(v) < ∞. (2.1)

(b) The function c1 : R → R+ is in C(R) with c1 ≥ k1 > 0 for some constant k1.

Again, since we will use weak convergence arguments for measures on E , we require c0
to be continuous at the boundaries, even when they are natural. The models in Helmes et al.
(2017) impose the stricter condition that c0(a) = c0(b) = ∞. Condition (2.1) is required in
both papers, but Helmes et al. (2017) also imposed

∫ b

y

∫ b

u
c0(v) dM(v) dS(u) = ∞ for each

y ∈ I. Thus, with the view for applications, the current paper allows a more flexible class
of functions c0. Both papers assume that c1 is continuous and strictly bounded away from 0.
Helmes et al. (2017) also imposed on c1 monotonicity (c1(y, z) ≥ c1(z, z) for y ≤ z) and
(restrictive) modularity (c1(w, z) + c1(x, y) = c1(w, y) + c1(x, z) for w ≤ x ≤ y ≤ z).

Both papers assume that c0 is inf-compact; that is, {x ∈ E : c0(x) ≤ k} is compact for each
k ≥ 0. Though this is not explicitly stated in Condition 2.2(a), it is immediate when c0(a) = ∞
and c0(b) = ∞. When c0(a) < ∞ and c0(b) < ∞, a and b must be finite. Continuity of c0,
including at the boundaries, then establishes that {x ∈ E : c0(x) ≤ k} ∩ [a, b] is compact for
every k ≥ 0.

The generator of the process X between jumps (corresponding to the diffusion X0) is Af =
1
2σ 2f ′′ + μf ′, which is defined for all f ∈ C2(I) or, equivalently,

Af = 1

2

d

dM

(
df

dS

)
.

To capture the effect ordering has on the inventory process, define the jump operatorB : C(E) →
C(R) by Bf (y, z) = f (z) − f (y) for (y, z) ∈ R.

2.2. Important functions

As in Helmes et al. (2017), two functions play a central role in our search for an optimal
ordering policy. Using the initial position x0 ∈ I, define the functions g0 and ζ on I by

g0(x) :=
∫ x

x0

∫ b

u

2c0(v) dM(v) dS(u) and ζ(x) :=
∫ x

x0

∫ b

u

2 dM(v) dS(u), (2.2)

and extend these functions to E by continuity. Observe that both g0 and ζ are negative on
(a, x0) and positive on (x0, b); also, g0 may take values ±∞ at the boundaries. The definitions
of g0 and ζ differ slightly from the similar functions in Helmes et al. (2017) in that we specify
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the lower limit of the outer integrals to be the initial point x0. Using the second characterization
of A, it immediately follows that g0 and ζ , respectively, are particular solutions on I of

Af = −c0, f (x0) = 0 and Af = −1, f (x0) = 0.

Other solutions to these differential equations having value 0 at x0 include summands of the
form K(S(x)−S(x0)), K ∈ R, since the constant function and the scale function S are linearly
independent solutions of the homogeneous equation Af = 0. However, such additional terms
grow too quickly near the boundary b, so a transversality condition in Proposition 4.2 fails (see
Remark 4.2 below) and, therefore, the definitions of g0 and ζ in (2.2) exclude these terms.

To gain some intuition for the functions g0 and ζ , let (y, z) ∈ R and let X0 satisfy (1.1)
with X0(0) = z. Define τy = inf{t ≥ 0 : X0(t) = y}. Then

Ez

[∫ τy

0
c0(X0(s)) ds

]
= g0(z) − g0(y) and Ez[τy] = ζ(z) − ζ(y).

This result is contained in Proposition 2.6 of Helmes et al. (2017), whose proof requires only
Condition 2.1(b) and (2.1) of Condition 2.2(a) in this paper. Thus, these relationships continue
to hold for the models in this paper.

The proof of Proposition 3.5 in Helmes et al. (2017, pp. 1848–1849) establishes that
limy→a ζ(y) > −∞ when a is attainable (regular or exit) and limy→a ζ(y) = −∞ when
a is unattainable (natural). The proof remains valid for the models in this paper.

We now provide the first new result that arises from the possibility of finite values of c0(a)

and c0(b). Its technical proof is given in Appendix A.

Lemma 2.1. Assume that Condition 2.1 holds. Suppose that a and b are natural boundaries,
and let c0(a) and c0(b) be as in Condition 2.2(a). Then the following asymptotic behaviours
hold:

lim
y→a

g0(z) − g0(y)

ζ(z) − ζ(y)
= c0(a) for all z ∈ I, lim

z→b

g0(z) − g0(y)

ζ(z) − ζ(y)
= c0(b) for all y ∈ I,

(2.3)

lim
(y,z)→(a,a)

g0(z) − g0(y)

ζ(z) − ζ(y)
= c0(a), lim

(y,z)→(b,b)

g0(z) − g0(y)

ζ(z) − ζ(y)
= c0(b), (2.4)

lim
y→a

g0(y)

ζ(y)
= c0(a), lim

z→b

g0(z)

ζ(z)
= c0(b). (2.5)

These imply that limy→a g0(y) = −∞ when c0(a) > 0 and limz→b g0(z) = ∞ when
c0(b) > 0.

2.3. Analysis of (s, S) ordering policies

Both this paper and Helmes et al. (2017) rely on characterizing the long-term average cost
for (s, S) ordering policies. For (y, z) ∈ R, define the (y, z) ordering policy (τ, Y ) such that
τ0 = 0 and

τk = inf{t > τk−1 : X(t−) ≤ y} and Yk = z − X(τk−), k ≥ 1, (2.6)

in which X is the inventory level process satisfying (1.2) with this ordering policy. The above
definition of τk must be slightly modified when k = 1 to be τ1 = inf{t ≥ 0 : X(t−) ≤ y} to
allow for the first jump to occur at time 0 when x0 ≤ y.

https://doi.org/10.1017/apr.2018.50 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.50


1038 K. L. HELMES ET AL.

Theorem 2.1 of Sigman and Wolff (1993) provides existence and uniqueness of the stationary
distribution for the process X arising from a (y, z) ordering policy for any y, z ∈ E with y < z,
and, moreover, the one-dimensional distributions P(X(t) ∈ ·) converge weakly to the stationary
distribution as t tends to ∞. Proposition 3.1 of Helmes et al. (2017) derives the density π of the
stationary distribution for X and the long-run frequency κ = 1/Bζ(y, z) of orders. Its proof
remains valid for the models in this paper.

Proposition 3.4 of Helmes et al. (2017) uses a renewal argument to characterize the long-term
average cost J0(τ, Y ) for the (y, z) ordering policy in (2.6):

lim
t→∞

1

t

∫ t

0
c0(X(s)) ds = Bg0(y, z)

Bζ(y, z)
(a.s. and in L1); (2.7)

therefore,

J0(τ, Y ) = c1(y, z) + Bg0(y, z)

Bζ(y, z)
. (2.8)

The L1 convergence is given in the proof of Proposition 3.4, though it is not stated directly
in the proposition. The proposition applies to models in which c0 is asymptotically infinite at
both boundaries and (y, z) is in the interior of R. These conditions are relaxed in the current
paper so c0 may be finite at a boundary. The proof remains valid whenever y = a > −∞ is
attainable or z = b < ∞ is an entrance point (in which cases a, b ∈ E ). Note that, when b is
an entrance boundary, g0(b) is allowed to be finite or infinite.

Motivated by (2.8), define the function F0 : R → R+ by

F0(y, z) :=
⎧⎨
⎩

c1(y, z) + Bg0(y, z)

Bζ(y, z)
, (y, z) ∈ R,

∞, (y, z) ∈ R with y = z.

(2.9)

Observe that F0 is well defined and continuous on R. The function F0 is the same as F in
Helmes et al. (2017), though its definition here is explicit on the boundary y = z representing
orders of size 0.

The goal is to optimize F0. Since c1 > 0, F0(y, z) > 0 for every (y, z) ∈ R and, thus,
inf(y,z)∈R F0(y, z) =: F ∗

0 ≥ 0. The models in this paper allow F ∗
0 = 0, in which case it

immediately follows that there is no minimizing pair (y∗
0 , z∗

0) of F0. A new proposition gives
some sufficient conditions under which this occurs.

Proposition 2.1. Assume that Conditions 2.1 and 2.2 hold. Also, assume that any of the
following conditions hold.

(a) The point a > −∞ is a natural boundary and either (i) or (ii) holds:

(i) for some z ∈ E , lim supy→a (c1(y, z) − g0(y))/ζ(y) = 0;

(ii) c0(a) = 0 and

lim inf
(y,z)→(a,a)

c1(y, z)

ζ(z) − ζ(y)
= 0. (2.10)

(b) The point b < ∞ is a natural boundary and either (i) or (ii) holds:

(i) for some y ∈ E , lim infz→b (c1(y, z) + g0(z))/ζ(z) = 0;

(ii) c0(b) = 0 and lim inf(y,z)→(b,b) c1(y, z)/(ζ(z) − ζ(y)) = 0.

Then F ∗
0 = 0 and there does not exist any pair (y∗

0 , z∗
0) ∈ R which minimizes F0.
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Proof. The arguments in cases (a) and (b) are essentially the same, so we establish the result
when (a) holds. Since a is a natural boundary, ζ(y) → −∞ as y → a. Thus, under the
hypothesis in (a)(i), for some z ∈ E ,

0 = − lim sup
y→a

c1(y, z) − g0(y)

ζ(y)
= lim inf

y→a

c1(y, z) + g0(z) − g0(y)

ζ(z) − ζ(y)
= lim inf

y→a
F0(y, z).

Since F0(y, z) > 0 for all (y, z) ∈ R, the result follows. If (a)(ii) holds then combining (2.10)
with (2.4) of Lemma 2.1 establishes that F ∗

0 = 0 and, again, the result holds. �

As in Helmes et al. (2017), the main results depend on the existence of an optimizing pair
(y∗

0 , z∗
0) ∈ R of F0. Central to the proof of this existence in Proposition 3.5 of Helmes et

al. (2017) is the assumption that c0(a) = c0(b) = ∞. The relaxed assumptions on c0 in
Condition 2.2 allow us to identify a weaker set of conditions for the existence of an optimizing
pair. (In Section 6 we present models which satisfy these conditions but which fail to satisfy
the more restrictive conditions in Helmes et al. (2017).)

Condition 2.3. The following conditions hold.

(a) The boundary a is regular; or exit; or a is a natural boundary for which either (i) or (ii)
holds:

(i) c0(a) = ∞;

(ii) c0(a) < ∞, the function F0(·, z) is strictly decreasing in a neighborhood of a for
each z ∈ E , and there exists some (ŷ, ẑ) ∈ R such that F0(ŷ, ẑ) < c0(a).

(b) The boundary b is entrance; or b is natural for which either (i) or (ii) holds:

(i) c0(b) = ∞;

(ii) c0(b) < ∞, F0(y, ·) is strictly increasing in a neighborhood of b for every y ∈ E ,
and there exists some (ỹ, z̃) ∈ R such that F0(ỹ, z̃) < c0(b).

Observe that the condition F0(ŷ, ẑ) < c0(a) implies that c0(a) > F ∗
0 and, similarly, the

condition F0(ỹ, z̃) < c0(b) implies that c0(b) > F ∗
0 .

A sufficient condition for the monotonicity of F0(·, z) in Condition 2.3(a)(ii) is that, for each
z ∈ E \ {a}, there exists some yz > a such that c1(·, z) is differentiable in the interval (a, yz)

and
−∂c1(y, z)/∂y + g′

0(y)

ζ ′(y)
> F0(y, z). (2.11)

A similar sufficient condition for the monotonicity of F0 in Condition 2.3(b)(ii) can be formu-
lated.

Inequality (2.11) has an economic interpretation. For simplicity, assume that (a, b) ⊆
(0, ∞). The function F0 on R represents the long-term average cost (2.8) for each (y, z)

ordering policy as the ratio of the expected cost c1(y, z) + g0(z) − g0(y) over a cycle to the
expected cycle length ζ(z) − ζ(y) for the (y, z) ordering policy.

Observe that ζ is a strictly increasing function, so the denominator of (2.11) is positive.
Thus, using the definition of F0 in (2.9), inequality (2.11) can equivalently be written as

∂[c1(y, z) + g0(z) − g0(y)]/∂y
c1(y, z) + g0(z) − g0(y)

<
∂[ζ(z) − ζ(y)]/∂y

ζ(z) − ζ(y)
,
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and multiplying by z on both sides preserves the inequality. Thus, this sufficient condition says
that, for each y ∈ E , there exists some (y-dependent) neighborhood of a on which the expected
cost over a cycle is less elastic than the expected cycle length (with respect to variations of z).
The similar analysis for the boundary b using Condition 2.3(b) results in the reverse inequality
and more elasticity.

The key result of this section is the existence of a minimizing pair (y∗
0 , z∗

0). This improves
the result in Proposition 3.5 of Helmes et al. (2017); these relaxed conditions differ significantly
enough that it is necessary to provide a careful proof. The proof is given in Appendix A.

Theorem 2.1. Assume that Conditions 2.1, 2.2, and 2.3 hold. Then there exists a pair (y∗
0 , z∗

0) ∈
R such that

F0(y
∗
0 , z∗

0) = F ∗
0 = inf{F0(y, z) : (y, z) ∈ R}.

An immediate corollary is that, when the optimization is restricted to the class of (y, z)

ordering policies, the minimal cost is achieved by the (y∗
0 , z∗

0) ordering policy and has an
optimal value of F ∗

0 .

Corollary 2.1. Assume that Conditions 2.1, 2.2, and 2.3 hold, and let (y∗
0 , z∗

0) denote a
minimizing pair for the function F . Then the ordering policy (τ ∗, Y ∗) defined using (y∗

0 , z∗
0) in

(2.6) is optimal in the class of all (s, S) ordering policies with corresponding optimal value of
F ∗

0 = F0(y
∗
0 , z∗

0) = J0(τ
∗, Y ∗).

3. Expected occupation and ordering measures

To establish general optimality of the (y∗
0 , z∗

0) policy, we apply weak convergence arguments
with average expected occupation and average expected ordering measures, which we now
define.

For (τ, Y ) ∈ A, let X denote the resulting inventory level process satisfying (1.2). For each
t > 0, define the average expected occupation measure μ0,t on E and the average expected
ordering measure μ1,t on R by

μ0,t (�0) = 1

t
E

[∫ t

0
1�0(X(s)) ds

]
, �0 ∈ B(E),

μ1,t (�1) = 1

t
E

[ ∞∑
k=1

1{τk≤t} 1�1(X(τk−), X(τk))

]
, �1 ∈ B(R).

(3.1)

If a is a reflecting boundary, define the average expected local time measure μ2,t for each t > 0
to place a point mass on {a} given by

μ2,t ({a}) = 1

t
E[La(t)]

in which La denotes the local time of X at a.

