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A partial Steiner (n, r, l)-system is an r-uniform hypergraph on n vertices in which every set

of l vertices is contained in at most one edge. A partial Steiner (n, r, l)-system is complete if

every set of l vertices is contained in exactly one edge. In a hypergraph H, the independence

number α(H) denotes the maximum size of a set of vertices in H containing no edge. In

this article we prove the following. Given integers r, l such that r � 2l − 1 � 3, we prove

that there exists a partial Steiner (n, r, l)-system H such that

α(H) �
(
l − 1

r − 1
(r)l

) 1
r−1

n
r−l
r−1 (log n)

1
r−1 as n→ ∞.

This improves earlier results of Phelps and Rödl, and Rödl and Ŝinajová. We conjecture

that it is best possible as it matches the independence number of a random r-uniform

hypergraph of the same density. If l = 2 or l = 3, then for infinitely many r the partial

Steiner systems constructed are complete for infinitely many n.

AMS 2010 Mathematics subject classification: Primary 05B05

Secondary 05B07, 05B20, 05B25, 05D40

1. Introduction

For integers 1 < l < r < n, an r-uniform hypergraph on n vertices is called a partial Steiner

(n, r, l)-system or, for short, an (n, r, l)-system, if every l-set of vertices is contained in at

most one edge of the hypergraph. An (n, r, l)-system is complete if every l-set is in exactly

one edge. In this paper, we study the independence number of (n, r, l)-systems: this is the

size of the largest set of vertices in an r-uniform hypergraph containing no edge. For

a hypergraph H, the independence number is denoted α(H). The independence number

arises in many applications and is central in extremal hypergraph theory, relative to Turán-

type problems and Ramsey Theory, extremal problems in combinatorial geometry [17, 12],

and algorithmic complexity. The motivation for this paper is to construct Steiner (n, r, l)-

systems which are close to complete and whose independence number is asymptotically

the same as the independence number of a random r-uniform hypergraph with the
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same expected density of edges as n→ ∞. We believe that these (n, r, l)-systems have

asymptotically the smallest possible independence number amongst all (n, r, l)-systems.

1.1. The independence number of (n, r, l)-systems

We first discuss historical bounds on the independence number of (n, r, l)-systems. An

elementary probabilistic argument (see for instance [4] for more precise results) shows

that an (n, r, l)-system contains an independent set of size Ω
(
n

r−l
r−1

)
. Phelps and Rödl [20]

were the first to show that for (n, 3, 2)-systems H, a substantially better bound is possible,

namely that if H is an (n, 3, 2)-system then α(H) = Ω(
√
n log n). More general results were

obtained by Duke, Lefmann and Rödl [7] for (n, r, 2)-systems, building on the paper of

Ajtai, Komlós, Pintz, Spencer and Szemerédi [1]. Their result was extended by Rödl and

Ŝinajová [22] to cover all (n, r, l)-systems, where Rödl and Ŝinajová showed that if H is

an (n, r, l)-system, then

α(H) = Ω
(
n

r−l
r−1 (log n)

1
r−1

)
. (1.1)

Rödl and Ŝinajová [22] also showed that this is tight up to large constant factors

depending on l and r. Shearer’s method [23] was used by Kostochka, Mubayi and the

second author [18] to obtain better lower bounds when l = r − 1. In what follows, if f, g

are positive-valued functions of n, then we write f ∼ g if and only if limn→∞ f(n)/g(n) = 1

and f � g if and only if lim supn→∞ f(n)/g(n) � 1.

1.2. Main results

Complete (n, r, l)-systems in general are very difficult to construct; in fact no infinite family

is known for r > l > 3. The construction of ‘near-complete’ or ‘asymptotic’ (n, r, l)-systems

constitutes Rödl’s solution [21] to a long-standing conjecture of Erdős and Hanani [9] on

the existence of asymptotic designs. The contribution of this paper is to construct ‘near-

complete’ (n, r, l)-systems whose independence number is asymptotic to the independence

number of a random r-uniform hypergraph with the same density of edges. We shall

check in Section 2 that if H is an r-uniform hypergraph on n-vertices created by sampling

the edges of the complete r-uniform hypergraph independently with probability p, and p

is chosen so that the expected number of edges of H equals the number of edges in a

complete (n, r, l)-system, then almost surely as n→ ∞,

α(H) ∼
(
l − 1

r − 1
(r)l

) 1
r−1

· n r−l
r−1 (log n)

1
r−1 .

