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Abstract
Models of mortality often require constraints in order that parameters may be estimated uniquely. It is
not difficult to find references in the literature to the “identifiability problem”, and papers often give argu-
ments to justify the choice of particular constraint systems designed to deal with this problem. Many of
these models are generalised linear models, and it is known that the fitted values (of mortality) in such
models are identifiable, i.e., invariant with respect to the choice of constraint systems. We show that for a
wide class of forecasting models, namely ARIMA(p, δ, q) models with a fittedmean and δ = 1 or 2, identifi-
ability extends to the forecast values of mortality; this extended identifiability continues to hold when some
model terms are smoothed. The results are illustrated with data on UK males from the Office for National
Statistics for the age-period model, the age-period-cohort model, the age-period-cohort-improvements
model of the Continuous Mortality Investigation and the Lee–Carter model.

Keywords Constraints; Forecasting; Identifiability; Invariance; Mortality

1. Introduction
The modelling and forecasting of mortality play a fundamental part in the working life of an
actuary. It is widely known that human mortality depends on an individual’s current age, the cur-
rent year and their year of birth (among many other possible risk factors). These determinants
of mortality are generally known as the age effect, the period effect and the cohort effect, respec-
tively. There is a tried and tested method of approaching the problem. We define a model for the
force of mortality which depends on the age, the period and usually (but not always) the cohort
effect. The parameters are estimated from some suitable data. The period and cohort parameters
are then forecast, and from these estimated and forecast values, the forecast values of mortality are
obtained. Examples of suchmodels are the Lee–Cartermodel (Lee &Carter, 1992), the age-period-
cohort model (Clayton & Schifflers, 1987b) and various forms of the Cairns–Blake–Dowd (CBD)
model (Cairns et al., 2009). More recently, the Continuous Mortality Investigation or CMI intro-
duced the age-period-cohort-improvements model (Continuous Mortality Investigation, 2016a,
2016b, 2016c). For a particular model, the method can be summarised in the following three steps:
(1) estimate the age, period and cohort parameters, (2) forecast the period and cohort parameters
and (3) obtain the forecast values of mortality.

There is a difficulty. The models mentioned above do not allow the unique estimation of the
parameter sets without the introduction of some further assumptions. The standard approach is to
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place some constraints on the estimates, such as the period effects are constrained to sum to zero.
There is no reasonwhy two actuaries working independently should use the same constraints; they
will obtain different estimates of the age, period and cohort effects. Indeed, Clayton & Schifflers
(1987b) in a carefully argued paper warn against the forecasting of cohort effects in particular. This
is often referred to as the “identifiability problem”; see Cairns et al. (2009), Continuous Mortality
Investigation (2016a, 7.3) and Richards et al. (to appear).

In our paper, we take the view that the estimates of the age, period and cohort effects are of
interest to the actuary only as intermediate quantities; they are used to obtain the quantities of
interest, namely, the forecast values of mortality. Apart from the Lee–Carter model, the models
mentioned above are all examples of generalised linear models or GLMs (Nelder & Wedderburn,
1972). It is a basic result that, while the parameters in the GLMs mentioned above are not identi-
fiable, the fitted values (of mortality) are identifiable (Continuous Mortality Investigation, 2016a,
7.3), i.e., invariant with respect to the choice of constraints on the parameters. The main result in
our paper is that the forecast values of mortality are also identifiable when the period and cohort
effects are forecast with an autoregressive integrated moving average or ARIMAmodel with fitted
mean: two actuaries working independently may not obtain the same estimates of the age, period
and cohort effects, but they will obtain the same forecasts of mortality.

The problem of identifiability in the forecasting of mortality has received considerable atten-
tion within both the actuarial and the statistical literature. Hunt & Blake (2020a, 2020b, 2020c)
in a series of papers discuss the problem for a general class of age-period models (of which the
Lee–Carter model is a simple example) and for this class with an added cohort effect. They empha-
sise the arbitrary nature of a particular set of identifiability constraints and the importance of
using a forecasting method which does not depend on this arbitrary choice. They call such a
method “well-identified”, discuss how to choose such a forecasting method and provide some
examples.

The plan of the paper is as follows: in section 2, we describe the data we use to illustrate our
results, set out our notation and define the class of model we discuss. In section 3, we state the
fundamental result on invariance of fitted values in a GLM in terms of the null space of the model
matrix; this section also contains the necessary theory for estimation in a GLM in which some
parameters are subject to constraints and/or smoothing. Section 4 contains our four examples:
the age-period, age-period-cohort, age-period-cohort-improvements and Lee–Carter models. We
make some concluding remarks in section 5. There are three appendices. Appendix A gives the
matrix theory underlying the use of null spaces as applied to GLMs. Appendix B shows how
invariance can be exploited to give a simple way of fitting GLMs with specified constraints. In
Appendix C, we give a proof of the time series result used to show the invariance of forecasting
with respect to the choice of constraints.

2. Data, Notation and the Basic Model
We illustrate our ideas with data from the Office for National Statistics on UK males. The data
comprise the deaths and central exposures for ages 50–104 and years 1971–2015. These data lie
naturally in a matrix with rows indexed by age and columns indexed by year. We adopt the con-
vention thatmatrices are denoted by upper case bold font as inX and column vectors by lower case
bold font as in x. With this in place, we denote the age indices by xa = (1, . . . , na)′ and the year
indices by xy = (1, . . . , ny)′, where the ′ indicates the transpose of a vector (or matrix); this sim-
plifies the notation without jeopardising the presentation. The data thus comprise two matrices:
Dobs = (dx,y), the matrix of the number of deaths at age x in year y, and Eobs = (ex,y), the total time
lived or central exposure at age x in year y. (We will use D later to denote a difference matrix.)
Thus, Dobs and Eobs are both na × ny. Furthermore, we label the cohorts with xc = (1, . . . , nc)′,
where nc = na + ny − 1 is the number of distinct cohorts. We adopt the convention that the
oldest cohort, i.e., for age na in year 1, is indexed 1; hence, the cohort index for cell (i, j) is
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Figure 1. Age of death= rows, year of death= columns, year of birth= diagonals downwards from left to right.

c(i, j)= na − i+ j. In our example, we have na = 55, ny = 45 and nc = 99. Figure 1 summarises
our notation.

In addition, the following notation is useful: 1n denotes a column vector of 1s of length n and
In denotes the identity matrix of size n. Furthermore, we let 0n stand for either a column vector of
0s of length n or an n× n zero matrix; the context should make clear which applies. We may omit
the suffix n if no confusion results. We will make frequent use of the Kronecker product, which
we denote ⊗; see Macdonald et al. (2018, chapter 12) for examples of the Kronecker product as
used in expressing models of mortality.

We assume that Dx,y, the random variable corresponding to the observed deaths dx,y, follows
the Poisson distribution with mean ex,yμx,y, where μx,y is the force of mortality at age x in year
y, i.e., Dx,y ∼P(ex,yμx,y). We note that there is a slight abuse of notation here; strictly, we should
write μx+1/2,y+1/2 since ex,y is the central exposure; we will use the simpler notation throughout
for clarity. Let vec(M) be the function that stacks the columns of amatrixM on top of each other in
column order. Let d = vec(Dobs) and e= vec(Eobs) be the stacked vectors of deaths and exposures;
let μ be the corresponding vector of forces of mortality. We consider models where logμ can be
written in the following form:

logμ = Xθ (1)

Together with the Poisson assumption, this defines a generalised linear model or GLMwithmodel
matrix X, log link and Poisson error; the exposure enters into the model definition as an offset,
log e. This is a very wide class of model and includes the Gompertz model (in one dimension),
the age-period or AP model, the age-period-cohort or APC model, various forms of the CBD
models, and the CMI’s age-period-cohort-improvements or APCI model. The Lee–Carter model,
although not immediately in this class, can also be included, as we will show in section 4.4.

3. Models and Null Spaces
We assume that we have a GLM with model matrix X, regression coefficients θ , a log link and a
Poisson error distribution. We suppose that X is n× p, n> p, with rank p− q where q≥ 1; see
Appendix A for a brief discussion of rank. We denote the rank of X by r(X). The model matrix is
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not of full rank; this implies that the estimates of θ are not unique. However, if we specify a set of
q linearly independent constraintsHθ = 0q, where( X

H

)
has full rank p, then we do have a unique estimate of θ . In general, the idea is to choose H so that
the components of the resulting estimate have a natural interpretation and can be forecast. All the
models considered in this paper have model matrices which are not of full rank.

Suppose θ̂1 and θ̂2 are two estimates of θ subject to the constraints H1θ =H2θ = 0q,
respectively. We wish to understand the relationship between θ̂1 and θ̂2. This relationship is
characterised by the null space of X,N (X)= {v: Xv= 0}. To be precise

θ̂1 − θ̂2 ∈N (X) (2)
see Appendix A for a proof of this fundamental result. Thus,N (X) will tell us how the estimates of
θ under different constraint systems are related; ideally, a forecast will not depend on this choice.
We note in particular that θ̂1 − θ̂2 ∈N (X) implies that

Xθ̂1 = Xθ̂2 (3)
in other words, the fitted values of log mortality are equal, an example of the general result that
the fitted values in a GLM are equal under different constraint systems.

It is often advantageous to smooth certain terms in a model of mortality. We will use the
P-spline system of smoothing; see Eilers & Marx (1996), Macdonald et al. (2018, chapter 11).
The idea is to replace a parameter, α say, by a smooth function, Ba, where B is a regression matrix
evaluated over a basis of B-splines; we use cubic B-splines throughout. In our examples, α will
be an age parameter, and for technical reasons, we will always place a knot at the first age. The
regression coefficients a are then subject to a penalty which penalises local differences in a.

