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The central theme of this work is that a stable levitation of a denser non-magnetizable
liquid droplet, against gravity, inside a relatively lighter ferrofluid – a system barely
considered in ferrohydrodynamics – is possible, and exhibits unique interfacial
features; the stability of the levitation trajectory, however, is subject to an appropriate
magnetic field modulation. We explore the shapes and the temporal dynamics of a
plane non-magnetizable droplet levitating inside a ferrofluid against gravity due to a
spatially complex, but systematically generated, magnetic field in two dimensions. The
coupled set of Maxwell’s magnetostatic equations and the flow dynamic equations is
integrated computationally, utilizing a conservative finite-volume-based second-order
pressure projection algorithm combined with the front-tracking algorithm for the
advection of the interface of the droplet. The dynamics of the droplet is studied under
both the constant ferrofluid magnetic permeability assumption as well as for more
realistic field-dependent permeability described by Langevin’s nonlinear magnetization
model. Due to the non-homogeneous nature of the magnetic field, unique shapes of
the droplet during its levitation, and at its steady state, are realized. The complete
spatio-temporal response of the droplet is a function of the Laplace number La,
the magnetic Laplace number Lam and the Galilei number Ga; through detailed
simulations we separate out the individual roles played by these non-dimensional
parameters. The effect of the viscosity ratio, the stability of the levitation path and
the possibility of existence of multiple stable equilibrium states is investigated. We
find, for certain conditions on the viscosity ratio, that there can be developments
of cusps and singularities at the droplet surface; we also observe this phenomenon
experimentally and compare with the simulations. Our simulations closely replicate
the singular projection on the surface of the levitating droplet. Finally, we present
a dynamical model for the vertical trajectory of the droplet. This model reveals a
condition for the onset of levitation and the relation for the equilibrium levitation
height. The linearization of the model around the steady state captures that the
nature of the equilibrium point goes under a transition from being a spiral to a node
depending upon the control parameters, which essentially means that the temporal
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route to the equilibrium can be either monotonic or undulating. The analytical model
for the droplet trajectory is in close agreement with the detailed simulations.

Key words: drops and bubbles, interfacial flows (free surface), magnetic fluids

1. Introduction
The buoyancy due to the gravitational field is the oldest known mechanism of

levitation of matter inside fluids. It is only the past few decades that researchers have
used other gravity compensation techniques for levitating objects in liquids or gases.
For example using acoustics (Trinh 1985), optical techniques by utilizing photon
momentum transfer (Price et al. 2015), using magnetic fields to levitate objects inside
paramagnetic substances (Ikezoe et al. 1998), inside magnetic nanofluids (Rosensweig
1966), inside air (Geim et al. 1999) and more recently studying the effect of lasers
(Limbach et al. 2016).

In the context of magnetic nanofluids or ferrofluids, one of the earliest observations
of solid levitation inside a ferrofluid was made by Rosensweig (1966) (ferrofluid is
a colloidal suspension of surfactant-coated magnetic nanoparticles (characteristic size
∼10 nm) inside a suitable carrier liquid (Rosensweig 1985)). It was observed that a
solid magnet dispersed inside a ferrofluid levitates itself against gravity. Thereafter,
the levitation of solid objects inside ferrofluids has found numerous technological
and research applications in recent years. The principle has been investigated for
non-magnetic solid particle separation from a continuous stream of ferrofluid (Pamme
2006; Vojtíšek et al. 2012). In a similar manner, it has also been used in biological
cell sorting at the micro-scale utilizing a magnetic fluid as the outer phase liquid (Zhu
2013). The transport of diamagnetic particles is another application (Dunne, Hilton
& Coey 2007; Zhu et al. 2011b; Liu et al. 2014). As sometimes required in biology,
the gravity compensating environment can also be achieved through the levitation of
non-magnetizable objects inside ferrofluids (Beysens & van Loon 2015). For example,
research has shown that the magnetically created microgravity environment through
magnetic levitation is technically applicable to the control of crystallization (Huber &
Littke 1996). Recently, magnetic levitation has been successfully utilized to measure
the density of solids and immiscible liquids (Mirica et al. 2009). As the magnetic
fields can be generated using electromagnets integrable to electronics, the process
has tremendous potential for smart sensor applications. Such efforts have already
been made, for example in the development of magnetic actuators (Olaru, Petrescu &
Arcire 2013).

