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Motivated by recent work on the derivation of labelled transitions and bisimulation

congruences from unlabelled reaction rules, we show how to address this problem in the

DPO (double-pushout) approach to graph rewriting. Unlike the case with previous

approaches, we consider graphs as objects, rather than arrows, of the category under

consideration. This allows us to present a very simple way of deriving labelled transitions

(called rewriting steps with borrowed context), which integrates smoothly with the DPO

approach, has a very constructive nature and requires only a minimum of category theory.

The core part of this paper is the proof that the bisimilarity based on graph rewriting with

borrowed contexts is a congruence relation. We will also introduce some proof techniques

and compare our approach with the derivation of labelled transitions via relative pushouts.

1. Introduction

In recent years the problem of deriving labelled transitions and bisimulation congruences

from unlabelled reaction or rewriting rules has received great attention. This line of

research was motivated by the theory of bisimulation congruences for process calculi,

such as the π-calculus (Sangiorgi and Walker 2001; Milner 1999). A bisimilarity defined

on unlabelled reduction rules is usually not a congruence, that is, it is not closed under

the operators of the process calculus. Congruence is a very desirable property since it

allows one to replace a subsystem with an equivalent one without changing the behaviour

of the overall system and, futhermore, helps make bisimilarity proofs modular.

Previous solutions have been to either require that two processes are related if and only

if they are bisimilar under all possible contexts (Milner and Sangiorgi 1992a) or to derive

a labelled transition system manually. Since the first solution needs quantification over all

possible contexts, proofs of bisimilarity can be very complicated. In the second solution,

proofs tend to be much easier, but it is necessary to show that the labelled variant of the

transition system is equivalent to the unlabelled variant.

† This research was partially supported by the DFG project SANDS, the BMBF project DACHIA, the TMR

network SEGRAVIS and EPSRC grant R93346/01.
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So the idea formulated in Leifer (2001), Leifer and Milner (2000), Sewell (2002) and

Sassone and Sobociński (2003) is to derive automatically a labelled transition system such

that the resulting bisimilarity is a congruence. A central concept of this approach is to

formalise the notion of the minimal context that enables a process to reduce. Consider,

for example, the CCS process a.P . It reduces when put into the contexts | ā.Q and

| ā.Q | b.R, but one is interested only in the first context, since it is in some sense smaller

than the second. This yields the labelled transition

a.P
|ā.Q
→ P | Q,

saying that a.P put into this context reacts and reduces to P | Q. Using all possible

contexts as labels would also result in a (coarser) bisimulation congruence, but we do not

gain anything compared to quantification over all contexts (for a more detailed study of

this congruence, see Bonchi et al. (2006)).

The notion of ‘minimal context’ is formalised in Leifer (2001) and Leifer and Milner

(2000) as the categorical concept of a relative pushout (RPO) and an idem pushout (IPO),

respectively. This notion has also been applied to bigraphs (Jensen and Milner 2003).

However, the theory is complicated by the fact that one cannot work with isomorphism

classes of graphs, since in this case the category under consideration would not possess

all necessary relative pushouts. Thus, one is forced to give unique names to all edges and

nodes in a graph, that is, to add support to a category, and to either work in a precategory

or to construct a suitable category starting from such a precategory. A different approach,

presented by Sassone and Sobociński (Sassone and Sobociński 2003), which does not

require the notion of support, is to construct relative pushouts (so-called GRPOs) in a

2-categorical setting.

It is our aim to achieve similar results in the context of graph rewriting (Rozen-

berg 1997), which is a framework that allows one to model dynamic and concurrent

systems consisting of interconnected components in a natural and intuitive way. Many

process calculi, such as the π-calculus (Gadducci and Montanari 2002; Montanari and

Pistore 1995; König 2000) and the ambient calculus (Gadducci and Montanari 2001),

can be translated into this framework. We are specifically interested in the double-

pushout (DPO) approach (Corradini et al. 1997; Ehrig et al. 1973), which is one of the

standard approaches to graph rewriting. However, there is not yet a uniform theory of

bisimulation for graph transformation systems. Previous work on this topic appeared

in Baldan et al. (2002) and König and Montanari (2001). Adding support, as explained

earlier, would be possible in theory, but contradicts the philosophy behind graph rewriting

in which graphs are considered only up to isomorphism. Furthermore, we are aiming for

a more straighforward approach for deriving labels of a transition system. Compared to

earlier approaches, in which the derivation of labels is a somewhat complex task, our

approach is rather straightforward and simple.

The approach presented in this paper is motivated by the work of Leifer and Milner,

together with other contributions to this area, but does not directly rely on their theory.

Instead, we present an uncomplicated way of deriving minimal contexts, which we call

borrowed contexts, that smoothly extends the DPO approach and has a very constructive
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nature. The only categorical concepts that are needed are pushouts and pullbacks. The

main difference to previous approaches is that in our case graphs are objects and not

arrows of the category under consideration. Our arrows are, instead, graph morphisms,

which provide the necessary tracking information for nodes and edges, and which, it turns

out, can be provided in the case of graphs as arrows by either adding support to a category

or by working in a 2-categorical framework. This work is based on ideas presented in

Ehrig (2002), which also points out similarities and differences between Milner’s bigraphs

(Jensen and Milner 2003; Milner 2001) and the DPO approach to graph rewriting. Note,

however, that in order to obtain the congruence property, our notion of rewriting with

borrowed contexts is slightly different to the one proposed in Ehrig (2002).

Our main result states that bisimilarity defined on graph rewriting with borrowed

contexts is indeed a congruence relation (see Theorem 4.3).

The paper is structured as follows. In Section 2 we will give a short introduction to the

DPO approach. This is followed in Section 3 by the definition of rewriting with borrowed

contexts. Section 4 provides the proof that the resulting bisimilarity is a congruence.

After introducing two proof techniques in Section 5, Section 6 continues with an example

showing borrowed contexts at work. We conclude in Section 7 with a comparison between

our approach to the relative pushouts (RPOs) of Leifer and Milner and the GRPOs

of Sassone and Sobociński. In fact, it turns out that our method of deriving labels

corresponds exactly to the construction of GRPOs in a cospan category. This fact is

presented in more detail in Sassone and Sobociński (2004).

This paper requires no more than a basic knowledge of category theory (Pierce 1991;

Mac Lane 1971). In fact, we only need pushouts and pullbacks, including some general as

well as specific preservation, composition and decomposition properties. The general prop-

erties hold in any category and the specific ones hold for graph structures, but also, more

generally, for the adhesive categories introduced recently in Lack and Sobociński (2004)

and Lack and Sobociński (2005) (see Appendix A). Moreover, they have been generalised

and shown for adhesive high-level replacement categories in Ehrig et al. (2004), where

monomorphisms are generalised to a suitable subclass M of all morphisms.

