On the Independence Number of Steiner Systems

ALEX EUSTIS and JACQUES VERSTRAËTE

Department of Mathematics, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0112, USA (e-mail: jbaverstraete@gmail.com)

Received 16 February 2012; revised 15 November 2012

A partial Steiner (n, r, l)-system is an *r*-uniform hypergraph on *n* vertices in which every set of *l* vertices is contained in at most one edge. A partial Steiner (n, r, l)-system is *complete* if every set of *l* vertices is contained in exactly one edge. In a hypergraph \mathcal{H} , the independence number $\alpha(\mathcal{H})$ denotes the maximum size of a set of vertices in \mathcal{H} containing no edge. In this article we prove the following. Given integers r, l such that $r \ge 2l - 1 \ge 3$, we prove that there exists a partial Steiner (n, r, l)-system \mathcal{H} such that

$$\alpha(\mathcal{H}) \lesssim \left(\frac{l-1}{r-1}(r)_l\right)^{\frac{1}{r-1}} n^{\frac{r-l}{r-1}} (\log n)^{\frac{1}{r-1}} \quad \text{as } n \to \infty.$$

This improves earlier results of Phelps and Rödl, and Rödl and Ŝinajová. We conjecture that it is best possible as it matches the independence number of a random *r*-uniform hypergraph of the same density. If l = 2 or l = 3, then for infinitely many *r* the partial Steiner systems constructed are complete for infinitely many *n*.

AMS 2010 Mathematics subject classification : Primary 05B05 Secondary 05B07, 05B20, 05B25, 05D40

1. Introduction

For integers 1 < l < r < n, an *r*-uniform hypergraph on *n* vertices is called a *partial Steiner* (n,r,l)-system or, for short, an (n,r,l)-system, if every *l*-set of vertices is contained in at most one edge of the hypergraph. An (n,r,l)-system is *complete* if every *l*-set is in exactly one edge. In this paper, we study the independence number of (n,r,l)-systems: this is the size of the largest set of vertices in an *r*-uniform hypergraph containing no edge. For a hypergraph \mathcal{H} , the independence number is denoted $\alpha(\mathcal{H})$. The independence number arises in many applications and is central in extremal hypergraph theory, relative to Turán-type problems and Ramsey Theory, extremal problems in combinatorial geometry [17, 12], and algorithmic complexity. The motivation for this paper is to construct Steiner (n,r,l)-systems which are close to complete and whose independence number is asymptotically the same as the independence number of a random *r*-uniform hypergraph with the

same expected density of edges as $n \to \infty$. We believe that these (n, r, l)-systems have asymptotically the smallest possible independence number amongst all (n, r, l)-systems.

1.1. The independence number of (n, r, l)-systems

We first discuss historical bounds on the independence number of (n, r, l)-systems. An elementary probabilistic argument (see for instance [4] for more precise results) shows that an (n, r, l)-system contains an independent set of size $\Omega(n^{\frac{r-l}{r-1}})$. Phelps and Rödl [20] were the first to show that for (n, 3, 2)-systems \mathcal{H} , a substantially better bound is possible, namely that if \mathcal{H} is an (n, 3, 2)-system then $\alpha(\mathcal{H}) = \Omega(\sqrt{n \log n})$. More general results were obtained by Duke, Lefmann and Rödl [7] for (n, r, 2)-systems, building on the paper of Ajtai, Komlós, Pintz, Spencer and Szemerédi [1]. Their result was extended by Rödl and Ŝinajová [22] to cover all (n, r, l)-systems, where Rödl and Ŝinajová showed that if \mathcal{H} is an (n, r, l)-system, then

$$\alpha(\mathcal{H}) = \Omega\left(n^{\frac{r-l}{r-1}}(\log n)^{\frac{1}{r-1}}\right). \tag{1.1}$$

Rödl and Ŝinajová [22] also showed that this is tight up to large constant factors depending on l and r. Shearer's method [23] was used by Kostochka, Mubayi and the second author [18] to obtain better lower bounds when l = r - 1. In what follows, if f, g are positive-valued functions of n, then we write $f \sim g$ if and only if $\lim_{n\to\infty} f(n)/g(n) = 1$ and $f \leq g$ if and only if $\limsup_{n\to\infty} f(n)/g(n) \leq 1$.

1.2. Main results

Complete (n, r, l)-systems in general are very difficult to construct; in fact no infinite family is known for r > l > 3. The construction of 'near-complete' or 'asymptotic' (n, r, l)-systems constitutes Rödl's solution [21] to a long-standing conjecture of Erdős and Hanani [9] on the existence of asymptotic designs. The contribution of this paper is to construct 'nearcomplete' (n, r, l)-systems whose independence number is asymptotic to the independence number of a random r-uniform hypergraph with the same density of edges. We shall check in Section 2 that if \mathcal{H} is an r-uniform hypergraph on n-vertices created by sampling the edges of the complete r-uniform hypergraph independently with probability p, and p is chosen so that the expected number of edges of \mathcal{H} equals the number of edges in a complete (n, r, l)-system, then almost surely as $n \to \infty$,

$$\alpha(\mathcal{H}) \sim \left(\frac{l-1}{r-1}(r)_l\right)^{\frac{1}{r-1}} \cdot n^{\frac{r-l}{r-1}} (\log n)^{\frac{1}{r-1}}.$$

It is convenient henceforth to denote the quantity on the right by A(n, r, l). We construct partial Steiner (n, r, l)-systems whose independence number matches this bound for 'more than half' of the pairs r > l > 1.

