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Abstract.—Paleozoic echinoids are exceptionally rare, and little is known of their paleoenvironmental distribution.
The echinoid fauna of the Fort Payne Formation (Late Osagean, Early Viséan) of south-central Kentucky is
documented. Four genera, ?Archaeocidaris, Lepidocidaris, ?Lepidesthes, and an unidentified lepidocentrid, were
recovered and represent three different families. This fauna, and their associated paleoenvironments, give important
new insights into the facies distribution of Paleozoic echinoids and the taphonomic biases that affect this distribution.
Lepidocidaris is known from the green shale facies, which comprises the core of Fort Payne’s carbonate buildups.
?Archaeocidaris and the lepidocentrid are known from the wackestone buildups and crinoidal packstone buildups.
?Lepidesthes is also known from crinoidal packstone and wackestone buildups, which argues against a semi-infaunal
life mode for this taxon. All relatively semiarticulated echinoids were known from autochthonous facies, whereas the
only echinoids from the allochthonous facies were disarticulated hemipyramids. Furthermore, deeper-water carbonate
buildups were apparently capable of supporting diverse echinoid faunas during the Viséan.

Introduction

Although their fossil record extends back to the Late Ordovician
(Smith and Savill, 2001), Paleozoic echinoids are rarely preserved.
Because Paleozoic echinoids presumably lack the stereomic
interlocking present in many post-Paleozoic echinoids (Smith,
1980, 1984), they have a relatively low preservation potential
and, if present, are commonly encountered as disarticulated
bioclasts (Schneider, 2008). Echinoids reached their peak species
richness during the Mississippian (Kier, 1965; Smith, 1984) and
were likely important members of Late Paleozoic ecosystems
(Schneider, 2008). Although Paleozoic echinoids were most
diverse during the Mississippian, the relationship between the
environments in which they lived and the echinoids themselves is
understudied. Echinoids occur from a number of different
paleoenvironmental settings in theMississippian (e.g., Kier, 1958;
Chestnut and Ettensohn, 1988; Mottequin et al., 2015), but the
precise facies in which certain taxa occur has not been examined
rigorously. Post-Paleozoic echinoids are known to display a high
level of substrate specificity, with irregular echinoids pre-
ferentially inhabiting sandy and muddy substrates and regular
echinoids inhabiting hard or rocky substrates (e.g., Kier and Grant,
1965; Greenstein, 1993; Nebelsick, 1996). In addition, the
differential preservation potential of post-Paleozoic echinoid
families is not only dependent on morphologic factors, such as
degree of stereomic interlocking, but also on breadth of facies
distribution (Nebelsick, 1996). It is unknown whether any of the
echinoid families from the Paleozoic display substrate specializa-
tion similar to post-Paleozoic echinoids, and the effect of differing

facies on Paleozoic echinoid taphonomy is also little known. The
Fort Payne Formation is an ideal location in which to examine
paleoenvironmental preferences among Paleozoic echinoids and
to compare echinoid and crinoid taphonomy because a number of
different paleoenvironments are recorded, representing both
allochthonous and autochthonous facies (Ausich and Meyer,
1990; Meyer et al., 1995; Greb et al., 2008). Four genera repre-
senting three families were collected from the Fort Payne
Formation: ?Archaeocidaris, Lepidocidaris, ?Lepidesthes, and an
unidentified lepidocentrid. Their paleoenvironmental preference
and the taphonomic overprint on their facies distribution in the
Fort Payne Formation is discussed herein.

Facies and faunal assemblages from the
Fort Payne Formation

The Fort Payne Formation of south-central Kentucky was
deposited in an epicontinental basin during the early Viséan
(late Osagean; Ausich and Meyer, 1990; Leslie et al., 1996; Greb
et al., 2008; Krivicich et al., 2013). The Fort Payne Formation is a
mixed siliciclastic-carbonate sequence that includes basinal to toe-
of-slope facies. These facies were deposited along a clinoform that
prograded westward filling the basin during the early Viséan
(Ausich and Meyer, 1990; Khetani and Read, 2002; Krause
and Meyer, 2004; Greb et al., 2008). The Fort Payne sequence
comprises myriad facies, including both autochthonous and
allochthonous facies (Pryor and Sable, 1974; Lewis and Potter,
1978; Ausich and Meyer, 1990). Autochthonous facies include
fossiliferous green shales, wackestone buildups, and crinoid
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packstone buildups; allochthonous facies include the siltstone
‘background sedimentation,’ sheetlike packstones, and the Jabez
Sandstone. A channelform packstone facies also exists. Whereas
the fill of this latter facies was composed of allochthonous
sediment, this facies supported a distinct, autochthonous fauna.