2. The DPO approach to graph rewriting

We will first define a family of categories of graphs and graph morphisms in a very

general way by defining graph structures (Ehrig et al. 1997), which include different forms

of graphs such as directed graphs and hypergraphs.

Definition 2.1 (Graph structures). A graph structure signature GS = (S,OP ,Σ) consists of

a set of sorts S , a family (OP s,s′)s,s′∈S of unary operator symbols and a family (Σs)s∈S of

labelling alphabets.

A graph structure A over GS is a sort-indexed family (As)s∈S of carrier sets together

with a sort-indexed family of labelling functions (lAs )s∈S such that lAs :As → Σs and an

OP -indexed family of mappings (opA)op∈OP such that opA:As → As′ if op ∈ OP s,s′ .

A graph structure morphism ϕ:A → B is a sort-indexed family of mappings ϕ =

(ϕs:As → Bs)s∈S such that lAs (x) = lBs (ϕ(x)) and opB(ϕ(x)) = ϕ(opA(x)) for all x ∈ As.
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For a fixed signature, graph structures and graph structure morphisms define a category

Graph.

A graph structure morphism ϕ is called injective if all its mappings are injective. It is

an isomorphism if all mappings are bijective. An isomorphism of the form ϕ:A → A is

called an automorphism.

The simplest graph structure signature has two sorts, node and edge, and two operator

symbols s, t ∈ OPedge,node standing for ‘source’ and ‘target’. Graph structures over this

signature are ordinary labelled directed graphs, and graph structure morphisms are

standard graph morphisms. The sets Σnode and Σedge contain node and edge labels,

respectively. In the following we will say ‘graph’ instead of ‘graph structure’ and ‘graph

morphism’ or just ‘morphism’ instead of ‘graph structure morphism’. For this reason,

the category of graph structures and graph structure morphisms based on some graph

signature GS is simply denoted by Graph.

The category Graph has all pushouts and pullbacks, which can be constructed com-

ponentwise in the category Set. Furthermore, constructing the pushout or pullback of

two injective morphisms always gives us two injective morphisms. Working exclusively

in the category of injective morphisms is not possible since this category does not have

all pushouts and pullbacks, which is due to missing non-injective mediating morphisms.

See Appendix A for additional properties of injective morphisms. Working with injective

morphisms is a natural requirement, but it is possible to relax the requirement of injectivity

to some extent (see conclusion).

More generally, our results hold also for adhesive categories, where the term ‘injective

morphism’ has to be replaced by ‘monomorphism’. Note that the category of graph

structures defined above is an adhesive category. A more detailed discussion of this issue

can also be found in the conclusion and in Appendix A.

Definition 2.2 (Graph transformation system). A rule or production is a pair p = (ϕL: I →
L,ϕR: I → R) of injective graph morphisms. Given the production p and a graph G with

injective morphism g:L → G, we obtain a graph transformation G ⇒ H if we can find

a graph C and morphisms c, h, c1, c2 such that in the following diagram (1) becomes

a pushout and (2) can be constructed as a pushout of c and ϕR in the category Graph,

where all morphisms in (1) and (2) are injective.

A graph transformation system is given by a set P of productions. Unlike the case with a

graph grammar, we do not require a start graph.

The diagram above, consisting of two pushouts, is the reason for the name double-

pushout or DPO approach, which was introduced in Ehrig et al. (1973). The intuition

behind this approach is first to find a left-hand side L in a graph G, then to remove L,
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Fig. 1. Rules of a graph transformation system.

apart from the interface I , and, finally, to attach R to the interface in the remaining graph

C , resulting in H .

Note: Instead of writing (ϕL: I → L,ϕR: I → R), we will in the following abbreviate a

rule by (L
ϕL←− I

ϕR−→ R), or even (L← I → R) if there is no danger of misunderstanding.

This short form will be used for other morphisms as well.

Throughout the paper we will use a running example, which is deliberately kept very

simple. Figure 1 shows three spans L ← I → R, which form the rule set P of our

example graph transformation system. The graphs are directed graphs with edge labels

where nodes are unlabelled (or are labelled with a dummy label). We give rules for a

simplex connection S and a duplex connection D, over both of which messages M, which

are represented by a loop, are sent. A duplex connection can be used in both directions,

whereas a simplex connection has a fixed direction. The connections themselves are

preserved, and are therefore in the interfaces of the rules. An alternative choice, which is

also covered by the concept of graph structures, would have been to model this situation

by hypergraphs with unary edges (for messages) and binary edges (for connections).

In order to state congruence results, we first need a notion of contexts and contexual-

isation.

Definition 2.3 (Graphs with interfaces and graph contexts). A graph G with interface J is

an injective morphism J → G. Furthermore, a context or cospan consists of two injective

morphisms J → E ← J .

The composition of a graph with interface J → G and a context J → E ← J is a graph

with interface J → G, which is obtained by constructing G as the pushout of J → G and

J → E:

Note that composition is defined only up to isomorphism, since the pushout object is

unique only up to isomorphism.

This notion of interfaces, contexts and composition is within the spirit of the DPO

approach, where the pushouts for G and H in Definition 2.2 can be interpreted as the

composition of L with C and R with C , respectively, along interface I . In the context of
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this paper, however, it is important also to consider the graph G with interface J leading

to G with interface J , which requires a context E with two interfaces J and J . Discrete

interfaces, which are a special case, have already been used – see, for instance, Gadducci

and Heckel (1997).

3. Rewriting with borrowed contexts

We are now ready for the central definition of this paper: graph rewriting with borrowed

contexts on graphs with interfaces. The underlying idea is to allow not only total, but

also partial matches of a left-hand side. The missing part of the left-hand side is then

displayed as the label of the resulting transition.

Definition 3.1 (Rewriting with borrowed contexts). Let P be a set of graph productions

of the form (L ← I → R), and let J → G be a graph with interface. We say that J → G

reduces to K → H with transition label (J → F ← K) whenever there is a production

(L ← I → R) ∈ P and there are graphs D, G+, C and additional morphisms such that

the following diagram commutes and the squares are, as indicated, either pushouts (PO)

or pullbacks (PB) with injective morphisms.

Symbolically, this is denoted by the transition (J → G)
J→F←K−→ (K → H), which is also

called a rewriting step with borrowed context.