Theorem 1.1. If $r \ge 2l - 1 \ge 3$, then there exists an (n, r, l)-system \mathcal{H} such that $\alpha(\mathcal{H}) \sim A(n, r, l)$ as $n \to \infty$.

For l = 2 or l = 3, the construction of \mathcal{H} in Theorem 1.1 can actually be made for infinitely many r into a complete (n, r, 2)-system for infinitely many values of n, using

Wilson's theorem [24] for l = 2 and known constructions of inversive planes for l = 3. We prove Theorem 1.1 using an iterative algebraic construction, together with some randomness, and the analysis requires a little spectral theory and probability. We believe that Theorem 1.1 extends to all cases 1 < l < r, but this remains open. In a forthcoming paper [8], we will use Rödl's nibble method to prove that the theorem also holds for l = r - 1. We make the following conjecture.

Conjecture 1.2. Let r, l be integers, where r > l > 1. Then for any partial (n, r, l)-system \mathcal{H} ,

$$\alpha(\mathcal{H}) \gtrsim A(n,r,l) \quad \text{as } n \to \infty.$$

For instance, this conjecture predicts that for every partial Steiner triple system on n vertices, the independence number is at least asymptotic to $\sqrt{3n \log n}$ as $n \to \infty$. The current best lower bounds from [18] are $\alpha(\mathcal{H}) \gtrsim 0.458 \sqrt{n \log n}$ when \mathcal{H} is any partial (n, 3, 2)-system. Perhaps the first interesting case not covered by Theorem 1.1 is r = 4 and l = 3, where we seek to construct an *n*-vertex example with independence number asymptotic to $(16n \log n)^{1/3}$ as $n \to \infty$.

1.3. Notation

Hypergraphs. An *r*-uniform hypergraph on a set V is a set \mathcal{H} of *r*-element subsets of V called *edges*. If $U \subseteq V$, then the *induced r*-uniform hypergraph $\mathcal{H}[U]$ is the subset of edges of \mathcal{H} contained in U. We say that U is an *independent set* if $\mathcal{H}[U] = \emptyset$. The *independence number* $\alpha(\mathcal{H})$ is the maximum size of an independent set in \mathcal{H} . Unless otherwise noted, the hypergraphs in this paper all have the same fixed vertex set V of size n. Let $\mathcal{H}_r(n, p)$ denote the *random hypergraph* obtained by independently sampling the edges of a complete r-uniform hypergraph on n vertices with probability p.

Asymptotic notation. The standard limit notation $f = O(g), \Theta(g), \Omega(g), o(g)$ is generally taken with respect to the implicit variable *n*, unless noted otherwise. Also, if *f*, *g* are positive-valued functions of *n*, then we write $f \sim g$ if and only if $\lim_{n\to\infty} f(n)/g(n) = 1$ and $f \leq g$ if and only if $\limsup_{n\to\infty} f(n)/g(n) \leq 1$. Given two natural numbers *n*, *r*, let $(n)_r = n(n-1)\cdots(n-r+1)$.

2. Independent sets in random hypergraphs

In this section we compute the asymptotic value of $\alpha(\mathcal{H})$ for the random *r*-uniform hypergraph $\mathcal{H} = \mathcal{H}_r(n, p)$ as $n \to \infty$, for the specific value *p* defined by

$$p\binom{n}{r} = \mathbb{E}(|\mathcal{H}_r(n,p)|) = \frac{\binom{n}{l}}{\binom{r}{l}}.$$

This states that the expected number of edges of $\mathcal{H}_r(n, p)$ equals the number of edges in a complete (n, r, l)-system. To compute the upper bound on $\alpha(\mathcal{H})$, we first state a technical lemma which will ultimately be used in the proof of Theorem 1.1, and which relies on the first moment method.

Lemma 2.1. Let r, l be integers with r > l > 1, and let λ, β be positive reals such that

$$\beta > \left(\frac{(l-1)}{(r-1)\lambda}\right)^{\frac{1}{r-1}}.$$
(2.1)

Suppose, for infinitely many n, that $\mathcal{H}_n = \mathcal{H}_r(n, p)$ is a random r-uniform hypergraph on n vertices such that, for any $U \subseteq V(\mathcal{H}_n)$ of size

$$u := \lfloor \beta n^{\frac{r-l}{r-1}} (\log n)^{\frac{1}{r-1}} \rfloor,$$

we have

$$-\log \mathbb{P}(\mathcal{H}_n[U] = \emptyset) \gtrsim \lambda \beta^r n^{\frac{r-l}{r-1}} (\log n)^{\frac{r}{r-1}}$$

Then almost surely as $n \to \infty$, $\alpha(\mathcal{H}_n) < u$.

