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Abstract

Coastal desert vegetation of the Arabian Peninsula is almost entirely dominated by halophytes.
Natural populations provide a genetic resource for ecological remediation and may also have
direct economic value. High intrapopulation variation of seed traits is presumed to increase
population persistence in the unpredictable climatic conditions of this hyper-arid desert.
We investigated whether intrapopulation variation of seed mass, dormancy and germinability
of four species was attributable to maternal individuals. Arthrocnemum macrostachyum,
Halothamnus iraquensis, Haloxylon salicornicum and Seidlitzia rosmarinus are commonly
distributed Arabian halophytes with differing seed weight variation. All species exhibited
a higher germination when exposed daily to 12 h light, compared to seeds in darkness.
A higher germination was correlated with a shorter germination time. For H. iraquensis
and S. rosmarinus, a shorter germination time was negatively correlated with germination syn-
chrony. H. salicornicum showed the highest intrapopulation variation of seed traits, followed
by A. macrostachyum, S. rosmarinus and H. iraqensis.We found that individuals within popu-
lations of all the studied species showed variability in germination but the extent of variation
was species-specific. The variation in seed mass and germination among the individuals of the
studied species may facilitate a temporal distribution of germination, which may reduce the
risk of seed bank exhaustion. The results of this study could assist conservation and manage-
ment by improving the efficiency of seed collection from wild populations of these species.

Introduction

Seed traits such as mass, dormancy and germination are crucial to plant fitness (Baskin and
Baskin, 2014; Gremer and Venable, 2014). Interpopulation variability in seed traits is common
and related to differences in climate, geography and habitat (Tautenhahn et al., 2008; Bu et al.,
2009; Saatkamp et al., 2019). Variability of seed traits also exists at the intrapopulation level
where it is considered a bet-hedging strategy for enabling the species to produce numerous
seeds optimized for different climatic conditions (Mitchell et al., 2017). This intrapopulation
variation increases the probability of generational survival in an unpredictable or changing
environment (Slatkin, 1974; Zhao et al., 2016). Coastal deserts frequently exhibit spatio-
temporal variation in salinity and soil moisture (Castillo et al., 2000), hence environmental
conditions for germination and seedling establishment are highly variable in time and space
(Gremer and Venable, 2014; El-Keblawy et al., 2017). However, intrapopulation variation in
germination of Arabian desert halophytes has received little attention. Studying intrapopula-
tion variability of seed germination could improve our understanding of how desert halophyte
species cope with high salinity and drought during seed germination.

Seed germination varies (1) within maternal individuals (Gutterman, 2000), (2) within
populations (Narbona et al., 2006; Pérez-García, 2009; Santelices et al., 2017) and (3)
among populations (Nordborg and Bergelson, 1999). Latitude, altitude, temperature, light,
moisture, soil nutrients and habitat disturbance have been linked to interpopulation variation
of seed dormancy and germination (Baskin and Baskin, 2014; El-Keblawy et al., 2017).
Intrapopulation variation of seed dormancy enables temporal distribution of germination,
which is critical for population persistence in the unpredictable climates of arid zones.

Most plant species of the Arabian desert germinate during winter, when temperature is
lower and rainfall events more likely (Böer, 1997). Germination timing is strongly influenced
by abiotic factors of light, temperature, plant-available moisture and salinity (El-Keblawy and
Bhatt, 2015; Bhatt and Santo, 2016). Periods of sufficient moisture for germination are uncom-
mon in arid systems. They are unpredictable in their occurrence and in whether the moisture
will persist long enough for seedling establishment. Therefore, germination in these
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arid systems is regulated to respond to multiple abiotic factors
(Ashraf and Foolad, 2005; Bewley et al., 2013; Bhatt et al.,
2019a,c, 2020b).