Let α = Ba, where B is na × ca and a= (a1, . . . , aca)′. The second-order penalty on a is

(a1 − 2a2 + a3)2 + . . . + (aca−2 − 2aca−1 + aca)2 (4)
We write this compactly by defining D, the difference matrix of order two, as

D=

⎡
⎢⎢⎢⎢⎢⎣

1 −2 1 0 0 0 · · ·
0 1 −2 1 0 0 · · ·
0 0 1 −2 1 0 · · ·
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ , (ca − 2)× ca (5)

With this notation, the quadratic penalty (4) can be written as
a′D′Da (6)

We make the important remark that r(D) is ca − 2 and so the dimension of the null space of
D, N (D), is two. A basis for N (D) is {n1, n2}, where n1 = 1ca and n2 = (1, 2, . . . , ca)′. We will
be interested in the relationship between N (D) and N (X) since this can affect the number of
constraints required to enable parameters to be estimated uniquely. Proposition 4 in Appendix A
describes this relationship, which is illustrated in our discussion of our examples in section 4.

The strength of the penalty is determined by the smoothing parameter λ, and, from (6), we
define the penalty matrix

P = λD′D (7)
Clearly, if λ is small the coefficients will be less smooth, while if λ is large the coefficients will be
more smooth.
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We have described a penalty of order two but penalties of other orders can be used. For
example, in his landmark paper on graduation, Whittaker (1923) used a third-order penalty with
terms like (a1 − 3a2 + 3a3 − a4)2. IfD is the resulting differencematrix, thenN (D)= {n1, n2, n3},
where n1 and n2 are as in the previous paragraph and n3 = (12, 22, . . . , c2a)′. The first-order penalty
has terms like (a1 − a2)2, and the null space of the corresponding difference matrix consists of n1
only. In general, we denote the order of the penalty by d. A basis for the null space of a difference
matrix of order d is given by {n1, . . . , nd}, where

nj = (1j−1, 2j−1, . . . , cj−1
a )′, j= 1, . . . , d (8)

We describe a general approach to fitting GLMs that are subject to both constraints and smooth-
ing. Nelder and Wedderburn (1972) introduced GLMs and showed that estimation in a GLM is
given by

X′W̃Xθ̂ = X′W̃z̃ (9)

where the tilde, as in θ̃ , indicates a current estimate, while θ̂ indicates an improved approximation
in the iterative scheme. The matrix W̃ is the diagonal matrix of weights and the vector z̃ is the
so-called working variable. For Poisson errors and a log link, W̃ and z̃ are

W̃ = diag{d̃}, z̃ = Xθ̃ +
(
d
d̃

− 1
)

(10)

where d̃ indicates the current estimate of the fitted deaths and d/d̃ indicates element-by-element
division.

A possible and easily overlooked complication may arise when θ (or some portion of θ) is
smoothed. With P-splines, equation (9) becomes

(X′W̃X + P)θ̂ = X′W̃z̃ (11)

where P is the penalty matrix (Currie et al., 2004). The number of constraints required for
(11) to have a unique solution is now determined by r(X′W̃X + P) and not by r(X′W̃X)= r(X).
Fortunately, for most models of mortality, we do have r(X′W̃X + P)= r(X), but there are cases
when r(X) is strictly less than r(X′W̃X + P), so it is best to be aware of this possible pitfall. In
such cases, the number of constraints required to yield a unique estimate of θ will be reduced;
some examples are given in section 4, notably for the APCI model. This discussion suggests the
following definition.

Definition: The effective rank of a model with model matrix X and penalty P is

r(X′W̃X + P) (12)

We show in Proposition A.4 in Appendix A that

N (X′W̃X + P)=N (X′W̃X)∩N (P)=N (X)∩N (P) (13)

and so

r(X′W̃X + P)≥ r(X) (14)

Thus, smoothing can never increase the number of constraints required to obtain unique esti-
mates of θ . The effective rank of a model has connections with the widely used effective dimension
of a model but is a distinct idea; seeMacdonald et al. (2018, chapter 11) for a discussion of effective
dimension.
In our case, X is not of full rank; equation (9) is singular and cannot be solved. The R package
(R Core Team, 2018) has its own way of dealing with this problem, but we want solutions that
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satisfy particular constraints and where some components of θ may be subject to smoothing.
Currie (2013) generalised equation (9) to deal with this case and showed that(

X′W̃X + P : H′

H : 0

)(
θ̂

ω̂

)
=
(
X′W̃z̃
k

)
(15)

is a Newton–Raphson scheme whose solution is the maximum likelihood estimate of θ subject
to (a) the linear constraint Hθ = k and (b) smoothing via the penalty matrix P. Here, ω̂ is an
auxiliary variable; see the appendix in Currie (2013) for a description of its role. We make two
remarks: first, in our case, k will usually be a zero vector and second, if there is no smooth-
ing then there is a neat way of recovering estimates of θ subject to Hθ = k from R’s output;
see Currie (2016) and Appendix B. All the computations in this paper are done in R and use
algorithm (15).

4. Examples
In this section, we present four examples. There is a good argument for smoothing some of
the model terms in each of our examples, particularly parameters varying by age. Accordingly,
for each example, we begin with the case when no model terms are smoothed; we follow this
with a discussion of a smooth model. In each example, we obtain the null space of the model
matrix and discuss its influence on forecasting. We start with the age-period model, a simple
illustration of our approach to the “problem of identifiability”. Our second example, the age-
period-cohort model, is non-trivial; we give a fuller discussion of this model. Next, we discuss
the CMI’s age-period-cohort-improvements model; this model is more complex, and we concen-
trate on the case when some model terms are smoothed. Lastly, we discuss the Lee–Carter model;
this is not immediately in the model class defined by equation (1), so it has its own particular
features.

We will forecast model terms with autoregressive integrated moving average models with fitted
mean which, in standard notation, we denote by ARIMA(p, δ, q); here p is the order of the autore-
gressive term, δ is the order of differencing and q is the order of the moving average term; here
we use δ instead of the usual d since we use d to denote the order of the penalty. We make three
important comments on our forecasting methods. First, with one exception, all our forecasting
models are fitted with a mean. Second, we also consider the simple random walk, i.e., a random
walk with zero drift, a model often used to forecast cohort effects. Third, plots of estimated period
and cohort parameters usually indicate that d = 1 and d = 2 are appropriate, and we concentrate
on these cases. Shumway & Stoffer (2017) is a standard reference on time series.

4.1 Age-periodmodel
The age-period or AP model is very simple, probably too simple to be useful, but it is a clear
demonstration of the method and a straightforward illustration of our results.

4.1.1 APmodel
Under the AP model, we have

logμx,y = αx + κy, x= 1, . . . , na, y= 1, . . . , ny (16)
First, we write the model in the standard form (1) and compute its rank. Let θ = (α′, κ ′)′ be the
vector of regression coefficients. The model matrix is

X = [Xa : Xy]= [1ny ⊗ Ina : Iny ⊗ 1na], na ny × (na + ny) (17)
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and logμ = Xθ . Second, we find a basis for the null space of X. Since X is na ny × (na + ny) and
r(X)= na + ny − 1, the dimension of N (X) is one. In this simple case, we can just write down a
basis vector forN (X). We consider

n=
(

1na
−1ny

)
(18)

and it is easy to check that Xn= 0 and so n spansN (X).
We adopt the following approach to computation. We use two constraint systems: first, a stan-

dard constraint system, i.e., one that is found in the literature: for the AP model we take
∑

κy = 0;
second, a random constraint system: we set

∑na+ny
1 uiθi = 0 where ui, i= 1, . . . , na + ny, are

realisations of independent uniform variables on [0, 1], i.e., U(0, 1). Let θ̂ s and θ̂ r be the esti-
mates of θ under the two systems. Then, by our fundamental result (2), θ̂ s − θ̂ r ∈N (X) and so

θ̂ s − θ̂ r =A

(
1na

−1ny

)
(19)

for some scalar A. Equating coefficients, we find that

α̂s − α̂r =A1na , κ̂ s − κ̂ r = −A1ny (20)

where α̂s, κ̂ s, α̂r and κ̂ r are the components of θ̂ s and θ̂ r , respectively. The value of A depends
on the particular values of ui; in our computation, we found A= 20.7 although any value of A is
possible since it corresponds to adding A to αx and subtracting A from κy in (16). We note that
(20) confirms what has been widely observed, namely that the α and κ are only estimable up to an
additive constant. A careful discussion of what can and cannot be estimated in the AP model can
be found in Clayton & Schifflers (1987a).

Forecasting in the AP model is done by forecasting the κ values, keeping the α values fixed
at their estimated values and then using equation (16) to forecast the values of logμ at each age.
Informally, we argue that since κ̂ s and κ̂ r are parallel with κ̂ s − κ̂ r = −A1ny , we require that their
forecast values, κ̂ s,f and κ̂ r,s say, are also parallel with κ̂ s,f − κ̂ r,f = −A1nf , where nf is the length
of the forecast. Now, the forecast values under both constraint systems will be equal since the
change in the κ forecast values is exactly compensated for by the change in the α values. This will
be achieved with an ARIMA(p, δ, q) model, δ = 1 or 2, since the fitted means of the forecasts for
κ̂ s and κ̂ r will differ by −A.

This informal argument extends to the case when κ̂ s and κ̂ r differ by a linear function, as is the
case in the age-period-cohort model for example. Here, we want the forecasts to obey the same
linear relationship. A formal argument is given in section 4.3.2 when we discuss the age-period-
cohort-improvements model.