The squares in the diagram above have the following meaning: the upper left-hand

square merges the left-hand side L and the graph G to be rewritten according to a partial

match G ← D → L of the left-hand side in G. The resulting graph G+ contains a total

match of L and can be rewritten as in the standard DPO approach, which produces

the two remaining squares in the upper row. The pushout in the lower row gives us the

borrowed (or minimal) context F , which is missing, in order to obtain a total match of

L, along with a morphism J → F indicating how F should be attached to G. Finally, we

need an interface for the resulting graph H , which can be obtained by ‘intersecting’ the

borrowed context F and the graph C via a pullback.

The graph C in the figure above is called a pushout complement of the arrows I → L

and L → G+. Similarly, F is a pushout complement of J → G and G → G+. These two

pushout complements may not exist: the middle square in the upper row can only be

completed if the dangling edge condition is satisfied, that is, if the left-hand side L is

connected to the rest of the graph G+ exclusively via its interface I and no edges would be

left ‘dangling’ by removing it; and the left square in the lower row can only be completed

if there is a way to extend the partial match to a left-hand side L by attaching some
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Fig. 2. Rewriting with borrowed contexts in the example graph transformation system.

context J → F to J → G. In other words, the dangling edge condition is also required for

the morphism G→ G+ with respect to the interface morphism J → G.

In this case, the borrowed context F is minimal in the following sense. Given the partial

match G ← D → L, the pushout G+ is the minimal graph containing both G and L

that is attached according to the partial match. The borrowed context F is a pushout

complement of the injective morphisms J → G→ G+, leading to the injective morphisms

J → F → G+. Note that pushout complements along injective morphisms are unique

up to isomorphism (see Property A.8), which implies that F is the unique graph (up to

isomorphism) that is needed to extend G to the minimal graph G+.

From the properties stated in Appendix A, one can infer that all morphisms in the

diagram above are injective. It is thus possible to depict this situation by drawing graphs

as Venn-like diagrams as shown in Figures 7 and 8 in Appendix B. This figure also

illustrates that the new interface K is the ‘union’ of the interfaces I and J , minus the

graph components that are internal to either G or L.

In order to illustrate Definition 3.1, we will consider the [simplex] rule of Figure 1 and

an example graph G consisting of two S-edges for which we find a partial match of the

left-hand side. This results in the derivation shown in Figure 2. Note that the image of a

node under a morphism is implicitly given by its position, that is, the left-hand node is

always mapped to a left-hand node, and analogously for the right-hand node.

4. Bisimilarity is a congruence

We now arrive at the main theorem of this paper, which says that the bisimilarity

defined on labelled graph transition systems is a congruence. However, we need two more

definitions first.

Definition 4.1 (Bisimulation and bisimilarity). Let P be a set of productions and R be a

symmetric relation consisting of pairs of graphs with interfaces of the form (J → G, J →
G′), also written (J → G)R (J → G′).
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The relation R is a bisimulation if whenever we have that (J → G)R (J → G′) and a

transition (J → G)
J→F←K−→ (K → H) (in words: J → G reduces to K → H with transition

label J → F ← K) can be derived from P, then there exists a morphism K → H ′ and

a transition (J → G′)
J→F←K−→ (K → H ′) with the same transition label J → F ← K such

that (K → H)R (K → H ′).

We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that relates the

two morphisms. The relation ∼ is called bisimilarity.

In order to state Theorem 4.3, we must be able to close a bisimulation or simply a

relation under all possible contexts.

Definition 4.2 (Closure under contexts). Let R be a relation on graphs with interfaces as

in Definition 4.1. We use R̂ to denote the closure of R under contexts, that is, R̂ is the

smallest relation that contains, for every pair (J → G, J → G′) ∈ R and for every context

of the form J → E ← J , the pair of morphisms (J → G, J → G
′
) that results from the

composition of J → G and J → E ← J , and J → G′ and J → E ← J , respectively.

A relation R is a congruence, that is, closed under contexts, whenever R̂ = R. Since R
is obviously contained in R̂, it suffices to show R̂ ⊆ R.

Theorem 4.3 (Bisimilarity is a congruence). Whenever R is a bisimulation, R̂ is a

bisimulation as well. This implies that the bisimilarity relation ∼ is a congruence.

Proof. In this proof we will refer to the pushout-pullback properties of graph structure

categories given in Appendix A.

With the following argument we can infer that ∼̂ ⊆∼, which implies that ∼ is a

congruence. Whenever (J → G) ∼̂ (J → G
′
), there exists a bisimulation R such that

(J → G) R̂ (J → G
′
). Since, as we will show, R̂ is a bisimulation as well, it follows that

(J → G) ∼ (J → G
′
)

So, we let R be a bisimulation and let (J → G) R̂ (J → G
′
), where the pair (J → G, J →

G
′
) has been obtained from the pair (J → G, J → G′) by composition with a context

J → E ← J as described in Definition 4.2. We assume that

(J → G)
J→F←K−→ (K → H).

Our goal is to show that there exists a transition

(J → G
′
)
J→F←K−→ (K → H

′
)

with (K → H) R̂ (K → H
′
), which implies that R̂ is a bisimulation. In Step 1 we

will construct a transition (J → G)
J→F←K−→ (K → H), which implies a transition (J →

G′)
J→F←K−→ (K → H ′) with (K → H)R (K → H ′), since R is a bisimulation. In Step 2 we

will extend the second transition to obtain the transition stated in our goal above.

Step 1: Our first assumption, (J → G) R̂ (J → G
′
), means that there is some pair

(J → G)R (J → G′) and a context J → E ← J such that J → G and J → G
′

can be

obtained by composing J → G and J → G′ with this context. The second assumption

is the transition (J → G)
J→F←K−→ (K → H), which leads to the situation depicted in
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Diagram (1), where the decomposition of J → G is shown explicitly and all morphisms

are injective and all (basic) squares are pushouts, apart from the square consisting of the

graphs K , C , F , G
+

, which is a pullback.

(1)

(2)

We can now split the lower pushout and the lower pullback along E (see Diagram (2)).

The left-hand square splits into two pushouts (by classical pushout splitting – see the

remark after Property A.3) and the right-hand square splits into two pullbacks (by classical

pullback splitting). Furthermore, all morphisms in Diagram (2) are injective.

We can now construct D as the pullback of G → G and D → G, followed by the

construction of G̃ as the pushout (see Diagram (3)). In this way, we split the morphisms

G→ G and D → G and obtain the morphism G̃→ G as an induced morphism. According

to Property A.1, all morphisms in Diagram (3) are injective.

(3)

In Diagram (2), we can now split the upper row of pushouts and the pushout at the

far left by classical pushout splitting, and using Property A.3, respectively, which gives us

Diagram (4). We obtain the graphs F1, G+, C and H . Note that the ‘triangle’ consisting

of D, D, G, G̃ in the upper left corner is also a pushout.