Halophytic species can be used in phytoremediation of saline-
sodic or salt-affected land, thus extracting salt to biomass, estab-
lishing plant cover and lowering a saline water table (Panta et al.,
2014). The ability of halophytes to accumulate salt in shoot sys-
tems is dependent on each species’ adaptive strategies
(Graifenberg et al., 2003; Tester and Davenport, 2003; Rabhi
et al., 2010). In field and glasshouse trials, several halophytic spe-
cies absorbed the equivalent of 2 to 6 tonnes salt ha−1 yr−1 (Panta
et al., 2014). Approximately 140 halophytic taxa from 31 plant
families have been recorded on the Arabian Peninsula, which con-
stitutes about 4% of the total flora (Ghazanfar et al., 2014).
Halophytes are used for medicine, fodder, phytoremediation, bio-
fuel and ornamentals (El Shaer, 2010; Qasim et al., 2010; Rabhi
et al., 2010; Abideen et al., 2011; Manousaki and Kalogerakis,
2011; Ali et al., 2012; Gairola et al., 2015; Bañuelos et al., 2018).
Describing and conserving this genetic resource should be a pri-
ority. Abiotic factors such as temperature, light, salinity and their
interactions have been shown to have an effect of germination in
many halophytic species, including Anabasis setifera, Atriplex
canescens, Halocnmum strobilaceum, Halothamnus iraqensis,
Haloxylon salicornicum, Halopeplis perfoliata, Limonium stocksii,
Salsola vermiculata, Salsola schweinfurthii, Suaeda aegyptiaca and
Seidlitzia rosmarinus (Zia and Khan, 2004; El-Keblawy and Bhatt,
2015; Bhatt and Santo, 2016). Interpopulation differences in seed
dormancy and germination has been identified in Anabasis seti-
fera (El-Keblawy et al., 2016a,b), Limonium avei (Santo et al.,
2017), Salsola drummondii (Elnaggar et al., 2019), Suaeda aegyp-
tiaca (El-Keblawy et al., 2017) and Suaeda vermiculata
(El-Keblawy et al., 2018). Interpopulation variation has been
attributed to differences in both population genetics and maternal
environment (Baloch et al., 2001; Donohue et al., 2005; Narbona
et al., 2006), although these studies have not used genotype by
environment trial designs, instead relying on studies of maternal
plants grown in similar microclimates and seeds produced during
similar periods.

Successful seedling establishment is dependent of rainfalll in a
rain event, and on the occurrence of later rain events that extend
plant-available moisture levels through the growing season.
Intrapopulation variation of dormancy and germination enables
the population to spread germination across multiple rain events
in the season if they occur. Temporal distribution of germination
can also reduce competition among seedlings, both inter-
and intraspecific, for limited resources (Brändle et al., 2003;
Donohue et al., 2010). In contrast to the many studies of interpo-
pulation variation, the authors know of no studies on germination

and dormancy variation of Arabian halophyte seeds obtained
from different maternal plants within a population. This informa-
tion may have practical use in knowing whether it is beneficial to
select seeds from maternal individuals, or whether population
selection is sufficient. Thus, the aim of the present study was to
identify if maternal seed source within a population influences
(1) seed weight, dormancy and germination, (2) light and tem-
perature requirement for germination and (3) if the extent of
intrapopulation variation differs among species.

Materials and methods

Species

Arthrocnemum macrostachyum, H. iraqensis, H. salicornicum and
S. rosmarinus each have potential for rehabilitating degraded desert
rangelands and salt-affected soils. All are perennial branched shrubs
belonging to Amaranthaceae. They are commonly found in Arabian
coastal deserts (Ghazanfar, 2006; Freitag et al., 2009), are highly
resistant to salinity and contribute to soil stabilization (Huang
et al., 2003; Omar et al., 2007; Amiraslani and Dragovich, 2011;
Mahmoodi et al., 2013). The species are also used for fodder, medi-
cine, fuel wood and as windbreaks (Ashraf et al., 2012; Bidak et al.,
2015). Haloxylon salicornicum was shortlisted as having potential
for desert landscaping, along with other native species (Phondani
et al., 2016), and A. macrostachyum was identified as a suitable spe-
cies for phytoremediation (Redondo-Gómez et al., 2010).

Seed collection

Mature seeds were collected from ten maternal plants per species,
December 2018 in Kuwait (Table 1). Maternal plants were at least
5 m apart but otherwise selected randomly along a 180 to 200 m
line transect. Seeds were cleaned immediately after collection and
germinated within one week. Seed mass was determined by weigh-
ing three 25-seed replicates from each maternal plant of each species
using an analytical balance (Sartorius Analytical Balance mod.
ENTRIS224-1S, Bradford, MA, USA; accurate to 0.1 mg).