Remark 3.1. For each t > 0, the average expected occupation measure μ0,t is a probability
measure on E . In addition, for each (τ, Y ) ∈ A with J0(τ, Y ) < ∞, μ1,t has finite mass
for each t and lim supt→∞ μ1,t (R) ≤ J0(τ, Y )/k1. Finally, observe that, when a is a sticky
boundary, μ0,t places a point mass at a for those policies (τ, Y ) that allow the process X to
stick at a with positive probability.
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For general policies (τ, Y ), we are interested in the relative compactness of the collection of
μ0,t measures and the associated convergence (or not) of the functionals with integrand c0. The
first proposition below shows that, for any sequence {ti} going to ∞, {μ0,ti } is tight for policies
(τ, Y ) having finite costs. To understand the second proposition, consider the (y, z) ordering
policy defined by (2.6) for (y, z) ∈ R. The L1 convergence in (2.7) implies the remarkable
result that, for (y, z) policies,

lim
t→∞

∫
E

c0(x)μ0,t (dx) =
∫

E
c0(x)μ0(dx), (3.2)

even when c0 is unbounded, in which μ0 is the unique stationary measure on E . Proposition 3.2
demonstrates that (3.2) may not hold for general policies, but rather an inequality relation holds.

Proposition 3.1. Assume that Conditions 2.1 and 2.2 hold. For (τ, Y ) ∈ A, let X denote
the resulting inventory process satisfying (1.2). Let {ti : i ∈ N} be a sequence such that
limi→∞ ti = ∞ and, for each i, define μ0,ti by (3.1). If {μ0,ti : i ∈ N} is not tight then
J0(τ, Y ) = ∞.

Proof. If a and b are both finite, then each μ0,t has its support in E = [a, b] regardless
of the types of boundary point. The collection {μ0,t : t ≥ 1} is therefore tight. Thus, for this
collection not to be tight, either a = −∞ or b = ∞.

Suppose that {μ0,ti } is not tight. By Condition 2.2(a), c0(x) → ∞ as x → a or as x → b.
The lack of tightness of {μ0,ti } means that there exists some ε > 0 such that, for all compact
sets K and T > 0, there exists ti ≥ T for which μ0,ti (K

c) ≥ ε. Arbitrarily select M < ∞ and
set K = {x ∈ E : c0(x) ≤ M/ε}, noting that K is compact. Then there exists a subsequence
{tij : ij ∈ N} for which μ0,tij

(Kc) ≥ ε. Therefore, for each ij ,

t−1
ij

E

[∫ tij

0
c0(X(s)) ds

]
=

∫
E

c0(x)μ0,tij
(dx) ≥

∫
Kc

c0(x)μ0,tij
(dx) ≥ M

ε
μ0,tij

(Kc) ≥ M.

Thus, lim supt→∞ t−1
E[∫ t

0 c0(X(s)) ds] ≥ M . It therefore follows that J0(τ, Y ) = ∞ since
M is arbitrary. �

The above proof shows that the tightness of {μ0,t } follows from the finiteness of the long-
term average holding costs, limt→∞(1/t)E[∫ t

0 c0(X(s)) ds], regardless of the limiting behavior
of the average expected ordering costs.

As a consequence of Proposition 3.1, when either a = −∞ or b = ∞, we need to only
consider those ordering policies (τ, Y ) for which the collection {μ0,t : t ≥ 0} is tight. We
denote a generic weak limit as t → ∞ by μ0. Observe that the support of μ0 might be E . The
continuity assumptions on c0 at the boundaries in Condition 2.2 are required due to the limiting
measures possibly placing mass there.

Proposition 3.2. Assume that Conditions 2.1 and 2.2 hold. Let (τ, Y ) ∈ A with J0(τ, Y ) < ∞,
let X satisfy (1.2), and define μ0,t by (3.1) for each t > 0. Then, for each μ0 attained as a
weak limit of some sequence {μ0,tj } as tj → ∞,∫

E
c0(x)μ0(dx) ≤ J0(τ, Y ) < ∞.

Proof. Let μ0, {tj }, and {μ0,tj } be as in the statement of the proposition. Since {μ0,tj }, μ0 ∈
P (E), the Skorokhod representation theorem implies there exist random variables {
j } and

, defined on a common probability space (�̃, F̃ , P̃), such that 
 has distribution μ0, 
j has
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distribution μ0,tj for each j , and 
j → 
 almost surely as j → ∞. Since c0 is bounded
below, we may apply Fatou’s lemma to obtain∫

E
c0(x)μ0(dx) = Ẽ[c0(
)]

≤ lim inf
j→∞ Ẽ[c0(
j )]

= lim inf
j→∞

∫
E

c0(x)μ0,tj (dx)

≤ J0(τ, Y )

< ∞. �
We note that c0 being infinite at a boundary implies that μ0 cannot assign any positive mass

at this point. In particular, for models in which a is a sticky boundary and c0(a) = ∞, any
policy which allows X to stick at a on a set of positive probability incurs an infinite average
expected cost for each t and, thus, has J0(τ, Y ) = ∞. The condition J0(τ, Y ) < ∞ therefore
eliminates such (τ, Y ) from consideration.

This inf-compactness of c0 is central to the finiteness of J0(τ, Y ), implying that {μ0,t } is tight
as t → ∞. A similar result follows in the case that c1 is inf-compact as well. However, inf-
compactness fails for many natural ordering cost functions; in particular, the most commonly
studied function c1(y, z) = k1 + k2(z − y), (y, z) ∈ R, comprising fixed plus proportional
costs is not inf-compact on an unbounded region of R

2. Appendix C contains an example which
shows that even the requirement of a finite long-term average cost is insufficient to guarantee
tightness of {μ1,t } as t → ∞. Fortunately, our method of solution does not rely on tightness
of the average expected ordering measures.

4. The auxiliary function G0

Our extension of the optimality of the (y∗
0 , z∗

0) policy to the class A requires the existence of
an optimizing pair (y∗

0 , z∗
0) ∈ R with F0(y

∗
0 , z∗

0) = F ∗
0 , which we now impose on the models.

Note that Condition 2.3 is a sufficient condition for such a pair to exist. Recall that Condition 2.2
requires continuity of c0 at the boundary, even for finite, natural boundaries; c0 may take value
∞ at the boundaries.

Define the auxiliary function G0 on E by

G0 = g0 − F ∗
0 ζ, (4.1)

and observe that G0 ∈ C(E)∩C2(I). Moreover, G0 extends uniquely to E due to the existence
of (ŷ, ẑ) and (ỹ, z̃) in Condition 2.3 or c0 being infinite at the boundaries. This observation
follows immediately when a is attainable and when b is an entrance boundary since ζ is finite
in these cases. When a or b are natural boundaries, Lemma 2.1 combined with Condition 2.3
shows that

lim
x→a

G0(x) = lim
x→a

(g0(x) − F ∗
0 ζ(x)) = lim

x→a

(
g0(x)

ζ(x)
− F ∗

0

)
ζ(x) = −∞, (4.2)

and, similarly, limx→b G0(x) = ∞.

Remark 4.1. The function G0 differs from the function G used in Helmes et al. (2017); G0 is
defined globally using (4.1), whereas G agrees with G0 on the set [y∗

0 , b], but is C1-smoothly
pasted with c1(·, z∗

0) on [a, y∗
0 ] (using the notation in this paper). The proof of optimality is

significantly simplified since G0 has a single expression.
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The function G0 has the following interpretation. Let y, z ∈ E . Then

c1(y, z) + BG0(y, z) = c1(y, z) + Bg0(y, z) − F ∗
0 Bζ(y, z)

=
(

c1(y, z) + Bg0(y, z)

Bζ(y, z)
− F ∗

0

)
Bζ(y, z)

= (F0(y, z) − F ∗
0 )Bζ(y, z).

Note that the relation F ∗
0 ≤ F0(y, z) holds for all (y, z) ∈ R. Thus, the function c1(y, z) +

BG0(y, z) gives the increase in cost over a cycle incurred by using the (y, z) ordering policy
rather than an optimal ordering policy.

The function G of Helmes et al. (2017) has the same interpretation for y ≥ y∗
0 . But, for

y < y∗
0 , it arises from a policy which places an immediate order from y to z∗

0 and then follows
the (y∗

0 , z∗
0) policy.

The function G0 satisfies an important system of relations.

Proposition 4.1. Assume that Conditions 2.1, 2.2, and 2.3 hold, and let G0 be as in (4.1). Then
G0 is a solution of the system

Af (x) + c0(x) − F ∗
0 = 0, x ∈ I,

Bf (y, z) + c1(y, z) ≥ 0, (y, z) ∈ R,

f (x0) = 0,

Bf (y∗
0 , z∗

0) + c1(y
∗
0 , z∗

0) = 0.

Moreover, the first relation extends by continuity to E .

The proof is straightforward, so is left to the reader.
As a small digression to illuminate the definitions of g0 and ζ , the next proposition establishes

an important transversality condition involving G0 with the ensuing remark providing further
clarification.

Proposition 4.2. Assume that Conditions 2.1, 2.2, and 2.3 hold. Let x0 ∈ I be fixed. For
a ≤ y < z < b, let (τ, Y ) be the (y, z) ordering policy defined by (2.6) and let X satisfy (1.2).
Define the process M̃ by

M̃(t) :=
∫ t

0
σ(X(s))G′

0(X(s)) dW(s), t ≥ 0. (4.3)

Then there exists a localizing sequence {βn : n ∈ N} of stopping times such that, for each
n, M̃(· ∧ βn) is a martingale and the following transversality condition holds:

lim
t→∞ lim

n→∞
1

t
E[G0(X(t ∧ βn))] = 0. (4.4)

In addition, defining μ0 to be the stationary measure and μ1 to place point mass κ = 1/Bζ(y, z)

(the long-run frequency of orders) on {(y, z)}, we have∫
E

AG0(x)μ0(dx) +
∫

R
BG0(y, z)μ1(dy × dz) = 0. (4.5)
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Proof. Let (y, z), (τ, Y ), and X be as in the statement of the proposition. Let {bn : n ∈
N} ⊂ I be a strictly increasing sequence such that x0 ∨ z ≤ b1 and limn→∞ bn = b, and define
the sequence of localizing times {βn : n ∈ N} by βn = inf{t ≥ 0 : X(t) = bn}. Using Itô’s
formula, it follows that, for each n,

G0(X(t ∧ βn)) = G0(x0) +
∫ t∧βn

0
AG0(X(s)) ds +

∫ t∧βn

0
σ(X(s))G′

0(X(s)) dW(s)

+
∞∑

k=1

1{τk≤t∧βn} BG0(X(τk−), X(τk));

note that no local time term is included in this identity when a is a reflecting boundary even
when y = a since an order is placed the first time X hits a, so no local time is accrued. Taking
expectations and using the fact that AG0 = F ∗

0 − c0, we then obtain

E[G0(X(t ∧ βn))] = G0(x0) + F ∗
0 E[t ∧ βn] − E

[∫ t∧βn

0
c0(X(s)) ds

]

+ E

[ ∞∑
k=1

1{τk≤t∧βn} BG0(X(τk−), X(τk))

]
. (4.6)

Since b is inaccessible from the interior and z < b, it follows that βn → ∞ (a.s.) as n → ∞.
Applying the monotone and dominated convergence theorems, we have

lim
n→∞ E[G0(X(t ∧ βn))]

= G0(x0) + F ∗
0 t − E

[∫ t

0
c0(X(s)) ds +

∞∑
k=1

1{τk≤t} BG0(X(τk−), X(τk))

]

= G0(x0) + F ∗
0 t − E

[∫ t

0
c0(X(s)) ds

]
+ BG0(y, z)E

[ ∞∑
k=1

1{τk≤t}
]

+ (BG0(x0, z) − BG0(y, z))E[1{τ1=0}].
Divide by t and let t → ∞. Note that limt→∞(1/t)E[∑∞

k=1 1{τk≤t}] = 1/Bζ(y, z) and the L1

convergence in (2.7) gives limt→∞(1/t)E[∫ t

0 c0(X(s)) ds] = Bg0(y, z)/Bζ(y, z). Therefore,

lim
t→∞ lim

n→∞
1

t
E[G0(X(t ∧ βn))] = F ∗

0 − Bg0(y, z)

Bζ(y, z)
+ Bg0(y, z) − F ∗

0 Bζ(y, z)

Bζ(y, z)
= 0.

Using the definitions of μ0,t and μ1,t in (3.1), this argument establishes that

lim
t→∞

[∫
E

AG0(x)μ0,t (dx) +
∫

R
BG0(y, z)μ1,t (dy × dz)

]
= 0. (4.7)

Since AG0 = F ∗
0 − c0, by (3.2) and the definition of weak convergence,

lim
t→∞

∫
E

AG0(x)μ0,t (dx) =
∫

E
AG0(x)μ0(dx). (4.8)

Turning to the convergence involving μ1,t , the (y, z) ordering policy places one order at time
0 when x0 < y, so μ1,t has mass on (x0, z), but thereafter orders are placed only when
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X(t−) = y, so all further mass of μ1,t is on {(y, z)}. When x0 ≥ y, μ1,t only has mass on
{(y, z)}. This implies that μ1,t ⇒ μ1 as t → ∞, which in turn implies that

lim
t→∞

∫
R

BG0(y, z)μ1,t (dy × dz) =
∫

R
BG0(y, z)μ1(dy × dz). (4.9)

Combining (4.7), (4.8), and (4.9) establishes (4.5). �
Remark 4.2. By definition, the functions g0 and ζ are solutions of Af = −c0 and Af = −1,
respectively, for which g0(x0) = 0 = ζ(x0). The choice of the function G0 = g0 − F ∗

0 ζ is the
only C2 solution of the inhomogeneous equation Af = F ∗

0 − c0 with f (x0) = 0 for which the
transversality condition (4.4) holds. To see this, recall that the scale function S and the constant
function are two linearly independent solutions to the homogeneous equation Af = 0. Define
the function Ŝ(x) = S(x)−S(x0) for x ∈ E , so that Ŝ is a solution of Af = 0 with Ŝ(x0) = 0.
Following the previous proof to (4.6), using Ŝ yields

E[Ŝ(X(t ∧ βn))] = E

[ ∞∑
k=1

1{τk≤t∧βn} BŜ(X(τk−), X(τk))

]

= BŜ(y, z)E

[ ∞∑
k=1

1{τk≤t∧βn}
]

+ [BŜ(x0, z) − BŜ(y, z)]E[1{τk=0}].

Thus, letting n → ∞, dividing by t, and letting t → ∞ yields

lim
t→∞ lim

n→∞
1

t
E[Ŝ(X(t ∧ βn))] = BŜ(y, z)

Bζ(y, z)
= S(z) − S(y)

ζ(z) − ζ(y)
> 0. (4.10)

Observe that, for K ∈ R, Ĝ0 = G0 + KŜ is the general solution to the inhomogeneous equation
Af = F ∗

0 − c0 with f (x0) = 0. As a result of Proposition 4.2 and (4.10), we have

lim
t→∞ lim

n→∞
1

t
E[Ĝ0(X(t ∧ βn))] = K(S(z) − S(y))

ζ(z) − ζ(y)
,

and the transversality condition (4.4) fails for any Ĝ0 with nonzero K .

5. Policy class A0 and optimality

For models having a reflecting boundary point a, we are able to prove optimality of the
(y∗

0 , z∗
0) ordering policy within a slightly restricted class of admissible policies. (Note that

there is no restriction on the class A when a is not a reflecting boundary.)

Definition 5.1. For models in which a is a reflecting boundary point, the class A0 ⊂ A consists
of those policies (τ, Y ) for which the transversality condition

lim
t→∞ t−1

E[La(t)] = 0 (5.1)

holds; recall that La denotes the local time process of X at a.