As demonstrated by Ausich and Meyer (1990), Meyer et al.
(1995), and Greb et al. (2008), the autochthonous interpretation
of the carbonate buildups are a function of the buildups being
geographically and stratigraphically circumscribed carbonate
accumulations deposited contemporaneously with turbidite
facies and siltstone facies as the background sedimentation of
the basin. Both buildup types have a core facies and flank beds.
Maximum stratigraphic thickness of individual mounds exceeds
15m, and the diameter of the areal extent of an individual
mound may exceed 400m laterally.

Both mound types were cored by fossiliferous green shale.
A green shale core remained present through the entire existence
of a crinoid packstone mound. Mature mounds had a core of
interbedded green fossiliferous shale and packstones and large
packstone flanking beds (Ausich andMeyer, 1990). By contrast,
although wackestone buildups also originated above a fossili-
ferous green shale mound, once carbonate mud production
began on a wackestone buildup, green shale deposition ceased.
On very large wackestone buildups, packstone flank beds may
be present. The Fort Payne Formation wackestone buildups
share many characteristics with classical Waulsortian mounds
(Meyer et al., 1995). Precise water depth is difficult to deter-
mine, but based on stratigraphic evidence, the Fort Payne basin
floor was positioned within the lowest portion of storm wave
base (Ausich andMeyer, 1990). Judging from the distribution of
microendolithic borings, Hannon and Meyer (2014) interpreted
the Fort Payne basin floor to have been largely below the
photic zone.

The autochthonous nature of these facies is further demon-
strated because each supported a statistically distinct crinoid and
blastoid assemblage (Krivicich et al., 2014). Dominant camerates
on wackestone buildups were Agaricocrinus americanus
(Roemer, 1854 in Roemer, 1851–1856), Thinocrinus sp., and
Alloprosallocrinus conicusCasseday and Lyon, 1862; whereas on
packstone buildups, dominant camerates were Eretmocrinus
magnificus Lyon and Casseday, 1859, Actinocrinites gibsoni
(Miller and Gurley, 1893), and Alloprosallocrinus conicus
(Krivicich et al., 2014). Each facies also had distinct assemblages
of disparid crinoids and blastoids. The fossiliferous green shale
was dominated by disparid and cyathocrine cladids, and the
channels had abundant dendrocrine cladids and Elegantocrinus
hemisphaericus (Meek and Worthen, 1865). Because of
contrasting faunas, different facies have different taphonomic
signatures (Meyer et al., 1989). Both of the carbonate buildups
were dominated by camerate crinoids.

In areas well studied, the autochthonous facies and the
channelform facies are geographically clustered (Fig. 1). This may

be explained as follows: (1) the channelform facies represent
submarine facies on the Fort Payne clinoform; (2) prior to fill of
these canyons, carbonate buildups thrived near the mouth of
canyons where food- and oxygen-rich waters were funneled
into what was otherwise a largely dysaerobic basin; and (3) the
channels were filled with sediment during the advancement of the
Fort Payne clinoform, which also buried the carbonate buildups.

Distribution of Fort Payne echinoids

These echinoids were collected over the course of 27 years,
from numerous research and class field trips spanning June of
1985 to October of 2012. Relatively few echinoids are known
from the Fort Payne Formation, but all echinoids from auto-
chthonous facies are preserved as a scattering of disarticulated
plates in close proximity (Table 1). Most of these disarticulated
specimens also contain associated hemipyramids. Lepidocentrid
genus unknown, ?Archaeocidaris sp. and ?Lepidesthes sp. are
all from the crinoidal packstone buildup facies. ?Lepidesthes is
also present in the wackestone facies. Isolated, unidentifiable
hemipyramids are known from both autochthonous and alloch-
thonous facies (Table 1). With the exception of Leipidocidaris
(USNM 609803), all echinoids associated with carbonate
buildups were collected from the flank facies.

Systematic paleontology

Class Echinoidea Leske, 1778
Family Archaeocidaridae M’Coy, 1844
Genus Archaeocidaris M’Coy, 1844

Type species.—Cidaris urii Fleming, 1828, p. 478; by mono-
typy (Fell, 1966, p. U317); Mississippian of northwestern
Europe.

Occurrence.—Mississippian–Permian of North America, South
America, Russia, Europe, Australia, China.