We make the important remark that not all forecasting models used in the forecasting of mor-
tality lead to forecasts which are invariant with respect to the choice of constraints. For example,
if we forecast κ with an AR(1) model without a mean, then the forecasts will not be invariant.
In this paper, we take the position that if two time series differ by a function, then the forecasts
should differ by the same function. For example, in the AP model, κ̂ s and κ̂ r differ by a constant
function, i.e., are parallel; our forecasts should also be parallel. In the APCmodel, estimates of the
period terms and of the cohort terms differ by linear functions. Again, we want our forecasts of
the period and cohort terms to obey the same functional relationship. In this way, we will find that
not only are fitted values of mortality invariant with respect to the choice of constraints so also are
their forecast values.
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4.1.2 Smooth APmodel
We turn now to the effect of constraints when some model terms are smoothed. In the AP model,
the forecast values of logμ are more regular by age if the age parameters α are smoothed (see
Delwarde et al., 2007; Currie, 2013). Let α = Baa, where Ba is a B-spline regression matrix along
age; here, Ba is na × ca, where ca is the number of B-splines in the basis. The model matrix (17)
becomes

X = [Xa : Xy]= [1ny ⊗ Ba : Iny ⊗ 1na], na ny × (ca + ny) (21)

with rank ca + ny − 1; the regression coefficients θ = (a′, κ ′)′. We distinguish between the regres-
sion coefficients denoted θ and the parameters of interest which we denote θ∗; here θ∗ = (α′, κ ′)′.
Let X∗ be the model matrix (17) in the unsmoothed case. We note that

Xθ = X∗θ∗ (22)

since (1ny ⊗ Ba)a= (1ny ⊗ Ina)α. We will see that (22) is a very convenient identity. If there is no
smoothing then θ = θ∗ and X = X∗.

The penalty matrix is

P = blockdiag{λaD′D, 0}
where D is the difference matrix of order d acting on the smoothed age coefficients a, 0 is the
ny × ny matrix of 0s acting on the unsmoothed year coefficients κ and λa is the smoothing
parameter. We computeN (X′W̃X + P) for the model in equation (21). Let

n=
(

1ca
−1ny

)

Using the fact that Ba1ca = 1na , we see that Xn= 0, i.e., n ∈N (X). Furthermore, we haveD1ca = 0
for any order d > 0 of the penalty; hence, Pn= 0, i.e., n ∈N (P). Hence, by (13),N (X′W̃X + P)=
N (X′W̃X)∩N (P)= n. Thus, if θ̂ s and θ̂ r are any two estimates of θ , we have

θ̂ s − θ̂ r =A

(
1ca

−1ny

)

for some scalar A. Pre-multiplying both sides by blockdiag{Ba : Iny}, we find(
α̂s

κ̂ s

)
−
(

α̂r

κ̂ r

)
=A

(
1na

−1ny

)

exactly as in the unsmoothed case. We conclude that smoothing has no effect on our invariance
results for the AP model.

We have presented a mathematical discussion of the AP model. An important practical point
is that from a computational point of view, we do not need the detailed understanding provided
by this discussion. We can find the rank and effective rank and check the invariance of the fitted
and forecast values easily in R (or other computational tool). We will make further comments on
the computational aspects of this work as we go.

4.2 Age-period-cohort model
The age-period-cohort or APC model with almost twice as many parameters as the simple AP
model gives a much improved fit.
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4.2.1 APCmodel
Under the APC model, we have

logμx,y = αx + κy + γc(x,y), x= 1, . . . , na, y= 1, . . . , ny (23)

where c(x, y) is the cohort index for age x in year y; with our notation, we have c(x, y)= na − x+ y.
First, we write model (23) in the standard form (1) and compute its rank. Let θ = (α′, κ ′, γ ′)′. The
model matrix is

X = [Xa : Xy : Xc], na ny × (2na + 2ny − 1) (24)

whereXa andXy are defined in (17); the row ofXc corresponding to age x and year y contains a one
in column na − x+ y and zeros elsewhere. The rank of X is 2na + 2ny − 4 and so the dimension
of N (X) is three. The relationship between the estimates of θ under different constraint systems
is determined byN (X).

We now find a basis {n1, n2, n3} for N (X). We note that this basis is not unique, but we can
find a basis that clarifies the relationship between the different estimates of θ . First, we argue that
each of Xa, Xy and Xc contains a one in each row and zeros elsewhere. Hence, we can take n1 and
n2 equal to

n1 =
⎛
⎜⎝

1na
−1ny
0nc

⎞
⎟⎠ , n2 =

⎛
⎜⎝

1na
0ny

−1nc

⎞
⎟⎠ (25)

It remains to find a suitable n3. Some computation is helpful. We fit the APCmodel under a set of
standard constraints, which we take as

ny∑
1

κy =
nc∑
1

γc =
nc∑
1

cγc = 0 (26)

where c is the cohort index (Cairns et al., 2009). An alternative is to weight by the number of times
cohort c appears in the data, say, wc. Thus, we could use

ny∑
1

κy =
nc∑
1

wcγc =
nc∑
1

wccγc = 0

as in Richards et al. (to appear). Our main point is that, although we will get (slightly) different
parameter estimates with these constraint systems, our forecasts of mortality will be identical. We
also fit the model with a set of random constraints∑

ui,jθj = 0, i= 1, 2, 3, j= 1, . . . , na + ny + nc

where the ui,j are independent realisations from the U(0, 1) distribution. Let θ̂ s and θ̂ r be the
maximum likelihood estimates of θ under the two constraint systems. Let α̂s, κ̂ s and γ̂ s be the
components of θ̂ s with a corresponding notation for the components of θ̂ r . The null space of X
characterises θ̂ s − θ̂ r , so we define

�α̂ = α̂s − α̂r , �κ̂ = κ̂ s − κ̂ r , �γ̂ = γ̂ s − γ̂ r (27)

Figure 2 is a plot of �α̂, �κ̂ and �γ̂ and suggests that these values are linear with slopes C, −C
and C, respectively, for some C. Thus,

α̂s − α̂r = a1na + bxa
κ̂ s − κ̂ r = c1ny − bxy
γ̂ s − γ̂ r = d1nc + bxc
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Figure 2. Values of�α̂,�κ̂ and�γ̂ defined in (27) in the APCmodel (23).

for some a, b, c and d. Since n3 is defined only up to scale, we may take b= 1 and conjecture that
n3 has the form

n3 =
⎛
⎜⎝
a1na + xa
c1ny − xy
d1nc + xc

⎞
⎟⎠ (28)

Let x′
1 be the first row of X; we require x′

1n3 = 0. We have

x′
1n3 = (a+ 1)+ (c− 1)+ (d + na)= a+ c+ d + na = 0 (29)

Here, and subsequently, brackets used in this way indicate the terms for age, year and cohort,
respectively, and help to clarify the argument. Any solution of (29) will do. A convenient choice is
a= c= 0 and d = −na; our candidate n3 is

n3 =
⎛
⎜⎝

xa
−xy

xc − na1nc

⎞
⎟⎠ (30)

We check that Xn3 = 0 and conclude that {n1, n2, n3} is a basis for N (X), where n1 and n2 are
defined in (25), and n3 in (30). Our estimates θ̂ s and θ̂ r then satisfy

θ̂ s − θ̂ r =A

⎛
⎜⎝

1na
−1ny
0nc

⎞
⎟⎠+ B

⎛
⎜⎝

1na
0ny

−1nc

⎞
⎟⎠+ C

⎛
⎜⎝

xa
−xy

xc − na1nc

⎞
⎟⎠ (31)

for some scalars A, B and C; in our example, we found A= 1.42, B= 4.10 and C = 0.024. We note
that (31) confirms what is widely known, namely that the age, period and cohort parameters are
only estimable up to linear functions; see for example, Cairns et al. (2009).

We use the relationships (31) to investigate forecasting with the APC model. We suppose we
forecast with an autoregressive integrated moving average model ARIMA(p, δ, q). We know from
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(31) that both κ̂ s and κ̂ r , and γ̂ s and γ̂ r differ by linear functions. We consider two cases: (a)
forecasting the cohort effects with a simple random walk and (b) models with δ = 1 or 2.

Case (a): Forecasting γ̂ with a simple random walk.
The constraints (26) imply that fitted values of γ have mean and slope of zero, and hence the

simple random walk is a plausible model for forecasting cohort effects. We suppose that both
γ̂ s and γ̂ r are forecast in this way. Then a straightforward computation shows that the resulting
forecasts of mortality are not equal, i.e., are not invariant with respect to the choice of constraints.
The reason for this is that the forecasts of γ̂ s and γ̂ r are now parallel and the linear relationship
between γ̂ s and γ̂ r in (31) has been broken.

We can use a simple device to illustrate further forecasting cohort effects with a simple random
walk. If we fit an ARIMA(0,1,0) model, i.e., a random walk with drift, to γ̂ s, then the estimate of
the drift parameter, μs say, is

μ̂s = γ̂s(nc)− γ̂s(1)
nc − 1

(32)

We replace the standard constraints in (26) with
ny∑
1

κy =
nc∑
1

γc = γnc − γ1 = 0 (33)

We suppose the resulting estimates are denoted α̂z κ̂z and γ̂ z. Now when we fit the ARIMA(0,1,0)
model to γ̂ z, the estimate of the drift parameter is constrained to be zero by (33), i.e., we have
fitted a simple random walk. We must forecast γ̂ s with the same ARIMA(0,1,0) model; here, the
estimate of the drift parameter is not zero, but the forecasts of mortality under both constraint
systems are equal.

Case (b): Forecasting with an ARIMA(p, δ, q) model, δ = 1, 2.
We know from (31) that

κ̂ s − κ̂ r = −A1ny − Cxy (34)

Thus κ̂ s and κ̂ r differ by a linear function.We should expect that any reasonable forecasts of κ̂ s and
κ̂ r obey the same functional relation.We show that this is indeed the case when an ARIMA(p, δ, q)
model with a mean, δ = 1, 2, is used to forecast. A formal proof of this is given in Appendix C. In
summary, we will only consider forecasting models that obey this functional relationship since, as
we shall see, this will preserve the invariance of forecasts with respect to the choice of constraints.