Referring to Definition 3.11 of Helmes et al. (2017), restriction of the admissible class is also
required in our previous paper. In particular, the class A1 in that paper requires (5.1) along with
the existence of a localizing sequence {βn} such that the stopped processes (4.3) are martingales
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and, using limits inferior, the additional transversality condition (4.4) holds; the conditions use
the function G of that paper. This paper requires only the transversality condition (5.1) on the
local time process.

For (y, z) ordering policies, Proposition 4.2 shows that the corresponding limiting measures
(μ0, μ1) of the pairs {(μ0,t , μ1,t ) : t > 0} satisfy (4.5). However, for a general ordering policy
(τ, Y ) ∈ A0, the measures {μ1,t } may not have weak limits as t → ∞. We establish the
limiting adjoint relation (5.2) below for a class of test functions D , defined below, which is
used to show that J0(τ, Y ) ≥ F ∗

0 for any (τ, Y ) ∈ A0.
Recall that Proposition 3.1 demonstrates that the measures {μ0,t } are tight (as t → ∞)

whenever J0(τ, Y ) < ∞. It follows that any weak limit μ0 will have support in E . However,
when c0(a) = ∞ or c0(b) = ∞, J0(τ, Y ) < ∞ implies that each limiting measure μ0 places
no mass on the corresponding boundary.

We begin by identifying a particular class of test functions that plays a key role in the analysis.

Definition 5.2. A function f is in D provided it satisfies

(a) f ∈ C(E) ∩ C2(I) and there exists Lf < ∞ such that

(i) |f | ≤ Lf ;

(ii) (σf ′)2 ≤ Lf (1 + c0);

(iii) |Af | ≤ Lf ;

(b) (i) for all models, at each boundary where c0 is finite, Af extends continuously to the
boundary with a finite value;

(ii) when a is a reflecting boundary, |f ′(a)| < ∞; and

(iii) when a is a sticky boundary and c0(a) < ∞, σf ′ extends continuously at a to a
finite value.

As pointed out at the end of Section 3, any policy (τ, Y ) which allows X to stick at a with
positive probability when c0(a) = ∞ has J0(τ, Y ) = ∞, so is clearly not optimal. Thus, the
stickiness of a is of concern only when c0(a) < ∞, in which case Definition 5.2(b)(i) and
(b)(iii) are required for our analysis.

Proposition 5.1. Assume that Conditions 2.1 and 2.2 hold. Let (τ, Y ) ∈ A0 with J0(τ, Y ) <

∞, and let X satisfy (1.2). For t > 0, define (μ0,t , μ1,t ) by (3.1) and let μ0 be such that
μ0,tj ⇒ μ0 as j → ∞ for some sequence {tj : j ∈ N} with limj→∞ tj = ∞. Then the
limiting adjoint relation∫

E
Af (x)μ0(dx) + lim

j→∞

∫
R

Bf (y, z)μ1,tj (dy × dz) = 0 for all f ∈ D (5.2)

holds.

Remark 5.1. For policies (τ, Y ) with J0(τ, Y ) < ∞, Proposition 3.1 only establishes tightness
of the average expected occupation measures {μ0,t }, but not tightness of the average expected
ordering measures {μ1,t }. Ordering policies for which the collection {μ1,t } is tight as t → ∞
will have weak limits. For any pair (μ0, μ1) with (μ0,tj , μ1,tj ) ⇒ (μ0, μ1) as j → ∞, (5.2)
is more simply expressed as∫

E
Af (x)μ0(dx) +

∫
R

Bf (y, z)μ1(dy × dz) = 0 for all f ∈ D .
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Proof of Proposition 5.1. Let (τ, Y ), X, {tj }, {(μ0,tj , μ1,tj )}, and μ0 be as in the statement
of the proposition. The following analysis considers the case of a being a reflecting boundary;
when a is not reflecting, the local time term is omitted. For each f ∈ D and j ∈ N, Itô’s
formula yields

f (X(tj )) = f (x0) +
∫ tj

0
Af (X(s)) ds +

∞∑
k=1

1{τk≤tj } Bf (X(τk−), X(τk))

+
∫ tj

0
σ(X(s))f ′(X(s)) dW(s) + f ′(a)La(tj ).

Observe that, for each tj ,

E

[∫ tj

0
(σ (X(s))f ′(X(s)))2 ds

]
≤ 2E

[∫ tj

0
Lf [1 + c0(X(s))] ds

]
< ∞,

so σf ′ ∈ L2(�×[0, tj ]) and the stochastic integral has mean 0. Thus, taking expectations and
dividing by tj yields

1

tj
Ex0 [f (X(tj ))] = f (x0)

tj
+

∫
E

Af (x)μ0,tj (dx) +
∫

R
Bf (y, z)μ1,tj (dy × dz)

+ f ′(a)
E[La(tj )]

tj
.

Observe carefully that E differs from E only when at least one of the boundaries is finite and
natural. Moreover, for each tj , μ0,tj places no mass on these boundaries, so the integration
may also be viewed as being over E and this is required when we pass to the limit as tj → ∞
since the limiting measure μ0 may put positive mass on such a boundary point.

Since, by the definition of D , the function f ∈ C(E) ∩ C2(I) is bounded, implying that
Bf is also bounded and continuous. In addition, Af is bounded and continuous, and extends
continuously to a finite value at a when a is a finite, natural boundary, and f ′(a) is finite. Upon
letting j → ∞ we obtain∫

E
Af (x)μ0(dx) + lim

j→∞

∫
R

Bf (y, z)μ1,tj (dy × dz) = 0;

the existence of limj→∞
∫

Bf dμ1,tj follows from the limits existing for the other terms in
the previous equation. Note, in particular, that μ0 places no mass on boundaries where c0 is
infinite, so the weak convergence argument does not require Af to extend continuously at such
boundaries (cf. Definition 5.2(b)(i)). When a is a sticky boundary, however, the extensions in
Definition 5.2(b)(i) and (b)(iii) are required to apply Itô’s formula. �
Corollary 5.1. Assume that Conditions 2.1, 2.2, and 2.3 hold. Suppose that G0 ∈ D . Then,
for every (τ, Y ) ∈ A0, J0(τ, Y ) ≥ F ∗

0 and, hence, the (y∗
0 , z∗

0) ordering policy is optimal in
the class A0.

Proof. Let (τ, Y ) ∈ A0, X satisfy (1.2), and let {tj : j ∈ N} be a sequence such that

J0(τ, Y ) = lim
j→∞

1

tj
E

[∫ tj

0
c0(X(s)) ds +

∞∑
k=1

1{τk≤tj } c1(X(τk−), X(τk))

]
.
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By considering a subsequence, if necessary, let μ0,tj ⇒ μ0 for some μ0 ∈ P (E). The
combination of Propositions 4.1 and 5.1 immediately implies that

J0(τ, Y ) = lim
j→∞

(∫
E

c0(x)μ0,tj (dx) +
∫

R
c1(y, z)μ1,tj (dy × dz)

)

= lim
j→∞

(∫
E
(AG0(x) + c0(x))μ0,tj (dx)

+
∫

R
(BG0(y, z) + c1(y, z))μ1,tj (dy × dz)

)

≥
∫

E
F ∗

0 μ0(dx)

= F ∗
0 ,

and, thus, the (y∗
0 , z∗

0) ordering policy is optimal in the class A0. �
In general, G0 /∈ D, so it is necessary to approximate G0 by functions in D and pass to a

limit. Interestingly, the following analysis works with the approximating functions Gn defined
in Lemma 5.1 without establishing an adjoint relation involving the function G0.

Recall from (4.2) that, when a is a natural boundary, G0(a) := limx→a G0(x) = −∞, and,
similarly, G0(b) := limx→b G0(x) = ∞ when b is natural.

To proceed, we impose another set of conditions.

Condition 5.1. Let G0 be as defined in (4.1).

(a) There exists some L < ∞ and some y1 > a such that

(i) for models having c0(a) = ∞,

c0(x)

(1 + |G0(x)|)2 + (σ (x)G′
0(x))2

(1 + |G0(x)|)3 ≤ L, a < x < y1;

(ii) for models in which c0(a) < ∞, there is some ε ∈ (0, 1) such that

(σ (x)G′
0(x))2

(1 + |G0(x)|)2+ε
≤ L, a ≤ x < y1.

(b) There exists some L < ∞ and some z1 < b such that

(i) for models having c0(b) = ∞,

c0(x)

(1 + |G0(x)|)2 + (σ (x)G′
0(x))2

(1 + |G0(x)|)(1 + c0(x))
≤ L, z1 < x < b;

(ii) for models in which c0(b) < ∞, there is some ε ∈ (0, 1) such that

(σ (x)G′
0(x))2

(1 + |G0(x)|)2+ε
+ (σ (x)G′

0(x))2

(1 + |G0(x)|)(1 + c0(x))
≤ L, z1 < x ≤ b.

(c) (i) When G0(a) > −∞, or when a is a sticky boundary with c0(a) < ∞, the limit
limx→a σ (x)G′

0(x) exists and is finite;

(ii) when a is a reflecting boundary, G′
0(a) exists and is finite; and

(iii) when G0(b) < ∞, limx→b σ (x)G′
0(x) exists and is finite.
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First note that the bound in Condition 5.1(b)(i) at the boundary b is more restrictive than the
similar bound in Condition 5.1(a)(i) at a since

(σ (x)G′
0(x))2

(1 + |G0(x)|)3 = (σ (x)G′
0(x))2

(1 + |G0(x)|)(1 + c0(x))

1 + c0(x)

(1 + |G0(x)|)2 ≤ L(1 + L). (5.3)

The need for tighter restrictions at the boundary b than at a is not unexpected since there is no
way to control the process from diffusing upwards, whereas ordering can prevent the process
from diffusing towards a.

The reason for having two different conditions in Condition 5.1(a) and (b) based on whether
c0 at the boundary is finite or infinite is that any limiting pair of measures (μ0, μ1) arising from
an admissible policy (τ, Y ) having finite cost J0(τ, Y ) must place no μ0-mass at a boundary
where c0 is infinite. A weak limit μ0 may have positive mass at a boundary when c0 is finite.
Also, note the subtle assumption in Condition 5.1(a)(ii) and (b)(ii) that the bounds extend to
the boundary, whereas there is no assumption needed at the boundary in Condition 5.1(a)(i)
and (b)(i).

For models that satisfy Conditions 2.1, 2.2, and 2.3, Condition 5.1 places additional restric-
tions. In the online supplement (see Helmes et al. (2018)) we study a Feller branching diffusion
inventory model; it illustrates the interplay between the cost rate function and the dynamics of
the inventory process necessary for this condition to be satisfied.

Now define the elementary function h on R which is central to the approximation of G0:

h(x) =
{

− 1
8x4 + 3

4x2 + 3
8 for |x| ≤ 1,

|x| for |x| ≥ 1.

Note that h ∈ C2(R), h > 0 and h(x) ≥ |x|. For later reference, elementary calculations show
that h has the following properties on R:

• h′ < 0 on (−∞, 0) and h′ > 0 on (0, ∞);

• h′′(x) ≥ 0 for all x ∈ R and h′′(x) = 0 for |x| ≥ 1;

• 0 ≤ h(x) − xh′(x) ≤ 3
8 ; and

• h(x) + xh′(x) ≥ 0.

In the next two lemmas, we define a sequence of functions {Gn : n ∈ N} ⊂ D which
approximate G0, and examine the convergence of AGn and BGn. The proofs are given in
Appendix B.

Lemma 5.1. Assume that Conditions 2.1, 2.2, 2.3, and 5.1 hold with G0 defined by (4.1). For
each n ∈ N, define the function Gn by

Gn = G0

1 + h(G0)/n
. (5.4)

Then Gn ∈ D .

Lemma 5.2. Assume that Conditions 2.1, 2.2, 2.3, and 5.1 hold. Let Gn be as defined in (5.4).
Then

lim
n→∞ AGn(x) = AG0(x) for all x ∈ I

and
lim

n→∞ BGn(y, z) = BG0(y, z) for all (y, z) ∈ R.

Moreover, at each boundary where c0 is finite, limn→∞ AGn ≥ AG0.
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The following proposition gives the first important result involving AGn and c0.

Proposition 5.2. Assume that Conditions 2.1, 2.2, 2.3, and 5.1 hold. Let (τ, Y ) ∈ A0 with
J0(τ, Y ) < ∞, let X satisfy (1.2), μ0,t be defined by (3.1), and let μ0 be any weak limit of
{μ0,t } as t → ∞. Define Gn by (5.4). Then

lim inf
n→∞

∫
E
(AGn(x) + c0(x))μ0(dx) ≥

∫
E
(AG0(x) + c0(x))μ0(dx) ≥ F ∗

0 .

Proof. Let (τ, Y ), {μ0,t }, and μ0 be as in the statement of the proposition. Using (B.2) in
Appendix B, write AGn = AG

(1)
n + e

(2)
n + e

(3)
n . Thus, for x ∈ I,

AG(1)
n (x) + c0(x) = (−c0(x) + F ∗

0 )
[1 + h(G0(x))/n − G0(x)h′(G0(x))/n]

(1 + h(G0(x))/n)2 + c0(x)

= c0(x)
(h(G0(x)))2/n2 + h(G0(x))/n + G0(x)h′(G0(x))/n

(1 + h(G0(x))/n)2

+ F ∗
0

[1 + h(G0(x))/n − G0(x)h′(G0(x))/n]
(1 + h(G0(x))/n)2 .

As noted earlier, h satisfies h(x) + xh′(x) > 0 and 0 ≤ h(x) − xh′(x) ≤ 3
8 for all x ∈ R.

Thus, both terms in the rewritten expression for AG
(1)
n (x) + c0(x) are positive on I and are

nonnegative on E . Therefore, Fatou’s lemma implies that

lim inf
n→∞

∫
E
(AG(1)

n (x) + c0(x))μ0(dx)

≥
∫

E
lim inf
n→∞ (AG(1)

n (x) + c0(x))μ0(dx)

=
∫

E
lim inf
n→∞ (AG(1)

n (x) + c0(x))μ0(dx) +
∫

E\E
lim inf
n→∞ (AG(1)

n (x) + c0(x))μ0(dx).

When c0(a) or c0(b) is infinite, the limiting measure μ0 does not place any mass at a or b. Recall
that AG0 = F ∗

0 − c0 and |G0(x)| < ∞ for all x ∈ I. For all x ∈ E with |G0(x)| < ∞, it
follows that limn→∞ AG

(1)
n (x) + c0(x) = F ∗

0 . Turning to the boundary a, when |G0(a)| = ∞
and c0(a) < ∞, then AG

(1)
n (a) = 0 and, hence, Condition 2.3(a)(ii) implies that AG

(1)
n (a) +

c0(a) > F ∗
0 . A similar observation applies to the right boundary b when |G0(b)| = ∞.