Remarks.—This is arguably the most abundant echinoid genus
in the Paleozoic. For a thorough list of species excluding those
based solely on disarticulated spines, see Lewis and Donovan
(2005).

?Archaeocidaris sp.
Figure 2.1

Description.—Test disarticulated but likely small. Plating
is imbricate. Apical system is not present. Peristome and
perignathic girdle are unknown.

Width of interambulacral plates is 1.3 to 1.7 times their
height (Table 2). Plates hexagonal to subhexagonal. Distinction

Figure 1. Location map illustrating occurrences of echinoids from the Fort Payne and distribution of autochthonous carbonate buildups in relation to locations of
channelform facies exposed along shore of Lake Cumberland. (1) General location map; (2) Lake Cumberland localities; (3) localities along Kentucky Highway 61
south of Burkesville, Kentucky. Key: squares = carbonate wackestone buildups; circles = carbonate packstone buildups; inverted triangles = channelform facies;
filled symbols = locality with known echinoid fossils; X = echinoid occurrences from allochthonous facies. CE = Celina Buildup; RC = Russell Creek Buildup;
BU = Bugwood Buildup; CSS = Cave Springs South Buildup; GC = Gross Creek Buildup; GR = Greasy Creek Buildup; HC = Harmon Creek Buildup;
LC = Lily Creek Buildup; MGC = Mouth of Gross Creek; OB = Owens Branch Buildup; OC = Otter Creek Buildup; PH = Pleasant Hill Buildup; WCS = Wolf
Creek South; 61B = Highway 61 Buildup; 61DW = Highway 61 D West; 61R = Highway 61 Ramp. See Appendix for locality coordinates.
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between adambulacral and adradial plates unknown. Single row
of scrobicular tubercles along edge of plates, but the details of
this row are unclear.

Primary tubercle large, perforate, noncrenulate, located
centrally on the plate (Fig. 2.1). Boss is about 0.4 to 0.5 times as
high as plate and about 0.3 times as wide as plate. Basal terrace
present, about 0.5 times as wide as plate and 0.7 times as high as
plate. Mamelon not undercut and sunken area present between
mamelon and raised parapet (Fig. 2.1). Radial plications absent
and details of scrobicular tubercles unknown.

Primary spines all fragmentary, but the longest spine
fragment is 20.2mm long. Spines are circular in cross section;
very finely striate; and, due to crushed nature of some spines,
were likely hollow. Most proximal end of spines smooth, but
numerous spinules present otherwise. Spinules projecting
distally and appear to be present along all shaft.

Lantern disarticulated, but with some elements present. One
hemipyramid is preserved, about 9.1mm high. One rotula is also
present and is about 6.7mmhigh and 1.9mmwide across the upper
surface. It is slightly eroded, thus details are obscured. The condyles
are present; however, they are slightly obscured by matrix.

Material.—USNM 609801.

Occurrence.—Cave Springs South, Lake Cumberland, Fort
Payne Formation (Fig. 1 and Appendix).

Remarks.—Within the Archaeocidaridae, the genera
Archaeocidaris and Polytaxicidaris have interambulacral plates
that are morphologically similar. Because of this, as pointed out
by Kier (1958, 1965), without intact interambulacral areas, it is
unadvisable to confidently assign disarticulated archaeocidarid
plates to Archaeocidaris as has been done consistently since the
genus was erected. Therefore, the material herein described
cannot be confidently assigned to Archaeocidaris, thus it is
designated ?Archaeocidaris sp.

Genus Lepidocidaris Meek and Worthen, 1873

Type species.—?Eocidaris squamosaMeek andWorthen, 1869,
p. 79; by original description and monotypy (Fell, 1966,
p. U319) from the Tournaisian of Iowa.

Occurrence.—Tournaisian–Viséan of North America and the
United Kingdom.

Lepidocidaris sp.
Figure 2.2

Description.—Test probably small. Plating likely imbricate.
Peristome, perignathic girdle, and lantern unknown.

Details of interambulacral and interambulacral plating
unknown, but disarticulated ambulacral and interambulacral plates
are present. Ambulacral plate is about 2.0mm wide and 1.2mm
tall. It is fairly thick and irregularly polygonal in outline (Fig. 2.2).

Interambulacral plates are about 0.8 times as wide as high
(Table 2). Plate outlines are slightly obscured, thus plate shape is
unclear. Scrobicular tubercles present on raised ridge surround-
ing tubercle.T
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Primary tubercle large, perforate, noncrenulate. Boss is
about 0.3 times as wide as plate and 0.2 times as high as plate.
Tubercle sunken, and it is unclear whether a basal terrace

is present. Radial plications absent. Scrobicular tubercles
are imperforate and irregularly distributed along plate margin
(Fig. 2.2).