It is convenient henceforth to denote the quantity on the right by A(n, r, l). We construct

partial Steiner (n, r, l)-systems whose independence number matches this bound for ‘more

than half’ of the pairs r > l > 1.

Theorem 1.1. If r � 2l − 1 � 3, then there exists an (n, r, l)-system H such that α(H) ∼
A(n, r, l) as n→∞.

For l = 2 or l = 3, the construction of H in Theorem 1.1 can actually be made for

infinitely many r into a complete (n, r, 2)-system for infinitely many values of n, using
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Wilson’s theorem [24] for l = 2 and known constructions of inversive planes for l = 3.

We prove Theorem 1.1 using an iterative algebraic construction, together with some

randomness, and the analysis requires a little spectral theory and probability. We believe

that Theorem 1.1 extends to all cases 1 < l < r, but this remains open. In a forthcoming

paper [8], we will use Rödl’s nibble method to prove that the theorem also holds for

l = r − 1. We make the following conjecture.

Conjecture 1.2. Let r, l be integers, where r > l > 1. Then for any partial (n, r, l)-system H,

α(H) � A(n, r, l) as n→∞.

For instance, this conjecture predicts that for every partial Steiner triple system on

n vertices, the independence number is at least asymptotic to
√

3n log n as n→∞. The

current best lower bounds from [18] are α(H) � 0.458
√
n log n when H is any partial

(n, 3, 2)-system. Perhaps the first interesting case not covered by Theorem 1.1 is r = 4

and l = 3, where we seek to construct an n-vertex example with independence number

asymptotic to (16n log n)1/3 as n→ ∞.

1.3. Notation

Hypergraphs. An r-uniform hypergraph on a set V is a set H of r-element subsets of V

called edges. If U ⊆ V , then the induced r-uniform hypergraph H[U] is the subset of edges

of H contained in U. We say that U is an independent set if H[U] = ∅. The independence

number α(H) is the maximum size of an independent set in H. Unless otherwise noted,

the hypergraphs in this paper all have the same fixed vertex set V of size n. Let Hr(n, p)

denote the random hypergraph obtained by independently sampling the edges of a complete

r-uniform hypergraph on n vertices with probability p.

Asymptotic notation. The standard limit notation f = O(g),Θ(g),Ω(g), o(g) is generally

taken with respect to the implicit variable n, unless noted otherwise. Also, if f, g are

positive-valued functions of n, then we write f ∼ g if and only if limn→∞ f(n)/g(n) = 1

and f � g if and only if lim supn→∞ f(n)/g(n) � 1. Given two natural numbers n, r, let

(n)r = n(n− 1) · · · (n− r + 1).

2. Independent sets in random hypergraphs

In this section we compute the asymptotic value of α(H) for the random r-uniform

hypergraph H = Hr(n, p) as n→ ∞, for the specific value p defined by

p

(
n

r

)
= E(|Hr(n, p)|) =

(
n
l

)(
r
l

) .
This states that the expected number of edges of Hr(n, p) equals the number of edges in a

complete (n, r, l)-system. To compute the upper bound on α(H), we first state a technical

lemma which will ultimately be used in the proof of Theorem 1.1, and which relies on the

first moment method.
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Lemma 2.1. Let r, l be integers with r > l > 1, and let λ, β be positive reals such that

β >

(
(l − 1)

(r − 1)λ

) 1
r−1

. (2.1)

Suppose, for infinitely many n, that Hn = Hr(n, p) is a random r-uniform hypergraph on n

vertices such that, for any U ⊆ V (Hn) of size

u := 	βn r−l
r−1 (log n)

1
r−1 
,

we have

− log P(Hn[U] = ∅) � λβrn
r−l
r−1 (log n)

r
r−1 .