Proof. Fix $\beta > 0$ and let *I* denote the number of independent sets of size *u* in \mathcal{H}_n . Then

$$\log \mathbb{E}(I) - \log \binom{n}{u} \leq -(1 + o(1))\lambda \beta^r n^{\frac{r-l}{r-1}} (\log n)^{\frac{r}{r-1}}.$$

Using standard estimates for binomial coefficients,

$$\log \binom{n}{u} \sim u \log(n/u)$$
$$\sim \beta n^{\frac{r-l}{r-1}} (\log n)^{\frac{1}{r-1}} \left(1 - \frac{r-l}{r-1}\right) \log n$$
$$= \beta \frac{l-1}{r-1} n^{\frac{r-l}{r-1}} (\log n)^{\frac{r}{r-1}}.$$

It follows from the inequality on β in the lemma that $\log \mathbb{E}(I) \to -\infty$, so $\mathbb{E}(I) \to 0$. Therefore, by the union bound, almost surely as $n \to \infty$, I = 0.

The main point of the next lemma is to show $\alpha(\mathcal{H}_r(n, p)) \leq A(n, r, l)$ as $n \to \infty$. With slightly more work, it is in fact true that $\alpha(\mathcal{H}_r(n, p)) \sim A(n, r, l)$ as $n \to \infty$.

Lemma 2.2. Let p be chosen such that

$$\mathbb{E}(|\mathcal{H}_r(n,p)|) = \frac{\binom{n}{l}}{\binom{r}{l}}$$

Then almost surely as $n \to \infty$,

$$\alpha(\mathcal{H}_r(n,p)) \sim A(n,r,l). \tag{2.2}$$

Proof. Let $\beta > 0$ and let U be a subset of the vertices of $\mathcal{H}_r(n, p)$ with |U| = u, where

 $u := \lfloor \beta n^{\frac{r-l}{r-1}} (\log n)^{\frac{1}{r-1}} \rfloor.$

https://doi.org/10.1017/S0963548312000557 Published online by Cambridge University Press

Since the edges are chosen independently,

$$-\log \mathbb{P}(\mathcal{H}_{r}(n,p)[U] = \emptyset) = -\binom{u}{r} \log(1-p)$$

$$\sim p \frac{u^{r}}{r!}$$

$$\sim \frac{n^{l}}{l!} \frac{l!(r-l)!}{r!} \frac{r!}{n^{r}} \frac{1}{r!} \left(\beta n^{\frac{r-l}{r-1}} (\log n)^{\frac{1}{r-1}}\right)^{r}$$

$$= \frac{\beta^{r}}{(r)_{l}} n^{l-r+r(\frac{r-l}{r-1})} (\log n)^{\frac{r}{r-1}}$$

$$= \frac{\beta^{r}}{(r)_{l}} n^{\frac{r-l}{r-1}} (\log n)^{\frac{r}{r-1}}.$$

Let $\lambda = 1/(r)_l$ and take β to satisfy (2.1). Then Lemma 2.1 applies: almost surely as $n \to \infty$,

$$\alpha(\mathcal{H}_r(n,p)) \lesssim \left(\frac{(l-1)}{(r-1)\lambda}\right)^{\frac{1}{r-1}} \cdot n^{\frac{r-l}{r-1}} (\log n)^{\frac{1}{r-1}}.$$

It can be shown that this is also an asymptotic lower bound on $\alpha(\mathcal{H}_r(n, p))$ (see, for instance, Krivelevich and Sudakov [19]). This proves (2.2).

3. Proof of Theorem 1.1

To prove Theorem 1.1, we give a randomized construction for an (n, r, l)-system \mathcal{H} of low independence number when $r \ge 2l - 1$. Let q be a prime power and q > r, and let $V = \mathbb{F}_q \times \mathbb{F}_q$, where \mathbb{F}_q denotes the finite field of order q. If f is a polynomial over \mathbb{F}_q , the graph of f is

$$G_f = \{ (x, f(x)) : x \in \mathbb{F}_q \},\$$

and let $\mathcal{P} = \mathcal{P}(q, r, l)$ be the hypergraph on V defined by

$$\mathcal{P} = \{G_f : \deg(f) \leq l - 1\}$$

Since $|G_f| = q$ for all f, and no two distinct graphs can have l points in common, it follows that \mathcal{P} is a (q^2, q, l) -system (see [2] for the use of this system in the context of the de Bruijn-Erdős problem). Next, let \mathcal{H}_q denote an *asymptotically complete* (q, r, l)-system, such that $|\mathcal{H}_q| \sim {q \choose l} / {r \choose l}$ as $q \to \infty$. The existence of such asymptotically complete (n, r, l)systems is given by the semi-random method of Rödl [21]. We assume \mathcal{H}_q has vertex set [q]. Independently for each $G_f \in \mathcal{P}$, let $\pi_f : V(\mathcal{H}_q) \to G_f$ be a random bijection, and let

$$\pi_f(\mathcal{H}_q) = \{ \{\pi_f(i_1), \pi_f(i_2), \dots, \pi_f(i_r)\} : \{i_1, i_2, \dots, i_r\} \in \mathcal{H}_q \}.$$

Thus, independently for each G_f , a randomly permuted copy of \mathcal{H}_q is placed on G_f . Define the hypergraph $\mathcal{H} = \mathcal{H}(q, r, l)$ with vertex set V, and with the (random) edge set

$$\mathcal{H} = \bigcup_{G_f \in \mathcal{P}} \pi_f(\mathcal{H}_q).$$

We observe \mathcal{H} is an (n, r, l)-system, regardless of how the π_f are chosen. Indeed, for any l-set $b \subseteq V$, there can be at most one $G_f \in \mathcal{P}$ containing b, and for this G_f there is at most one $\{i_1, i_2, \ldots, i_r\} \in \mathcal{H}_q$ such that $b \subseteq \{\pi_f(i_j) : 1 \leq j \leq r\}$.