Figure 2. Archaeocidarids, lepidesthids, and lepodocentrids from the Fort Payne Formation. (1) ?Archaeocidaris specimen USNM 609801. (2) Lepidocidaris
specimen USNM 609803. (3) Lepidocentrid specimen USNM 609804. (4) ?Lepidesthes specimen USNM 609805. (5) ?Lepidesthes specimen USNM 609800.
(1, 3–5) Scale bars = 10mm; (2) scale bar = 5mm.
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Primary spines elongate, coarsely striate (Fig. 2.2). Longest
spine is 12.6mm in length. Milled ring present and spine striate
for entire length.

Material.—USNM 609803.

Occurrence.—Cave Springs South, Lake Cumberland, Fort
Payne Formation (Fig. 1 and Appendix).

Remarks.—Lepidocidaris is recognized for its distinctive
tubercle morphology with high plates and sunken tubercles.
In addition, the smooth, striate spines of this taxon are similar
to those of the other known species, Lepidociaris squamosa
(Meek and Worthen, 1873). This specimen is too disarticulated
and incomplete to confidently assign to a known or new species
of Lepidocidaris; thus, it is designated as Lepidocidaris sp.
Lepidocidaris squamosa is known from the Lower Burlington
Limestone of Iowa (Meek and Worthen, 1869); the subspecies
Lepidocidaris squamosa anglica Hawkins, 1935 is known from
the Tournaisian and Viséan of the United Kingdom (Hawkins,
1935; Donovan et al., 2003, Donovan et al., 2014). This is
the first occurrence of Lepidocidaris from the Viséan of
North America, which indicates that the range of the genus
is Tournaisian to Viséan in both North America and Europe.
Lepidocidaris squamosa anglica is subdivided from
Lepidocidaris squamosa because of the slenderness of its spines
and its occurrence in the United Kingdom as opposed to North
America. Jackson (1912) adequately described and figured
complete spines of Lepidocidaris squamosa from North
America, and they also appear slender. Thus, the validity of the
subspecies Lepidocidaris squamosa anglica based strictly on
morphological differences is questionable; however, taxonomic
revision is beyond the scope of this project.

Family Lepidocentridae Lovén, 1874
Lepidocentrid indet.
Figures 2.3, 3.4

Description.—Test presumably large. Plating imbricate. Peri-
stome and perignathic girdle unknown due to disarticulation.
Ambulacral plates 4 to 6mm wide, with flange. Interambulacral
plates variably polygonal, flat, thin; up to 8mm wide. Plates
about 1mm thick. No primary tubercles are present on ambu-
lacral plates, and most plates are too eroded to clearly preserve
secondary tubercles; however, some may be present on a few
plates (Fig. 2.3).

Disarticulated lantern elements are present (Fig. 3.4).
Hemipyramids about 16mm tall. Tooth coming to distal point
with three distinct serrations.

Material.—USNM 609804.

Occurrence.—Gross Creek, Lake Cumberland, Fort Payne
Formation (Fig. 1 and Appendix).

Remarks.—This specimen is assigned to the Lepidocentridae
because of its thin interambulacral plating and lack of distinct
primary tubercles. Palaechinids also lack primary tubercles;
however, they have thick plates that are tessellate and are not
similar to the thin, presumably overlapping, plates present here.
The state of preservation of this specimen is not good enough to
allow for assignment at the generic level; thus, it is left unidentified.
The size of the plates does allow for comparison with other
lepidocentrid taxa. Judging from the size of the plates, this taxon
may be similar to Pholidechinus brauni Jackson, 1912 from the
Tournaisian Edwardsville Formation of Crawfordsville, Indiana,
or Elliptechinus kiwiaster Schneider, Sprinkle, and Ryder, 2005
from the Pennsylvanian Winchell Formation of Central Texas.
These taxa display distinct minute secondary tubercles, which
appear similar to those present on a few of the better-preserved
plates of this specimen (Fig. 2.3). The taxon described herein is
not well enough preserved, however, to determine whether similar
tubercles were present on all interambulacral plates.

Family Lepidesthidae Jackson, 1896
Lepidesthes Meek and Worthen, 1868

Type species.—Lepidesthes coreyi Meek and Worthen, 1868,
p. 522; by original designation.