Then almost surely as n→∞, α(Hn) < u.

Proof. Fix β > 0 and let I denote the number of independent sets of size u in Hn. Then

log E(I)− log

(
n

u

)
� −(1 + o(1))λβrn

r−l
r−1 (log n)

r
r−1 .

Using standard estimates for binomial coefficients,

log

(
n

u

)
∼ u log(n/u)

∼ βn
r−l
r−1 (log n)

1
r−1

(
1− r − l

r − 1

)
log n

= β
l − 1

r − 1
n

r−l
r−1 (log n)

r
r−1 .

It follows from the inequality on β in the lemma that log E(I)→ −∞, so E(I)→ 0.

Therefore, by the union bound, almost surely as n→∞, I = 0.

The main point of the next lemma is to show α(Hr(n, p)) � A(n, r, l) as n→∞. With

slightly more work, it is in fact true that α(Hr(n, p)) ∼ A(n, r, l) as n→∞.

Lemma 2.2. Let p be chosen such that

E(|Hr(n, p)|) =

(
n
l

)(
r
l

) .
Then almost surely as n→∞,

α(Hr(n, p)) ∼ A(n, r, l). (2.2)

Proof. Let β > 0 and let U be a subset of the vertices of Hr(n, p) with |U| = u, where

u := 	βn r−l
r−1 (log n)

1
r−1 
.
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Since the edges are chosen independently,

− log P(Hr(n, p)[U] = ∅) = −
(
u

r

)
log(1− p)

∼ p
ur

r!

∼ nl

l!

l!(r − l)!

r!

r!

nr
1

r!

(
βn

r−l
r−1 (log n)

1
r−1

)r

=
βr

(r)l
nl−r+r( r−l

r−1 )(log n)
r

r−1

=
βr

(r)l
n

r−l
r−1 (log n)

r
r−1 .

Let λ = 1/(r)l and take β to satisfy (2.1). Then Lemma 2.1 applies: almost surely as

n→ ∞,

α(Hr(n, p)) �
(

(l − 1)

(r − 1)λ

) 1
r−1

· n r−l
r−1 (log n)

1
r−1 .

It can be shown that this is also an asymptotic lower bound on α(Hr(n, p)) (see, for

instance, Krivelevich and Sudakov [19]). This proves (2.2).

3. Proof of Theorem 1.1

To prove Theorem 1.1, we give a randomized construction for an (n, r, l)-system H of

low independence number when r � 2l − 1. Let q be a prime power and q > r, and let

V = Fq × Fq , where Fq denotes the finite field of order q. If f is a polynomial over Fq ,

the graph of f is

Gf = {(x, f(x)) : x ∈ Fq},

and let P = P(q, r, l) be the hypergraph on V defined by

P = {Gf : deg(f) � l − 1}.

Since |Gf | = q for all f, and no two distinct graphs can have l points in common, it

follows that P is a (q2, q, l)-system (see [2] for the use of this system in the context of the

de Bruijn–Erdős problem). Next, let Hq denote an asymptotically complete (q, r, l)-system,

such that |Hq| ∼
(
q
l

)
/
(
r
l

)
as q →∞. The existence of such asymptotically complete (n, r, l)-

systems is given by the semi-random method of Rödl [21]. We assume Hq has vertex set

[q]. Independently for each Gf ∈ P , let πf : V (Hq)→ Gf be a random bijection, and let

πf(Hq) = {{πf(i1), πf(i2), . . . , πf(ir)} : {i1, i2, . . . , ir} ∈ Hq}.

Thus, independently for each Gf , a randomly permuted copy of Hq is placed on Gf .