We can now complete the partial cubes in the middle of the diagram by adding F

and K with corresponding morphisms (see Diagram (7)). Diagram (7) is also illustraed

in Figure 10 in Appendix B, where graphs are represented schematically in a Venn-like

fashion (see also Figure 9). We first focus on the left cube and construct F as the

pullback of G+ → G
+

and E2 → G
+

, and obtain F1 → F as an induced morphism. From
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Property A.1 we can infer that F → G+ and F → E2 are injective, and F1 → F is injective

since it is the first morphism of an injective composition.

(4)

Since the left and top squares of the cube are pushouts, this implies that the outer

square in Diagram (5) is a pushout as well. Since the right square in Diagram (5) is a

pullback, Property A.4 implies that both squares are pushouts. Similarly, we can infer

that the outer square in Diagram (6) is a pushout, since the left and front squares of the

cube are pushouts. Again by Property A.4, we get that both squares in Diagram (6) are

pushouts. That is, the left cube commutes, all morphisms are injective and all squares are

pushouts.

(5)

(6)

Focussing on the right-hand cube, we can infer from Property A.2 that the left and

top squares of the cube are pullbacks, since they are pushouts. We construct K as the

pullback of the morphisms C → C and E1 → C , and get K → F as an induced morphism

by using the pullback property of the left square. The morphisms K → C , K → E1 are

injective by Property A.1, and K → F is injective as the first morphism of an injective

composition. The left, top and right squares are pullbacks, so we can now infer by classical

pullback decomposition that the bottom square is also a pullback. Furthermore, since

the bottom, front and top squares are pullbacks, the back square is also a pullback.

Finally, we can infer from Property A.6 that the right square is a pushout (since the left

square is a pushout) and that the bottom square is a pushout (since the top square is a

pushout). We thus obtain a commuting right cube where all morphisms are injective, all

squares are pullbacks and the left, right, top and bottom squares are also pushouts. This

https://doi.org/10.1017/S096012950600569X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950600569X


Bisimulation congruences in the DPO approach to graph rewriting 1143

implies, specifically, that the square consisting of K , E1, H , H is a pushout since it is the

composition of two pushouts.

(7)

From Diagram (7) we can derive the following transition:

(J → G)
J→F←K−→ (K → H),

using the notation of Definition 3.1. Since R is a bisimulation, this implies

(J → G′)
J→F←K−→ (K → H ′)

with (K → H)R (K → H ′). Furthermore, we can infer from Diagram (7) that K → H

can be obtained by composing K → H with the context K → E1 ← K .

Step 2: As mentioned above, we will now extend the transition from J → G′ to K → H ′

with the (K → H)R (K → H ′) obtained above to construct a transition from (J → G
′
) to

(K → H
′
) with (K → H) R̂ (K → H

′
). We will construct K → H

′
in such a way that it is

the composition of K → H ′ with the context K → E1 ← K . Recall also that J → G
′

is

the composition of J → G′ and the context J → E ← J .

We now cut away the upper layer of Diagram (7) to give Diagram (8), where all squares

are pushouts, apart from the square consisting of K , F , E1 and E2, which is a pullback.

(8)

From the derivation step of J → G′ given earlier, one can derive Diagram (9) for some

rule L′ ← I ′ → R′, where the lower right-hand square is a pullback and all other squares
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are pushouts. The morphism J → F is split by F1, so we can split the two left-hand side

pushouts by classical pushout splitting and by Property A.3, as shown in Diagram (10).

(9)

(10)

Composing Diagrams (8) and (10) gives us Diagram (11).

(11)

We still need to complete the two cubes in the middle of Diagram (11), which will lead

to Diagram (13). We first construct G
′

as the pushout of F1 → G̃′ and F1 → E and G
′+

as the pushout of F → G′+ and F → E2 leading to an induced morphism G
′ → G

′+
.

From Property A.1, we can infer that all morphisms apart from G
′ → G

′+
are injective.

By classical pushout decomposition, we have that the top square is a pushout (since the

left, bottom and right squares are pushouts) and that the front square is a pushout (since

the back, top and bottom squares are pushouts). From Property A.1, we can now infer

that G
′ → G

′+
is injective. Hence all squares in the left cube are pushouts, all morphisms

are injective and all squares are also pullbacks.

In the second cube we construct C
′

as a pushout of K → C ′ and K → E1, and obtain

C
′ → G

′+
as an induced morphism. Since the left, bottom and right squares are pushouts,

by classical pushout decomposition, the top square is a pushout as well. Hence, all new
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morphisms are injective. In order to show that the front square is a pullback, we consider

Diagram (12), where the left square is the right square of the cube and the right square

is the front square of the cube. Since the back and left squares of the cube are pullbacks,

the outer square of Diagram (12) is also a pullback. Moreover, the left square below is a

pushout. Hence Property A.5 implies that both squares in Diagram (12) are pullbacks.

(12)

This implies that all morphisms in the right-hand cube are injective, all squares are

pullbacks and the left, top, right and bottom squares are pushouts.

(13)

In Diagram (13), the three right-hand squares in the upper row are all pushouts since

each of them is the composition of two pushouts, the square J, F, G
′
, G
′+

is a pushout and

the square K, F, C
′
, G
′+

is a pullback. Hence, by Definition 3.1, we infer that

(J → G
′
)
J→F←K−→ (K → H

′
) ,

and since the square consisting of K , H ′, E1 and H
′

is also a pushout, as the composition

of two pushouts, we can infer that K → H
′

can be obtained by composing K → H ′ and

the context K → E1 ← K . From our earlier considerations, we know that K → H is the

composition of K → H with K → E1 ← K , so (K → H) R̂ (K → H
′
). This means that

we have achieved the goal stated at the beginning of the proof, which implies that R̂ is a

bisimulation and ∼ is a congruence.

Remark: In the definition of rewriting with borrowed contexts (Definition 3.1) and in

our main result above, Theorem 4.3 (‘Bisimilarity is a congruence’), we have, respectively,

assumed and shown that all graph morphisms are injective. In fact, it can be shown

that our definitions and results can be extended to the case where the morphisms of the

production p = (L ← I → R), the span (G+ ← C → H) and the morphisms J → G,
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F → G+, K → C , K → F and K → H are non-injective. This corresponds to the case of

non-injective productions with injective matches L→ G+ in the classical DPO approach,

which has not been studied explicitly up to now. This extended version of rewriting with

borrowed contexts has been proposed in a Dagstuhl seminar by Sassone and Sobociński

and in their technical report Sassone and Sobociński (2004).