Occurrence.—Mississippian–Pennsylvanian of North America;
Mississippian of Morocco, England; ?Pennsylvanian of Russia.

Remarks.—This genus consists of numerous species and has a
wide geographic and temporal distribution. Species included in
the genus are L. wortheni Jackson, 1896, L. collettiWhite, 1878,
L. carinata Jackson, 1912, L. alta Kier, 1958, L. grandis Kier,
1958, L. formosa Miller, 1879, L. extremis Jackson, 1912,
L. howsei Jackson, 1926, L. caledonica Jackson, 1912, and
L. laevis Trautschold, 1879.

?Lepidesthes sp.
Figures 2.4, 2.5, 3.1–3.3

Table 2. Measurements of Fort Payne echinoids.

?Archaeocidaris sp. ?Lepidesthes sp.

Measure parameter Plate 1 Plate 2 Lepidocidaris sp. Plate 1 Plate 2

Interamb width (mm) 5.07 5.85 4.59 2.57 1.95
Interamb height (mm) 3.66 3.43 5.47 2.49 1.83
Ratio of width to height 1.39 1.71 0.84 1.03 1.07
Boss width (mm) 1.7 1.65 1.32 — —
Boss height (mm) 1.45 1.44 1.2 — —
Basal terrace width (mm) 3.2 2.92 ? — —
Basal terrace height (mm) ? 2.3 ? — —
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Description.—Test small. Plating imbricate. Peristome and
perignathic girdle unknown.

Although plating is unknown due to disarticulation of the
test, there are far more ambulacral plates than interambulacral
plates, which indicates that there are likely numerous columns
of ambulacral plates (Fig. 2.4, 2.5).

Ambulacral plates small, wider than high. About 2.3mm at
their widest and 1.3mm at their highest. Variably polygonal in
shape. Each plate pierced by one pore pair with each pore about
0.2mm apart (Figs. 2.4, 2.5, 3.1, 3.2).

Interambulacral plates are about as wide as high. Specific
widths and heights of two plates are recorded in Table 2. They are,
on average, larger than ambulacral plates. Faint, small, imperforate
secondary tubercles are present on interambulacral plates (Fig 3.2).

Numerous lantern elements are preserved on all three
specimens. Hemipyramids about 12.6mm high. Hemipyramids

on specimen USNM 609800 and USNM 609806 have clear
indentation, and the foramen magnum on specimens is 0.2 times
as shallow as hemipyramids are tall (Fig. 3.1, 3.3). In addition, a
poorly preserved rotula is present on specimen USNM 609805
(Fig. 2.5), although the details of the rotula are not clear. All
specimens also contain teeth, which come to a single point
distally and do not appear to be serrated (Figs. 2.5, 3.1).

Material.—USNM609800, USNM609805, andUSNM609806.

Occurrence.—Cave Springs South and Otter Creek, Lake
Cumberland; Russell Creek, Fort Payne Formation (Fig. 1 and
Appendix).

Remarks.—Lepidesthes is widely known from the Carboniferous
of North America. The specimens present, however, are in such

Figure 3. Lepidesthid and lepidocentrid specimens. (1) Close-up of ?Lepidesthes specimen USNM 609805; note disarticulated lantern elements and teeth.
(2) Close-up of ?Lepidesthes specimen USNM 609805; note interambulacral and ambulacral plates. (3) ?Lepidesthes specimen USNM 609806; note tightly
associated lantern elements. (4) Close-up of lepidocentrid specimen USNM 609805. (1, 2, 4) Scale bars = 10mm; (3) scale bar equals 5mm.

Thompson and Ausich—Fort Payne echinoids 245

https://doi.org/10.1017/jpa.2016.46 Published online by Cambridge University Press

https://doi.org/10.1017/jpa.2016.46


a state of disarticulation that identification to the generic level is
tenuous. Four species of Lepidesthes, L. colletti, L. wortheni,
L. coreyi, and L. carinata are known from siliciclastic facies
of the Edwardsville Formation of Montgomery County,
Indiana. These strata are coeval with those of the Fort Payne
Formation; however, the Edwardsville Formation represents a
delta platform environment (Ausich et al., 1979) as opposed to
the deeper basinal to toe-of-slope environments represented by
the Fort Payne Formation (Ausich and Meyer, 1990). Thus,
Lepidesthes species may have had a fairly wide environmental
tolerance.