Define the hypergraph H = H(q, r, l) with vertex set V , and with the (random) edge set

H =
⋃

Gf∈P
πf(Hq).
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We observe H is an (n, r, l)-system, regardless of how the πf are chosen. Indeed, for any

l-set b ⊆ V , there can be at most one Gf ∈ P containing b, and for this Gf there is at

most one {i1, i2, . . . , ir} ∈ Hq such that b ⊆ {πf(ij) : 1 � j � r}.
The first lemma we need states that if T is a large subset of vertices of Hq , chosen

uniformly from V (Hq), then it is very unlikely that T is an independent set of Hq .

Lemma 3.1. Let t ∈ N satisfy t = o(q1−l/r) as q → ∞. If T ⊆ V (Hq) denotes a uniformly

chosen set of size t, then

− log P(Hq[T ] = ∅) �
(t)r

(
q
l

)
(q)r

(
r
l

) as q →∞.

Proof. Let T ⊆ V (Hq) be a uniformly chosen set of size t. Then by inclusion–exclusion,

P

⎛
⎝ ⋃

e∈Hq

{e ⊆ T }

⎞
⎠ �

∑
e∈Hq

P(e ⊆ T )−
∑

e,f∈Hq

e�=f

P(e ∪ f ⊆ T )

=
∑
e∈Hq

P(e ⊆ T )−
r−1∑
k=0

∑
e,f∈Hq

|e∩f|=k

P(e ∪ f ⊆ T ).

Since Hq is a (q, r, l)-system, all terms in the second sum indexed by k � l are zero. We

consider the contribution of each term from k = 0 to k = l − 1. If we fix a set b of size k,

observe that the sets {e \ b : e ∈ Hq, b ⊆ e} form a (q − k, r − k, l − k)-system. Therefore

the number of edges containing b is at most
(
q−k
l−k

)
/
(
r−k
l−k

)
, and so the number of pairs of

edges whose intersection has size k is at most(
q

k

)((
q−k
l−k

)
/
(
r−k
l−k

)
2

)
= O(q2l−k).

If A is any fixed set of size s � t, then

P(A ⊆ T ) =
(t)s
(q)s

.

Combining these statements, it follows from the union bound that

P(Hq[T ] = ∅) � 1− P

⎛
⎝ ⋃

e∈Hq

{e ⊆ T }

⎞
⎠

� 1− |Hq|
(t)r
(q)r

+

l−1∑
k=0

O

(
q2l−k (t)2r−k

(q)2r−k

)

Now, we need to show that each term of the sum is asymptotically irrelevant when

t = o(q1−l/r). Specifically, we show

lim
q→∞

(
q2l−k (t)2r−k

(q)2r−k

)/(
|Hq|

(t)r
(q)r

)
= 0
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where the convergence is uniform over t = o(q1−l/r). Recall that

|Hq| ∼
(
q

l

)/(
r

l

)
= O(ql),

so the above limit is zero provided that

q2l−kt2r−kqk−2r = o(ql−rtr).

The left side is maximized when k = 0, in which case we require

q2l−2rt2r = o(ql−rtr).

This is equivalent to t = o(q1−l/r), which is precisely the assumption on t in the lemma.

So as q →∞,

− log P(Hq[T ] = ∅) � − log

(
1− |Hq|

(t)r
(q)r

)

∼ |Hq|
(t)r
(q)r

∼
(
q
l

)
(t)r(

r
l

)
(q)r

.

This completes the proof of Lemma 3.1.

To be able to apply this lemma to prove Theorem 1.1, we show that if U is any large

subset of vertices of H, then U intersects most of the edges Gf in roughly the expected

number of vertices, namely |U||Gf |/|V | ∼ |U|/q. To do this, we consider eigenvalues of

an appropriate matrix associated with P .

3.1. Incidence matrix and eigenvalues

In this section, we intend to show that if U is a reasonably large set of vertices of P(q, r, l),

then |U ∩ Gf | ∼ |U|/q for almost every Gf ∈ P , as follows.

Lemma 3.2 (Main Lemma). Let r � 2l − 1 � 3, let U ⊂ V and suppose |U|/q → ∞ as

q →∞. Then for all but o(ql) edges Gf ∈ P(q, r, l), |U ∩ Gf | ∼ |U|/q, as q →∞.