Let κ̂ s,f and κ̂ r,f denote the forecast values of κ̂ s and κ̂ r , respectively. It follows from (34) and
(C.5) in Appendix C with a= −A and b= −C that

κ̂ s,f − κ̂ r,f = −(A+ nyC)1nf − Cxf (35)

where xf = (1, . . . , nf )′. The analogous argument with γ̂ s − γ̂ r shows that

γ̂ s,f − γ̂ r,f = −(B+ (ny − 1)C)1nf + Cxf (36)

where γ̂ s,f and γ̂ r,f are the forecast values of γ̂ s and γ̂ r , respectively.
We can now establish the invariance of the forecast values of logμ. Define

θ̂ s,f = (α̂′
s, κ̂

′
s, κ̂

′
s,f , γ̂

′
s, γ̂

′
s,f )

′

with a similar definition for θ̂ r,f . Let Xf be the model matrix for the APC model for ages xa
and years (x′

y, x′
y,f )

′, where xy,f = (ny + 1, . . . , ny + nf )′. We can show that Xf (θ̂ s,f − θ̂ r,f )= 0. We
omit the proof and instead give a detailed proof in the next section for a smooth version of the
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APCI model; the present case follows in the same fashion. We can therefore conclude that the
fitted and forecast values of mortality in the APCmodel are invariant with respect to the choice of
constraints when an ARIMA(p, δ, q) model, δ = 1 or 2, with a mean is used to forecast.

A “computer proof” of the above result is simple and for many models of mortality is all that
is reasonably available or indeed required. We compute fitted and forecast values under any two
constraint systems and check the invariance of the fitted and forecast values. Once the basic code
is written, different constraint systems and different forecasting regimes are easily applied. We
have used this approach in parallel with our theoretical discussion.

4.2.2 Smooth APCmodel
Just as in the AP model, forecasting of mortality in the APC model is improved if the age param-
eters α are smoothed. We set α = Baa, where Ba is na × ca, and replace Xa in (24) with 1ny ⊗ Ba,
as in (21). The model matrix becomes

X = [1ny ⊗ Ba : Iny ⊗ 1na : Xc], nany × (ca + na + 2ny − 1) (37)

and the penalty matrix is

P = blockdiag{λaD′D, 0} (38)

where D is the difference matrix of order d acting on the smoothed age coefficients a, 0 is the
(ny + nc)× (ny + nc) matrix of 0s acting on the unsmoothed year and cohort coefficients κ and γ ,
and λa is the smoothing parameter. With the P-spline system, it is usual to smooth with a second-
order penalty. However, if a first-order penalty is used, we find the effective rank of the model is
increased by one; in this case, in order to retain invariance the number of constraints should be
reduced to two. We continue with a detailed discussion of the case when a second-order penalty
is used.

The regression parameter is θ = (a′, κ ′, γ ′)′. It is easy to see that

n1 =
⎛
⎜⎝

1ca
−1ny
0nc

⎞
⎟⎠ , n2 =

⎛
⎜⎝

1ca
0ny

−1nc

⎞
⎟⎠ (39)

are inN (X). We use an extension of the argument used in the unsmoothed case to find a suitable
third basis vector, n3. We fit with the standard constraints (26) and also with some random con-
straints but with λa = 0 (since we are interested in determining a basis forN (X)). Corresponding
to (27), we define

�â= âs − âr , �κ̂ = κ̂ s − κ̂ r , �γ̂ = γ̂ s − γ̂ r (40)

In our example, we used a knot spacing of �a = 5. From Figure 3, we note that �κ̂ and �γ̂

are linear with slopes 0.1754 and −0.1754, respectively, while �α̂ is linear with slope −0.8768≈
−�a0.1754. Hence, as in (28), we conjecture that n3 has the form

n3 =
⎛
⎜⎝
a1ca + �axca
c1ny − xy
d1nc + xc

⎞
⎟⎠

where xca = (1, 2, 3, . . . , ca)′. Let x′
1 be the first row of X; we set x′

1n3 = 0. We recall that in the
computation of Ba, we place a knot at the first age. With this assumption, the first row of Ba is
( 16 ,

2
3 ,

1
6 , 0

′
ca−3). We have

x′
1n3 = (

a+ �a
( 1
6 + 4

3 + 3
6
))+ (c− 1)+ (d + na)= a+ c+ d + na + 2�a − 1= 0.
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Figure 3. Values of�â,�κ̂ and�γ̂ defined in (40) in the smooth APCmodel (37) but with λa = 0.

A convenient solution is a= c= 0 and d = 1− na − 2�a; our candidate n3 is

n3 =
⎛
⎜⎝

�axca
−xy

xc − ωc1nc

⎞
⎟⎠ (41)

where ωc = −d = na + 2�a − 1. We now check that Xn3 = 0. We conclude that {n1, n2, n3} is a
basis forN (X), where n1 and n2 are defined in (39) and n3 in (41). Hence,

θ̂ s − θ̂ r =A

⎛
⎜⎝

1ca
−1ny
0nc

⎞
⎟⎠+ B

⎛
⎜⎝

1ca
0ny

−1nc

⎞
⎟⎠+ C

⎛
⎜⎝

�axca
−xy

xc − ωc1nc

⎞
⎟⎠ (42)

for some A, B and C; in our example, we found A= 5.298, B= 2.644 and C = −0.1754. Pre-
multiplying (42) through by blockdiag{Ba, Iny , Inc} and using Ba1ca = 1na and Ba�axca = xna +
ωa1na , ωa = 2�a − 1, we find

θ̂
∗
s − θ̂

∗
r =A

⎛
⎜⎝

1na
−1ny
0nc

⎞
⎟⎠+ B

⎛
⎜⎝

1na
0ny

−1nc

⎞
⎟⎠+ C

⎛
⎜⎝
xa + ωa1na

−xy
xc − ωc1nc

⎞
⎟⎠ (43)

where θ∗ = (α′, κ ′, γ ′)′ denotes the parameters of interest.
We show that forecasting with an ARIMA(p, δ, q), δ = 1 or 2, is invariant with respect to the

choice of constraints. We use the same notation as in the unsmoothed case. Comparing (31)
and (43), we see that the middle rows are identical. Hence, the forecasts of κ under two differ-
ent constraint systems in the smoothed case obey the same relation (35) as in the unsmoothed
case, i.e.,

κ̂ s,f − κ̂ r,f = −(A+ nyC)1nf − Cxf
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Forecasts of γ obey the following

γ̂ s,f − γ̂ r,f = (
γ̂ s(ny)− γ̂ r(ny)

)
1nf + Cxnf

= (− B+ (nc − ωc)C)1nf + Cxnf by (43)
= (− B+ (ny − 2�a)C)1nf + Cxnf

It now follows that X∗
f (θ̂

∗
s,f − θ̂∗

r,f )= 0, where X∗
f is the model matrix (24) in the unsmoothed

case; the proof is a special case of that given for the smooth APCI model. We have established the
invariance of the fitted and forecast values with respect to the choice of constraint system when
an ARIMA(p, δ, q) model, δ = 1 or 2, is used.

4.3 Age-period-cohort-improvements model
The CMI’s age-period-cohort-improvements or APCI model was introduced as an industry stan-
dard for the forecasting of mortality (Continuous Mortality Investigation, 2016a, 2016b, 2016c;
Richards et al., to appear).

4.3.1 APCI model
The APCI model is

log μx,y = αx + κy + γc(x,y) + βx(ȳ− y), x= 1, . . . , na, y= 1, . . . , ny (44)

where ȳ= (ny + 1)/2 (recall the year vector is xy = (1, . . . , ny)′). We note that (44) differs in a
minor way from the CMI’s formulation; we have reversed the sign of the βx terms, which now
correspond to the βx terms in the Lee–Carter model. The thinking behind the APCI model is as
follows: linearise the βxκy term in the Lee–Carter model and add the cohort term γc(x,y). This gives
a model which takes into account any cohort effects and allows the forecast of the year effect to
depend on age. The APCI model is a GLM with model matrix

X = [Xa : Xy : Xc : Xb], nany × (3na + 2ny − 1) (45)

where Xa and Xy are defined in (17), Xc in (24) and Xb = (ȳ1ny − xy)⊗ Ina . We define
θ = (α′, κ ′, γ ′, β ′)′ and the model has the form (1). The model matrix has 3na + 2ny − 1 columns
and rank 3na + 2ny − 6, so five constraints are required to enable θ to be estimated uniquely. The
null space of X is spanned by

⎛
⎜⎜⎜⎜⎝

1na
−1ny
0nc
0na

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1na
0ny

−1nc
0na

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

xa
−xy

xc − na1nc
0na

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0na
xy − ȳ1ny

0nc
1na

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

Qxa + x2a
2naxy + x2y
n2a1nc − x2c

2xa

⎞
⎟⎟⎟⎟⎟⎠ (46)

where Q= −2(na + ȳ). The first three basis vectors in (46) are the same as the basis vectors for
the APC model with 0na appended. The fourth basis vector can be deduced by observing that

κy + (ȳ− y)βx = κy − (ȳ− y)ω + (ȳ− y)(βx + ω)= κ∗
y + (ȳ− y)β∗

x

for any scalar ω. The fifth basis vector can be found with the samemethod as used to find the third
basis vector for the APC model. We denote the basis vectors in (46) by ni, i= 1, . . . , 5.