Therefore, it follows that

lim inf
n→∞

∫
E
(AG(1)

n (x) + c0(x))μ0(dx) ≥
∫

E
F ∗

0 μ0(dx) +
∫

E\E
F ∗

0 μ0(dx) = F ∗
0 . (5.5)

Now consider the term e
(2)
n . Recall that h′′(x) = 0 for all x ∈ R with |x| ≥ 1. When

|G0(a)| = ∞, then limx→a e
(2)
n (x) = 0; when |G0(a)| < ∞, it follows from Condition 5.1(c)

that limx→a e
(2)
n (x) exists and is finite. A similar analysis applies to the right boundary b. From

the definition of e
(2)
n , it therefore follows that |e(2)

n (x)| ≤ K/n ≤ K < ∞ uniformly in x and n.
Thus, the bounded convergence theorem implies that

lim inf
n→∞

∫
E

e(2)
n (x)μ0(dx) =

∫
E

lim inf
n→∞ e(2)

n (x)μ0(dx) = 0. (5.6)

It remains to analyze the term e
(3)
n (x). If |G0(a)| = ∞ then, as argued in the proof of

Lemma 5.2, we must have G0(a) = −∞. Consequently, there exists some y1 > a such that
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G0(x) < 0 for all a ≤ x < y1. Thus, on (a, y1), h′(G0(x)) < 0 and e
(3)
n (x) ≥ 0, and these

relations extend by continuity to a. Applying Fatou’s lemma, we have

lim inf
n→∞

∫
[a,y1)

e(3)
n (x)μ0(dx) ≥

∫
[a,y1)

lim inf
n→∞ e(3)

n (x)μ0(dx) ≥ 0. (5.7)

If |G0(a)| < ∞ then Condition 5.1(c) implies that limx→a σ (x)G′
0(x) exists and is finite.

This, together with the fact that h′(x)[1 + h(x)/n − xh′(x)/n] is uniformly bounded for
all x ∈ R and n ∈ N, implies that there exist a positive constant K and some y1 > a

such that |e(3)
n (x)| ≤ K/n ≤ K for all a ≤ x < y1 and n ∈ N. As a result, (5.7) still

holds (with ‘≥’ replaced by ‘=’) by virtue of the bounded convergence theorem. For all
x ∈ E , |h′(G0(x))|[1 +h(G0(x))/n−G0(x)h′(G0(x))/n] ≤ 2, so, by Condition 5.1(b), there
exists some z1 < b such that, for all z1 < x ≤ b,

|e(3)
n (x)| ≤ 2(σ (x)G′

0(x))2

n(1 + h(G0(x))/n)3

= 2(σ (x)G′
0(x))2

(n + |G0(x)|)(1 + c0(x))

1 + c0(x)

(1 + h(G0(x))/n)2

≤ 2L(1 + c0(x)).

The function (1+c0(x)) is integrable with respect to μ0 and, hence, the dominated convergence
theorem implies that

lim
n→∞

∫
(z1,b]

e(3)
n (x)μ0(dx) =

∫
(z1,b]

lim
n→∞ e(3)

n (x)μ0(dx).

It is immediate from the definition of e
(3)
n that limn→∞ e

(3)
n (x) = 0 for x ∈ (z1, b); this limit

also holds when c0(b) < ∞ and G0(b) < ∞. When c0(b) < ∞ and G0(b) = ∞, then
continuity of e

(3)
n along with Condition 5.1(b) implies that e

(3)
n (b) = limx→b e

(3)
n (x) = 0.

When c0(b) = ∞, then μ0 places no mass at b. Thus, the dominated convergence theorem
again implies that

lim
n→∞

∫
(z1,b]

e(3)
n (x)μ0(dx) =

∫
(z1,b]

lim
n→∞ e(3)

n (x)μ0(dx) = 0. (5.8)

Continuity implies that there exists some K < ∞ such that (σ (x)G′
0(x))2 < K on the interval

[y1, z1] so |e(3)
n (x)| < 2K/n ≤ 2K and limn→∞ e

(3)
n (x) = 0. Thus, the bounded convergence

theorem also implies that

lim
n→∞

∫
[y1,z1]

e(3)
n (x)μ0(dx) =

∫
[y1,z1]

lim
n→∞ e(3)

n (x)μ0(dx) = 0. (5.9)

Combining (5.7)–(5.9) yields

lim inf
n→∞

∫
E

e(3)
n (x)μ0(dx) ≥ 0. (5.10)

In light of (B.2) in Appendix B, the result now follows from (5.5), (5.6), and (5.10). �
We next establish a similar result involving BGn and c1, though the lack of tightness of

{μ1,t } means that the result cannot be expressed in terms of a limiting measure μ1.
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Proposition 5.3. Assume that Conditions 2.1, 2.2, 2.3, and 5.1 hold. Let (τ, Y ) ∈ A0 with
J0(τ, Y ) < ∞, and let X satisfy (1.2). Let {tj : j ∈ N} be a sequence such that limj→∞ tj = ∞
and

J0(τ, Y ) = lim
j→∞

1

tj
E

[∫ tj

0
c0(X(s)) ds +

∞∑
k=1

1{τk≤tj } c1(X(τk−), X(τk))

]
.

For each j , define μ1,tj by (3.1) and define Gn by (5.4). Then

lim inf
n→∞ lim inf

j→∞

∫
R

(BGn(y, z) + c1(y, z))μ1,tj (dy × dz) ≥ 0.

Proof. Let (τ, Y ), X, and {tj } be as in the statement of the proposition. Observe that, for
(y, z) ∈ R,

c1(y, z) + BGn(y, z)

= c1(y, z) + G0(z)

1 + h(G0(z))/n
− G0(y)

1 + h(G0(y))/n

= BG0(y, z) + c1(y, z)

[1 + h(G0(z))/n][1 + h(G0(y))/n] + G0(z)h(G0(y)) − G0(y)h(G0(z))

n[1 + h(G0(z))/n][1 + h(G0(y))/n]
+ c1(y, z)

(
1 − 1

[1 + h(G0(z))/n][1 + h(G0(y))/n]
)

≥ G0(z)h(G0(y)) − G0(y)h(G0(z))

n[1 + h(G0(z))/n][1 + h(G0(y))/n]
=: Rn(y, z). (5.11)

The first summand in the middle relation is positive due to Proposition 4.1 and the third summand
is easily seen to be positive. This relation also holds on the boundary y = z and Rn(y, y) = 0
for all y ∈ E . Therefore,

lim inf
n→∞ lim inf

j→∞

∫
R

(BGn+c1)(y, z)μ1,tj (dy× dz) ≥ lim inf
n→∞ lim inf

j→∞

∫
R

Rn(y, z)μ1,tj (dy× dz).

Note that on R, Rn takes both positive and negative values.
We examine the double limit of the remainder term Rn in several cases. Recall that

Condition 2.3 implies the existence of G0(a) = limx→a G0(x) in R ∪ {−∞} and, similarly,
the existence of G0(b) ∈ R ∪ {∞}.
Case (i). G0(a) > −∞ and G0(b) < ∞. In this case, |G0(z)h(G0(y)) − G0(y)h(G0(z))| is
bounded by some K < ∞ and, hence, |Rn(y, z)| ≤ K/n. Recalling Remark 3.1, {μ1,tj (R)}
is uniformly bounded and, thus,

lim inf
n→∞ lim inf

j→∞

∫
R

Rn(y, z)μ1,tj (dy × dz) ≥ lim inf
n→∞ lim inf

j→∞

∫
R

−K

n
μ1,tj (dy × dz) = 0.

Case (ii). G0(a) = −∞ and G0(b) = ∞. Since G0(a) = −∞, there exists some y1, with
y1 > a such that G0(x) < −1 for all x < y1. Recall that h(x) = |x| on (−∞, −1) and
h(x) ≥ |x| for all x. Thus, it follows that, for all (y, z) ∈ R with y ≤ y1,

Rn(y, z) = |G0(y)|(G0(z) + h(G0(z)))

n[1 + h(G0(z))/n][1 + |G0(y)|/n] ≥ 0.
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Similarly, there exists some z1 with z1 < b such that G0(x) ≥ 1 for z1 < x < b and it follows
that, for (y, z) ∈ R with z > z1,

Rn(y, z) = G0(z)(h(G0(y)) − G0(y))

n[1 + h(G0(z))/n][1 + h(G0(y))/n] ≥ 0.

Define E1 = {(y, z) ∈ R : a < y < y1} and E2 = {(y, z) ∈ R : z > z1}, so that Rn ≥ 0 on
E1 ∪ E2. Observe that E3 := R \ (E1 ∪ E2) = {(y, z) ∈ R : y1 ≤ y ≤ z ≤ z1}; Rn defined in
(5.11) is continuous on this compact set and, therefore, bounded by some K/n as in case (i).
It then follows that

lim inf
n→∞ lim inf

j→∞

∫
R

Rn(y, z)μ1,tj (dy × dz) ≥ lim inf
n→∞ lim inf

j→∞

∫
E3

Rn(y, z)μ1,tj (dy × dz) = 0.

The two remaining cases are handled similarly. �
Pulling these results together, we obtain our main theorem.

Theorem 5.1. Assume that Conditions 2.1, 2.2, 2.3, and 5.1 hold. Let (τ, Y ) ∈ A0 with
J0(τ, Y ) < ∞. Then

J0(τ, Y ) ≥ F ∗
0 = F0(y

∗
0 , z∗

0) = J0(τ
∗, Y ∗),

in which (τ ∗, Y ∗) is the ordering policy (2.6) using an optimizing pair (y∗
0 , z∗

0) ∈ R.

Proof. Let (τ, Y ) ∈ A0 satisfy J0(τ, Y ) < ∞. Let X satisfy (1.2), and let μ0,t and μ1,t be
defined by (3.1) for each t > 0. Let {tj } be a sequence with tj → ∞ and

J0(τ, Y ) = lim
j→∞

1

tj
E

[∫ tj

0
c0(X(s)) ds +

∞∑
k=1

1{τk≤tj } c1(X(τk−), X(τk))

]

= lim
j→∞

(∫
E

c0(x)μ0,tj (dx) +
∫

R
c1(y, z)μ1,tj (dy × dz)

)
. (5.12)

The tightness of {μ0,tj } implies the existence of a weak limit μ0; without loss of generality,
assume that μ0,tj ⇒ μ0 as j → ∞. Proposition 3.2 and its proof establish that∫

E
c0 dμ0 ≤ lim inf

j→∞

∫
E

c0 dμ0,tj ≤ J0(τ, Y ) < ∞.

Since Gn ∈ D, limj→∞
∫
E AGn dμ0,tj = ∫

E AGn dμ0. Proposition 5.1 implies that, for
each n,

lim
j→∞

(∫
E

AGn(x)μ0(dx) +
∫

R
BGn(y, z)μ1,tj (dy × dz)

)
= 0, (5.13)

so adding (5.12) and (5.13) and taking the limit inferior as n → ∞ yields

J0(τ, Y ) = lim inf
n→∞ lim

j→∞

(∫
E
(AGn(x) + c0(x))μ0,tj (dx)

+
∫

R
(BGn(y, z) + c1(y, z))μ1,tj (dy × dz)

)

≥ lim inf
n→∞ lim inf

j→∞

∫
E
(AGn(x) + c0(x))μ0,tj (dx)

+ lim inf
n→∞ lim inf

j→∞

∫
R

(BGn(x) + c1(y))μ1,tj (dy × dz)
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≥ lim inf
n→∞

∫
E
(AGn(x) + c0(x))μ0(dx)

+ lim inf
n→∞ lim inf

j→∞

∫
R

(BGn(x) + c1(y))μ1,tj (dy × dz)

≥ F ∗
0 ;

Propositions 5.2 and 5.3 establish the last inequality. �

6. Examples

For the cost structure, we consider four examples to illustrate some of the different possible
ways in which Proposition 2.1 and Theorem 5.1 can be employed. Some of these cost structures
include forms that do not satisfy the modularity condition imposed in Helmes et al. (2017),
thus illustrating the breadth of application of the current results.

6.1. Drifted Brownian motion inventory models

We begin by examining the classical model that has been studied by Bather (1966), Sulem
(1986), Dai and Yao (2013), and many others. In particular, we show that Theorem 5.1 extends
the result in He et al. (2017) and verifies optimality as a result of our analytical approach. We
then examine a drifted Brownian motion process with reflection at {0} using a nontraditional
cost structure.

6.1.1. Classical model. In the absence of ordering, the inventory level process X0 evolves in
the state space R and satisfies

dX0(t) = −μ dt + σ dW(t), X0(0) = x0 ∈ I := (−∞, ∞), (6.1)

in which μ, σ > 0 and W is a standard Brownian motion process. Observe that the model
includes both positive and negative inventory levels indicating real inventory and items that
have been back-ordered, respectively.

To specify the cost structure, the holding/back-order cost function c0 defined on R and the
ordering cost function c1 defined on R = {(y, z) ∈ R

2 : y ≤ z} are

c0(x) =
{

−cbx, x < 0,

chx, x ≥ 0,
and c1(y, z) = k1 + k2(z − y), (6.2)

with cb, ch, k1, k2 > 0. The coefficient cb denotes the back-order cost rate per unit of inventory
per unit of time while ch is the holding cost rate. The ordering cost function is comprised of
fixed plus proportional (to the order size) costs.

Section 4.1 of Helmes et al. (2017) verifies that Conditions 2.1 and 2.2 hold, and proves the
existence of an optimizing pair (y∗

0 , z∗
0) ∈ R such that F0(y

∗
0 , z∗

0) = F ∗
0 .

Since a = −∞ is a natural boundary, A0 = A. The following theorem establishes the
optimality of the (y∗

0 , z∗
0) policy in the class A without using an ad hoc comparison result as

in He et al. (2017).

Theorem 6.1. Let (y∗
0 , z∗

0) be an optimizing pair of F0. Then the (y∗
0 , z∗

0) ordering policy
defined by (2.6) is optimal in the class A for the drifted Brownian motion inventory model
under the cost structure (6.2).

Proof. We need to verify that Condition 5.1 holds in order to apply Theorem 5.1 to show
that the (y∗

0 , z∗
0) ordering policy is optimal.
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First, define the functions g̃0 and ζ̃ on R by

g̃0(x) =
∫ x

0

∫ ∞

u

2c0(v) dM(v) dS(u)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− cb

2μ
x2 − σ 2cb

2μ2 x + σ 4(cb + ch)

4μ3

(
exp

{
2μ

σ 2 x

}
− 1

)
, x < 0,

ch

2μ
x2 + σ 2ch

2μ2 x, x ≥ 0,

ζ̃ (x) =
∫ x

0

∫ ∞

u

2 dM(v) dS(u) = 1

μ
x.

Note that g̃0, ζ̃ ∈ C2(I). It therefore follows from (2.2) that

g0(x) = g̃0(x) − g̃0(x0)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− cb

2μ
x2 − σ 2cb

2μ2 x + σ 4(cb + ch)

4μ3

(
exp

{
2μ

σ 2 x

}
− 1

)
− g̃0(x0), x < 0,

ch

2μ
x2 + σ 2ch

2μ2 x − g̃0(x0), x ≥ 0,

and ζ(x) = ζ̃ (x) − ζ̃ (x0) = (x − x0)/μ. Defining G̃0 = g̃0 − F ∗
0 ζ̃ , it follows that

G0(x) = G̃0(x) − G̃0(x0)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− cb

2μ
x2 −

(
σ 2cb

2μ2 + F ∗
0

μ

)
x + σ 4(cb + ch)

4μ3

(
exp

{
2μ

σ 2 x

}
− 1

)
−G̃0(x0), x < 0,

ch

2μ
x2 +

(
σ 2ch

2μ2 − F ∗
0

μ

)
x − G̃0(x0), x ≥ 0.