The first lemma we need states that if T is a large subset of vertices of \mathcal{H}_q , chosen uniformly from $V(\mathcal{H}_q)$, then it is very unlikely that T is an independent set of \mathcal{H}_q .

Lemma 3.1. Let $t \in \mathbb{N}$ satisfy $t = o(q^{1-l/r})$ as $q \to \infty$. If $T \subseteq V(\mathcal{H}_q)$ denotes a uniformly chosen set of size t, then

$$-\log \mathbb{P}(\mathcal{H}_q[T] = \emptyset) \gtrsim \frac{(t)_r \binom{q}{l}}{(q)_r \binom{r}{l}} \quad as \ q \to \infty.$$

Proof. Let $T \subseteq V(\mathcal{H}_q)$ be a uniformly chosen set of size t. Then by inclusion–exclusion,

$$\mathbb{P}\left(\bigcup_{e\in\mathcal{H}_q} \{e\subseteq T\}\right) \geqslant \sum_{e\in\mathcal{H}_q} \mathbb{P}(e\subseteq T) - \sum_{\substack{e,f\in\mathcal{H}_q\\e\neq f}} \mathbb{P}(e\cup f\subseteq T)$$
$$= \sum_{e\in\mathcal{H}_q} \mathbb{P}(e\subseteq T) - \sum_{\substack{k=0\\|e\cap f|=k}}^{r-1} \sum_{\substack{e,f\in\mathcal{H}_q\\|e\cap f|=k}} \mathbb{P}(e\cup f\subseteq T).$$

Since \mathcal{H}_q is a (q, r, l)-system, all terms in the second sum indexed by $k \ge l$ are zero. We consider the contribution of each term from k = 0 to k = l - 1. If we fix a set *b* of size *k*, observe that the sets $\{e \setminus b : e \in \mathcal{H}_q, b \subseteq e\}$ form a (q - k, r - k, l - k)-system. Therefore the number of edges containing *b* is at most $\binom{q-k}{l-k} / \binom{r-k}{l-k}$, and so the number of *pairs* of edges whose intersection has size *k* is at most

$$\binom{q}{k}\binom{\binom{q-k}{l-k}/\binom{r-k}{l-k}}{2} = O(q^{2l-k}).$$

If A is any fixed set of size $s \leq t$, then

$$\mathbb{P}(A \subseteq T) = \frac{(t)_s}{(q)_s}.$$

Combining these statements, it follows from the union bound that

$$\mathbb{P}(\mathcal{H}_q[T] = \emptyset) \leqslant 1 - \mathbb{P}\left(\bigcup_{e \in \mathcal{H}_q} \{e \subseteq T\}\right)$$
$$\leqslant 1 - |\mathcal{H}_q| \frac{(t)_r}{(q)_r} + \sum_{k=0}^{l-1} O\left(q^{2l-k} \frac{(t)_{2r-k}}{(q)_{2r-k}}\right)$$

Now, we need to show that each term of the sum is asymptotically irrelevant when $t = o(q^{1-l/r})$. Specifically, we show

$$\lim_{q \to \infty} \left(q^{2l-k} \frac{(t)_{2r-k}}{(q)_{2r-k}} \right) \Big/ \left(|\mathcal{H}_q| \frac{(t)_r}{(q)_r} \right) = 0$$

where the convergence is uniform over $t = o(q^{1-l/r})$. Recall that

$$|\mathcal{H}_q| \sim \binom{q}{l} / \binom{r}{l} = O(q^l)$$

so the above limit is zero provided that

$$q^{2l-k}t^{2r-k}q^{k-2r} = o(q^{l-r}t^r).$$

The left side is maximized when k = 0, in which case we require

$$q^{2l-2r}t^{2r} = o(q^{l-r}t^r).$$

This is equivalent to $t = o(q^{1-l/r})$, which is precisely the assumption on t in the lemma. So as $q \to \infty$,

$$-\log \mathbb{P}(\mathcal{H}_q[T] = \emptyset) \gtrsim -\log\left(1 - |\mathcal{H}_q|\frac{(t)_r}{(q)_r}\right)$$
$$\sim |\mathcal{H}_q|\frac{(t)_r}{(q)_r}$$
$$\sim \frac{\binom{q}{l}(t)_r}{\binom{r}{l}(q)_r}.$$

This completes the proof of Lemma 3.1.