We comment briefly on the CMI’s approach to identifiability. The CMI (2016a, 7.3) gives the
following transformation of the parameters which leaves the values of logμ unchanged. We give
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this transformation in our notation and with the CMI’s βx replaced by ours.
⎛
⎜⎜⎜⎜⎝

�αx

�κy

�γy−x

�βx

⎞
⎟⎟⎟⎟⎠= θ1

⎛
⎜⎜⎜⎜⎝

1

0

−1

0

⎞
⎟⎟⎟⎟⎠+ θ2

⎛
⎜⎜⎜⎜⎝

−(x− x̄)

y− ȳ

(x− x̄)− (y− ȳ)

0

⎞
⎟⎟⎟⎟⎠+

θ3

⎛
⎜⎜⎜⎜⎜⎝

(x− x̄)2

(y− ȳ)2

− (
(x− x̄)− (y− ȳ)

)2
2(x− x̄)

⎞
⎟⎟⎟⎟⎟⎠+ θ4

⎛
⎜⎜⎜⎜⎝

1

−1

0

0

⎞
⎟⎟⎟⎟⎠+ θ5

⎛
⎜⎜⎜⎜⎝

0

−(y− ȳ)

0

(y− ȳ)

⎞
⎟⎟⎟⎟⎠

Writing the transformation in this way, we see that it is equivalent to a particular null basis for X,
namely, ⎛

⎜⎜⎜⎜⎝
1na
0ny

−1nc
0na

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

−(xa − ā1na)

xy − ȳ1ny
−(xc − c̄1nc)

0na

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

(xa − ā1na)2

(xy − ȳ1ny)2

−(xc − c̄1nc)2

2(xa − ā1na)

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1na
−1ny
0nc
0na

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0na
xy − ȳ1ny

0nc
1na

⎞
⎟⎟⎟⎟⎠ (47)

where ā is the mean age, ȳ is the mean year and c̄= na − ā+ ȳ. Three of the basis vectors are the
same as ours; the other two have the same form. In particular, the third basis vector in (47) has
quadratic and linear functions in the equivalent positions to (46).

We fit the model under the standard constraints (CMI, 2016a)∑
κy =

∑
γc =

∑
cγc =

∑
c2γc =

∑
yκy = 0 (48)

where c is the cohort index, c= 1, . . . , nc; again, we could use weighted constraints as in Richards
et al. (to appear). We also use the random constraints∑

ui,jθj = 0, i= 1, . . . , 5, j= 1, . . . , 3na + 2ny − 1 (49)

where the ui,j are independent U(0, 1). With our usual notation for the estimates of θ under the
standard and random constraints, we have

θ̂ s − θ̂ r =An1 + Bn2 + Cn3 +Dn4 + En5

for some A, B, C,D and E. Equating coefficients in (46), we immediately find that α̂s − α̂r , κ̂ s − κ̂ r
and γ̂ s − γ̂ r are quadratic functions of xa, xy and xc, respectively, with E, E and −E as the coef-
ficients of the quadratic terms; furthermore, β̂s − β̂r is linear with slope 2E. These relationships
have implications for invariance when it comes to forecasting.

Figure 4 confirms the relationships among the coefficients. Since �α̂ = α̂s − α̂r is quadratic
with the coefficient of the quadratic term equal to E, first differences of �α̂, D(�α̂), will be linear
with slope 2E as shown in Figure 4; the same remark applies to the first differences D(�κ̂) and
D(�γ̂ ). The slope of �β̂ is 2E. In our example, we found A= −624.3, B= −70.02, C = 18.24,
D= 20.32 and E= 0.002385.

Figure 5 is a plot of the estimated α and β under our two constraint systems; the estimates are
wildly different both in shape and range. Under the standard constraint, the estimate of α has a
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familiar look, while the estimate of β is very close to the estimate of β in the Lee–Carter model;
see Figure 8 for the corresponding plot. However, Figure 5 serves to emphasise our main point: it
is how the coefficients join forces that matter, not the individual coefficients themselves.

The CMI smooth both α and β in their treatment of the APCI model, and we will focus on this
case. First, we discuss briefly the unsmoothed case. We forecast with our two constraint systems,
namely standard and random. The quadratic nature of the fifth basis vector in the null space of the
APCI model (see (46)) implies that a first-order ARIMA model will not give invariant forecasts.
In this paper, we concentrate on forecasting models which lead to invariant forecasts so we do not
pursue this further.

4.3.2 Smooth APCI model
The case for smoothing both α and β is strong: forecasts will be much less prone to irregular
behaviour by age (see Delwarde et al., 2007; Currie, 2013). We will not smooth either κ or γ , since
we are interested in stochastic forecasts of these parameters. This is in contrast to the CMI which
in addition to smoothing α and β also smooth κ or γ ; the CMI’s approach is designed to facilitate
deterministic targeting of future mortality. We do not comment on this debate here; see Booth &
Tickle (2008), Richards et al. (to appear).

Let Ba, na × ca, be a regression matrix evaluated over a basis of cubic B-splines for age. We
use the same regression matrix to smooth both α and β and set α = Baa and β = Bab. The model
matrix is now

X = [1ny ⊗ Ba : Iny ⊗ 1na : Xc : (ȳ1ny − xy)⊗ Ba] (50)
where Xc is defined below (24). The model matrix is na ny × (2ca + ny + nc) with r(X)= 2ca +
ny + nc − 5, so N (X) has dimension five. We fit model (50) but without smoothing, i.e., with the
smoothing parameters set to zero. Let θ = (a′, κ ′, γ ′, b′)′ be the vector of regression coefficients
and θ∗ = (α′, κ ′, γ ′, β ′)′ denote the parameters of interest. We denote the five vectors⎛

⎜⎜⎜⎜⎝
1ca

−1ny
0nc
0ca

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1ca
0ny

−1nc
0ca

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

�axca
−xy

xc − ωc1nc
0ca

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0ca
xy − ȳ1ny

0nc
1ca

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

Qa(xca)
Qκ (xny)
Qγ (xnc)
Lb(xca)

⎞
⎟⎟⎟⎟⎠ (51)

by n1, . . . , n5, respectively; here Qa( · ), Qκ ( · ) and Qγ ( · ) are quadratic functions and Lb( · ) is a
linear function. We can check that n1, . . . , n4 are all in N (X). Figure 6 is a plot of differences in
estimates under the standard and random constraints (48) and (49) and suggests that the fifth basis
vector inN (X) has the form n5. Additionally, the form of the fifth basis in (46) in the unsmoothed
case supports this idea. We will not need an exact expression for n5.

Let Da and Db be difference matrices of orders da and db applied to the coefficients a and b,
respectively. The penalty matrix is

P = blockdiag{λaD′
aDa, 0, λbD′

bDb}
where 0 is a square matrix of 0s of size ny + nc. The null space of the penalised model is given
by N (X)∩N (P); see (13). Now Pni = 0 for i= 1, . . . , 4 for da ≥ 2 and db ≥ 2; for Pn5 = 0, we
need da ≥ 3 and db ≥ 2. It is usual to smooth with difference matrices of order two; in this case
n5 /∈N (P). We continue with the case da = db = 2, in which case the null space of the model
is given by the first four vectors in (51). Direct computation of r(X′W̃X + P) confirms that the
effective rank of the smooth APCI model with da = db = 2 is 2ca + ny + nc − 4. We conclude that
{n1, . . . , n4} is a basis for the null space of the smooth model.

We make a brief comment on the effect of the choice of order of the penalty. We take da =
db = 2. Under the P-spline system of smoothing, the rank of the model is in effect r(X′X + P),
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Figure 6. Plot of first differences, denoted D, of�â= âs − âr ,�κ̂ = κ̂s − κ̂ r and�γ̂ = γ̂ s − γ̂ r ; plot of�b̂= b̂s − b̂r in APCI
model with the smooth model matrix (50) but with λa = λb = 0.

while the rank of the model without smoothing is r(X′X); denote these ranks by rs and r, respec-
tively. Usually, r = rs; indeed we are not aware that the phenomenon rs > r has been previously
observed. Certainly, the implicit constraint in the smooth model can lead to very different esti-
mates of the parameters. We argue that since α, κ , γ and β are not identifiable, we should not be
concerned about these differences. The fitted force of mortalities (which are identifiable) under
the two models will be very close.

We fit the model with four standard constraints (in (48) we drop the constraint
∑

c2γc = 0)
and four random constraints. Let θ̂ s and θ̂ r be the estimates of θ as usual. Then, from (51), we
have

θ̂ s − θ̂ r =A

⎛
⎜⎜⎜⎜⎝

1ca
−1ny
0nc
0ca

⎞
⎟⎟⎟⎟⎠+ B

⎛
⎜⎜⎜⎜⎝

1ca
0ny

−1nc
0ca

⎞
⎟⎟⎟⎟⎠+ C

⎛
⎜⎜⎜⎜⎝

�axca
−xy

xc − ωc1nc
0ca

⎞
⎟⎟⎟⎟⎠+D

⎛
⎜⎜⎜⎜⎝

0ca
xy − ȳ1ny

0nc
1ca

⎞
⎟⎟⎟⎟⎠ (52)

for some A, B, C and D; here, as before, ωc = na + 2�a − 1. In our example, we found
A= 5.742, B= −0.701, C = −0.0343 and D= −0.523. Pre-multiplying (52) through by
blockdiag{Ba, Iny , Inc , Ba} and using Ba1ca = 1na and Ba�axca = xna + ωa1na , we find

θ̂
∗
s − θ̂

∗
r =A

⎛
⎜⎜⎜⎜⎝

1na
−1ny
0nc
0na

⎞
⎟⎟⎟⎟⎠+ B

⎛
⎜⎜⎜⎜⎝

1na
0ny

−1nc
0na

⎞
⎟⎟⎟⎟⎠+ C

⎛
⎜⎜⎜⎜⎝
xa + ωa1na

−xy
xc − ωc1nc

0na

⎞
⎟⎟⎟⎟⎠+D

⎛
⎜⎜⎜⎜⎝

0na
xy − ȳ1ny

0nc
1na

⎞
⎟⎟⎟⎟⎠ (53)

where as before ωa = 2�a − 1. It follows immediately that
α̂s − α̂r = Cxa + (A+ B+waC)1na (54)

κ̂ s − κ̂ r = (D− C)xy − (A+Dȳ)1ny (55)
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Figure 7. Three regions for fitted and forecast values of logμ for ages 1, . . . , 55, years 1, . . . , 45, and a 10-year-ahead
forecast.