We examine the cases x < 0 and x > 0 separately. For x > 0, we have the two conditions

(σ (x)G′
0(x))2

(1 + |G0(x)|)(1 + c0(x))

= (chσx/μ + σ 3ch/(2μ2) − F ∗
0 σ/μ)2

(1 + |chx2/(2μ) + (σ 2ch/(2μ2) − F ∗
0 /μ)x − G̃0(x0)|)(1 + chx)

, (6.3a)

c0(x)

(1 + |G0(x)|)2 = chx

(1 + |chx2/(2μ) + (σ 2ch/(2μ2) − F ∗
0 /μ)x − G̃0(x0)|)2

, (6.3b)

and, hence,

lim
x→∞

(σ (x)G′
0(x))2

(1 + |G0(x)|)(1 + c0(x))
= 0 and lim

x→∞
c0(x)

(1 + |G0(x)|)2 = 0.

For x < 0, the ratios are

(σ (x)G′
0(x))2

(1 + |G0(x)|)3

= (−cbσx/μ−(σ 3cb/(2μ2)+F ∗
0 σ/μ)+(σ 2(cb+ch)/(2μ2)) exp{2μx/σ 2})2

(1+|−cbx
2/(2μ)−(σ 2cb/(2μ2)+F ∗

0 σ/μ)x+(σ 4(cb+ch)/(4μ3))(exp{2μx/σ 2}−1)−G̃0(x0)|)3 ,
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c0(x)

(1 + |G0(x)|)2

= −cbx

(1+|−cbx
2/(2μ)−(σ 2cb/(2μ2)+F ∗

0 σ/μ)x+(σ 4(cb+ch)/(4μ3))(exp{2μx/σ 2}−1)−G̃0(x0)|)2 ,

yielding

lim
x→−∞

(σ (x)G′
0(x))2

(1 + |G0(x)|)3 = 0 and lim
x→−∞

c0(x)

(1 + |G0(x)|)2 = 0.

As a result, both ratios are uniformly bounded and the result holds. �
6.1.2. Drifted Brownian motion with reflection at {0}. For this model, X is a drifted Brownian
motion process that reflects at {0}. Thus, when X(t) > 0, X follows the dynamics in (6.1) and
Condition 2.1 is established in Section 4.1 of Helmes et al. (2017).

The cost structure is given by the functions c0 on [0, ∞) and c1 on {(y, z) : 0 ≤ y ≤ z} by

c0(x) = k3x + k4e−x and c1(y, z) = k1 + k2
√

z − y, (6.4)

with k1, k2, k3, k4 > 0. Note that the holding costs for small inventory levels are penalized
by the term k4e−x, which remains bounded at 0. Also, the ordering cost function is a concave
function of the order size, so incorporates savings due to economies of scale. This c1 function
does not satisfy the critical modularity condition required in Helmes et al. (2017). We begin
by establishing the existence of a pair of minimizers for F0.

The analysis below verifies the existence of an optimal (s, S) ordering policy in the class
A0 which does not allow any positive amount of long-term average expected local time of the
inventory process at {0}.
Proposition 6.1. There exists an optimizing pair (y∗

0 , z∗
0) ∈ R of F0 for the drifted Brownian

motion model with reflection having cost structure (6.4).

Proof. Verification of Condition 2.2 follows by straightforward computations, so is left to
the reader. By the assumption on the model, the boundary 0 is regular (reflective), while the
boundary ∞ is natural with c0(∞) = ∞. Thus, Condition 2.3 holds and an application of
Theorem 2.1 establishes the result. �
Theorem 6.2. Let (y∗

0 , z∗
0) be as in Proposition 6.1. Then the (y∗

0 , z∗
0) ordering policy is

optimal in the class A0 for the reflected drifted Brownian motion inventory model under the
cost structure (6.4).

Proof. It suffices to show that Condition 5.1 holds. The proof of Theorem 6.1 shows that
ζ(x) = ζ̃ (x) − ζ̃ (x0) with ζ̃ (x) = x/μ and, as in the same proof, straightforward computation
establishes that

g̃0(x) = k3

2μ
x2 + k3σ

2

2μ2 x + 2k4σ
2

(2μ + σ 2)2 (1 − e−x),

so g0(x) = g̃0(x) − g̃0(x0). Setting G̃0 = g̃0 − F ∗
0 ζ̃ , the function G0 is

G0(x) = k3

2μ
x2 +

(
k3σ

2

2μ2 − F ∗
0

μ

)
x + 2k4σ

2

(2μ + σ 2)2 (1 − e−x) − G̃0(x0).

At the left boundary 0, c0(0) = k4 and G0(0) = 2k4σ
2/(2μ + σ 2)2 − G̃0(x0). It immediately

follows from continuity that Condition 5.1(a)(ii) holds and direct computation verifies that
Condition 5.1(c)(ii) is satisfied. We thus need to examine the ratios of Condition 5.1 when x is
large. These ratios differ only slightly from (6.3) (equating ch with k3) and the exponential term
does not affect the limits. Thus, Condition 5.1 holds and Theorem 5.1 then yields the results. �
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Remark 6.1. Consider models in which (k1 ∨ (k2/2)) ∧ k3/(2μ) ≥ 2k4σ
2/(2μ + σ 2)2, so

that either the fixed or unit ordering cost is expensive relative to the holding cost rate near 0 and
the linear holding cost rate is expensive relative to this same holding cost rate near 0. Taking
the partial derivative with respect to y yields

∂F0

∂y
(y, z) = μ

z − y

[
k1

z − y
+ k2

2
√

z − y
+ k3

2μ
(z − y) − 2k4σ

2

(2μ + σ 2)2 e−y

+ 2k4σ
2

(2μ + σ 2)2

e−y − e−z

z − y

]
.

Since y ≥ 0, observe that

• for all (y, z) ∈ R with z−y ≤ 1, k1/(z − y) ≥ 2k4σ
2e−y/(2μ + σ 2)2 or k2/(2

√
z − y) ≥

2k4σ
2e−y/(2μ + σ 2)2; and

• k3(z − y)/2μ ≥ 2k4σ
2e−y/(2μ + σ 2)2 for all (y, z) ∈ R with z − y > 1.

The positivity of the last term in the brackets of ∂F0/∂y therefore implies that ∂F0(y, z)/∂y > 0
for all (y, z) ∈ R and, hence, y∗

0 = 0. Thus, the optimal ordering policy waits until the inventory
hits 0 before ordering. (The optimal level z∗

0 is determined from the transcendental equation
obtained by setting ∂F0(0, z)/∂z = 0.)

6.2. Geometric Brownian motion storage model

Without any ordering, the inventory process is a geometric Brownian motion evolving in the
state space (0, ∞) and satisfying the stochastic differential equation

dX0(t) = −μX0(t) dt + σX0(t) dW(t), X(0) = x0 ∈ I = (0, ∞),

in which μ, σ > 0 and W is a standard Brownian motion process; the drift rate is negative. It
is well known that both boundaries are natural. Section 4.2 of Helmes et al. (2017) shows that
this model satisfies Condition 2.1.

6.2.1. Nonlinear holding costs with ordering costs that are a concave function of the order size.
The cost functions c0 on (0, ∞) and c1 on {(y, z) : 0 < y ≤ z} are given by

c0(x) = k3x + k4x
β and c1(y, z) = k1 + k2

√
z − y, (6.5)

with k1, k2, k3, k4 > 0 and β < 0. For this c0 function, k4x
β is extremely costly as the level

approaches 0. The proof of the next lemma is straightforward, so is left to the reader.

Lemma 6.1. Condition 2.2 holds for this geometric Brownian motion storage model having
cost structure (6.5).

We now turn to the existence of an optimal (s, S) ordering policy.

Theorem 6.3. There exists an optimal (y∗
0 , z∗

0) ordering policy in the class A for the geometric
Brownian motion storage model having nonlinear cost structure given by (6.5).

Proof. By Theorem 5.1, it suffices to show that Conditions 2.3 and 5.1 hold. As previously
noted, 0 and ∞ are natural boundaries, and we see that c0(0) = ∞ and c0(∞) = ∞, so
Condition 2.3(a)(i) and (b)(i) hold.

Let ρ = σ 2β2/2 − μβ, and note that ρ > 0. Straightforward computations using (2.2)
determine

g0(x) = k3

μ
(x − x0) − k4

ρ
(xβ − x

β
0 ) and ζ(x) = 2

2μ + σ 2 (ln(x) − ln(x0)), x ∈ I,
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and, hence,

G0(x) = k3

μ
(x − x0) − k4

ρ
(xβ − x

β
0 ) − 2F ∗

0

2μ + σ 2 (ln(x) − ln(x0)).

As a result, we have

(σ (x)G′
0(x))2

(1 + |G0(x)|)3

= (k3σx/μ + k4σ(−β)xβ/ρ − 2F ∗
0 /(2μ + σ 2))2

(1 + |k3(x − x0)/μ − k4(xβ − x
β
0 )/ρ − (2F ∗

0 /(2μ + σ 2))(ln(x) − ln(x0))|)3
,

so at the left boundary a = 0,

lim
x→0

(σ (x)G′
0(x))2

(1 + |G0(x)|)3 = 0. (6.6)

Turning to the boundary b = ∞,

(σ (x)G′
0(x))2

(1 + |G0(x)|)(1 + c0(x))

= (k3σx/μ+k4σ(−β)xβ/ρ−2F ∗
0 /(2μ+σ 2))2

(1+|k3(x−x0)/μ−k4(xβ−x
β
0 )/ρ−(2F ∗

0 /(2μ+σ 2))(ln(x)−ln(x0))|)(1+k3x+k4xβ)
,

so

lim
x→∞

(σ (x)G′
0(x))2

(1 + |G0(x)|)(1 + c0(x))
= σ 2

μ
. (6.7)

Finally, we have

c0(x)

(1 + |G0(x)|)2

= k3x + k4x
β

(1 + |k3(x − x0)/μ − k4(xβ − x
β
0 )/ρ − (2F ∗

0 /(2μ + σ 2))(ln(x) − ln(x0))|)2
,

which gives

lim
x→0

c0(x)

(1 + |G0(x)|)2 = 0 and lim
x→∞

c0(x)

(1 + |G0(x)|)2 = 0. (6.8)

As a result, (6.6), (6.7), and (6.8) imply that Condition 5.1(a)(i) and (b)(i) hold. �
Remark 6.2. When k4 = 0 in (6.5), the conditions of Proposition 2.1(a) hold, so there does
not exist any optimal (s, S) ordering policy and the ‘no order’ policy is optimal. See also
Section 4.2.2 of Helmes et al. (2017) for an alternate analysis.

6.2.2. Piecewise linear holding costs with modular ordering costs. The cost functions c0 on
[0, ∞) and c1 on {(y, z) ∈ R

2+ : y ≤ z} are given by

c0(x) =
{

k4(1 − x), 0 ≤ x ≤ 1,

k3(x − 1), x ≥ 1,
(6.9a)

c1(y, z) = k1 + 1
2k2(y

−1/2 − z−1/2) + 1
2k2(z − y), (6.9b)

with k1, k2, k3 > 0 and k4 > (σ 2+2μ)[k1+k2(1−e−1/2)/2+(k2μ + 2k3)(e−1)/(2μ)]−2k3.
Note that limy→0 c1(y, z) = ∞, placing a very strong penalty on waiting until the inventory
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level is nearly 0. In this example, the holding cost rate decreases at rate k4 on [0, 1] and increases
at rate k3 thereafter. The function c1 is modular in the sense that, for any 0 < w ≤ x ≤ y ≤ z,
c1(x, z) − c1(x, y) − c1(w, z) + c1(w, y) = 0. By writing c1 in the form

c1(y, z) = k1 + k2

(
(y−1/2 − z−1/2)/(z − y) + 1

2

)
(z − y),

the cost per unit portion of the charge is smaller with large values of y and z, so encourages
the decision maker to order before the inventory falls very low and prefers large orders.

We note that the modularity condition on c1 is a critical condition in Helmes et al. (2017).
That paper also requires c0(x) → ∞ as x → 0, which is violated in (6.9).

The proof of the next result is straightforward and left to the reader.

Lemma 6.2. The geometric Brownian motion model with cost structure given in (6.9) satisfies
Condition 2.2.

Proposition 6.2. The geometric Brownian motion model with cost functions given by (6.9) sat-
isfies Condition 2.3 and, hence, there exists an optimizing pair (y∗

0 , z∗
0) ∈ R of the function F0.

Proof. We begin by defining the functions ζ̃ (x) = 2 ln(x)/(2μ + σ 2), x ∈ (0, ∞), and g̃0
on (0, ∞) by

g̃0(x) =
∫ x

1

∫ ∞

u

2c0(v) dM(v) dS(u)

=

⎧⎪⎪⎨
⎪⎪⎩

2k4

2μ + σ 2 ln(x) − k4

μ
(x − 1) + σ 4(k3 + k4)

μ(2μ + σ 2)2 (x(2μ+σ 2)/σ 2 − 1), x < 1,

k3

μ
(x − 1) − 2k3

2μ + σ 2 ln(x), x ≥ 1.

It then follows from (2.2) that g0(x) = g̃0(x) − g̃0(x0) and ζ(x) = ζ̃ (x) − ζ̃ (x0). Note that
g′

0 = g̃′
0 and ζ ′ = ζ̃ ′.

Since 0 is a natural boundary and c0(0) = k4 < ∞, it suffices to show that, for each
z ∈ (0, ∞), there exists 0 < yz < z such that, for all 0 < y < yz,

−∂c1(y, z)/∂y + g′
0(y)

ζ ′(y)
≥ F0(y, z),

and to show the existence of (y, z) for which F0(y, z) < k4. Arbitrarily fix z ∈ (0, ∞). Since
we need y sufficiently close to 0, using y < 1 gives

−∂c1(y, z)/∂y + g′
0(y)

ζ ′(y)

= k2(y
−3/2 − 1)/2 + 2k4y

−1/(2μ + σ 2) − k4/μ + σ 2(k3 + k4)y
2μ/σ 2

/(μ(2μ + σ 2))

2y−1/(2μ + σ 2)

= k2(2μ + σ 2)

4
(y−1/2 − y) + k4 + k4(2μ + σ 2)

2μ
y + σ 2(k3 + k4)

2μ
y(2μ+σ 2)/σ 2

.
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Similarly,

F0(y, z) = k1 + k2(y
−1/2 − z−1/2)/2 + k2(z − y)/2

2(ln(z) − ln(y))/(2μ + σ 2)

+ g0(z)−2k4 ln(y)/(2μ+σ 2)+k4(y−1)/μ−σ 4(k3+k4)(y
(2μ+σ2)/σ2−1)/(μ(2μ+σ 2)2)

2(ln(z)−ln(y))/(2μ+σ 2)

= k4 + k1 + k2(y
−1/2 − z−1/2)/2 + k2(z − y)/2

2(ln(z) − ln(y))/(2μ + σ 2)

+ g0(z)−2k4 ln(z)/(2μ+σ 2)+k4(y−1)/μ−σ 4(k3+k4)(y
(2μ+σ2)/σ2−1)/(μ(2μ+σ 2)2)

2(ln(z)−ln(y))/(2μ+σ 2)
.

Since the leading order terms as y → 0 are y−1/2 and y−1/2/ln(y), respectively, it follows
that

lim
y→0

F0(y, z)

(−∂c1(y, z)/∂y + g′
0(y))/ζ ′(y)

= 0,

and, hence, there exists some yz > a so that (2.11) holds for all a < y < yz.
Finally, observe that the choice (y, z) = (1, e) has

F0(1, e) = (σ 2 + 2μ)

[
k1 + k2

2
(1 − e−1/2) + k2μ + 2k3

2μ
(e − 1)

]
− 2k3 < k4

by the model restriction on k4. �
Theorem 6.4. There exists an optimal (y∗

0 , z∗
0) ordering policy in the class A for the geometric

Brownian motion model having nonlinear cost structure given by (6.9).