5. Proof techniques

In order to pursue the example further, we will first introduce a proof technique simplifying

bisimilarity proofs. This technique is a straightforward instance of an up-to technique

(Milner and Sangiorgi 1992b; Sangiorgi 1995). The underlying idea behind the technique

is the observation that the relation R should be as small as possible, in order to obtain a

compact proof. This goal can be reached by slightly extending the notion of bisimulation

by demanding that if a transition is matched by another, the pair of resulting graphs

can be found in R after removal of identical contexts. Hence, this extended notion of

bisimulation is called ‘bisimulation up to context’. We first need an auxiliary definition.

Definition 5.1 (Progression). Let R,S be relations containing pairs of graphs with

interfaces of the form (J → G, J → G′), where R is symmetric. We say that R progresses

to S, abbreviated by R � S, if whenever (J → G)R (J → G′) and (J → G)
J→F←K−→

(K → H), there exists a morphism K → H ′ such that (J → G′)
J→F←K−→ (K → H ′) and

(K → H)S (K → H ′).

For example, R is a bisimulation if and only if R� R.

Definition 5.2 (Bisimulation up to context). Let R be a symmetric relation containing

pairs of graphs with interfaces of the form (J → G, J → G′).

If R� R̂, then R is called a bisimulation up to context.

We will show in Proposition 5.3 that every bisimulation up to context is contained in

the bisimilarity ∼. The attractiveness of bisimulations up to context stems from the fact

that such a relation can be much smaller than the least bisimulation that contains it, and

thus proofs can be compressed. This technique might even allow us to work with a finite

relation instead of an infinite one.

Proposition 5.3 (Bisimulation up to context implies bisimilarity). Let R be a bisimulation

up to context. Then R ⊆∼.

Proof (Sketch). By examining the proof of Theorem 4.3 carefully, we can see that some

simple modifications give us the following (stronger) theorem:

If R�S, then R̂� Ŝ also.

Since R is a bisimulation up to context, we have R � R̂. The stronger version of

Theorem 4.3 now implies R̂ �
̂

(R̂). Attaching two contexts in sequence is equivalent to

attaching only one context. Hence, we have
̂

(R̂) = R̂, which implies R̂ � R̂, and hence

that R̂ is a bisimulation, that is, R̂ ⊆∼. This implies R ⊆ R̂ ⊆∼.
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Since composition with a context is defined only up to isomorphism, we can assume

that R̂ is closed under isomorphism in the following sense: for every span G ← J → G′

(also written (J → G, J → G′)), all isomorphic spans G̃← J̃ → G̃′ are also contained in R̂.

Similarly, we can restrict ourselves to abstract transitions when checking for bisimilarity.

Assume that (J → G)R (J → G′) and there is a transition (J → G)
J→F←K−→ (K → H). A

transition of the form (J → G)
J→F̃←K̃−→ (K̃ → H̃) is considered to be equivalent to the first

transition whenever we can find isomorphisms from F̃ , K̃, H̃ to F,K,H , respectively, such

that Diagram (14) commutes. Furthermore, each such commuting diagram corresponds

to a transition.

In bisimulation proofs it is sufficient to inspect only one representative in such an

equivalence class and to show the existence of a matching transition (J → G′)
J→F←K−→

(K → H ′) such that (K → H) R̂ (K → H ′).

The remaining transitions (J → G)
J→F̃←K̃−→ (K̃ → H̃) in the equivalence class can then

be dealt with as follows. From (J → G′)
J→F←K−→ (K → H ′) and Diagram (14), we can

derive Diagram (15), where the arrows pointing upwards are again isomorphisms and

the diagram commutes. This gives a transition (J → G′)
J→F̃←K̃−→ (K̃ → H̃ ′) such that

H ← K → H ′ and H̃ ← K̃ → H̃ ′ are isomorphic spans, from which it follows that

(K̃ → H̃) R̂ (K̃ → H̃ ′).

(14)

(15)

A different way of working ‘up to isomorphism’ would be to work directly on an abstract

transition system, which can be obtained from the concrete transitions system used in this

paper by quotienting by isomorphism (as is done in Sassone and Sobociński (2005)).

A second proof technique limits the transitions of a graph G by avoiding partial matches

that are included in the intersection of J (the interface of G) and I (the interface of the

production). This situation is depicted schematically in Figure 11 in Appendix B. We first

define a new transition relation →d that mirrors this intuition.

Definition 5.4. Let (J → G)
J→F←K−→ (K → H) be a transition of J → G. We say that

the transition is independent whenever we can add two injective morphisms D → I

and D → J to the diagram in Definition 3.1 such that the diagram commutes, that is,

D → I → L = D → L and D → J → G = D → G (see Diagram (16)). We write
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(J → G)
J→F←K−→d (K → H) if the transition is not independent, in which case, the transition

will be called dependent.

(16)

Let R, S be two relations as in Definition 5.1. We say that R d-progresses to S,

abbreviated by R�d S, if whenever (J → G)R (J → G′) and (J → G)
J→F←K−→d (K → H),

there exists a morphism K → H ′ such that† (J → G′)
J→F←K−→ (K → H ′) and (K →

H)S (K → H ′).

We can now use the new relation �d as the basis of a new proof technique.

Proposition 5.5.

(i) Let R be a relation with (J → G)R (J → G′). Given an independent transition (J →
G)

J→F←K−→ (K → H), there is an independent transition (J → G′)
J→F←K−→ (K → H ′) via

the same production and context such that (K → H) R̂ (K → H ′).

(ii) Let R be symmetric and R�d R̂. This implies that R is contained in ∼.

Proof.

(i) We assume that (J → G)R (J → G′) and (J → G)
J→F←K−→ (K → H) is an independent

transition (see Definition 5.4). That is, there are morphisms D → J and D → I such

that Diagram (16) above commutes.

(17)

We continue the proof by constructing the morphisms in Diagram (17). The morphisms

L→ F and G→ C are constructed according to Property A.7.

We now show how to construct the two remaining morphisms I → K and J → K .

In Diagram (18) the right square is a pullback and the outer square is a pushout as

well as a pullback. This gives us I → K as an induced morphism. We can then infer

from Property A.4 that the left as well as the right square are pushouts. Analogously,

† Note that J → G′ may answer with an independent transition.
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we can construct a morphism J → K in Diagram (19), and it follows that the left and

right squares are both pushouts.

(18)

(19)

We now construct F ′ in Diagram (20) as the pushout of I → K and I → R, giving us

F ′ → H as an induced morphism. From classical pushout decomposition, we can infer

that the lower right square is also a pushout. Hence we can conclude that K → H can

be obtained by composing J → G with the context J → F ′ ← K – (see Diagram (21)).

(20)

(21)

We now derive a corresponding transition of J → G′ using the same rewriting rule. At

this point, the morphisms shown in Diagram (22) are known to exist, where D → G′ is

the composition of D → J and J → G′. An alternative representation of this diagram

is given in Diagram (23).