γ̂ s − γ̂ r = Cxc − (B+wcC)1nc (56)

β̂s − β̂r = D1na (57)

We now turn to forecasting with the smooth APCImodel.We use the same notation as in the APC
model. Let nf be the length of the forecast and xf = (1, . . . , nf )′. Let κ̂ s,f and κ̂ r,f be the forecast
values of κ̂ s and κ̂ r , and γ̂ s,f and γ̂ r,f be the forecast values of γ̂ s and γ̂ r , respectively. We know
from (55) and (56) that κ̂ s − κ̂ r and γ̂ s − γ̂ r are both linear so, exactly as in the APC model, we
can show that

κ̂ s,f − κ̂ r,f = (ny(D− C)− (A+Dȳ))1nf + (D− C)xf (58)

γ̂ s,f − γ̂ r,f = ((nc −wc)C − B)1nf + Cxf (59)

We now establish the invariance of the forecast values of logμ. Define

θ̂
∗
s,f = (α̂′

s, κ̂
′
s, κ̂

′
s,f , γ̂

′
s, γ̂

′
s,f , β̂

′
s)

′

with a similar definition for θ̂
∗
r,f . Let Xf be the model matrix for the smooth APCI model for

ages xa and years (x′
y, x′

y,f )
′, where xy,f = (ny + 1, . . . , ny + nf )′; let X∗

f be the corresponding
model matrix for the unsmoothed model. We wish to show that Xf (θ̂ s,f − θ̂ r,f )= 0. We observe
that Xf θ̂ s,f = X∗

f θ̂
∗
s,f , since (1ny ⊗ Ba)â= (1ny ⊗ Ina)α̂ and ((ȳ1ny − xy)⊗ Ba)b̂= ((ȳ1ny − xy)⊗

Ina)β̂ .
There are three cases to consider, as shown in Figure 7. In region 1, the fitted values depend

on the estimated values of α, κ , γ and β ; in region 2, the forecast values depend on the estimated
values of α, γ and β , and the forecast values of κ ; and in region 3, the forecast values depend on
the estimated values of α and β , and the forecast values of κ and γ . We see from (54), (55), (56),
(57), (58) and (59) that

X∗
f (θ̂

∗
s,f − θ̂

∗
r,f )=Av1 + Bv2 + Cv3 +Dv4
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for some vectors v1, v2, v3 and v4. We show that v1 = v2 = v3 = v4 = 0; this will establish
invariance of fitted and forecast values.

It is convenient to use a double-suffix notation to identify the entries in v1, v2, v3 and v4. Thus,
cell (i, j) is associated with v1(i, j) and corresponds to the na(j− 1)+ i entry in v1; we have a similar
correspondence for v2, v3 and v4. We check invariance region by region.

Consider region 1. Suppose cell (i, j) lies in region 1 with cohort index na − i+ j. We pick out
the terms in A, B, C and D from (54), (55), (56) and (57) as appropriate. The bracket notation ( )
indicates which terms in X∗

f (θ̂
∗
s,f − θ̂

∗
r,f ) are used, i.e., α, κ , γ and β in turn,

A : (1)+ (− 1)+ (0)+ (0)= 0

B : (1)+ (0)+ (− 1)+ (0)= 0

C : (i+ ωa)+ (− j)+ (na − i+ j− ωc)+ (0)= 0

D : (0)+ (j− ȳ)+ (0)+ (ȳ− j)= 0
and we have verified invariance in region 1. Of course, we already knew this from the general
result on fitted values.

In region 2, we consider the j-ahead forecast for κ . This is cell (i, ny + j) with cohort index
na − i+ ny + j. Using (54), (56), (57) and (58), we find

A : (1)+ (− 1)+ (0)+ (0)= 0

B : (1)+ (0)+ (− 1)+ (0)= 0

C : (i+ ωa)+ (− ny − j)+ (na − i+ ny + j− ωc)+ (0)= 0

D : (0)+ (ny − ȳ+ j)+ (0)+ (ȳ− ny − j)= 0
as required. Finally, in region 3, we consider the j-ahead forecast for γ . For age i, we have the
(i+ j− 1)-ahead forecast for κ , i.e., cell (i, ny + i+ j− 1). We use (54), (57), (58) and (59) and
find

A : (1)+ (− 1)+ (0)+ (0)= 0

B : (1)+ (0)+ (− 1)+ (0)= 0

C : (i+ ωa)+ (− ny − i− j+ 1)+ (nc − ωc + j)+ (0)= 0

D : (0)+ (ny − ȳ+ i+ j− 1)+ (0)+ (ȳ− ny − i− j+ 1)= 0
We conclude that the fitted and forecast values are invariant with respect to the choice of con-
straints when an ARIMA(p, δ, q) model with fitted mean, δ = 1 or 2, is used to forecast. We note
that the proof of invariance in the smooth APC model is a special case of the above. In (52), we
omit the final row and column, and we have reduced (52) to (42).

4.4 Lee–Carter model
The Lee–Carter model or LC model (Lee & Carter, 1992) is the benchmark model for modelling
and forecasting mortality. The LC model is a non-linear model so the methods of the previous
sections do not apply. However, we can still use our extended algorithm (15) to fit two forms of
the model: Lee and Carter’s original formulation and a smooth version.

4.4.1 LCmodel
The LC model is

logμx,y = αx + βxκy, x= 1, . . . , na, y= 1, . . . , ny (60)
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We require one location and one scale constraint to make the parameters estimable. We use∑
κy = 0,

∑
βx = 1 (61)

as in Lee &Carter (1992). The following transformation leaves the fitted values of logμ unchanged
for any values of A and B.

αx + βxκy �→ (αx +Aβx)+ (βx/B)(Bκy −AB)= α∗
x + β∗

x κ∗
y (62)

Let α̂s, β̂s and κ̂ s be the maximum likelihood estimates of αs, βs and κ s under the constraints
(61) with the usual corresponding notation for the estimates α̂r , β̂r and κ̂ r under some random
constraint system. It follows from (62) that

α̂s = α̂r +Aβ̂r (63)

β̂s = β̂r/B (64)

κ̂ s = Bκ̂ r −AB1ny (65)
for some scalars A and B.

Brouhns et al. (2002) used maximum likelihood to estimate the parameters. We also use maxi-
mum likelihood but use (15); this is a full Newton–Raphson scheme which allows estimation with
both smoothing and constraints. Following Currie (2013), we consider two coupled GLMs:

GLM1: logμ = 1ny ⊗ α̃ + X1β , X1 = κ̃ ⊗ Ina (66)

GLM2: logμ = X2θ , X2 = [1ny ⊗ Ina : Iny ⊗ β̃] (67)

where θ = (α′, κ ′)′; here α̃, β̃ and κ̃ represent current estimates of α, β and κ , respectively. Both
GLM1 and GLM2 are in the class defined in equation (1) but note that in GLM1 the offset is
log e+ 1ny ⊗ α̃. In GLM1, we estimate β for current values of α and κ , while in GLM2we estimate
α and κ for given values of β . We now iterate between GLM1 and GLM2 until convergence.

We fit the model with (a) the standard constraints (61) and (b) the random constraints
in GLM1 on β , i.e.,

∑na
1 uiβi = 1, and the random constraints in GLM2 on θ = (α′, κ)′, i.e.,∑na+ny

1 uiθi = 0; the ui are independent U(0, 1).
The upper panels and the lower left panel of Figure 8 show the estimates of α, κ and β , respec-

tively, under the standard and random constraints. In our example, we foundA= 5.907, B= 1.983
and AB= 11.71. The parameter estimates in Figure 8 satisfy (63), (64) and (65) with these values
of A and B. The lower right panel shows the single (invariant) estimate of log mortality at age 65.

Forecasting in the LC model is particularly straightforward. As usual, we forecast with an
ARIMA(p, δ, q) model, δ = 1 or 2. Let κ̂ s,f and κ̂ r,f denote some forecast values of κ̂ s and κ̂ r ,
respectively. We have from (65) κ̂ s = Bκ̂ r −AB1ny ; it follows immediately from Appendix C that
κ̂ s,f = Bκ̂ r,f −AB1nf , where nf is the number of years in the forecast. Thus, the forecasts of κ sat-
isfy (65), and hence forecasts of mortality are invariant with respect to the choice of constraint
system.

4.4.2 Smooth LCmodel
One unsatisfactory feature of the Lee–Carter model, particularly for actuaries, is that irregularities
in the estimate of β lead to irregular forecasts of mortality at individual ages and can even lead to
forecasts at adjacent ages crossing over; see Currie (2013) for examples of this behaviour. Delwarde
et al. (2007) addressed this problem by smoothing the estimate of β with the method of P-splines.
They set β = Bab, where Ba is a regression matrix evaluated on a basis of B-splines along age. The
model matrix for GLM1 in (66) becomes

GLM1: logμ = 1ny ⊗ α̃ + X1b, X1 = κ̃ ⊗ Ba
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Figure 8. Parameter estimates in the LCmodel (60) under standard and random constraints: α̂s = α̂r + Aβ̂r , β̂s = β̂r/B, κ̂s =
Bκ̂ r − AB1ny ; A= 5.907, B= 1.983 and AB= 11.71. Fitted invariant logμ for age 65.