To be able to apply this lemma to prove Theorem 1.1, we show that if U is any large subset of vertices of \mathcal{H} , then U intersects most of the edges G_f in roughly the expected number of vertices, namely $|U||G_f|/|V| \sim |U|/q$. To do this, we consider eigenvalues of an appropriate matrix associated with \mathcal{P} .

3.1. Incidence matrix and eigenvalues

In this section, we intend to show that if U is a reasonably large set of vertices of $\mathcal{P}(q, r, l)$, then $|U \cap G_f| \sim |U|/q$ for almost every $G_f \in \mathcal{P}$, as follows.

Lemma 3.2 (Main Lemma). Let $r \ge 2l - 1 \ge 3$, let $U \subset V$ and suppose $|U|/q \to \infty$ as $q \to \infty$. Then for all but $o(q^l)$ edges $G_f \in \mathcal{P}(q,r,l)$, $|U \cap G_f| \sim |U|/q$, as $q \to \infty$.

For the rest of this section, we fix r and l and let $\mathcal{P} = \mathcal{P}(q,r,l)$. We recall some facts from linear algebra and use them to obtain spectral information about the hypergraph \mathcal{P} . Given any hypergraph \mathcal{H} with vertex set V, the *incidence matrix* of \mathcal{H} is the matrix I whose rows are indexed by V and whose columns are indexed by \mathcal{H} and such that $I_{ve} = 1$ if $v \in e$ and $I_{ve} = 0$ otherwise. If every vertex of \mathcal{H} has degree a then we say that \mathcal{H} is *a-regular*. Define the matrix

$$A(\mathcal{H}) = \begin{pmatrix} 0 & I \\ I^t & 0 \end{pmatrix}.$$

The rows and columns of $A(\mathcal{H})$ are both indexed by $V \cup \mathcal{H}$ in the natural way. We let $\mathbf{1}_S$ denote the characteristic vector of a set $S \subset V \cup \mathcal{H}$, so that $\mathbf{1}_i = 1$ if $i \in S$ and $\mathbf{1}_i = 0$

 \square

otherwise. We require two lemmas to prove the Main Lemma. The first can be checked using elementary linear algebra.

Lemma 3.3. Let \mathcal{H} be a connected a-regular b-uniform hypergraph, where a, b > 0. If $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N$ are the eigenvalues of A, then $\lambda_1 = \sqrt{ab}$ and $\lambda_N = -\sqrt{ab}$ with multiplicity 1, corresponding to eigenvectors $\sqrt{a1_V} + \sqrt{b1_H}$ and $\sqrt{a1_V} - \sqrt{b1_H}$ respectively.

We focus our attention on $A(\mathcal{P})$. We observe that \mathcal{P} is a q^{l-1} -regular q-uniform hypergraph: we have |e| = q for all $e \in \mathcal{P}$ and, fixing a pair $(u, v) \in V$, the number of polynomials f of degree at most l-1 such that f(u) = v is exactly q^{l-1} . Applying Lemma 3.3, we see that the matrix $A(\mathcal{P})$ has largest and smallest eigenvalues equal to $q^{l/2}$ and $-q^{l/2}$ respectively. The key quantity for our purposes is the maximum absolute value of all the remaining eigenvalues of $A(\mathcal{P})$ – all but the smallest and largest – which we denote by $\lambda(\mathcal{P})$. We determine $\lambda(\mathcal{P})$ exactly, as follows.

Lemma 3.4. $\lambda(\mathcal{P}) = q^{\frac{l-1}{2}}$.

Proof. Let J be the $q^2 \times q^l$ all one matrix, and let

$$K = \left[\frac{0 |J|}{J^t |0|}\right]$$

We claim that

$$A(\mathcal{P})^{3} = (q-1)q^{l-2}K + q^{l-1}A(\mathcal{P}).$$
(3.1)

This matrix equation will allow us to compute $\lambda(\mathcal{P})$ using Lemma 3.3. It is convenient to write $v \to e$ if $v \in V$ is contained in $e \in \mathcal{P}$. To prove the lemma, fix $v \in V$ and $e \in \mathcal{P}$, and count the number of walks of length three between e to v, namely the number of choices of e' and v' such that $v \to e' \leftarrow v' \to e$. Let f be the polynomial corresponding to $e \in \mathcal{P}$. First suppose $v \not\rightarrow e$. Then there are q-1 choices for v', namely (x, f(x)), where x differs from the first co-ordinate of v; otherwise v and v' are distinct points with the same x-coordinate, so there is no polynomial passing through both. For each of these choices, there are exactly q^{l-2} choices for e', since we have to choose a polynomial f' of degree at most l-1 passing through both v and v' which have different first coordinates. On the other hand, if $v \to e$, then in addition to the above $(q-1)q^{l-2}$ choices of v' and e', we can also choose v' = v. In this case, there are q^{l-1} choices for e', namely all the polynomials of degree at most l-1 that pass through v. This proves the matrix equation (3.1). Now, if x is an eigenvector corresponding to an eigenvalue $\lambda \notin \{\lambda_1, \lambda_N\}$ of A, then by Lemma 3.3, x is orthogonal to the eigenvectors corresponding to the eigenvalues $\lambda_1 = q^{l/2}$ and $\lambda_N = -q^{l/2}$. By Lemma 3.3, those eigenvectors are $q^{l-1}\mathbf{1}_V + q\mathbf{1}_P$ and $q^{l-1}\mathbf{1}_V - q\mathbf{1}_P$. It follows that Kx = 0, and

$$\lambda^3 = q^{l-1}\lambda$$

So if $\lambda \notin \{\lambda_1, \lambda_N\}$ is an eigenvalue of $A(\mathcal{P})$, then $|\lambda| = q^{(l-1)/2}$ or $\lambda = 0$. It is straightforward to see that $\lambda(\mathcal{P}) = 0$ is impossible, and therefore $\lambda(\mathcal{P}) = q^{(l-1)/2}$, as required.