(22)

(23)

We complete Diagram (23) by constructing C ′ as the pushout of J → K and J → G′,

followed by the construction of G′+ as the pushout of K → C ′ and K → F . We

then construct H ′ as the pushout of K → C ′ and K → F ′. From classical pushout
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composition properties, it follows that all (basic and non-basic squares in Diagram (24))

are pushouts. Rearranging this diagram gives us Diagram (25), where again all squares

are pushouts. Hence the square consisting of K , F , C ′, G′+ is also a pullback (see

Property A.2).

(24)

(25)

Hence we conclude from the definition of rewriting with borrowed contexts that

(J → G′)
J→F←K−→ (K → H ′), and, furthermore, K → H ′ can be obtained by composing

J → G′ with the context J → F ′ ← K , as shown in Diagram (26) This implies

(K → H) R̂ (K → H ′).

(26)

(ii) We first assume that R �d S and show that this implies R � S ∪ R̂. Let (J →
G)R (J → G′) and (J → G)

J→F←K−→ (K → H). If this transition is dependent, then

it follows from the definition of �d that (J → G′)
J→F←K−→ (K → H ′) and (K →

H)S (K → H ′). If the transition is independent, we have shown in the first part of

this proposition that (J → G′)
J→F←K−→ (K → H ′) and (K → H) R̂ (K → H ′). Combining

these, we obtain R�S∪ R̂.

Hence R �d R̂ implies that R � R̂ ∪ R̂ = R̂, and thus R is a bisimulation up to

context and is contained in ∼.

6. Borrowed contexts at work: an example

We now show how to exploit this proof technique and prove that two graphs are bisimilar.

We assume that the set of rules P shown in Figure 1 is given and consider the two graphs

with the interfaces shown in Figure 3.

We consider the symmetric relation

R = {(J → G, J → G′), (J → G′, J → G)}

and will show that it is contained in ∼ using Proposition 5.5. For each of the three

rules there are several partial matches for both G and G′. Most of these matches lead to
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J
S

S

D

J ′G G

Fig. 3. Two graphs with interfaces that are bisimilar.

S

S

G J
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G′
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G′

↓ ↓ ↓M F1 F2 M ↓

MS

S

H1 K 1 M
D

H ′1 S

S

M H2 K 2 M H ′2
D

Fig. 4. Matching transitions of bisimilar graphs.

independent transitions in the sense of Definition 5.4, since the graph to be rewritten and

the left-hand side overlap only in their interfaces.

We check the only two dependent transitions of J → G, where both are instances of

the [simplex] rule. These two transitions will be written

(J → G)
J→Fi←Ki−→ (Ki → Hi),

where i = 1, 2. The graphs Fi, Ki, Hi and the corresponding morphisms are depicted in

Figure 4. Note that we have already shown how to derive the transition of J → G for

i = 1 in Figure 2 (where F1 = F , K1 = K , H1 = H).

In order to show that R is a bisimulation up to context, we have to find matching

transitions

(J → G′)
J→Fi←Ki−→ (Ki → H ′i )

for i = 1, 2, such that (Ki → Hi) R̂ (Ki → H ′i ). Such transitions can be derived, and the

graphs H ′i with their corresponding morphisms are also depicted in Figure 4. Note that

the transition for i = 1 is an instance of the [duplex-1] rule (its derivation is depicted in

Figure 5), while the transition for i = 2 is an instance of the [duplex-2] rule.

Furthermore, we have (Ki → Hi) R̂ (Ki → H ′i ) for i = 1, 2, since these graphs can be

obtained by composing J → G and J → G′, respectively, with a context consisting of two

nodes and a looping M-edge. After checking the two dependent transitions of J → G′, we

can conclude (J → G) ∼ (J → G′) using Proposition 5.5.

This means that in every context we can replace a duplex connection by two simplex

connections, and vice versa, without changing the behaviour of the overall system. Even

this small example shows us that in order to obtain a bisimilarity result, proof techniques
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D

↓ ↓ ↓ ↓
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→ →

→ →

→

M
D D

↓ ↓ ↓

M
D

D

G′ M
D D

M
D

H′1

J M F1 K 1

Fig. 5. Graphical representation of the derivation of the matching transition of J → G′.

are needed in order to keep R finite. Otherwise we would have to deal with a relation

containing infinitely many pairs.

7. Connection to relative pushouts

A question that arises naturally is whether our construction is connected to the relative

pushouts (RPOs) of Leifer and Milner (Leifer and Milner 2000) or to the GRPOs of

Sassone and Sobociński (Sassone and Sobociński 2003). In order to give a simplified

answer to this question†, we consider the category of cospans, the objects of which are

graphs and the arrows of which are injective cospans (or contexts) over the category

Graph (see Definition 2.3). Two cospans J1 → G ← J2 and J2 → G′ ← J3 are composed

using the following pushout construction, which results in a new cospan J1 → G← J3.

Since the pushout is defined only up to isomorphism, we also consider the middle graph

of a cospan up to isomorphism. The outer graphs are regarded as concrete graphs.

This notion of ‘up to isomorphism’ creates some problems, which are explained below.

The alternative, which is pursued in Sassone and Sobociński (2003) and Sassone and

Sobociński (2004), would be to fix a choice of pushout. Then it turns out that associativity

only holds up to isomorphism, which means that we are actually working inside a

bicategory instead of a category.

† A more formal treatment can be found in Sassone and Sobociński (2004).
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Before we continue, we will first define the notion of a relative pushout (Leifer 2001;

Leifer and Milner 2000).

Definition 7.1 (Relative pushout). Consider, in any category C, a commuting square as

shown in Diagram (27) such that f0; g0 = f1; g1. A relative pushout (RPO) for this

commuting square is a triple h0, h1, h satisfying the following two properties:

(i) Commutation: f0; h0 = f1; h1 and hi; h = gi for i = 0, 1 (see Diagram (28));

(ii) Universality: for any h′0, h′1, h′ satisfying f0; h′0 = f1; h′1 and h′i; h
′ = gi there exists

a unique mediating arrow k such that k; h′ = h and hi; k = h′i for i = 0, 1 (see

Diagram (29)).

(27)

(28)

(29)

A commuting square as in Diagram (27) is an idem pushout (IPO) if the triple g0, g1, id

is a relative pushout for the same Diagram (27).

It is shown in Leifer (2001) that the square consisting of f0, f1, h0, h1 in Diagram (28)

is an IPO whenever the triple h0, h1, h is an RPO.