However, [κ̃ ⊗ Ba]b= [κ̃ ⊗ Ina]β , i.e., we are back in the model definition (66). Themodel matrix
for GLM2 is not affected by the smoothing of β . We deduce that (63), (64) and (65) hold in the
smooth case too. We conclude that invariance of fitted and forecast values holds for the smooth
model. Numerical work supports this conclusion.

4.5 Other models
We have described our method by giving a detailed discussion of a number of examples. The
method can be applied to other mortality models and we mention two briefly.

4.5.1 CBDmodel with cohort effects
Cairns et al. (2006) introduced the model logμx,y = κ

(1)
y + (x− x̄)κ (2)

y which is often referred to
as the CBD model. Cairns et al. (2009) modified this model with the addition of cohort effects:

logμx,y = κ (1)
y + κ (2)

y (x− x̄)+ γc(x,y), x= 1, . . . , na, y= 1, . . . , ny (68)

where x̄ is the mean age. The model matrix is
X = [Iny ⊗ 1na : Iny ⊗ (xa − x̄1na) : Xc]. (69)

The coefficient vector is θ = (κ (1)′, κ (2)′, γ ′)′ with length na + 3ny − 1. The rank of X is na +
3ny − 3, so two constraints are required to give unique parameter estimates. We use

∑
γc =
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∑
cγc = 0 as our standard constraints (Cairns et al., 2009) and two sets of random constraints

on θ . We computeN (X), the null space of X, and conclude that

κ (1)
r = κ (1)

s + [A+ (x̄− nx)B]1ny − Bxy
κ (2)
r = κ (2)

s + B1ny (70)

γ r = γ s −A1c + Bxc
where we have used our usual notation for the estimates under the standard and random con-
straints. Once again we see that the parameters are linearly related, so provided we choose a
forecasting method which preserves these relationships we can conclude that the forecasts of
mortality are invariant with respect to the choice of constraints.

4.5.2 Reduced Plat model
Plat (2009) proposed the model

logμx,y = αx + κ (1)
y + (x− x̄)κ (2)

y + γc(x,y), x= 1, . . . , na, y= 1, . . . , ny (71)

Hunt & Blake (2020b) refer to this model as the reduced Plat model. We see that it is formally
equivalent to the unsmoothed APCI model (44) so the dimension of its null space, N (X), is five,
as is readily verified directly. In particular,N (X) has a quadratic term, as in (46). This means that
an ARIMA(p,1,q) model will not lead to invariant forecasts. We can smooth the age term with a
second-order penalty; this will reduce the dimension of the null space from five to four, just as in
APCI model, removing the quadratic term fromN (X). Once more, we are back in the linear case.
We will comment further on this increase in the effective rank of the model in our concluding
remarks.

5. Conclusions
There are three new ideas in this paper.
(a) The standard approach to modelling and forecasting of mortality specifies a particular set

of constraints that enables parameters to be estimated uniquely; often there are arguments
to support this choice. Our approach is to consider the difference in the parameter estimates
obtained with two different constraint systems. These differences are characterised by the null
space of the model matrix. This approach enabled us to deduce that, while parameters are not
identifiable, (i) fitted values of mortality are identifiable (a known result) and (ii) forecast
values of mortality too are identifiable for ARIMA(p, δ, q) models with a fitted mean where
δ = 1 or 2.

(b) Our second contribution is the idea of the effective rank of a model. We could describe a
constraint like

∑
κy = 0 in the APmodel, the APCmodel or the APCI model as an explicit or

hard constraint. The P-spline system constrains the regression coefficients by forcing a certain
level of smoothness on them; we could call this an implicit or soft constraint. We saw in our
discussion of the APC model and particularly of the APCI model that in some cases this soft
constraint can increase the effective rank of the model, i.e., smoothing can act like a hard
constraint.

(c) Our third idea is the use of random constraints. In this paper, we have used random con-
straints to illustrate our theoretical discussion. Random constraints also have an important
practical use since their use avoids the need to calculate a null space for the model. The fit-
ting algorithm (15) makes it straightforward to fit with any constraint system. A practical
method of checking whether forecasting is invariant with respect to the choice of constraints
is to forecast with both a given and a random constraint system. If the forecasts are equal it is
reasonable to assume that forecasting is invariant with respect to the choice of constraints.
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The results in this paper are given for the principal case of interest to actuaries, namely, when we
have a GLM for the force of mortality, μx,y, and deaths are distributed according to the Poisson
distribution. However, the results depend only on the assumption of a GLM and the structure of
the model matrix X. The actuary may choose to model qx,y, the probability of death at age x in
year y. We assume a binomial distribution, Dx,y ∼ B(Ex,y, qx,y), where Ex,y is the initial exposed
to risk. The results on the invariance of fitted and forecast values of qx,y all go through without
alteration. One could even make the simpler assumption that log (Dx,y/ex,y)∼N ( log μx,y, σ 2);
our results apply here too.

The CMI gave a particular set of transformations of the parameters in the APCI model which
left the values of logμ unchanged (CMI, 2016a, 7.3). We saw in our discussion of this model
that this set of transformations corresponded to a particular basis for the null space of the model
matrix. This is a good approach if a suitable set of transformations can be found.When smoothing
is applied, it does not seem obvious that such a set of transformations can easily be found. In this
case, we have provided a systematic method for computing a basis for the null space.

In Appendix B, we gave a simple method for fitting a generalised linear model with specified
constraints which exploited the invariance of fitted values to the choice of constraints. The result
is given when the parameters are not subject to smoothing. It is possible to extend this approach
when there is smoothing of some model terms and we will return to this topic in future work.

This paper has focussed on invariance. This is an attractive mathematical property, but the
actuary may have reasons for choosing a forecasting model which does not lead to invariant fore-
casts; this is particularly true for the forecasting of the cohort parameters. In the APC model, for
example, estimates of the cohort parameters under different constraint systems differ by a linear
function. We have argued that the choice of forecasting method should preserve this relationship.
This places a restriction on the class of forecasting models available, namely to ARIMA models
with a fitted mean. The actuary should be aware that a choice outside this class may not lead to
invariant forecasts.

Our discussion of effective rank in (b) above raises an interesting and not easily resolved ques-
tion. Smoothing the age parameters α and β with a second-order penalty in the APCI model (and
the age parameters α in the reduced Plat model) leads to a reduction in the number of constraints
required to produce unique estimates of the parameters from five in the unsmoothed model to
four. If a third-order penalty is used, the number of constraints required is again five. Some read-
ers may worry that the number of constraints should depend on the details of the smoothing
method adopted. Certainly, smoothing in the APCI and reduced Plat model can have a large effect
on parameter estimates, a consequence of the change in the effective rank of the model. In con-
trast, smoothing has very little effect on the invariant quantities, the fitted and forecast values of
mortality.

The R language has its own way of dealing with models which are not of full rank: it deletes
columns of the X matrix until the remaining columns give a model matrix which is of full rank.
For example, in the APC model, the columns corresponding to the most recent year and the
two youngest cohorts are deleted; in the list of the estimated coefficients, these three parame-
ters are reported as NA, i.e., not available. Explicit constraints are not used, and R’s reporting
emphasises the non-identifiability of the parameters without further assumption. A particular set
of constraints corresponds to such an assumption; this is a strong assumption and one not easily
verified. Of course, there are implicit constraints here and the reported parameters correspond to
the explicit constraints κny = γnc−1 = γnc = 0.

The practising actuary uses manymortality models in their daily work. Nearly all of these mod-
els require identifiability constraints. Our results tell us that we can be relaxed about the choice
of constraint system. Forecast values will not depend on this choice provided we stay within the
class of models used in this paper. This is a most reassuring conclusion.
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A. Appendix
A.1 Somematrix results on invariance
We consider a model with model matrix X and regression coefficients θ . The number of con-
straints on θ required to give a unique estimate of θ is determined by the rank of X which we
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denote by r(X). The definition of r(X) depends on a fundamental result in matrix theory. We
need two definitions: the row rank of X is the maximum number of linearly independent rows of
X; similarly, the column rank of X is the maximum number of linearly independent columns of
X. Then, it can be proved that the row rank of X equals its column rank; this common value is
known as the rank of X. For a proof of this result see, for example, Searle (1982, chapter 6).

The relationship between different estimates of θ under different constraint systems is deter-
mined by the null space of X. We denote the null space of X byN (X) and define

N (X)= {v : Xv= 0}
For our purposes, the following result is fundamental.

Proposition A.1. For any matrix X
N (X′X)=N (X) (A.1)

Proof. First, let v ∈N (X′X). Then
X′Xv= 0⇒ v′X′Xv= 0⇒ (Xv)′(Xv)= 0⇒ Xv= 0⇒ v ∈N (X)

Conversely, let v ∈N (X), then Xv= 0⇒ X′Xv= 0⇒ v ∈N (X′X).
Hence,N (X′X)=N (X). �

We wish to show that the fitted values in a GLM are invariant with respect to the choice of con-
straints. We consider first the standard linear regression model with normal errors and common
variance; the result for a GLM will follow.
Proposition A.2. Define the regression model

y= Xθ + ε, X, n× p, n> p, r(X)= p− q, q≥ 1 (A.2)

Let θ̂1 and θ̂2 be any two solutions of the normal equations

X′Xθ̂ = X′y (A.3)
Then,

Xθ̂1 = Xθ̂2 (A.4)

Proof: Since θ̂1 and θ̂2 satisfy the normal equations (A.3)

X′X(θ̂1 − θ̂2)= X′y− X′y= 0
⇒ θ̂1 − θ̂2 ∈N (X′X)=N (X) by (A.1)
⇒ Xθ̂1 = Xθ̂2

as required. �

A square matrix A is positive semi-definite if v′Av≥ 0 for all v. We first prove:
Proposition A.3. Let A be a symmetric, positive semi-definite matrix. If v′Av= 0, then v ∈N (A).