Proof. The existence of (y∗
0 , z∗

0) ∈ R with F0(y
∗
0 , z∗

0) = F ∗
0 follows from Proposition 6.2.

To apply Theorem 5.1, we need to show that Condition 5.1 holds.
Defining G̃0 = g̃0 − F ∗

0 ζ̃ , it follows that G0(x) = G̃0(x) − G̃0(x0) and so G′
0(x) =

g̃′
0(x) − F ∗

0 ζ̃ ′(x). As a result, for sufficiently large x, we have

(σ (x)G′
0(x))2 =

(
σk3

μ
x − 2(σk3 + F ∗

0 )

2μ + σ 2

)2

,

1 + |G0(x)| = 1 + k3

μ
(x − 1) − 2(k3 + F ∗

0 )

2μ + σ 2 ln(x) − g̃0(x0),

c0(x) = k3(x − 1).

Thus,

lim
x→∞

(σ (x)G′
0(x))2

(1 + |G0(x)|)(1 + c0(x))
= σ 2

μ
and lim

x→∞
(σ (x)G′

0(x))2

(1 + |G0(x)|)2+ε
= 0.

For x in a neighborhood of the left boundary 0,

G0(x) = 2(k4 − F ∗
0 )

2μ + σ 2 ln(x) − k4

μ
(x − 1) + σ 4(k3 + k4)

μ(2μ + σ 2)2 (x(2μ+σ 2)/σ 2 − 1) − g̃0(x0),

(σ (x)G′
0(x))2 =

(
−σ 2(σ 2k4 − 2μF ∗

0 )

μ(2μ + σ 2)
x + σ 4(k3 + k4)

μ(2μ + σ 2)
x(2μ+σ 2)/σ 2

)2

.

It follows that limx→0 G0(x) = −∞ and limx→0(σ
2(x)G′

0(x))2 = 0, which then implies that
Condition 5.1(a) is satisfied. �
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Appendix A. Proofs for Section 2

Proof of Lemma 2.1. The arguments related to the right boundary b are very similar to and
a bit more straightforward than those related to the left boundary a. We therefore leave the
verification of the limits at b to the reader.

Similarly, the argument when c0(a) = ∞ is essentially the same (using the definition of a
limit being ∞) as when c0(a) < ∞, so we give the details in the latter instance. Choose ε > 0
arbitrarily, and let yε ∈ I be such that, for all a < x < yε, |c0(x)−c0(a)| < ε. For a < y < yε,
define τy to be the first hitting time of {y} by the process X0 of (1.1) when X0(0) = yε. Since
a is a natural boundary, limy→a(ζ(yε) − ζ(y)) = limy→a Eyε [τy] = ∞. Using the definition
of ζ in (2.2), observe that

ζ(yε) − ζ(y) =
∫ yε

y

∫ b

u

2 dM(v) dS(u) =
∫ yε

y

∫ yε

u

2 dM(v) dS(u) + 2M[yε, b)S[y, yε].
(A.1)

By Condition 2.1(b), M[yε, b) < ∞ and, since a is attracting, limy→a S[y, yε]=S(a, yε]<∞.
Thus, the limit of the double integral as y → a is infinite.

Similarly to (A.1), using the definition of g0 in (2.2), we have

g0(yε) − g0(y) =
∫ yε

y

∫ yε

u

2c0(v) dM(v) dS(u) + 2

(∫ b

yε

c0(v) dM(v)

)
S[y, yε].

Due to the integrability condition (2.1) on c0 relative to the speed measure M , the second term
on the right-hand side remains bounded as y → a. Therefore, writing

g0(yε) − g0(y)

ζ(yε) − ζ(y)
=

∫ yε

y

∫ yε

u
2c0(v) dM(v) dS(u)

ζ(yε) − ζ(y)
+ 2(

∫ b

yε
c0(v) dM(v))S[y, yε]
ζ(yε) − ζ(y)

,

the second summand converges to 0 as y → a, so the asymptotics are determined by the first
summand. Using (A.1), observe that∫ yε

y

∫ yε

u
2c0(v) dM(v) dS(u)

ζ(yε) − ζ(y)

=
(∫ yε

y

∫ yε

u
2c0(v) dM(v) dS(u)∫ yε

y

∫ yε

u
2 dM(v) dS(u)

)(
1

1 + 2M[yε, b)S[y, yε]/
∫ yε

y

∫ yε

u
2 dM(v) dS(u)

)
.

The second factor converges to 1 as y → a, so by the choice of yε we have

c0(a) − ε ≤ lim inf
y→a

g0(yε) − g0(y)

ζ(yε) − ζ(y)
≤ lim sup

y→a

g0(yε) − g0(y)

ζ(yε) − ζ(y)
≤ c0(a) + ε. (A.2)

Recall that ζ(y) → −∞ as y → a. In the case g0(y) remains bounded as y → a, then
limy→a g0(y)/ζ(y) = 0. Moreover, the limit exists in (A.2) and equals 0, so

c0(a) − ε ≤ lim
y→a

g0(yε) − g0(y)

ζ(yε) − ζ(y)
= 0 ≤ c0(a) + ε.

Since ε is arbitrary, it follows that c0(a) = 0 and, hence, (2.5) holds.
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When g0(y) → −∞ as y → a, we have

c0(a) − ε ≤ lim inf
y→a

((
g0(y)

ζ(y)

)(
(g0(yε)/g0(y)) − 1

(ζ(yε)/ζ(y)) − 1

))
= lim inf

y→a

g0(y)

ζ(y)
,

and, similarly,

lim sup
y→a

g0(y)

ζ(y)
≤ c0(a) + ε.

Since ε is arbitrary, it again follows that limy→a g0(y)/ζ(y) = c0(a), establishing (2.5).
Picking z ∈ E arbitrarily, identity (2.3) now follows.

A similar argument addresses (2.4). Again, using the definitions of g0 and ζ , we have

g0(z) − g0(y)

ζ(z) − ζ(y)

=
∫ z

y

∫ yε

u
2c0(v) dM(v) dS(u) + (

∫ b

yε
2c0(v) dM(v))S[y, z]∫ z

y
2M[u, yε] dS(u) + 2M[yε, b)S[y, z]

=
(∫ z

y

∫ yε
u 2c0(v) dM(v) dS(u)∫ z
y

∫ yε
u 2 dM(v) dS(u)

+ (
∫ b
yε

2c0(v) dM(v))S[y,z]∫ z
y 2M[u,yε] dS(u)

)/(
1 + 2M[yε,b)S[y,z]∫ z

y 2M[u,yε] dS(u)

)
.

Since a is attracting, S(a) < ∞, and since it is a natural boundary, ζ(a) = −∞. Together, these
imply that limy→a M[y, z] = ∞; this holds, in particular, when z = yε. Examining the second
summands in both the numerator and denominator above, set K below to be K = M[yε, b) for
the denominator term and K = ∫ b

yε
c0(v) dM(v) for the numerator summand. Then

2KS[y, z]∫ z

y
2M[u, yε] dS(u)

≤ 2KS[y, z]
2M[z, yε]S[y, z] ,

and the right-hand side converges to 0 as z → a. Thus, for all y < z ≤ yε,

c0(a) − ε ≤ lim inf
(y,z)→(a,a)

g0(z) − g0(y)

ζ(z) − ζ(y)
≤ lim sup

(y,z)→(a,a)

∫ z

y

∫ yε

u
2c0(v) dM(v) dS(u)∫ z

y

∫ yε

u
2 dM(v) dS(u)

≤ c0(a) + ε,

and the result follows since ε is arbitrary. �
Proof of Theorem 2.1. We examine the behavior of F0 at each boundary using the same

order of analysis as in the proof of Proposition 3.5 of Helmes et al. (2017).

Case (i): the diagonal z = y, excluding natural boundaries. By definition, F0(y, y) = ∞,

which is not the minimal value of F0.

Case (ii): the boundary z = b, excluding (a, b) when a is natural. Suppose that b is an
entrance boundary, so ζ(b) < ∞. It follows that, for each y ∈ E with y < b, F0(y, b) =
limz→b F0(y, z) exists in R+. The optimization of F0 therefore includes the possibility z = b.

Next consider when b < ∞ is a natural boundary with c0(b) < ∞ for which Condi-
tion 2.3(b)(ii) holds. Then, for each y ∈ E \ {b}, F0(y, ·) is increasing for z > zy and, thus, the
infimal value of F0 is not obtained in the limit as z → b.

Now assume that b is a natural boundary for which c0(b) = ∞. Case (ii) of the proof of
Proposition 3.5 of Helmes et al. (2017) establishes that F(y, b) = ∞ for each y ∈ E \ {b}.

https://doi.org/10.1017/apr.2018.50 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.50


Long-term average inventory control 1063

Case (iii): the vertex (b, b) with b being natural. Using (2.4) of Lemma 2.1,

lim inf
(y,z)→(b,b)

F0(y, z) ≥ lim inf
(y,z)→(b,b)

g0(z) − g0(y)

ζ(z) − ζ(y)
= c0(b).

Thus, the infimum does not occur in the limit as (y, z) → (b, b) since (ỹ, z̃) of Condi-
tion 2.3(b)(ii) satisfies F0(ỹ, z̃) < c0(b) or c0(b) = ∞ in Condition 2.3(b)(i).

Case (iv): the boundary y = a, excluding (a, b) when b is natural. As shown in case (iv) of the
proof of Proposition 3.5 of Helmes et al. (2017), when a is a regular or an exit boundary, F0(a, z)

exists in R+ for each z ∈ E with z > a. The optimization of F0 therefore includes values with
y = a. This proof also shows that, when a is a natural boundary for which c0(a) = ∞,

lim
y→a

F0(y, z) ≥ lim
y→a

c0(y) = ∞.

Proposition 3.5 of Helmes et al. (2017) does not consider the case when a > −∞ is a natural
boundary with c0(a) < ∞, so a proof is required. Since Condition 2.3(a)(ii) holds, F0(·, z)
is strictly decreasing for each z ∈ E and, hence, the infimal value of F0 does not occur in the
limit as y → a.

Case (v): the vertex (a, b)with both boundaries being natural. When c0(a) = ∞or c0(b) = ∞,
case (v) of the proof of Proposition 3.5 of Helmes et al. (2017) establishes that

lim
(y,z)→(a,b)

F0(y, z) = ∞.

We therefore need to consider models in which a > −∞ and b < ∞ with c0(a), c0(b) < ∞.
Note that both Condition 2.3(a)(ii) and (b)(ii) hold.

Choose ε such that 0 < ε < (c0(a) − F0(ŷ, ẑ)) ∧ (c0(b) − F0(ỹ, z̃)). Again, Lemma 2.1
establishes that there exists some yε, zε ∈ I such that

g0(yε) − g0(y)

ζ(yε) − ζ(y)
≥ c0(a) − ε for all y ∈ (a, yε)

and
g0(z) − g0(zε)

ζ(z) − ζ(zε)
≥ c0(b) − ε for all z ∈ (zε, b).

Thus, for each y with a < y < yε and z such that zε < z < b, we have

F0(y, z) ≥ g0(z) − g0(y)

ζ(z) − ζ(y)

= g0(z) − g0(zε) + g0(zε) − g0(yε) + g0(yε) − g0(y)

ζ(z) − ζ(y)

=
(

g0(z) − g0(zε)

ζ(z) − ζ(zε)

)(
ζ(z) − ζ(zε)

ζ(z) − ζ(y)

)
+ g0(zε) − g0(yε)

ζ(z) − ζ(y)

+
(

g0(yε) − g0(y)

ζ(yε) − ζ(y)

)(
ζ(yε) − ζ(y)

ζ(z) − ζ(y)

)

≥ [c0(b) − ε]ζ(z) − ζ(zε)

ζ(z) − ζ(y)
+ g0(zε) − g0(yε)

ζ(z) − ζ(y)
+ [c0(a) − ε]ζ(yε) − ζ(y)

ζ(z) − ζ(y)

≥ [(c0(a) − ε) ∧ (c0(b) − ε)]ζ(z) − ζ(zε) + ζ(yε) − ζ(y)

ζ(z) − ζ(y)
.
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Since lim(y,z)→(a,b)(ζ(z) − ζ(y)) = ∞, it follows that

lim inf
(y,z)→(a,b)

F0(y, z) ≥ [(c0(a) − ε) ∧ (c0(b) − ε)] > F0(y, z) ∧ F0(ỹ, z̃).

Therefore, the infimum of F0 is not obtained in the limit as (y, z) → (a, b).

Case (vi): the vertex (a, a) with a being natural. This argument is essentially the same as for
the vertex (b, b) using Lemma 2.1 and Condition 2.3(a)(ii).

In summary, we have established that the infimal value of F0 does not occur at any boundary,
so there exists some (y∗

0 , z∗
0) ∈ R which minimizes the function F0. �

Appendix B. Proofs for Section 5

Proof of Lemma 5.1. Fix n ∈ N arbitrarily. To show that Gn is bounded, note first that, on
the set {x ∈ E : |G0(x)| < 1},

|Gn(x)| = |G0(x)|
1 + h(G0(x))/n

< 1.

On the set {x ∈ E : |G0(x)| ≥ 1}, we have

|Gn(x)| = n

(n/|G0(x)|) + 1
≤ n.

Combining these estimates indicates that |Gn(x)| ≤ n. In addition, when a and b are finite and
natural, G0(x) → ±∞ implies that limx→a Gn(x) = −n and limx→b Gn(x) = n, respectively,
so we may define Gn at such boundaries to be the appropriate limiting value.

Straightforward calculations establish that, for x ∈ E ,

G′
n(x) = G′

0(x)[1 + h(G0(x))/n − G0(x)h′(G0(x))/n]
(1 + h(G0(x))/n)2 , (B.1)

and

G′′
n(x) = G′′

0(x)[1 + h(G0(x))/n − G0(x)h′(G0(x))/n]
(1 + h(G0(x))/n)2 − (G′

0(x))2G0(x)h′′(G0(x))

n(1 + h(G0(x))/n)2

− 2(G′
0(x))2h′(G0(x))[1 + h(G0(x))/n − G0(x)h′(G0(x))/n]

n(1 + h(G0(x))/n)3 .

Observe that

(σ (x)G′
n(x))2 =

(
(σ (x)G′

0(x))2

(n + h(G0(x)))3

)(
n3[1 + h(G0(x))/n − G0(x)h′(G0(x))/n]2

1 + h(G0(x))/n

)
.

By Condition 5.1 (and (5.3) when necessary), there exist y1 > a, z1 < b, and L < ∞ such
that the first factor is bounded for all x ∈ [y1, z1]c. The continuity of this factor implies that it
is also bounded on [y1, z1]. Since the second factor is bounded by 4n3, (σG′

n)
2 is bounded.