Germination

Four 25-seed replicates were germinated for each combination of 4
species, 10 plants and 2 photoperiod regimes. Seeds for each repli-
cate were placed in 9 cm diameter Petri dishes containing two
sheets of filter paper (Whatman No. 1). Replicates were placed in
incubators set at night/day 12/12 h temperature of 15/20°C for
photoperiods of either 0 (dark) or 12 (light) hours light per day
from a 50 W white fluorescent lamp (Sylvania Led T5 Tubes,

Table 1. Seed collection and location details of selected species

Species Location GPS Coordinates Associated species

Arthrocnemum macrostachyum Julia 28°54′15.1′′N
48°13′12.3′′E

Suaeda vermiculata, Aeluropus lagopoides, Tamarix species

Halothamnus iraqensis Julia 28°54′15.1′′N
48°13′12.3′′E

Salsola imbricata, Pennisetum divisum, Deverra triradiata

Haloxylon salicornicum Mutla 29°24′21.8′′N
47°41′42.8′′E

Cyperus conglomeratus, Zygophyllum qatarense, Tribulus species

Seidlitzia rosmarinus Julia 28°52′57.2′′N
48°15′44.6′′E

Suaeda vermiculata, Aeluropus lagopoides, Tamarix species
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Sylvania Portugal Lda, Lisboa, Portugal). This temperature regime
has previously been found suitable for germination of this species
in natural conditions. Petri dishes of dark replicates were wrapped
in two layers of aluminium foil. Germination was defined as the
protrusion of a radicle by ≥2 mm through the external integument
(Allen and Alvarez, 2020). Germinated seeds of the light treatments
were counted daily, and dark treatments were assessed at the end of
the experiment.

Data analysis

A nested analysis of variance (ANOVA) with species as a fixed
factor and maternal plants as random and nested within species
was performed to assess whether seed weight and germination
traits differed among species. A one-way ANOVA was then also
performed for each species, with maternal plant as the fixed fac-
tor, to determine the species-specific influence of maternal plant
for germination in light, germination in darkness, mean germin-
ation time, SYN uncertainty and seed weight. Correlation among
seed weight and germination traits was determined using Pearson
correlations. Analyses were performed using SPSS 26 (IBM
Corporation, Armonk, NY, USA) and a Bonferroni correction
was applied to avoid increased risk of Type I error.

A nested analysis of variance (ANOVA) was performed to
assess the influence of the maternal plant and species on seed
weight and germination, with species as a fixed factor and mater-
nal plant as random and nested within species. A one-way
ANOVA was then performed for each species to determine the

species-specific influence of maternal plant on germination in
light, germination in darkness, mean germination time, syn-
chrony, uncertainty and seed weight. Rand Index was used to
measure the similarity between data groupings and Euclidian dis-
tance for principal components analysis using Minitab 18.1.0.0
(Minitab LLC, Pennsylvania State University, PA, USA). Results
were considered significant when P≤ 0.01. Principal component
analysis was conducted on all germination features using
Minitab. The summary function of principal components analysis
was used to calculate the proportion of the variance of each par-
ameter explained by each principal component. For hierarchical
clustering, Pearson’s correlations were used to compare the simi-
larities between the studied species using the ‘cor’ function on the
Sigmaplot v. 14.0 (Systat Software Inc., Chicago, USA) and its
Excel package with the complete linkage method and the
Euclidean distance measure were used for hierarchical clustering
with the R index in the Minitab.

Results

All species produced a higher germination percentage in light
than in darkness, with the difference ranging from 7.2% in S. ros-
marinus to 9.2% in H. salicornicum (Table 2). Seed germination
varied strongly among maternal plants of H. salicornicum in
both light and dark treatments (P < 0.0001). Seed germination
among maternal plants of A. macrostachyum was not significant
after application of the Bonferroni correction (P = 0.0189) and
was not significant for the other two species (Table 2).