The reason for considering $\lambda(\mathcal{P})$ is that it is strongly connected to the pseudorandomness properties of \mathcal{P} , in the following sense. For any hypergraph \mathcal{H} , we can define the matrix $A(\mathcal{H})$ and let $\lambda(\mathcal{H})$ denote the maximum absolute value of all but the largest and smallest eigenvalues of $A(\mathcal{H})$. If \mathcal{H} is a hypergraph and $S \subset \mathcal{H}$ and $T \subset V(\mathcal{H})$, let e(S, T) denote the number of pairs $(v, e) \in T \times S$ such that $v \in e$. For completeness, we give a proof of the following lemma (see [13, 15] for further details).

Lemma 3.5. Let \mathcal{H} be a hypergraph for which $A(\mathcal{H})$ has row and column sums equal to a and b respectively. Then for any $S \subset \mathcal{H}$ and $T \subset V = V(\mathcal{H})$,

$$\left| e(S,T) - \frac{a}{|V|} |S||T| \right| \leq \lambda(\mathcal{H}) \sqrt{|S||T|}$$

Proof. Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N$ be the eigenvalues of $A(\mathcal{H})$. Let χ_S and χ_T denote the characteristic vectors of S and T. Let x_1, x_2, \ldots, x_N be an orthonormal basis of eigenvectors, where x_i is the eigenvector corresponding to λ_i , and let

$$\chi_S = \sum_{i=1}^N s_i x_i, \quad \chi_T = \sum_{i=1}^N t_i x_i.$$

We may express e(S, T) in linear algebra terms:

$$e(S,T) = \langle A\chi_S, \chi_T \rangle = \lambda_1 s_1 t_1 + \lambda_N s_N t_N + \sum_{i=2}^{N-1} \lambda_i s_i t_i.$$

The values of s_1, t_1, s_N and t_N are recovered from the knowledge of the first and last eigenvectors, x_1 and x_N , as given by Lemma 3.3. Noting that $\|\chi_S\|^2 = |S|$ and $\|\chi_T\|^2 = |T|$, and using $\lambda_1 = \sqrt{ab}$ and $\lambda_2 = -\sqrt{ab}$, it is straightforward to see

$$e(S,T) = \frac{a}{|V|}|S||T| + \sum_{i=2}^{N-1} \lambda_i s_i t_i.$$

Finally, by Cauchy-Schwarz,

$$\sum_{i=2}^{N-1} \lambda_i s_i t_i \leqslant \lambda(\mathcal{H}) \left(\sum_{i=1}^N s_i^2\right)^{1/2} \left(\sum_{i=1}^N t_i^2\right)^{1/2}$$

and the sums are $\|\chi_S\| = \sqrt{|S|}$ and $\|\chi_T\| = \sqrt{|T|}$ respectively.

We now apply this lemma in the case $\mathcal{H} = \mathcal{P}$ to prove Lemma 3.2.

Proof of Main Lemma. Fix $\varepsilon > 0$ and let

$$S = S(\varepsilon) = \{G_f \in \mathcal{P} : |G_f \cap U| < (1 - \varepsilon)|U|/q\}.$$

Suppose $|S| = \delta q^l$. According to the preceding lemma with $\mathcal{H} = \mathcal{P}$ and T = U, together with Lemma 3.4 we obtain

$$\left|e(S,U)-\frac{1}{q}|S||U|\right| \leqslant q^{\frac{l-1}{2}}\sqrt{|S||U|}.$$

 \square

In particular,

$$e(S,U) \ge \frac{1}{q}|S||U| - q^{\frac{l-1}{2}}\sqrt{|S||U|} \ge (\delta|U| - \sqrt{\delta|U|q})q^{l-1}.$$

On the other hand, by definition of S,

$$e(S,U) < \frac{(1-\varepsilon)}{q} |S||U| \leq (1-\varepsilon)\delta q^{l-1}|U|.$$

Comparing the bounds, we get

 $\varepsilon^2 \delta |U| < q.$

Since $|U|/q \to \infty$, and $\varepsilon > 0$ is fixed, we conclude $\delta \to 0$ as $q \to \infty$. This is valid for any $\varepsilon > 0$, so we conclude $|S(\varepsilon)| = o(q^l)$ for all $\varepsilon > 0$, which proves the lemma.