Next, we show that AGn is bounded. Using the expressions for G′
n and G′′

n, it follows that

AGn(x)

= AG0(x)[1 + h(G0(x))/n − G0(x)h′(G0(x))/n]
(1 + h(G0(x))/n)2 − (σ (x)G′

0(x))2G0(x)h′′(G0(x))

2n(1 + h(G0(x))/n)2

− (σ (x)G′
0(x))2h′(G0(x))[1 + h(G0(x))/n − G0(x)h′(G0(x))/n]

n(1 + h(G0(x))/n)3

=: AG(1)
n (x) + e(2)

n (x) + e(3)
n (x). (B.2)

We examine these terms carefully. Recall that AG0(x) = F ∗
0 − c0(x) for x ∈ I.
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Consider first the case in which c0(a) = ∞; c0(b) = ∞ is handled similarly, so is omitted.
Let y1 > a be as in Condition 5.1(a)(i). For x ≤ y1 such that |G0(x)| ≥ 1, h(G0(x)) = |G0(x)|
and h′′(G0(x)) = 0, so AG

(1)
n (x) and e

(3)
n (x) are uniformly bounded due to Condition 5.1(a)(i)

while e
(2)
n (x) = 0. For x ≤ y1 such that |G0(x)| < 1, Condition 5.1(a)(i) implies that both

c0(x) and (σ (x)G′
0(x))2 are uniformly bounded. Since h(x) and h′′(x) are also uniformly

bounded for |x| < 1, it follows that AGn is bounded on (a, y1).
Now consider the case in which c0(a) < ∞; again, the case c0(b) < ∞ is handled similarly.

The function AG
(1)
n remains bounded on [a, y1) since continuity of c0 at a implies that there

is some neighborhood [a, y2) of a such that |2(F ∗
0 − c0(x))/(1 + h(G0(x))/n)2| ≤ 2c0(a) +

2F ∗
0 +1 for x ∈ [a, y2). When y2 < y1, continuity implies that AG

(1)
n remains bounded on

[y2, y1). Essentially the same analysis as above but using Condition 5.1(a)(ii) handles e
(2)
n and

e
(3)
n on (a, y1). Thus, AGn is bounded in (a, y1) and this relation extends to include x = a.

Similar arguments with regard to the boundary b show that AGn is bounded in (z1, b),
extending to include b under Condition 5.1(b)(ii) when c0(b) < ∞. By continuity, AGn is
bounded on [y1, z1], establishing that AGn is bounded.

We now verify the boundary behaviour of Definition 5.2. Regarding AGn, we must show
that it is continuous at finite, natural boundaries for which c0 is finite. We examine the boundary
a; the analysis for b is similar. If |G0(a)| < ∞ then Condition 5.1(c) implies that AGn(a) =
limx→a AGn(x) exists and is finite. Now consider the case in which |G0(a)| = ∞. Then, for
sufficiently small x (without loss of generality x ≤ y1), |G0(x)| ≥ 1, so h(G0(x)) = |G0(x)|
and h′′(G0(x)) = 0. It then immediately follows that e

(2)
n (x) = 0 while AG

(1)
n (x) converges

to 0. For e
(3)
n (x), Condition 5.1(a)(ii) implies that, for x ≤ y1,

(σ (x)G′
0(x))2

(1 + h(G0(x))/n)3 ≤ (σ (x)G′
0(x))2

(1 + |G0(x)|/n)2+ε
· 1

(1 + |G0(x)|/n)1−ε
,

which again converges to 0 as x → a. Thus, defining AGn(a) = 0 makes AGn continuous
at a.

Now, consider the case of a being a reflecting boundary. Using the definitions of g0, ζ, and
G0 in (2.2) and (4.1), respectively, it follows that

G′
0(x) = s(x)

∫ b

x

2(c0(v) − F ∗
0 ) dM(v).

Condition 5.1(c)(ii) then implies that |G′
0(a)| < ∞. From the expression for G′

n(x) in (B.1),
limx→a G′

n(x) exists and is finite.
Finally, when a is a sticky boundary and c0(a) < ∞, Condition 5.1(c)(i) along with (B.1)

establishes that Definition 5.2(b)(iii) holds. �

Proof of Lemma 5.2. We consider the convergence of Gn first. For all x ∈ I, |G0(x)| < ∞,
so

lim
n→∞ Gn(x) = lim

n→∞
G0(x)

1 + h(G0(x))/n
= G0(x).

This result holds also at the boundaries whenever G0 is bounded there.
Now consider the case in which |G0(a)| = limx→a |G0(x)| = ∞. Observe that, for x ∈ I,

G0(x) =
∫ x

x0

∫ b

u

2[c0(v) − F ∗
0 ] dM(v) dS(u).
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When a is attainable, ζ(a) > −∞, so if c0 were bounded in a neighborhood of a, G0 would
also be bounded in the neighborhood. Thus, c0(x) → ∞ as x → a and, as a result, G0(a) =
limx→a G0(x) = −∞. When a is a natural boundary, ζ(a) = −∞ and Condition 2.3 implies
that c0(a) > F ∗

0 , so again G0(a) = −∞. Then regardless of the type of boundary, for x

sufficiently close to a, G0(x) ≤ −1. Since h(x) = |x| on the set where |x| ≥ 1,

lim
x→a

Gn(x) = lim
x→a

G0(x)

1 + |G0(x)|/n
= −n =: Gn(a),

so again limn→∞ Gn(a) = −∞ = G0(a).

A similar argument at the boundary b establishes that limn→∞ Gn(b) = G0(b) and, there-
fore, Gn converges pointwise to G0. It is therefore immediate that BGn converges pointwise
to BG0 on R.

Turning to AGn, recall from (B.2) that AGn = AG
(1)
n + e

(2)
n + e

(3)
n . Since G0 ∈ C2(I),

G0(x) and G′
0(x) are finite for x ∈ I. It then follows that limn→∞ AGn(x) = AG0(x) for

x ∈ I. A careful examination of the convergence at the boundaries is required.
Assume that c0 is finite at the boundaries. When |G0(a)| < ∞, Condition 5.1(c) implies

that limx→a σ (x)G′
0(x) = K1 for some finite K1. Denote this limit by σ(a)G′

0(a) and set
AG0(a) = F ∗

0 − c0(a). Then

lim
x→a

AGn(x) = AG(1)
n (a) + e(2)

n (a) + e(3)
n (a) =: AGn(a).

As before, it follows that limn→∞ AGn(a) = AG0(a). A similar analysis applies at the
boundary b when |G0(b)| < ∞. Observe that, under the assumption that c0 is finite at the
boundaries, G0 is bounded at the boundaries when a is attainable and when b is an entrance
boundary.

Now consider the case in which c0(a) < ∞ and |G0(a)| = ∞. Thus, a is a natural boundary
and, hence, Condition 2.3 implies that G0(a) = −∞. Then, for some y1 > a, G0(x) ≤ −1
for all a < x < y1 and, as a result, h(G0(x)) = |G0(x)| and h′′(G0(x)) = 0. Examining the
expression for AGn, we see that

AGn(x) = AG0(x)

(1 + |G0(x)|/n)2 − (σ (x)G′
0(x))2 sgn(G0(x))

n(1 + |G0(x)|/n)3 .

Since AG0(x) = F ∗
0 − c0(x), c0(a) < ∞, and |G0(a)| = ∞, the first term converges to 0 as

x → a. Using Condition 5.1(a)(ii), we have∣∣∣∣ (σ (x)G′
0(x))2 sgn(G0(x))

n(1 + |G0(x)|/n)3

∣∣∣∣ ≤ Ln2

(1 + |G0(x)|)1−ε
,

so this term also converges to 0 as x → a. Therefore, AGn(a) = 0, and it follows that
limn→∞ AGn(a) = 0 > F ∗

0 −c0(a) = AG0(a). A similar argument using Condition 5.1(b)(ii)
establishes that AGn(b) ≥ AG0(b) for each n when |G0(b)| = ∞. �

Appendix C. A counterintuitive example

In this appendix we present an example of an inventory model and a particular ordering
policy for which the long-term average cost is finite, and, hence, {μ0,tj } is tight for any {tj }
with tj → ∞, but the corresponding sequence {μ1,tj } is not tight.

Consider the classical drifted Brownian motion inventory model of (6.1) in Section 6:

X0(t) = W(t) − t, t ≥ 0;
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for notational simplicity, the initial inventory level is x0 = 0 and the drift and diffusion
coefficients are μ = −1 and σ = 1. The cost functions of (6.2) are specified as

c0(x) = 2|x| for all x ∈ R, c1(y, z) = k1 + (z − y) for all (y, z) ∈ R.

A special ordering policy (τ, Y ) will now be described. It runs in cycles, each of which
is composed of two phases. For cycle i = 1, 2, 3, . . ., phase 1 consists of using the (0, 1)-
ordering policy a total of 2i−1 times; the length of each subcycle is a random variable having
mean 1. Phase 2 involves a single (0, 2(i−1)/2)-ordering policy followed immediately by using
the (2(i−1)/2, 2(i−1)/2)-ordering policy 2i−1 times.

The formal description of the ordering policy is now given.

Definition C.1. (The policy (τ, Y ).) For cycle i = 1, define

τ1,1 = 0, τ1,2 = inf{t ≥ τ1,1 : X(t) = 0}, τ1,3 = τ1,2,

Y1,1 = 1, Y1,2 = 1, Y1,3 = 0,

and, for cycle i = 2, 3, 4, . . ., define the orders in phase 1 to be

τi,1 = inf{t ≥ τi−1,2i+1 : X(t) = 0}, τi,j = inf{t ≥ τi,j−1 : X(t) = 0},
Yi,1 = 1, Yi,j = 1,

for j = 2, . . . , 2i−1, and the orders in phase 2 by

τi,2i−1+1 = inf{t ≥ τi,2i−1 : X(t) = 0}, τi,j = τi,2i−1+1,

Yi,2i−1+1 = 2(i−1)/2, Yi,j = 0,

for j = 2i−1 + 2, . . . , 2i + 1.

Remark C.1. When formulating the ordering costs, traditionally no distinction is made
between not ordering and ordering nothing, with no cost incurred in either case. In contrast, the
formulation in this paper has orders of size 0 that incur the fixed cost k1. The policy (τ, Y ) uses
0-size orders to create nontrivial masses in the average ordering measure μ1,t at arbitrarily large
values on the diagonal z = y without affecting the length of phase 2, provided t is sufficiently
large. Under the traditional formulation, it is possible to place many orders of suitably small
sizes, resulting in similar masses in neighborhoods near the diagonal at arbitrary distances from
the origin (with large t), such that the length of phase 2 is barely increased. The analysis is
essentially the same as in this paper but requires more careful bookkeeping without affecting
the limiting results. The costly 0-size orders considerably simplify the computations.

The main result of this appendix can now be stated.

Theorem C.1. For the drifted Brownian motion inventory model, let (τ, Y ) be the ordering
policy of Definition C.1, let X be the resulting inventory process, and let {μ0,t } and {μ1,t }
respectively be the corresponding average expected occupation and ordering measures defined
in (3.1). Then

(a) J0(τ, Y ) < ∞;

(b) {μ0,t : t > 0} is tight as t → ∞; and

(c) {μ1,t : t > 0} is not tight.

Proof. This theorem is proven in pieces. Proposition C.4 shows that the long-term average
holding costs are bounded and, thus, an argument as in the proof of Proposition 3.1 establishes
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the tightness of the average expected occupation measures {μ0,t } as t → ∞. Finally, Propo-
sition C.5 shows both that the long-term average ordering costs are finite and that the average
expected ordering measures {μ1,t } are not tight. �

Our analysis depends on a careful construction of the inventory process X under the ordering
policy (τ, Y ) of Definition C.1. Independent copies of the diffusion X0 of (6.1) are pieced
together at the jump times (see, e.g. the appendix of Christensen (2014) for such a construction)
with the implication that the various ordering subcycles are independent.

The initial analysis examines the long-term average cost of the (τ, Y ) policy. It begins by
focusing on the holding costs. Note that the only orders which affect the length of cycle i

are the 2i−1 times that the (0, 1) policy is used and the one time that the (0, 2(i−1)/2) policy
occurs; the 2i−1 times that orders of size 0 are placed do not change the state of the inventory
or lengthen the subcycles, so have no affect on the holding costs. Thus, it is sufficient to restrict
the analysis solely to the nonzero orders.

Let S := {σ1, σ2, σ3, . . .} denote the times of the nonzero orders. Let i ∈ N denote the cycle
and j ∈ {1, 2, . . . , 2i−1 + 1} be the number of the nonzero order within cycle i. Then observe
that σn = τi,j , where n = 2i−1 + i + j − 2. The ensuing computations are simplified by a
shift in the index for j . For i ≥ 2, define τi,0 = τi−1,2i−1+1, so that order number ‘zero’ of the
ith cycle is the last nonzero order, in fact the large order, of cycle (i − 1).

Our first result gives a strong law of large numbers result for the cycle lengths.

Proposition C.1. Let (τ, Y ) be the ordering policy of Definition C.1, and let S be the times of
the nonzero orders. Then

lim
n→∞

σn

n
= 1 a.s. (C.1)

Proof. Define the independent (but not identically distributed) random variables

β0 = σ1 = 0 and βk = σk+1 − σk, k ∈ N;
thus, βk gives the random length of time of the kth interorder interval. Then σn=∑n−1

k=0 βk, n∈N.

Note that, apart from β0 = 0, βn is either the length of a (0, 1) subcycle or a (0, 2(i−1)/2)

subcycle. More precisely, for each i ≥ 1, β2i+i−1 is the length of the cycle arising from the
(0, 2(i−1)/2) subcycle and, for n �= 2i − 1 + i, βn is the length of a (0, 1) subcycle. Using the
Laplace transform of the hitting time of a drifted Brownian motion process (see Formula 2.0.1
of Borodin and Salminen (2002, p. 295)), we can determine that

E[β2i−1+i+j−2] = 1 and var(β2i−1+i+j−2) = 1 for j = 1, 2, . . . , 2i−1, i ≥ 1,

E[β2i+i−1] = 2(i−1)/2 and var(β2i+i−1) = 2(i−1)/2 for i ≥ 1.

Next observe that
∞∑

n=2

var(βn)

n2 =
∞∑
i=2

2i−1∑
j=0

var(β2i−1+i+j−2)

(2i−1 + i + j − 2)2

≤
∞∑
i=1

2i−1∑
j=1

1

(2i−1 + i + j − 2)2 +
∞∑
i=1

2(i−1)/2

(2i−1 + i − 1)2

≤
∞∑

n=1

1

n2 +
∞∑
i=1

1

23(i−1)/2

< ∞.

By Kolmogorov’s strong law of large numbers (cf. Theorem 2 of Shiryaev (1996, p. 389)), it
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follows that

lim
n→∞

(
1

n

n∑
k=1

βk − μn

)
= 0 a.s.,

in which μn = (1/n)
∑n

k=1 E[βk]. Note that σn+1 = ∑n
k=0 βk = ∑n

k=1 βk . Thus, the above
equation can be rewritten as limn→∞(σn+1/n−μn) = 0 a.s., which in turn implies (C.1) if we
can show that μn → 1 as n → ∞.

We now analyze the convergence of μn. Again, for n ≥ 2, write n = 2i−1 + i + j − 2 with
i ≥ 2 and 0 ≤ j ≤ 2i−1. Note that, for 1 ≤ k ≤ i−1, cycle k contains 2k−1 subcycles generated
by (0, 1) ordering policies having a mean length of 1 and a single (0, 2(k−1)/2) subcycle with
mean length 2(k−1)/2, while the partial cycle i has j subcycles from (0, 1), Thus, for n ≥ 2,

1

n

n∑
k=1

E[βk] = 1

2i−1 + i + j − 2

( i−1∑
k=1

(2k−1 + 2(k−1)/2) + j

)

= 1

2i−1 + i + j − 2

(
2i−1 − 1 + 2(i−1)/2 − 1

21/2 − 1
+ j

)

=
(

1 − 1

2i−1 + j
+ 1

21/2 − 1

2(i−1)/2 − 1

2i−1 + j

)(
1 + i − 2

2i−1 + j

)−1

.