Discussion

Paleozoic echinoid taphonomy.—Fort Payne autochthonous
facies are the sole environments to preserve semiarticulated, or
associated, echinoid tests (Table 1). Furthermore, the only facies
that preserve these echinoids are the two carbonate buildup
facies. Paleozoic echinoids appear to have disarticulated rapidly
after death, presumably due to the lack of stereomic interlocking
between abutting coronal plates (Smith, 1980, 1984) and their
imbricate test plating. Although all of the Paleozoic families
present within this study are extinct, the best taphonomic
analogs to Paleozoic echinoids are the basal euechinoids of the
clades Echinothurioidea and Diadematoida and the cidaroids.
These taxa have limited stereomic interlocking and, in the case
of the echinothurioids and diadematoids, more flexible tests
(Smith, 1980, 1984; Greenstein, 1991, 1993) than all other
extant echinoids. Although no experimental taphonomic studies
have been performed on the echinothurioids, the taphonomies
of one diadematoid and one cidaroid are well understood
(Greenstein, 1991, 1993). These two taxa display more stereo-
mic interlocking than was presumably present in Paleozoic
echinoids, especially Paleozoic taxa with imbricate plating. Thus,
these are the best known, albeit less easily disarticulating, tapho-
nomic analogues to Paleozoic echinoids. Taphonomically, these
Mississippian echinoids also have a preservational potential
comparable to dendrocrine cladid and flexible crinoids, which
completely disarticulate relatively rapidly after death (Meyer et al.,
1989). To be preserved articulated, dendrocrine crinoids and the
Fort Payne echinoids needed to have been buried very rapidly,
perhaps even buried when still alive. If a specimen lay on the sea
floor for a short time, the specimen would disarticulate, and in this
stage, any transportation would scatter the plates. Thus, the
specimens of clustered plates with hemipyramids (Figs. 2.1, 2.4,
2.5, 3.1, 3.2, 3.4) were likely dead specimens whose tests had
disarticulated but not been scattered. This is interpreted as para-
utochthonous preservation and is similar to that of cladid and
flexible crinoids also preserved in the Fort Payne carbonate
buildups. Both cidaroid and diadematoid echinoids are known to
lose their Aristotle’s lantern and apical system within seven days
following death (Greenstein, 1991). Given the even higher rates
of disarticulation of Paleozoic echinoids relative to the more
derived diadematoids and cidaroids, the association of lantern
elements with coronal plates in these specimens also supports the
interpretation of rapid burial.

Judging from the specimens recovered for this study, it
appears that all of the families represented in the Fort Payne
Formation displayed similar likelihoods of preservation.

Representatives of three families, archaeocidarids, lepidesthids,
and lepidocentrids, are preserved as disarticulated and nondisso-
ciated coronal plates and associated lantern elements. The lantern
elements are clearly associated with coronal plates in all
specimens assignable at the familial level except for the specimen
of Lepidocidaris sp. (USNM 609803); however, it is unclear in
this specimen whether the lantern elements have been transported
from the test or are obscured by rock matrix. Because the spines
are still associated with the test, it is likely that the lantern
elements have not been lost, as spines usually disarticulated prior
to lantern disarticulation in numerous clades of echinoids
(Kidwell and Baumiller, 1990; Greenstein, 1991; Allison,
1990). The archaeocidarids are all preserved with primary spines,
further suggesting limited transport and rapid burial (Allison,
1990; Kidwell and Baumiller, 1990; Greenstein, 1991). Of
interesting note is specimen USNM 609806 of ?Lepidesthes sp.,
which consists of four closely associated hemipyramids and some
scattered coronal plates (Fig. 3.4). In this specimen, many of the
coronal plates are scattered and appear to have been transported,
leaving the lantern elements essentially where the organism
began to disarticulate. It is highly unlikely that the lantern has
simply ‘dropped out’ of the test through the peristome following
decay of the peristomial membrane, as can be the case in many
post-Paleozoic echinoids. This is because the lantern of
lepidesthids is significantly smaller than the diameter of their
peristome (Jackson, 1912, plate 68, fig. 3). Because of its
differential preservation of corona and lantern, this specimen of ?
Lepidesthes provides important insight into Paleozoic echinoid
taphonomy and disarticulation.Whereas inmodern echinoids, the
lantern is known to disarticulate well before coronal plates
(Kidwell and Baumiller, 1990; Greenstein, 1991), it appears that
in some Paleozoic echinoids, specifically the lepidesthids,
coronal plates may have disarticulated more rapidly relative to
lantern disarticulation than in post-Paleozoic taxa. This rapid
coronal disarticulation is almost certainly due to the lack of
stereomic interlocking between coronal plates and could explain
the presence of single, relatively articulated lanterns known from
the Paleozoic echinoid fossil record (Jackson, 1912, plate 12, figs.
1–6, 1929, plate 1, figs. 1–3).