3.2. Proof of Theorem 1.1

We now use Lemma 3.2 combined with Lemma 2.1 to prove Theorem 1.1 for the random hypergraph $\mathcal{H} = \mathcal{H}(q, r, l)$. According to Lemma 2.1, to prove Theorem 1.1 it is sufficient to show that for any $\beta > 0$ and for any set $U \subseteq V$ with

$$|U| = u := \lfloor \beta n^{\frac{r-l}{r-1}} (\log n)^{\frac{1}{r-1}} \rfloor,$$

we have

$$-\log \mathbb{P}(\mathcal{H}[U] = \emptyset) \gtrsim \frac{\beta^r}{(r)_l} n^{\frac{r-l}{r-1}} (\log n)^{\frac{r}{r-1}}.$$
(3.2)

Here $n = q^2$ and the theorem imposes the condition $r \ge 2l - 1 \ge 3$. Define $U_f = \pi_f^{-1}(G_f \cap U)$, so $\mathcal{H}[U] = \emptyset$ if and only if $\mathcal{H}_q[U_f] = \emptyset$ for all G_f . Now according to Lemma 3.2, $|U_f| \sim |U|/q$ for $q^l - o(q^l)$ of the edges $G_f \in \mathcal{P}$ provided $|U|/q \to \infty$. Since $r \ge 2l - 1$, it is indeed the case that

$$\frac{|U|}{q} = \frac{\lfloor \beta q^{\frac{2(r-l)}{r-1}} (\log q^2)^{\frac{1}{r-1}} \rfloor}{q} \to \infty,$$

so Lemma 3.2 does apply. By construction, the events $\{\mathcal{H}_q[U_f] = \emptyset\}$ are independent over all $G_f \in \mathcal{P}$. This implies that

$$\mathbb{P}(\mathcal{H}[U] = \emptyset) = \prod_{G_f \in \mathcal{P}} \mathbb{P}(\mathcal{H}_q[U_f] = \emptyset)$$

Also, if we fixed $|U_f| = u$, then U_f has the uniform distribution among all sets of size u in $V(\mathcal{H}_q)$. By Lemma 3.1, applied to each $T = U_f$,

$$-\log \mathbb{P}(\mathcal{H}[U] = \emptyset) = \sum_{G_f \in \mathcal{P}} -\log \mathbb{P}(\mathcal{H}_q[U_f] = \emptyset)$$
$$\geq \sum_{|U_f| \sim |U|/q} -\log \mathbb{P}(\mathcal{H}_q[U_f] = \emptyset)$$
$$\gtrsim \frac{\binom{q}{l}}{(q)_r\binom{r}{l}} \sum_{|U_f| \sim |U|/q} (|U_f|)_r$$

$$\sim \frac{q^{l-r}}{(r)_l} \cdot (q^l - o(q^l)) \cdot \left(\frac{|U|}{q}\right)^r$$
$$\sim \frac{\beta^r}{(r)_l} n^{\frac{r-l}{r-1}} (\log n)^{\frac{r}{r-1}}.$$

Now Lemma 2.1 shows that almost surely as $q \to \infty$, $\alpha(\mathcal{H}) \leq A(r, n, l)$. This completes the proof of Theorem 1.1.

3.3. Complete (n, r, l)-systems for l = 2 and l = 3

The construction of Section 3 based on the polynomial system \mathcal{P} gives an asymptotically complete (n, r, l)-system with low independence number. In this section, we show that for l = 2 and r - 1 a prime power, we can construct complete (n, r, 2)-systems with independence number asymptotic to A(n, r, 2) as $n \to \infty$. For l = 3 and r a prime power, we can construct complete (n, r, 3)-systems with independence number asymptotic to A(n, r, 3) as $n \to \infty$.

For l = 2, we let \mathcal{P} be a projective plane of order q instead of the polynomial system described in the last section. Now \mathcal{P} is a complete $(q^2 + q + q, q + 1, 2)$ -system, and the matrix $A(\mathcal{P})$ has row and column sums equal to q + 1 and $\lambda_1 = q + 1$, $\lambda_2 = -(q + 1)$, and it is well known that $\lambda(\mathcal{P}) = \sqrt{q}$ (for example, see [13] or follow the proof of Lemma 3.4 for details). If we then choose \mathcal{H}_q to be a complete (q + 1, r, 2)-system, then the resulting r-uniform hypergraph \mathcal{H} , after randomly 'filling in' each line of \mathcal{P} with \mathcal{H}_q , is a *complete* $(q^2 + q + 1, r, 2)$ -system. However, this requires the simultaneous existence of a projective plane \mathcal{P} of order q and complete (q + 1, r, 2)-system \mathcal{H}_q . The choice of q as an odd power of r - 1 ensures that the projective plane \mathcal{P} exists, since r - 1 is a prime power. Wilson's theorem [24] states that a complete (q + 1, r, 2)-system exists for all large enough q such that $q \equiv 0 \mod r - 1$ and $q(q + 1) \equiv 0 \mod r(r - 1)$. The choice of q as an odd power of r - 1 ensures that both of these congruences are satisfied, and if q is large enough, we are done. In particular, this gives for infinitely many n a Steiner triple system on n vertices with independence number asymptotic to $\sqrt{3n \log n}$ as $n \to \infty$.