Table 2. Influence of the maternal plant and species on seed weight and germination

Germination in light (%) Germination in darkness (%) Mean germination time (days)

Mean SE P2 Mean SE P2 Mean SE P2

Species

Arthrocnemum macrostachyum 90.1 0.9 0.0189 ** 83.7 0.8 0.0144 * 2.71 0.03 0.0058 **

Halothamnus iraquensis 96.1 0.9 0.5098 88.4 0.8 0.3123 1.31 0.03 3.1 × 10−14 ***

Haloxylon salicornicum 86.3 0.9 1.7 × 10−12 *** 79.3 0.8 1.3 × 10−13 *** 1.89 0.03 1.6 × 10−6 ***

Seidlitzia rosmarinus 89.9 0.9 0.1487 83.9 0.8 0.1298 2.45 0.03 2.0 × 10−4 ***

P1

Species 0.0300 * 0.0542 8.8 × 10−15 ***

Maternal plant within species 3.9 × 10−15 *** 1.1 × 10−17 *** 6.6 × 10−15 ***

Seed weight (g) Synchrony Uncertainty (bits)

Mean SE P2 Mean SE P2 Mean SE P2

Species

Arthrocnemum macrostachyum 0.012 0.001 0.0120 * 0.340 0.01 0.1686 1.641 0.03 0.2021

Halothamnus iraquensis 0.164 0.001 1.8 × 10−9 *** 0.651 0.01 3.8 × 10−9 *** 0.792 0.03 1.1 × 10−7 ***

Haloxylon salicornicum 0.116 0.001 2.7 × 10−9 *** 0.584 0.01 9.6 × 10−10 *** 0.959 0.03 7.7 × 10−12 ***

Seidlitzia rosmarinus 0.072 0.001 1.4 × 10−11 *** 0.330 0.01 2.0 × 10−4 *** 1.838 0.03 5.4 × 10−6 ***

P1

Species 8.2 × 10−20 *** 1.4 × 10−7 *** 2.3 × 10−9 ***

Maternal plant within species 3.1 × 10−33 *** 3.7 × 10−25 *** 2.5 × 10−20 ***

Analyses were a nested ANOVA with species as fixed, and maternal plant as random and nested within species (P1), and a one-way ANOVA of maternal plants within each species (P2).
The Bonferroni correction makes values of α < 1.67 × 10−3 non-significant.
P > 0.05 (*), P < 0.01 (**), and P < 0.001 (***).
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Mean germination time (MGT) varied strongly among mater-
nal plants of H. iraquensis (P < 0.0001), H. salicornicum (P <
0.0001) and S. rosmarinus (P < 0.0001), and significantly affected
A. macrosctachyum (P = 0.0058). A maternal effect on seed
weight, synchrony and uncertainty was also highly significant in
all species except S. rosmarinus (Table 2).

Germination percentage in light and dark treatments were
strongly correlated for H. salicornicum, S. rosmarinus and
A. macrostachym (r = 0.965, 0.881, 0.873, respectively), but not
significant for H. iraquensis (Table 3). MGT was negatively corre-
lated with germination in light for H. salicornicum (r =−0.720)
and for germination in both light (r =−0.650) and darkness (r
=−0.710) for A. macrostachym (Table 3). However, these correla-
tions were not significant after application of the Bonferroni cor-
rection. Likewise, seed weight was negatively correlated with
germination under darkness (−0.655) in H. iraquensis, only if
the Bonferroni correction was not used. MGT was strongly corre-
lated with both synchrony and uncertainty for H. iraquensis
(−0.906, and 0.914, respectively) and S. rosmarinus (−0.891,
and 0.943, respectively) but not for the other species (Table 3).

Maternal plants of H. salicornicum were placed in a distinctly
uniform cluster by PCA, separated from plants of other species
(Fig. 1). Maternal plants of H. iraquensis also formed a distinct
cluster with 70% similarity, which overlapped with a cluster of
>71% similarity formed by maternal plants of A. macrostachyum
and S. rosmarinus. The sum of PC1 and PC2 comprised 77.6% of
the observed variation. Factors separating plant species in the
PCA are demonstrated in Fig. 1B,C. Germination in darkness
(0.659) and in light (0.644) had a strong positive effect on cluster-
ing, while synchrony had a strong negative effect (−0.560).
Uncertainty (0.557), and MGT (0.513), had a similar positive
influence on species separation. The strength with which each fea-
ture promoted clustering is distinct, while germination (both
12/12 h of light/dark cycles or complete darkness), seed weight
and synchrony promoted germination (Fig. 1B,C).