Although mass accumulations of echinoids are well known
from the Cenozoic rock record (see Nebelsick and Kroh, 2002 and
references therein for a thorough treatment of clypeasteroid mass
accumulations), there are no such mass accumulations from the
Fort Payne. This is likely due simply to the low abundance of
echinoids in the Fort Payne Formation, whose dominant bioclasts
are crinoidal in origin. Although mass accumulations comprising
entire tests and spine beds are known from the Pennsylvanian of
North America (e.g., Schneider et al., 2005; Schneider, 2008;
Thompson et al., 2015), to date, no suchmass accumulations have
been identified in the Mississippian. Although Paleozoic echinoid
diversity is highest in the Mississippian (Kier, 1965), it may be
possible that echinoids were actually more abundant during the
Pennsylvanian, as evidenced by their heightened occurrence in
spine beds and mass accumulations. This hypothesis, however,
requires further testing.

Autochthonous facies.—The autochthonous facies contain
four genera from three families. The Cave Spring South
Buildup preserves the most taxa, including Lepidocidaris sp.,
?Archaeocidaris, and ?Lepidesthes sp. The specimen of
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Lepidocidaris sp. was preserved in the interbedded green shale
and packstone core of this packstone buildup, indicating a
tolerance for siliciclastics. Given that other North American
occurrences of Lepidocidaris are from the Lower Burlington
Limestone (Meek and Worthen, 1869), this taxon, at least at the
generic level, appears to inhabit both carbonate and siliciclastic
substrates. The other archaeocidarid present, ?Archaeocidaris
sp., occurs on crinoidal packstone buildup flank beds. Given the
occurrence of Archaeocidaris and Polytaxicidaris in a variety of
substrates (e.g. Kier, 1958, 1965; Schneider et al., 2005), it is
not surprising that this taxon was present on the crinoidal
packstone buildups. In addition, the lepidesthid specimens are
known from the autochthonous crinoidal packstone buildup
flank beds and wackestone buildups. Lepidesthids are abundant
and diverse in the siliciclastic delta shelf environments of the
Edwardsville Formation at Crawfordsville (Lane, 1973) and the
soft-bottomed lagoonal environments of the Sloan’s Valley
Member of the Pennington Formation (Chestnut and Ettensohn,
1988). Their occurrence on the Fort Payne buildups indicates
that in North America, they are not limited to soft-bottomed,
primarily siliciclastic environments. Their occurrence on the
Fort Payne buildups also argues against a semi-infaunal inter-
pretation for their autecology, as suggested by Chestnut and
Ettensohn (1988), because a semi-infaunal lifestyle would not
have been likely on either the coarse-grained, poorly sorted
substratum of flank beds or the firm, presumably microbially
bound wackestone buildups.

As discussed in the preceding, a counterintuitive aspect of
Fort Payne deposition is that carbonate buildups formed in
a siliciclastic basin with siltstone background sediments.
Carbonate buildups were eventually buried by the siltstone and
sheetlike packstone facies. The siltstone facies is nearly devoid
of fossils, with the primary indication of a faunal presence being
trace fossils (Ausich and Meyer, 1990). The sheetlike pack-
stones are interpreted to be from turbidite deposition (Ausich
andMeyer, 1990; Greb et al., 2008), and their faunal content is a
mixture of elements from the autochthonous faunas (Krivicich
et al., 2014). The fact that Fort Payne echinoid preservation on
carbonate buildups was parautochthonous and that these
mounds were surrounded by a largely unfossiliferous siltstone
facies supports the interpretation that the Fort Payne echinoids
lived and were preserved on the carbonate buildups. Given that
these echinoids were likely capable of living on firmer, more
coarse-grained substrates, such as the flank beds of Fort Payne
buildups, it indicates that echinoids had begun to inhabit coarse-
grained environments by the Mississippian. Although the
colonization of these coarse-grained environments may have
corresponded with certain morphological innovations, there are
no obvious morphological innovations associated with the
colonization of the Fort Payne buildups. All the genera that
inhabit the Fort Payne buildups are also known from fine-
grained environments (Lane, 1973; Chestnut and Ettensohn,
1988; Mottequin et al., 2015) and, thus, were likely not restric-
ted to specific substrates, at least on the genus level.