In the work of Leifer and Milner, relative pushouts are used to formalise the notion

of a ‘minimal context’, where morphisms in their framework are called arrows. Let (l, r)

with l, r: 0 → m be a reaction rule consisting of two arrows, the source of which is a

distinguished object 0, and let a: 0 → m′ be another arrow. The task is to find arrows

D:m → k, F:m′ → k such that l;D = a;F and the commuting square is an IPO, that is,

D and F are in some sense minimal arrows having this property. In this case there is a

transition a
F→ r;D (see Diagram (30)).

(30)
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∅ 1 1 ∅ 1 1

1 21 21 2 21 21

1 21 ∅ 2 21 ∅

Fig. 6. Different diagrams for a graph with non-trivial automorphisms.

We will make a simplified attempt at constructing a relative pushout in the category

of injective cospans over Graph, highlight connections to the proof of Theorem 4.3 and

show the relationship to rewriting with borrowed contexts. The attempt is simplified

in its handling of injectivity and isomorphisms. For the general case, see Sassone and

Sobociński (2004).

Reaction rules (l, r) in our setting are pairs of injective cospans of the form (�→ L←
I,�→ R ← I), thus a commuting square l;D = a;F (which is not necessarily a relative

pushout) corresponds to a square of injective cospans as shown in Diagram (31), where

l;D corresponds to (�→ L← I); (I → C ← K) and a;F to (�→ G← J); (J → F ← K).

(31)

(32)

Since the two compositions of cospans coincide, there must be a graph G
+

such that

Diagram (32) commutes and the lower left and the upper right squares are pushouts.

Although the graph G
+

is unique up to isomorphism, Diagram (32) is not necessarily

unique, not even up to isomorphism. This can be the result of non-trivial automorphisms

of G
+

. The outcome of the following construction of a relative pushout depends on the

specific choice of diagram.

An example for this situation is given in Figure 6, where the morphisms are indicated

by numbered nodes. Note that in both diagrams the cospans and their compositions are

isomorphic, but still, the two diagrams differ significantly and would lead to different

outcomes of the following construction. In fact, the upper left square in the second

diagram is a pushout, which is not the case in the first diagram. But in both diagrams
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all squares commute and the lower left and upper right squares are pushouts. A similarly

problematic example is given in Leifer (2001, pages 80–81).

We therefore assume for simplicity in the following that the automorphism group

of G
+

consists of only one element (the identity), and thus that Diagram (32) is

uniquely determined. Apart from this simplification, there are, in principle, two ways

to force uniqueness: one can either add support to the category (Leifer 2001; Jensen

and Milner 2003), that is, every graph item should have a unique unchangeable name;

or one can work in a 2-categorical setting (Sassone and Sobociński 2004; Sassone and

Sobociński 2003), where commuting cubes such as the one in Diagram (31) are additionally

provided with an isomorphism giving a ‘proof of structural congruence’. We will pursue

the simplified case.

In the following, we construct Diagram (33) from Diagram (32) in several steps. First we

construct D as the pullback of L→ G
+

and G→ G
+

, and then construct G+ as the pushout

of D → G and D → L. This gives us G+ → G
+

as an induced morphism. Next we can

split the two pushouts (the lower left and upper right squares) along G+ by Property A.3,

and obtain the graphs F and C . This is followed by the construction of K as the pullback

of F → G+ and C → G+, and, finally, E as the pullback of F → G
+

and C → G
+

. The

morphisms K → E and K → E are mediating morphisms for the second pullback.

(33)

This construction resembles, on the one hand, some parts of the proof of Theorem 4.3

(see right cube in Diagram (7)). On the other hand, it corresponds exactly to the

construction of groupoidal relative pushouts (GRPOs) in Sassone and Sobociński (2004)

for the special case in which the isomorphism α:G+JF
∼→ L+IC is the identity, as assumed

above, where G
+

= G+J F = L+I C . This means that the triple I → C ← K , J → F ← K ,

K → E ← K of cospans constructed above and shown in Diagram (34) is a GRPO of

the cospans in (31). In fact, it can be deduced from the construction in (33) that all the

subdiagrams of (34) commute in the category of cospans, and it follows from the general

proof in Sassone and Sobociński (2004) that (34) defines the relative pushout of (31).
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(34)

Moreover, it is shown in Sassone and Sobociński (2004) that the construction of

rewriting steps based on their GRPOs corresponds exactly to rewriting with borrowed

contexts in our sense (see Definition 3.1). In fact, from the construction in Diagram (33),

we obtain diagram (35), where squares (1), (2) and (3) have been constructed directly or

by splitting as pushouts, and square (4) has been constructed as a pullback. Moreover,

square (5) in Diagram (35) is a pushout according to the construction of the derived

graph H in both approaches. Hence squares (1)–(5) define a rewrite step with borrowed

contexts in our sense (see Definition 3.1).

(35)

8. Conclusion

We have presented a way to derive labelled transitions and bisimulation congruences for

graph transformation systems. It is our hope that this work will be helpful for the transfer

of concepts from the world of process algebras to the world of graph rewriting and vice

versa. We believe that having graphs as objects (and graph morphisms as arrows) instead

of having graphs as arrows is useful for tracking graph components, which enables us to

state easily which components are associated with each other in different graphs.

The line of research this paper is concerned with has generated a lot of interest and

contributions in the last few years, ranging from bigraphs over (G)RPOs to the work on

borrowed contexts presented in this paper. We have tried to point out differences and

similarities throughout the paper. Summarising, we would like to say that in some sense

all these contributions are different views on the same subject matter. As has been shown

in Sassone and Sobociński (2004), these approaches are not only related in spirit, but there

is a clear and formal way to show their equivalence. One of our main contributions is to

provide a simple and straightforward way to derive labels, using only some pushouts and

one pullback (see Definition 3.1). This definition is definitely simpler and more accessible
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than the ones in other approaches, and lends itself better to the actual use in proofs or in

mechanised verification.

Using only basic categorical concepts, our proof that bisimilarity is a congruence is

slightly longer than other proofs. But taking into account that in the other approaches

(Leifer and Milner 2000; Sassone and Sobociński 2004) an additional difficult proof

obligation is the construction and universal property of relative pushouts and GRPOs,

respectively, our proof is acutally shorter and easier to verify. In any case, our work can

profit from the fact that our construction has been shown to have the universal property

of a relative pushout. One can thus transfer other congruence results directly, for instance,

the results for trace and failures equivalences (Leifer 2001) and for weak bisimilarity

(Jensen to appear).

Future work aims at a closer integration of the ideas presented in this paper with the rich

theory of graph transformation systems. In this way we hope to establish an even closer

correspondence between the world of process calculi and the world of graph rewriting.