Discussion

Usually, seeds collected from different individuals from any par-
ticular population are mixed together to test their germination
response, which provides an average response at the population
level. However, intrapopulation variability in the germination
response is well known (Martin et al., 1995; Schütz and Milberg,
1997; Pérez-García, 2009). Intrapopulation variability in seed ger-
mination could be mechanism to overcome the risk of failed recruit-
ment against unpredictable environmental conditions such as
drought and salinity. This variability enables a species to deal
with uncertainty via asynchronized germination. The different spe-
cies showed differences in intrapopulation variability, indicating that
each species has a different strategy for coping with the extreme
coastal desert conditions of high salinity and drought.

Seeds of all the studied species matured at a similar time, hence
microclimatic variation of collection sites was minimized.
Intrapopulation variation of germination response among indivi-
duals could be due to genetic or maternal plant effects (Baloch
et al., 2001; Donohue et al., 2005). The existence of variability
in germination within the population of selected species could
be helpful in spreading their germination in time and space
because the favourable conditions for germination and seedling
establishment are spatiotemporally highly variable in arid deserts
(Gremer and Venable, 2014; El-Keblawy et al., 2017). This vari-
ability would ensure that seeds of these species will germinate

during different times of the growing season between December
to March when the temperature is low and the chances of rainfall
are higher during this time of year under Arabian desert condi-
tions (Böer, 1997), that can leach out the salinity.

Variability in seed germinability improves overall reproductive
success in unpredictable desert conditions. Intrapopulation seed
size variation affects seed dispersal, germination, seedling emer-
gence and establishment (Hawke and Maun, 1989; Baskin and
Baskin, 2014). The studied species exhibited differences in the
amount of seed mass variation within maternal individuals.
Factors such as maternal condition, microenvironment and geno-
type might be responsible for variability of seed size (weight), dor-
mancy and germination within individuals of the same
population (Platenkamp and Shaw, 1993; Benech-Arnold et al.,
2000; Galloway, 2002). High inter-annual climatic variability
and inherent water-limitations are usually a strong determiner
of seed germination and seedling survival in arid conditions
(Chesson et al., 2004; Torres-Martinez et al., 2016). Maintaining
variation in seed mass and germination distributes germination
throughout the winter season (October to March) when chances
of rainfall are high. This benefits population persistence and
reduces the risk of a local extinction event (Levy et al., 2012;
Mitchell et al., 2017) in this environment of harsh and spatio-
temporally unpredictable conditions for life. In other words, we
can speculate that the higher the MGT and the lower the SYN,
the greater the reproductive chance of the species, exceptionally
in hostile environments such as deserts (Pompelli et al., 2010;
Miranda et al., 2011; Moncaleano-Escandon et al., 2013;
Lozano-Isla et al., 2018; Bhatt et al., 2019c, 2020a). Among the
studied species, H. salicornicum showed the highest variation in
seed germinability within the individuals of the same population
followed by A. macrostachyum, S. rosmarinus and H. iraqensis.
This highest variation in seed germinability within the individuals
is due to high uncertainty in germination and high synchrony.
For the sake of clarity, the existence of such variation in seed ger-
mination could be related to their reproductive strategy to survive
under harsh condition by spreading their germination throughout
the winter season. However, the interspecific variation in germin-
ation among the studied species might be helpful in allowing their
coexistence in same community.

Overall, freshly collected seeds of all the selected species
showed high germination percentages and showed similar ger-
mination patterns. Higher germination response of freshly col-
lected seeds have been reported previously for these species,
believed to be an adaptation strategy that coincides with the rain-
fall patterns in the Arabian desert (Bhatt et al., 2019a,b,c). In the
Arabian desert, most halophytes mature during November–
December when temperature is low, and the chances of rainfall
are high. This might be how these species have evolved to prevent
seedling recruitment in summer under such extreme conditions.

Seed weight did not influence seed germination in light or dark-
ness of any species. H. iraquensis exhibited a significant correlation
between seed weight and germination in darkness (P = 0.0399) but
this was non-significant after application of the Bonferroni correc-
tion (Table 3). Seed size ranged from 2.8 mg in A. macrostachyum
to 48.0 mg in H. iraquensis. Small seeds may require light to ger-
minate, since endosperm reserves are sufficient for only a short epi-
cotyl elongation to the soil surface (Milberg et al., 2000). However,
intrapopulation variation in seed weight did not influence light
requirement for germination in this or a similar study
(Rojas-Aréchiga et al., 2013). All species exhibited higher germin-
ation in light but nevertheless germinated well in darkness,
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Table 3. Pearson correlations (r) and their significance (α = 0.05) of traits measured on ten plants per species