For the rest of this section, we fix r and l and let P = P(q, r, l). We recall some facts

from linear algebra and use them to obtain spectral information about the hypergraph

P . Given any hypergraph H with vertex set V , the incidence matrix of H is the matrix I

whose rows are indexed by V and whose columns are indexed by H and such that Ive = 1

if v ∈ e and Ive = 0 otherwise. If every vertex of H has degree a then we say that H is

a-regular. Define the matrix

A(H) =

(
0 I

It 0

)
.

The rows and columns of A(H) are both indexed by V ∪H in the natural way. We let

1S denote the characteristic vector of a set S ⊂ V ∪H, so that 1i = 1 if i ∈ S and 1i = 0
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otherwise. We require two lemmas to prove the Main Lemma. The first can be checked

using elementary linear algebra.

Lemma 3.3. Let H be a connected a-regular b-uniform hypergraph, where a, b > 0. If λ1 �
λ2 � · · · � λN are the eigenvalues of A, then λ1 =

√
ab and λN = −

√
ab with multiplicity 1,

corresponding to eigenvectors
√
a1V +

√
b1H and

√
a1V −

√
b1H respectively.

We focus our attention on A(P). We observe that P is a ql−1-regular q-uniform

hypergraph: we have |e| = q for all e ∈ P and, fixing a pair (u, v) ∈ V , the number

of polynomials f of degree at most l − 1 such that f(u) = v is exactly ql−1. Applying

Lemma 3.3, we see that the matrix A(P) has largest and smallest eigenvalues equal to

ql/2 and −ql/2 respectively. The key quantity for our purposes is the maximum absolute

value of all the remaining eigenvalues of A(P) – all but the smallest and largest – which

we denote by λ(P). We determine λ(P) exactly, as follows.

Lemma 3.4. λ(P) = q
l−1
2 .

Proof. Let J be the q2 × ql all one matrix, and let

K =

[
0 J

Jt 0

]
.

We claim that

A(P)3 = (q − 1)ql−2K + ql−1A(P). (3.1)

This matrix equation will allow us to compute λ(P) using Lemma 3.3. It is convenient

to write v → e if v ∈ V is contained in e ∈ P . To prove the lemma, fix v ∈ V and e ∈ P ,

and count the number of walks of length three between e to v, namely the number of

choices of e′ and v′ such that v → e′ ← v′ → e. Let f be the polynomial corresponding to

e ∈ P . First suppose v �→ e. Then there are q − 1 choices for v′, namely (x, f(x)), where

x differs from the first co-ordinate of v; otherwise v and v′ are distinct points with the

same x-coordinate, so there is no polynomial passing through both. For each of these

choices, there are exactly ql−2 choices for e′, since we have to choose a polynomial f′ of

degree at most l − 1 passing through both v and v′ which have different first coordinates.

On the other hand, if v → e, then in addition to the above (q − 1)ql−2 choices of v′ and

e′, we can also choose v′ = v. In this case, there are ql−1 choices for e′, namely all the

polynomials of degree at most l − 1 that pass through v. This proves the matrix equation

(3.1). Now, if x is an eigenvector corresponding to an eigenvalue λ �∈ {λ1, λN} of A, then by

Lemma 3.3, x is orthogonal to the eigenvectors corresponding to the eigenvalues λ1 = ql/2

and λN = −ql/2. By Lemma 3.3, those eigenvectors are ql−11V + q1P and ql−11V − q1P .

It follows that Kx = 0, and

λ3 = ql−1λ.

So if λ �∈ {λ1, λN} is an eigenvalue of A(P), then |λ| = q(l−1)/2 or λ = 0. It is straightforward

to see that λ(P) = 0 is impossible, and therefore λ(P ) = q(l−1)/2, as required.
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The reason for considering λ(P) is that it is strongly connected to the pseudorandomness

properties of P , in the following sense. For any hypergraph H, we can define the matrix

A(H) and let λ(H) denote the maximum absolute value of all but the largest and smallest

eigenvalues of A(H). If H is a hypergraph and S ⊂ H and T ⊂ V (H), let e(S, T ) denote

the number of pairs (v, e) ∈ T × S such that v ∈ e. For completeness, we give a proof of

the following lemma (see [13, 15] for further details).