Obviously, we have

lim
i→∞

1

2i−1 + j
= lim

i→∞
2(i−1)/2 − 1

2i−1 + j
= lim

i→∞
i − 2

2i−1 + j
= 0 for each j = 0, 1, . . . , 2i−1.

Therefore, as n → ∞ (and, hence, i → ∞), (1/n)
∑n

k=1 E[βk] converges to 1. �
For this model, we now establish a variant of the elementary renewal theorem; the fact that

the cycles are not identically distributed means that the theorem cannot simply be applied.

Proposition C.2. For t ≥ 0, let N(t) = ∑∞
i=1 1{σi≤t} = max{n : σn ≤ t} be the number of

orders of positive size by time t . Then

lim
t→∞

N(t)

t
= 1 a.s. and in L1. (C.2)

Proof. First, by the definition of N(t), σN(t) ≤ t < σN(t)+1 for each t ≥ 0. Thus, for each
t ≥ 0,

σN(t)

N(t)
≤ t

N(t)
<

σN(t)+1

N(t)
= N(t) + 1

N(t)

σN(t)+1

N(t) + 1
.

As t → ∞, Proposition C.1 implies first that N(t) → ∞ (a.s.) and then establishes the almost-
sure convergence of (C.2). In order to prove the L1 convergence of (C.2), it is necessary to show
that the collection {N(t)/t : t ≥ 1} is uniformly integrable. By Lemma 3 of Shiryaev (1996,
p. 190), it suffices to show that supt≥1 E[(N(t)/t)2] < ∞. To this end, define the ordering
policy (τ̃ , Ỹ ) which always uses the (0, 1) policy and denote by {σ̃n : n ∈ N} the ordering times.
Define the corresponding renewal process Ñ by Ñ(t) = max{n : σ̃n ≤ t} = ∑∞

i=1 1{σ̃i≤t}. It
then follows that N(t) ≤ Ñ(t) for each t ≥ 0 and, hence, E[(N(t)/t)2] ≤ E[(Ñ(t)/t)2]. Using
a standard renewal argument (see, e.g. the proof of Theorem 5.5.2 of Chung (2001, pp. 143–
144)), it follows that E[(Ñ(t)/t)2] is uniformly bounded for t ≥ 1, establishing the uniform
integrability of {N(t)/t : t ≥ 1} and, hence, the L1 convergence. �

The next step on the way to showing that J0(τ, Y ) < ∞ is to analyze the holding costs over
a single cycle. Observe that X(σi) is either 1 or 2(k−1)/2 for some k; to simplify notation, let
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z represent either value. Next X(t) = z − (t − σi) + W(t − σi) for t ∈ [σi, σi+1) since no
orders are placed on the interval (σi, σi+1) and, by the definition of σi+1, z − (σi+1 − σi) +
W(σi+1 − σi) = 0. Again, to simplify notation, make the change of time s = t − σi and define
τ = σi+1 − σi . Thus, X satisfies X(s) = z − s + W(s) for s ∈ [0, τ ).

Define

�τ =
∫ τ

0
c0(X(s)) ds.

Then, by Proposition 2.6 of Helmes et al. (2017), it follows that E[�τ ] = z2 + z.
We now establish a result similar to the law of large numbers for the holding costs.

Proposition C.3. Let (τ, Y ) be given by Definition C.1, and let X be the resulting inventory
process. Then

lim sup
n→∞

1

n

n∑
k=1

E

[∫ σk+1

σk

c0(X(s)) ds

]
≤ 3. (C.3)

Proof. For simplicity of notation, define �k := ∫ σk+1
σk

c0(X(s)) ds for k = 1, 2, . . . . As in
the proof of Proposition C.1, write the index n as n = 2i−1 + i + j − 2 with i = 2, 3, . . .

and j = 0, 1, . . . , 2i−1. Recall that the large orders have indices with j = 0 and, hence,
n = 2i−1 + i − 2 for i ≥ 2, so the formula for E[�τ ] above establishes that

E[�2i−1+i+j−2] = 2, j = 1, . . . , 2i−1, E[�2i+i−1] = 2i−1 + 2(i−1)/2, i ∈ N.

Consequently, for n ≥ 2,

1

n

n∑
�=1

E[��] = 1

2i−1 + i + j − 2

( i−1∑
k=1

(2k−1 · 2 + 2k−1 + 2(k−1)/2) + j · 2

)

= 1

2i−1 + i + j − 2

(
3(2i−1 − 1) + 2(i−1)/2 − 1

21/2 − 1
+ 2j

)

≤ 3(2i−1 + j) + (2(i−1)/2 − 1)/(21/2 − 1) − 3

2i−1 + i + j − 2

=
(

3 + 1

21/2 − 1

2(i−1)/2 − 1

2i−1 + j
− 3

2i−1 + j

)(
1 + i − 2

2i−1 + j

)−1

.

Using similar computations as those in the end of the proof of Proposition C.1, we see
immediately that this ratio converges to 3 as n → ∞ and, hence, i → ∞. This gives (C.3) as
desired. �

We now parlay the asymptotics relative to cycles to verify that the long-term average holding
costs related to (τ, Y ) are finite.

Proposition C.4. Let (τ, Y ) be given by Definition C.1, and let X be the resulting inventory
process. Then

lim sup
t→∞

1

t
E

[∫ t

0
c0(X(s)) ds

]
≤ 3.

Proof. Again, denote the nonzero ordering times by S and observe that the orders of size 0
do not affect the cycle lengths. Again, for each t ≥ 0, recall that N(t) = max{n : σn ≤ t}, so
that σN(t) ≤ t < σN(t)+1. Thus, for positive t ,

1

t

∫ t

0
c0(X(s)) ds ≤ 1

t

∫ σN(t)+1

0
c0(X(s)) ds ≤ 1

t

∫ σN(t)+2

0
c0(X(s)) ds = 1

t

N(t)+1∑
j=1

�j,
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where, as in the proof of Proposition C.3, we used the notation �j = ∫ σj+1
σj

c0(X(s)) ds for each
j ∈ N. Noting that {N(t) = 0} = ∅ for each t , consider the expectation of the right-hand-side
term above:

E

[N(t)+1∑
j=1

�j

]
= E

[ ∞∑
k=1

1{N(t)=k}
k+1∑
j=1

�j

]

= E

[ ∞∑
j=1

�j

∞∑
k=j−1

1{N(t)=k}
]

=
∞∑

j=1

E[�j 1{N(t)≥j−1}].

Observe that {N(t) ≥ j − 1} = {N(t) < j − 1}c = {σj−1 > t}c is independent of the process
over the interval [σj , σj+1). Therefore,

∞∑
j=1

E[�j 1{N(t)≥j−1}] =
∞∑

j=1

E[�j ]E[1{N(t)≥j−1}]

=
∞∑

j=1

E[�j ]
( ∞∑

k=j−1

P(N(t) = k)

)

=
∞∑

k=1

k+1∑
j=1

E[�j ]P(N(t) = k).

By Proposition C.3, lim supk→∞(1/k)
∑k

j=1 E[�j ] ≤ 3, so, for any ε > 0, there exists some
K0 < ∞ such that (1/(k + 1))

∑k+1
j=1 E[�j ] < 3 + ε for all k ≥ K0. Thus,

∞∑
k=1

k+1∑
j=1

E[�j ]P(N(t) = k)

=
K0−1∑
k=1

k+1∑
j=1

E[�j ]P(N(t) = k) +
∞∑

k=K0

(
1

k + 1

k+1∑
j=1

E[�j ]
)

(k + 1)P(N(t) = k)

≤
K0−1∑
k=1

k+1∑
j=1

E[�j ]P(N(t) = k) +
∞∑

k=K0

(3 + ε)(k + 1)P(N(t) = k)

≤
K0−1∑
k=1

k+1∑
j=1

E[�j ] + (3 + ε)E[N(t)] + 3 + ε.

Since the first and last summands are constant, combining these upper bounds, dividing by t,

and using Proposition C.2 yields

lim sup
t→∞

1

t
E

[∫ t

0
c0(X(s)) ds

]
≤ lim

t→∞
(3 + ε)E[N(t)]

t
= 3 + ε.

The result now follows since ε > 0 is arbitrary. �
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The final task is to verify that the long-term average ordering costs are finite and that {μ1,t }
is not tight as t → ∞. The next proposition addresses both of these concerns since the analysis
is very similar.

Proposition C.5. Let (τ, Y ) be given by Definition C.1 for the drifted Brownian motion inven-
tory model. For t > 0, define μ1,t by (3.1). Then

lim sup
t→∞

∫
c1(y, z)μ1,t (dy × dz) ≤ 3k1 + 2 (C.4)

and {μ1,t : t > 1} is not tight.

Proof. We first address the lack of tightness for {μ1,t }. Let � ⊂ R be any compact set.
Then there exists some N0 such that, for all i ≥ N0, (2(i−1)/2, 2(i−1)/2) ∈ �c.

Again, denote the times of nonzero orders by S = {σn : n ∈ N} and, for n ≥ 2, write
n = 2i−1 + i + j − 2 with i ≥ 2 and j = 0, . . . , 2i−1. Recall that the ‘large’ order of size
2(i−1)/2 occurs at time σ2i+i−1. Under policy (τ, Y ), there are a further 2i−1 orders of size 0 at
time σ2i+i−1; denote this common time of ordering by σ̃2i+i−1,j for j = 1, . . . , 2i−1 for each
of the 0-size orders in cycle i. Thus,

μ1,t (�
c) = 1

t
E

[ ∞∑
n=1

1{σn≤t} 1�c(X(σn−), X(σn))

+
∞∑
i=1

2i−1∑
j=1

1{σ̃2i+i−1,j
≤t} 1�c(X(σ̃2i+i−1,j−), X(σ̃2i+i−1,j ))

]

≥ 1

t
E

[ ∞∑
i=N0

2i−1∑
j=1

1{σ̃2i+i−1,j
≤t} 1�c(2(i−1)/2, 2(i−1)/2)

]

= 1

t
E

[ ∞∑
i=N0

2i−1 1{σ2i+i−1≤t}
]
.

For each t ≥ 0, define the processes I and J such that N(t) = 2I (t)−1 + I (t) + J (t) − 2 in
which I (t) denotes the cycle in which order N(t) occurs and 0 ≤ J (t) ≤ 2I (t)−1. Since N(t)

is the number of nonzero orders placed by time t ≥ 0, order number N(t) is the J (t)th order
within cycle I (t); again, J (t) = 0 corresponds to the large order of the previous cycle. Using
the processes I and J , it follows that, for 0 ≤ J (t) ≤ 2I (t)−1,

μ1,t (�
c) ≥ 1

t
E

[ ∞∑
i=N0

2i−1 1{σ2i+i−1≤t}
]

≥ 1

t
E

[ I (t)−1∑
�=2N0 +N0−1

2�−1
]

= 1

t
E

[I (t)−1∑
�=1

2�−1 −
2N0 +N0−2∑

�=1

2�−1
]

= 1

t
(E[2I (t)−1] − 22N0 +N0−2). (C.5)
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By Lemma C.2, N(t) → ∞ (a.s.) as t → ∞, so I (t) → ∞ as well. Thus, the asymptotics of
μ1,t (�

c) are determined by the asymptotics of the first summand above.
We next determine bounds on I (t). Since J (t) ≤ 2I (t)−1 and N(t) = 2I (t)−1 + I (t) +

J (t) − 2, we have N(t) ≤ 2I (t) + I (t) − 2 and, hence,

2I (t)−1 ≥ 1
2 (N(t) − I (t) + 2). (C.6)

Since I (t) ≥ 1 and J (t) ≥ 0, N(t) ≥ 2I (t)−1 − 1, so

I (t)−1 < log2(N(t)+1) ≤ log2(N(t)+N(t)) = log2

(
N(t) · 2t

t

)
= log2

(
N(t)

t

)
+log2(2t).

(C.7)
Using this estimate in (C.6) yields

2I (t)−1 >
1

2

(
N(t) − log2

(
N(t)

t

)
− log2(2t) + 1

)
.

Employing this lower bound in (C.5) and Jensen’s inequality on the second summand, we have

μ1,t (�
c) ≥ 1

2

(
E[N(t)]

t
− log2(E[N(t)/t])

t
− log2(2t)

t

)
→ 1

2
as t → ∞;

note that we have also used Proposition C.2 on the second summand. Therefore, for any ε < 1
2 ,

μ1,t (�
c) > ε for all sufficiently large t . Hence, {μ1,t } is not tight as t → ∞.

Consider now the total ordering costs by time t > 0. First, denote (τ, Y ) = {(τk, Yk) : k ∈ N}
to capture all of the orders. Next, denote the nonzero orders by S and, as above, for each i ∈ N

and j = 1, . . . , 2i−1, let σ̃2i+i−1,j = σ2i+i−1 be the common time of the 0-size orders in
cycle i.

Since t is finite and 0 ≤ J (t) ≤ 2I (t)−1,

E

[ ∞∑
k=1

1{τk≤t} c1(X(τk−), X(τk))

]

= E

[I (t)−1∑
i=1

[2i−1(k1 + 1) + (k1 + 2(i−1)/2) + 2i−1k1] + J (t)(k1 + 1)

]

≤ E

[(
(2k1 + 1)(2I (t)−1 − 1) + 2(I (t)−1)/2 − 1

21/2 − 1
+ k1(I (t) − 1)

)
+ 2I (t)−1(k1 + 1)

]

= E

[
(3k1 + 2)2I (t)−1 + 2(I (t)−1)/2 − 1

21/2 − 1
+ k1I (t) − 3k1 − 1

]
.

Since I (t) ≥ 1 and J (t) ≥ 0, it follows that 2I (t)−1 ≤ N(t) + 1 and so 2(I (t)−1)/2 ≤
(N(t)+ 1)1/2. Using (C.7), we also have I (t) < log2(N(t)/t)+ log2(2t)+ 1. Then it follows
from Jensen’s inequality that

E

[ ∞∑
k=1

1{τk≤t} c1(X(τk−), X(τk))

]

≤ (3k1 + 2)E[N(t)] + E[(N(t) + 1)1/2] − 1

21/2 − 1
+ k1E

[
log2

(
N(t)

t

)
+ log2(2t) + 1

]
+ 1

≤ (3k1 + 2)E[N(t)] + (E[N(t) + 1])1/2 − 1

21/2 − 1
+ k1[log2

(
E

[
N(t)

t

])
+ log2(2t) + 1] + 1.

Now divide both sides by t , and then send t → ∞, obtaining (C.4) from Proposition C.2. �
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Remark C.2. (Final comments.) Under further analysis, we can obtain more precise results
about the costs related to the ordering policy (τ, Y ) of Definition C.1. As in the analysis of
Proposition C.3, a lower bound on the limit inferior of the Cesàro mean of the expected cycle
costs can be shown to be 5

2 . With more extensive calculations including the variance of the
holding costs per cycle, these bounds can be shown to be tight and, moreover, that

lim inf
t→∞

1

t

∫ t

0
c0(X(s)) ds = 5

2
a.s. lim sup

t→∞
1

t

∫ t

0
c0(X(s)) ds = 3 a.s.
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