Echinoids are known from other mud-mound facies in the
Mississippian. The Waulsortian mounds of Clitheroe, England
(Miller and Grayson, 1972), supported a diverse echinoid fauna
(Hawkins, 1935; Donovan et al., 2003), and echinoids are also
known from the Waulsortian facies of Belgium (Jackson, 1929).

These deposits were also interpreted to be from a relatively
deepwater environment (Miller and Grayson, 1982; Lees,
1997), similar to the Fort Payne buildups. That echinoids were
capable of inhabiting these deeper-water environments, likely
below the photic zone (Hannon and Meyer, 2014), indicates that
by the Viséan, numerous families of echinoids had successfully
inhabited deeper-water environments. Evidence from the Fort
Payne Formation and comparative evidence from the
Mississippian of Europe indicate that carbonate mound-type
facies were apparently capable of supporting diverse and
abundant (relative to Paleozoic standards) echinoid faunas.

Allochthonous facies.—No articulated echinoids were
found in the allochthonous facies (Table 1), and the only echi-
noid material recovered from these facies were disarticulated
hemipyramids. This can be explained by both preservational
biases and worker bias. Hemipyramids have been shown to be
relatively robust to laboratory tumbling experiments, remaining
fairly intact and recognizable even after 100 hours of tumbling
(Greenstein, 1991). In addition, hemipyramids are relatively
recognizable, even to nonechinoid workers, as echinoid frag-
ments. Most of the scientific collecting done in the Fort Payne
Formation over the course of the past 30 years has been carried
out by crinoid workers. Whereas lantern elements and archae-
ocidarid interambulacral plates are easily recognizable as
belonging to echinoids, many disarticulated coronal plates
would be very difficult to distinguish from pelmatozoan thecal
and arm plates in the crinoidal limestones that are prevalent in
the Fort Payne and other Mississippian strata, which dominate
the rocks in which they are found. Therefore, it is not surprising
that only hemipyramids have been found in allochthonous facies
as they are likely to be preserved and recognizable as echinoid
fragments, even after extensive transport.

Conclusions

This is the first study to systematically describe the different
facies inhabited by echinoids in the Paleozoic. The Fort
Payne Formation yields a relatively diverse echinoid fauna, by
Paleozoic standards, containing four genera representing three
different families. ?Archaeocidaris sp., Lepidocidaris sp.,
?Lepidesthes sp., and an unidentified lepidocentrid are known
from the fauna, and all are known from the autochthonous
facies. The results of this study indicate that echinoids in the
Viséan of North America inhabited carbonate mound facies.
Echinoids are also known to inhabit the carbonate Waulsortian
mounds of Clitheroe, United Kingdom, and Belgium; and thus,
carbonate mud mounds appear to have supported diverse
echinoid faunas in the Mississippian of both North America and
Europe. All relatively well-preserved echinoids were known
from autochthonous facies, whereas only disarticulated lantern
elements were recovered from allochthonous facies. This is
likely due to taphonomic processes.
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Appendix. Locality information

Cave Springs South Buildup, on shores of Lake Cumberland;
36°56'22''N; 85°0'20''W; Jamestown 7.5' Quadrangle,
Russell County, Kentucky.

Celina Wackestone Buildup; 36°32'43''N; 85°30'0''W;
Columbia 7.5' Quadrangle, Clay County, Tennessee.

Gross Creek Buildup, on shores of Lake Cumberland; 36°47'27''N;
84°59'37''W; Cumberland City 7.5' Quadrangle, Clinton
County, Kentucky.

Otter Creek Buildup, on Shores of Lake Cumberland;
36°51'39''N; 85°2'53''W; Cumberland City 7.5' Quadrangle,
Russell County, Kentucky.

Russell Creek Buildup; 37°7'24''N; 85°17'56''W; Columbia 7.5'
Quadrangle, Adair County, Kentucky.

Otter Creek Buildup, on Shores of Lake Cumberland; 36°51'39''N;
85°2'53''W; Cumberland City 7.5' Quadrangle, Russell County,
Kentucky.

Celina Wackestone Buildup; 36°32'43''N; 85°30'0''W;
Columbia 7.5' Quadrangle, Clay County, Tennessee.

61D-West along KY HWY 61; 36°42'55''N; 85°21'52''W;
Frogue 7.5' Quadrangle, Cumberland County, Kentucky.

61 Ramp along KY HWY 61; 36°42'50''N; 85°21'49''W;
Frogue 7.5' Quadrangle, Cumberland County, Kentucky.
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