Proof. Since A is a symmetric, positive semi-definite matrix, there exists a matrix K such that
A=K ′K ; see Searle (1982, chapter 7) for example. Hence,

v′Av= 0⇒ v′K ′Kv= 0⇒ (Kv)′(Kv)= 0⇒Kv= 0⇒K ′Kv= 0
and v ∈N (A). �

We need a definition: the dimension of the null space of a matrix X is the number of vectors in
its basis; we denote this by dim[N (X)]. In general, we have
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Proposition A.4. Let A and B be symmetric, positive semi-definite matrices of the same size. Then
(a) N (A+ B)=N (A)∩N (B), and
(b) r(A+ B)≥max{r(A), r(B)}.

Proof. Let v ∈N (A+ B). Then (A+ B)v= 0⇒ v′(A+ B)v= 0⇒ v′Av+ v′Bv= 0⇒ v′Av= 0
and v′Bv= 0 since both A and B are positive semi-definite. Hence, by Proposition A.3, v ∈N (A)
and v ∈N (B)⇒ v ∈N (A)∩ N (B).

Clearly, if v ∈N (A)∩N (B), then v ∈N (A+ B) and (a) is proved.
Furthermore, it follows from (a) that

dim[N (A+ B)]≤min{dim[N (A)], dim[N (B)]}
and (b) follows immediately from the rank-nullity theorem; see Searle, (1982, chapter 6) for
example. �

In our case, we take A= X′X and B= P, where P is a penalty matrix. The result tells us that
smoothing may reduce the number of constraints required to obtain a unique estimate of θ .

An immediate corollary of Proposition A.4 is the invariance result for fitted values in a
penalised regression.
Corollary: Let θ̂1 and θ̂2 be any two solutions of the penalised normal equations

(X′X+ P)θ̂ = X′y
Then

Xθ̂1 = Xθ̂2

Proof. By assumption, we have

θ̂1 − θ̂2 ∈ N (X′X + P)
= N (X′X)∩N (P) by Proposition A.4
⊆ N (X′X)
= N (X) by Proposition A.1

and Xθ̂1 = Xθ̂2 as required. �
The extension of these results to a GLM is straightforward. The normal equations are replaced by
the estimating equations (Nelder &Wedderburn, 1972)

X′WXθ̂ = X′Wz (A.5)
whereW is the diagonal matrix of weights and z is the working variable; θ̂ is the updated estimate
of θ . Both W and z depend on the current estimated value of the mean. Suppose that W0 and
z0 are the initial estimates of W and z which are computed from the initial estimate of the mean
(usually the observed values y). Let θ̂0,1 and θ̂0,2 be any two initial solutions of (A.5). We write
(A.5) as

X∗′X∗θ̂ = X∗′z∗

where X∗ =W1/2X, z∗ =W1/2z and W1/2 is the diagonal matrix whose elements are the square
roots of those ofW. (We note thatW1/2 exists sinceW is diagonal with positive diagonal entries.)
Then by the invariance result (A.4), we have

X∗θ̂0,1 = X∗θ̂0,2 ⇒ Xθ̂0,1 = Xθ̂0,2

Hence, the updated values of the mean are equal and so the updated values W1 and z1 are also
equal. Hence, as we iterate (A.5) until convergence, we have Xθ̂ i,1 = Xθ̂ i,2 at the i th iteration.
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Hence, at convergence Xθ̂1 = Xθ̂2 where θ̂1 and θ̂2 are the converged values. Thus, θ̂1 − θ̂2 ∈
N (X) just as in the normal regression case. The extension to smoothing in a GLM follows as in
the normal case.

B. Appendix
B.1 Some R code on invariance
The fundamental invariance result (A.4) implies that we can compute a model fit subject to a
particular set of constraints from any other fit of the same model under different constraints.
Currie (2016, equation (31)) gives the following formula:

θ̂ = (X′X +H′H)−1X′ log μ̂ (B.1)

Here, X is the model matrix for, say, the APC model, log μ̂ is the (invariant) vector of fitted log
mortalities and θ is the parameter vector which is subject to the desired constraintHθ = 0. In the
case of the APC model,H is 3× (na + ny + nc).

For example, let Dth, Exp, X and H be the R objects that contain the vectors of deaths and expo-
sures, the model matrix and the constraints matrix, respectively. Then, the following computes
log μ̂ with R’s glm function and then computes θ̂ subject toHθ = 0 from (B.1).

Fit.glm <- glm(Dth ∼ X + offset(log(Exp)), family = poisson)
Log.Mu.hat <- log(Fit.glm$fit/Exp)
Theta.hat <- solve(t(X) %∗% X + t(H) %∗% H, t(X) %∗% Log.Mu.hat)

We note in particular that we do not need to know what constraints the glm function has used to
fit the model.

C. Appendix
C.1 A time series result
We show that if two time series are linearly related and they are forecast with an ARIMA(p, δ, q)
model with a fitted mean, δ = 1 or 2, then the forecasts obey the same linear relationship. First, we
prove a preliminary result. The proof uses discrete integration where the usual constant of integra-
tion corresponds to how the forecast is joined to the series to be forecast. The results correspond
to how R computes a forecast.
Proposition A.5. Let y= (y1, . . . , yn)′. There are two cases.

Case 1: δ = 1.Consider forecasting ywith an ARIMA(p, 1, q)model. Let u= (u1, . . . , unf )′ be the
forecast of length nf of first differences of y with an ARMA(p, q)model. Let yf = (yn+1, . . . , yn+nf )′
be the forecast of length nf of y with the ARIMA(p, 1, q)model. Then

yn+j = yn +
j∑

k=1

uk, j= 1, . . . , nf (C.1)

Case 2: δ = 2. In a similar fashion, let v= (v1, . . . , vnf )′ be the forecast of length nf of second
differences of y with an ARMA(p, q)model. Now let yf = (yn+1, . . . , yn+nf )′ be the forecast of length
nf of y with the ARIMA(p, 2, q)model. Then

yn+j = yn +
j∑

k=1

wk, j= 1, . . . , nf (C.2)
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where

wk = yn − yn−1 +
k∑

�=1
v�, k= 1, . . . , nf (C.3)

Proof. Case 1. Forecasting y with an ARIMA(p, 1, q) is performed by fitting an ARMA(p, q) model
to first differences of y and then reversing the differencing. With the above notation, we have

yn+1 = yn + u1
yn+2 = yn+1 + u2 = yn + u1 + u2, and in general

yn+j = yn+j−1 + uj = yn +
j∑

k=1

uk

which is (C.1).
Case 2. Forecasting y with an ARIMA(p, 2, q) is performed by fitting an ARMA(p, q) model to

second differences of y and then reversing the differencing. Applying (C.1) once, we find

yn+j = yn +
j∑

k=1

wk

where w= (w1, . . . ,wnf )′ is the forecast of first differences of y. Applying (C.1) a second time to
the series w yields

wk = yn − yn−1 +
k∑

�=1
v�

as required. �
We can now prove

Proposition A.6. Let y= (y1, . . . , yn)′ and z= (z1, . . . , zn)′ be two times series which are linearly
related, i.e.,

y= z+ a1+ bx (C.4)

for some a and b; here 1 is the vector of 1s of length n and x= (1, . . . , n)′. Let yf = (yn+1, . . . , yn+nf )′
and zf = (zn+1, . . . , zn+nf )′ be the forecasts of y and z of length nf with anARIMA(p, δ, q), δ = 1, 2
model. Then, yf and zf obey the same linear relationship as y and z, i.e.,

yf = zf + a1+ b(n1+ xf ) (C.5)

where xf = (1, . . . , nf )′.

Proof: Case 1: δ = 1. We have from (C.4)

�(y)− b1n−1 = �(z) (C.6)

where � indicates first-order differencing and 1n−1 is the vector of 1s of length n− 1. Let u and
v be the forecasts, respectively, of �(y) and �(z) with an ARIMA(p, 0, q) model with a mean.
Denote the fitted means by μu and μv. It follows immediately from (C.6) and the definition of an
ARIMA model with a mean that μu = μv + b. Hence

u= v+ b1n−1 (C.7)
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We have

yn+j − zn+j = yn +
j∑

k=1

uk − zn −
j∑

k=1

vk by (C.1)

= yn +
j∑

k=1

uk − yn + a+ nb−
j∑

k=1

(uk − b) by (C.4) and (C.7)

= a+ (n+ j)b
as required.

Case 2: δ = 2. We have
�2(y)− �2(z)= 0n−2 (C.8)

and so u= v where u and v are the forecasts of �2(y) and �2(z) with an ARIMA((p, 0, q) model,
respectively. We apply (C.2) and (C.3). We have

yn+j − zn+j = yn +
j∑

k=1

⎛
⎝yn − yn−1 +

k∑
�=1

u�

⎞
⎠− zn −

j∑
k=1

⎛
⎝zn − zn−1 +

k∑
�=1

v�

⎞
⎠

= yn +
j∑

k=1

(yn − yn−1)− yn + a+ nb−
j∑

k=1

(yn − a− nb− yn−1 + a+ (n− 1)b)

=
j∑

k=1

(yn − yn−1)+ a+ nb−
j∑

k=1

(yn − yn−1 − b)

= a+ (n+ j)b
as required. �
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