Germination
in light

Germination
in darkness

Mean
germ.
time Synchrony Uncertainty Seed weight

Arthrocnemum
macrostachyum Halothamnus iraquensis Haloxylon salicornicum Seidlitzia rosmarinus

r P r P r P r P

x x 0.873 0.0010 *** 0.570 0.0852 0.965 6.3 × 10−6 *** 0.881 7.5 × 10−4 ***

x x −0.650 0.0418 * −0.446 0.1967 −0.720 0.0189 * 0.220 0.5418

x x 0.025 0.9445 0.523 0.1205 0.260 0.4682 −0.447 0.1954

x x −0.088 0.8098 −0.562 0.0910 −0.367 0.2974 0.445 0.1972

x x 0.286 0.4228 −0.467 0.1738 0.397 0.2557 −0.027 0.9417

x x −0.710 0.0215 * −0.298 0.4029 −0.597 0.0683 0.352 0.3187

x x 0.464 0.1767 0.566 0.0878 0.137 0.7051 −0.611 0.0604

x x −0.509 0.1328 −0.560 0.0922 −0.231 0.5210 0.589 0.0735

x x 0.279 0.4347 −0.655 0.0399 * 0.487 0.1531 0.132 0.7170

x x −0.319 0.3688 −0.906 3.0 × 10−4 *** −0.308 0.3874 −0.891 5.3 × 10−4 ***

x x 0.396 0.2572 0.914 2.2 × 10−4 *** 0.455 0.1860 0.943 4.3 × 10−5 ***

x x −0.619 0.0562 −0.108 0.7670 0.168 0.6419 0.022 0.9518

x x −0.984 2.8 × 10−7 *** −0.994 7.4 × 10−9 *** −0.986 1.6 × 10−7 *** −0.979 8.4 × 10−7 ***

x x 0.285 0.4248 −0.071 0.8458 −0.080 0.8251 −0.035 0.9225

x x −0.395 0.2591 0.082 0.8212 0.104 0.7752 0.008 0.9822

The Bonferroni correction makes values of α < 8.3 × 10−4 non-significant.
P > 0.05 (*), P < 0.01 (**), and P < 0.001 (***).
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indicating a preference for non-burial but ability to cope with it
(Milberg et al., 2000). The high germination percentages indicate
an absence of dormancy at the time of seed maturation, as has
been reported for other Arabian halophytes (Bhatt et al., 2016;
El-Keblawy et al., 2017; Ghazanfar et al., 2019). Seeds are ready
to germinate immediately if there is sufficient moisture present.

Low germination synchrony is common in xeric plant species
and has been linked to desert population persistence (Song et al.,
2012; Lozano-Isla et al., 2018; Nimac et al., 2018; Bhatt et al.,
2020a). In the present study, individuals within the population
showed significant variation in MGT, depending on the species.
The variation in mean germination timing within the individuals
of the same population of selected species might be advantageous
because it can limit the synchronous germination and ultimately
reduce the risk of germination failure. This strategy may benefit
the species through preventing local extinction when conditions

suitable for seedling survival do not persist (Tielbörger et al.,
2012). Our results are in accordance with the results obtained
for other species such as Ceratonia siliqua, Euphorbia nicaeensis,
Nothofagus glauca and Tuberaria macrosepala (Narbona et al.,
2006; Pérez-García, 2009; Zaidi et al., 2010; Santelices et al., 2017).

Among the studied species, seeds of H. iraqensis germinated
quickly (within 3 d) followed by H. salicornicum (5 d), S. rosmari-
nus (7 d) and A. macrostachyum (8 d). The fast germination of H.
iraqensis and H. salicornicum indicates that seeds of these species
might cope with low and unpredictable rainfall. A similar pattern
was observed in other Arabian halophytes, including Salsola rubes-
cens (El-Keblawy et al., 2013), Halocnemum strobilaceum and
Halopeplis perfoliate (El-Keblawy and Bhatt, 2015), Atriplex canes-
cens (Bhatt and Santo, 2016), Salsola schweinfurthii (Bhatt et al.,
2016), Salsola vermiculata (Bhatt et al., 2017b) and Haloxylon sal-
icornicum (Bhatt et al., 2017a). In the present study,