For l = 3 and $r \ge 5$, one could consider using an *inversive plane* \mathcal{P} of order q which (among other properties) is a complete $(q^2 + 1, q + 1, 3)$ -system, instead of the polynomial system (see [6]). Again the eigenvalue computations could be repeated for an inversive plane, and in each circle of the inversive plane one inserts a complete (q + 1, r, 3)-system. However, for $r \ge 5$, there are no necessary and sufficient conditions on q and r for such systems to exist. Infinite families of complete (n, r, 3)-systems are known to exist (see p. 67 in [5]), and similar computations could be carried out as for the case l = 2. However, we do not discuss the technical details here. We do, however, mention a very simple construction: if $n = q^2 + 1$, where $q = p^{2^k}$ for some prime power p and $k \ge 0$, there exists a complete (q + 1, p, 3)-system and a complete (n, q + 1, 3)-system. Applying the method of Theorem 1.1, this yields an (n, p, 3)-system \mathcal{H}_n for any prime power $p \ge 5$ and $n \in \{p^2 + 1, p^4 + 1, p^8 + 1, \ldots\}$, such that $\alpha(\mathcal{H}_n) \sim A(n, p, 3)$ as $n \to \infty$. Since only finitely many complete (n, r, l)-systems are known when r > l > 3, the cases l > 3 seem much more challenging due to this key obstruction. In general, the method works well whenever there is an (n, q, l)-system and a (q, p, l)-system to produce a random (n, p, l)-system with low independence number.

References

- Ajtai, M., Komlós, J., Pintz, J., Spencer, J. and Szemerédi, E. (1982) Extremal uncrowded hypergraphs. J. Combin. Theory Ser. A 32 321–335.
- [2] Alon, N., Mellinger, K., Mubayi, D. and Verstraëte, J. (2011) The de Bruijn–Erdős theorem for hypergraphs. Submitted.
- [3] Alon, N. and Spencer, J. (2000) The Probabilistic Method, second edition, Wiley.
- [4] Caro, Y. and Tuza, Z. (1991) Improved lower bounds on k-independence. J. Graph Theory 15 99–107.
- [5] Colbourn, C. and Dinitz, J., eds (1996) The CRC Handbook of Combinatorial Designs, CRC Press.
- [6] Dembowski, P. (1996) Finite Geometries, Springer. Reprint of 1968 edition.
- [7] Duke, R., Lefmann, H. and Rödl, V. (1995) On uncrowded hypergraphs. *Random Struct. Alg.* 6 209–212.
- [8] Eustis, A. and Verstraëte, J. (2012) Independent sets in randomized construction of Steiner (n, r, r 1)-systems. Preprint.
- [9] Erdős, P. and Hanani, H. (1963) On a limit theorem in combinatorial analysis. *Publ. Math. Debrecen* **10** 10–13.
- [10] Frieze, A. and Mubayi, D. (2008) On the chromatic number of simple triangle-free triple systems. *Electron. J. Combin.* 15 R121.
- [11] Frieze, A. and Mubayi, D. (2008) Coloring simple hypergraphs. Preprint.
- [12] Füredi, Z. (1991) Maximal independent subsets in Steiner systems and in planar sets. SIAM J. Discrete Math. 4 196–199
- [13] Haemers, W. (1980) Eigenvalue techniques in design and graph theory. PhD thesis, Technical University Eindhoven. Math. Centre Tract 121, Mathematical Centre, Amsterdam.
- [14] Hajnal A. and Szemerédi, E. (1970) Proof of a conjecture of Erdős. Combin. Theory Appl. 2 601–623.
- [15] Keevash, P., Sudakov, B. and Verstraëte, J. (2011) On a conjecture of Erdős and Simonovits: Even Cycles. *Combinatorica*. (accepted).
- [16] Kirkman, T. (1847) On a problem in combinations. *The Cambridge and Dublin Mathematical Journal* (Macmillan, Barclay, and Macmillan) **II** 191–204.
- [17] Komlós, J., Pintz, J. and Szemerédi, E. (1982) A lower bound for Heilbronn's problem. J. London Math. Soc. (2) 25 13–24.
- [18] Kostochka, A., Mubayi, D. and Verstraëte, J. (2011) On independent sets in hypergraphs. *Random Struct. Alg.* (accepted).
- [19] Krivelevich, M. and Sudakov, B. (1998) The chromatic numbers of random hypergraphs. *Random Struct. Alg.* 12 381–403.
- [20] Phelps, K. and Rödl, V. (1986) Steiner triple systems with minimum independence number. Ars Combin. 21 167–172.
- [21] Rödl, V. (1985) On a packing and covering problem. Europ. J. Combin. 6 69-78.
- [22] Rödl, V. and Ŝinajová, V. (1994) Note on independent sets in Steiner systems. Random Struct. Alg. 5 183–190.
- [23] Shearer, J. (1983) A note on the independence number of triangle-free graphs. Discrete Math. 46 83–87.
- [24] Wilson, R. (1975) An existence theorem for pairwise balanced designs III: Proof of the existence conjecture. J. Combin. Theory Ser. A 18 71–79.