For instance, we have obtained compositionality results for DPO transformations with

borrowed context (Baldan et al. 2006). These results can be seen as a first step towards

a structural operational semantics for adhesive rewriting systems, that is, towards a

framework where the transition system associated with a graph transformation system

can be defined inductively in sos style.

Appendix A. Pushout-pullback properties

Definition 3 and the proof of Theorem 4.3 require several properties to hold in the

category we are working in. All these conditions are stated below, and are satisfied by the

category Graph of graph structures and graph structure morphisms for a given signature.

Naturally, the result holds also for any other category satisfying these conditions, for

instance, for categories where pushouts and pullbacks are constructed componentwise in

the category Set.

More precisely, the results hold for all adhesive categories as introduced by Lack

and Sobociński (Lack and Sobociński 2004; Lack and Sobociński 2005). In fact, all

the following properties A.1–A.8 are valid in adhesive categories, provided ‘injective

morphisms’ in A.1–A.8 is replaced by ‘monomorphisms’. The essential point of adhesive

categories is the requirement that all pushouts along monomorphisms, where at least one

of the given morphisms is a monomorphism, are van Kampen squares, or VK-squares

for short. Property A.6 below corresponds roughly to one direction of the VK-square

property. Intuitively, this part means that pushouts along monomorphisms are closed

under pullbacks. More precisely, given the cube in diagram (40) where the front square

is a pushout along a monomorphism, the VK-square property states that if the right and

top squares in diagram (40) are pullbacks, then the back square is a pushout if and only

if the left and bottom squares are pullbacks.

In the following, we state the properties A.1–A.8 without proofs – explicit proofs for

most of A.1–A.8 can be found in Lack and Sobociński (2004; 2005); A.5 is shown in

a separate note by Sobociński (Sobociński 2004); and the remaining properties are easy

consequences of the others.
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A.1. Injectivity conditions

The two morphisms generated by a pushout, pullback or pushout complement of injective

morphisms are always injective. Furthermore, given two injective morphisms G2 → G4,

G3 → G4, if we construct G1 as the pullback, and then construct G′4 as the pushout of

G1 → G2, G1 → G3 as shown in Diagram (36), we get that all morphisms, including the

unique mediating morphism G′4 → G4, are injective.

(36)

A.2. Injective pushouts are pullbacks

A pushout that consists of four injective morphisms is also a pullback.

A.3. Pushout complement splitting

If the square in Diagram (37) below is a pushout and all morphisms are injective, then

there exists a graph G2 splitting the morphism G1 → G3 and a morphism G2 → G5 such

that Diagram (38) consists of two pushouts and all morphisms are injective.

(37)

(38)

Remark: Whenever the square in Diagram (37) is a pullback, the square splits into

two pullbacks (as shown in Diagram (38)) in every category without the requirement of

injectivity (classical pullback splitting). And if the square in Diagram (39) is a pushout, it

splits into two pushouts in every category (classical pushout splitting).

(39)

A.4. Special pushout-pullback decomposition

In Diagram (38) above consisting of injective morphisms, whenever the outer square

(consisting of G1, G3, G4, G6) is a pushout and the right square is a pullback, the left and

right squares are both pushouts.

A.5. Special pullback-pushout decomposition

In Diagram (38) above consisting of injective morphisms, whenever the the outer square is

a pullback and the left square is a pushout, the left and right squares are both pullbacks.
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Remark: Compare this with the classical decomposition properties. Whenever the outer

and left squares are pushouts, the right square is a pushout. Furthermore, whenever the

outer and right squares are pullbacks, the left square is a pullback.

A.6. Cube pushout-pullback property

Given a commutative cube consisting of injective morphisms as shown in Diagram (40)

below, where the bottom, left, right and top squares are pullbacks, whenever the front

square is a pushout, the back square is a pushout as well.

(40)

A.7. Special pushout decomposition

If all morphisms in Diagram (41) below are injective and the left and right squares are

both pushouts and there exists a morphism G1 → G3, then there exists a morphism

G4 → G6 such that the diagram commutes and the outer square is a pushout. In order to

prove this property, we require Property A.8.

(41)

A.8. Uniqueness of pushout complements

Let G1 → G2 and G2 → G4 be two morphisms as shown in Diagram (42). Then there

exists a unique graph G3 and unique injective morphisms G1 → G3, G3 → G4 such that

the square in Diagram (43) is a pushout.

(42)

(43)

Remark: In the remark at the end of Section 4 we pointed out that there is a non-injective

extension of Definition 3.1 and Theorem 4.3. In fact, this requires corresponding non-

injective extensions of Conditions A.1–A.8, which have been shown already in Sassone and

https://doi.org/10.1017/S096012950600569X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950600569X


H. Ehrig and B. König 1160

Fig. 7. Representation of a graph G overlapping with a left-hand side L.

Fig. 8. Graphical represenation of rewriting with borrowed contexts with Venn-like diagrams.

Sobociński (2004) and Sobociński (2004), respectively. Moreover, it seems that generalising

and proving the conditions for adhesive high-level replacement systems (Ehrig et al. 2004)

accordingly is straightforward.

Appendix B. Graph representation by Venn diagrams

A graph G for which there exists an injective morphism G→ G+ can be seen as a subobject

of G+. Since we are working with injective morphisms only, we can exploit this suboject

relation and visualise diagrams by drawing graphs as Venn diagrams. Intuitively, this

works since in an adhesive category the subobjects of an object form a distributive lattice.

We can illustrate Definition 3.1 schematically. The graph G that is to be rewritten

and the left-hand side L including their interfaces J and I can both be represented as

overlapping circles (see Figure 7 for a typical situation). Note that some areas might be

empty. In Figure 8 we show a part of the Diagram of Definition 3.1, drawing graphs that

are subojects of G+ and ignoring the graphs at the far right, that is, the right-hand side

R and the resulting graph H .

If we have a graph G in a context E and find a partial match of a left-hand side L, a

schematical representation of such a situation can be drawn as in Figure 9. Diagram (7)
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Fig. 9. Representation of a graph G with context E and overlapping with a left-hand side L.

Fig. 10. Representing Diagram (7) in the proof of Theorem 4.3 with Venn diagrams.

in the proof of Theorem 4.3 can be represented with Venn diagrams as shown in

Figure 10 using the schema of Figure 9. Again, we omit the graphs on the far right-hand

side.
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Fig. 11. The partial match is located in the overlap of the interfaces J and I .

The situation described in Definition 5.4 where the partial match occurs in the overlap

of the interfaces J and I leading to an independent transition is shown in Figure 11.
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Sassone, V. and Sobociński, P. (2004) Congruences for contextual graph-rewriting. Technical Report

RS-04-11, BRICS.
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