Fig. 1. (A) Principal component analysis to A. macrostachyum
(square), H. iraquensis (star), H. salicornicum (circles) and S. ros-
marinus (pentagon) showing the spatial distribution of each
plant species. The large circles represent the three clusters
formed by the Euclidean distance method considering ∼70%
of similarity. (B) Loading plot graph showing the direction and
length of the lines are directly proportional to variables import-
ance in separating groups. PC1, principal component 1; PC2,
principal component 2. Abbreviations: GRP, germination per-
centage; MGT, mean germination time; SYN, synchrony; UNC,
uncertainty; SW, seed weight.
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intrapopulation variation of MGT from a day to a week after rain-
fall could be a complementary adaptive strategy with ecological
significance.

A high seed germination after a light rainfall event is risky,
since germinated seeds might not have sufficient moisture to
ensure seedling survival. In this study, MGT variation was low
in H. iraquensis (1.3–1.9 d) and S. rosmarinus (2.1–3.9 d).

Seeds of H. iraqensis, H. salicornicum and S. rosmarinus have
winged perianths that assist their dispersal by wind (Burtt and
Lewis, 1954) as well as regulate their dormancy status and soil
seed bank dynamics (Bhatt et al., 2019c). The presence of these
dispersal structures (winged perianths) provides a greater prob-
ability that some seeds will germinate in a suitable microhabitat,
and thus improve population persistence under these extreme
environmental conditions. Dispersal far from mother plants can
also reduce intraspecific competition among seedlings. A. macro-
stachyum seeds lack dispersal structures and thus seedling density
is greatest near maternal plants. Seeds are small and thus more
easily buried, which might assist survival in habitats where surface
salinity can vary greatly among periods between rainfall events.
Uniformity of germination timing may be higher because seeds
are too small to contain many mechanisms that disperse germin-
ation timing. However, S. rosmarinus and H. iraquensis also
exhibited uniformity in germination timing despite being larger
and containing wings for wind dispersal. H. iraquensis exhibited
more intrapopulation variation than S. rosmarinus, since this spe-
cies can form a semi-cluster, with characteristics that shade
among these species. However, this finding occurs only when
the analysis is made with a 75% cut base. If the cutting base is
70%, the two species form very distinct groups; a value that
should be considered as important, especially if considered the
high degree of disturbance of the environment where they
occur. H. salicornicum, with an intermediate seed weight, was
strongly represented as a distinct cluster and produced high ger-
mination percentages regardless of light exposure.

Using PCA enabled us to determine the main factors contrib-
uting to discrimination of genotypes. If there is high correlation
between the measured and derived variables, then PCA may sim-
plify evaluation indexes (Berner, 2011). In this study, species were
organized into three large clusters, one of which encompassed
two species. Thus H. salicornicum and H. iraquensis share char-
acteristics that distinguish them from A. macrostachyum and
S. rosmarinum, while the latter two are similar. The geospatial
arrangement of H. salicornicum plants within the PCA indicates
that this species has a very high amplitude among maternal plants
within species. In contrast, H. iraquensis formed a single group
but had less diversity among plants within species. The PCA
also confirms that the high germination ability of H. iraquensis
is the primary characteristic distinguishing it from other species,
while synchrony, without acronym calculated in H. salicornicum
is the primary characteristic for the separation of this species
from the others. Some scholars recently used PCA as an auxiliary
tool to improve the discussion about clustering of species and treat-
ments, involving both seed germination (Bhatt et al., 2019c; Calone
et al., 2020; Liu et al., 2020; Wang et al., 2020) and morphophysio-
logical characteristics (dos Santos et al., 2019; Pompelli et al., 2019;
Adar et al., 2020; Corte-Real et al., 2020; Prabu et al., 2020).

Conclusion

Intrapopulation variability in seed mass and germinability exist
among the studied species, although the extent of variability

depends on species. Seed weight (mass) showed no correlation
with light requirement during germination. Seeds of all species
germinated better in light but also could germinate in darkness
at a lower percentage, indicating a preference for non-burial but
ability to cope with it. Among the studied species, A. macrosta-
chyum showed the lowest and H. salicornicum the greatest intra-
population variability. The presence of intrapopulation variability
can be considered as an adaptation strategy that can increase the
reproductive success of these species in coastal Arabian deserts.
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