Lemma 3.5. Let H be a hypergraph for which A(H) has row and column sums equal to a

and b respectively. Then for any S ⊂ H and T ⊂ V = V (H),∣∣∣∣e(S, T )− a

|V | |S ||T |
∣∣∣∣ � λ(H)

√
|S ||T |.

Proof. Let λ1 � λ2 � · · · � λN be the eigenvalues of A(H). Let χS and χT denote

the characteristic vectors of S and T . Let x1, x2, . . . , xN be an orthonormal basis of

eigenvectors, where xi is the eigenvector corresponding to λi, and let

χS =

N∑
i=1

sixi, χT =

N∑
i=1

tixi.

We may express e(S, T ) in linear algebra terms:

e(S, T ) = 〈AχS , χT 〉 = λ1s1t1 + λNsNtN +

N−1∑
i=2

λisiti.

The values of s1, t1, sN and tN are recovered from the knowledge of the first and last

eigenvectors, x1 and xN , as given by Lemma 3.3. Noting that ‖χS‖2 = |S | and ‖χT‖2 = |T |,
and using λ1 =

√
ab and λ2 = −

√
ab, it is straightforward to see

e(S, T ) =
a

|V | |S ||T |+
N−1∑
i=2

λisiti.

Finally, by Cauchy–Schwarz,

N−1∑
i=2

λisiti � λ(H)

(
N∑
i=1

s2i

)1/2 (
N∑
i=1

t2i

)1/2

and the sums are ‖χS‖ =
√
|S | and ‖χT‖ =

√
|T | respectively.

We now apply this lemma in the case H = P to prove Lemma 3.2.

Proof of Main Lemma. Fix ε > 0 and let

S = S(ε) = {Gf ∈ P : |Gf ∩U| < (1− ε)|U|/q}.

Suppose |S | = δql . According to the preceding lemma with H = P and T = U, together

with Lemma 3.4 we obtain ∣∣∣∣e(S,U)− 1

q
|S ||U|

∣∣∣∣ � q
l−1
2

√
|S ||U|.
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In particular,

e(S,U) � 1

q
|S ||U| − q

l−1
2

√
|S ||U| � (δ|U| −

√
δ|U|q)ql−1.

On the other hand, by definition of S ,

e(S,U) <
(1− ε)

q
|S ||U| � (1− ε)δql−1|U|.

Comparing the bounds, we get

ε2δ|U| < q.

Since |U|/q → ∞, and ε > 0 is fixed, we conclude δ → 0 as q →∞. This is valid for any

ε > 0, so we conclude |S(ε)| = o(ql) for all ε > 0, which proves the lemma.

3.2. Proof of Theorem 1.1

We now use Lemma 3.2 combined with Lemma 2.1 to prove Theorem 1.1 for the random

hypergraph H = H(q, r, l). According to Lemma 2.1, to prove Theorem 1.1 it is sufficient

to show that for any β > 0 and for any set U ⊆ V with

|U| = u := 	βn r−l
r−1 (log n)

1
r−1 
,

we have

− log P(H[U] = ∅) � βr

(r)l
n

r−l
r−1 (log n)

r
r−1 . (3.2)

Here n = q2 and the theorem imposes the condition r � 2l − 1 � 3. Define Uf = π−1
f (Gf ∩

U), so H[U] = ∅ if and only if Hq[Uf] = ∅ for all Gf . Now according to Lemma 3.2,

|Uf | ∼ |U|/q for ql − o(ql) of the edges Gf ∈ P provided |U|/q → ∞. Since r � 2l − 1, it

is indeed the case that

|U|
q

=
	βq 2(r−l)

r−1 (log q2)
1

r−1 

q

→∞,

so Lemma 3.2 does apply. By construction, the events {Hq[Uf] = ∅} are independent over

all Gf ∈ P . This implies that

P(H[U] = ∅) =
∏
Gf∈P

P(Hq[Uf] = ∅).

Also, if we fixed |Uf | = u, then Uf has the uniform distribution among all sets of size u

in V (Hq). By Lemma 3.1, applied to each T = Uf ,

− log P(H[U] = ∅) =
∑
Gf∈P

− log P(Hq[Uf] = ∅)

�
∑

|Uf |∼|U|/q

− log P(Hq[Uf] = ∅)

�
(
q
l

)
(q)r

(
r
l

) ∑
|Uf |∼|U|/q

(|Uf |)r
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∼ ql−r

(r)l
· (ql − o(ql)) ·

(
|U|
q

)r

∼ βr

(r)l
n

r−l
r−1 (log n)

r
r−1 .

Now Lemma 2.1 shows that almost surely as q → ∞, α(H) � A(r, n, l). This completes the

proof of Theorem 1.1.

3.3. Complete (n, r, l)-systems for l = 2 and l = 3

The construction of Section 3 based on the polynomial system P gives an asymptotically

complete (n, r, l)-system with low independence number. In this section, we show that

for l = 2 and r − 1 a prime power, we can construct complete (n, r, 2)-systems with

independence number asymptotic to A(n, r, 2) as n→ ∞. For l = 3 and r a prime power,

we can construct complete (n, r, 3)-systems with independence number asymptotic to

A(n, r, 3) as n→∞.

For l = 2, we let P be a projective plane of order q instead of the polynomial system

described in the last section. Now P is a complete (q2 + q + q, q + 1, 2)-system, and the

matrix A(P) has row and column sums equal to q + 1 and λ1 = q + 1, λ2 = −(q + 1), and

it is well known that λ(P) =
√
q (for example, see [13] or follow the proof of Lemma 3.4

for details). If we then choose Hq to be a complete (q + 1, r, 2)-system, then the resulting

r-uniform hypergraph H, after randomly ‘filling in’ each line of P with Hq , is a complete

(q2 + q + 1, r, 2)-system. However, this requires the simultaneous existence of a projective

plane P of order q and complete (q + 1, r, 2)-system Hq . The choice of q as an odd power

of r − 1 ensures that the projective plane P exists, since r − 1 is a prime power. Wilson’s

theorem [24] states that a complete (q + 1, r, 2)-system exists for all large enough q such

that q ≡ 0 mod r − 1 and q(q + 1) ≡ 0 mod r(r − 1). The choice of q as an odd power of

r − 1 ensures that both of these congruences are satisfied, and if q is large enough, we are

done. In particular, this gives for infinitely many n a Steiner triple system on n vertices

with independence number asymptotic to
√

3n log n as n→∞.

For l = 3 and r � 5, one could consider using an inversive plane P of order q which

(among other properties) is a complete (q2 + 1, q + 1, 3)-system, instead of the polynomial

system (see [6]). Again the eigenvalue computations could be repeated for an inversive

plane, and in each circle of the inversive plane one inserts a complete (q + 1, r, 3)-system.

However, for r � 5, there are no necessary and sufficient conditions on q and r for

such systems to exist. Infinite families of complete (n, r, 3)-systems are known to exist

(see p. 67 in [5]), and similar computations could be carried out as for the case l = 2.

However, we do not discuss the technical details here. We do, however, mention a very

simple construction: if n = q2 + 1, where q = p2k for some prime power p and k � 0, there

exists a complete (q + 1, p, 3)-system and a complete (n, q + 1, 3)-system. Applying the

method of Theorem 1.1, this yields an (n, p, 3)-system Hn for any prime power p � 5 and

n ∈ {p2 + 1, p4 + 1, p8 + 1, . . .}, such that α(Hn) ∼ A(n, p, 3) as n→ ∞. Since only finitely

many complete (n, r, l)-systems are known when r > l > 3, the cases l > 3 seem much

more challenging due to this key obstruction. In general, the method works well whenever
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there is an (n, q, l)-system and a (q, p, l)-system to produce a random (n, p, l)-system with

low independence number.
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