Though the experimental evidence of solid phase levitation inside a ferrofluid came
right after the invention of ferrofluids, very little efforts have been made to date
to investigate the same for a liquid phase levitation. A distinct hydrodynamics is
certainly expected in the latter case due to the presence of a deformable liquid–liquid
interface instead of a rigid liquid–solid interface. It is physically tempting to study this
system and to look for, if any, the distinguishing behaviours. Similar to the practical
applications of solid object levitation inside a ferrofluid, liquid phase levitation might
also have useful applications, especially in the modern small scale devices.

Many of the facets of the interface between a magnetizable and a non-magnetizable
liquid are exhibited by ferrofluid droplets. Numerous intriguing features of the
ferrofluid interfacial phenomena, such as deformations, appearance of peculiar shapes,
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small scale instabilities at the interface, wetting, hysteresis, merging and break-up,
stretching and pinning and many more can be fundamentally studied using droplet
systems. The motivation also comes from looking at the in use and future possible
applications of ferrofluid droplets such as micro-scale mixing (Mugele, Baret &
Steinhauser 2006), inkjet printing (Verkouteren & Verkouteren 2011), transport of
surfactant (Kovalchuk & Vollhardt 2001; Wojciechowski & Kucharek 2009), transport
of drugs in biological systems, vibrating interfaces (Whitehill et al. 2011; Kim &
Lim 2015) and so on.

The number of investigations focusing on ferrofluid droplets seems to start
accelerating from the 1980s, although seminal works had already been performed
on relevant droplet systems, e.g. by Taylor (1964) on the disintegration of water
droplets due to an electric field and Rosenkilde (1969) on a dielectric droplet in
an electric field. Bacri & Salin (1983) found that a magnetic field over a threshold
value can destabilize a ferrofluid droplet. The researchers found that the shape of
the ferrofluid droplet can change from an elongated one to a slender one. They used
an anionic ferrofluid in their experiments to get high agglomerate concentrations
to achieve this regime transition. Sherwood (1988) studied the breakup dynamics
of droplets from a more general point of view as he investigated the effect of both
electric and magnetic fields. A more rigorous analysis of the equilibrium shapes of the
ferrofluid droplet seems to have been first performed by Sero-Guillaume et al. (1992).
The researchers used an energy minimization principle and studied both partially
and totally free ferrofluid droplets. They found interesting bifurcating solutions
and hysteresis mechanisms. Wohlhuter & Basaran (1993) investigated polarizable
drops and their stability in external fields. At nearly the same time, Bacri, Cebers
& Perzynski (1994) reported, for the first time, the magnetic fluid micro-droplet
behaviour under a rotating magnetic field. A starfish-like shape instability was
observed by the investigators. Later Sandre et al. (1999) studied the behaviour
of a highly magnetic droplet under rotating and modulated fields. They observed the
rotations of the droplet to be synchronous with the applied field and also the breakup
of the droplet at increased vorticity. Recently, researchers have shown interest in
ferrofluid droplet patterns (Jackson 2005; Timonen et al. 2013), formation processes
(Chen & Li 2010; Liu et al. 2011a; Liu, Yap & Nguyen 2011b) and instabilities at
droplet interfaces (Bashtovoi, Pogirnitskaya & Reks 1999; Chen & Cheng 2008).

In the last decade and near the start of the present one, efforts have been made to
investigate the deformation dynamics, motion and manipulation of ferrofluid droplets
under different field configurations and using different tools such as numerical
programs (Afkhami et al. 2008, 2010), image processing (Koh, Lok & Nguyen
2013) and other experimental techniques (Nguyen 2013). Jackson & Miranda (2007)
observed unique regular and irregular ferrofluid droplet shapes inside a Hele-Shaw
cell under cross-magnetic fields applied normal to the cell plane. Afkhami et al.
(2008) investigated the motion of a ferrofluid droplet through a viscous medium
and subsequently Afkhami et al. (2010) did a numerical and experimental study to
predict its deformation and shape. Chen & Cheng (2008) experimentally studied
the Rosensweig instability of a ferrofluid droplet. Zhu et al. (2011a) simulated the
experimentally observed droplet shapes and found its deformation to be nonlinearly
related to the magnetic Bond number. From a microfluidic application point of view,
Wu et al. (2013) investigated the formation and breakup of a ferrofluid droplet in
a microfluidic flow focusing device. Before that, Tan et al. (2010) studied similar
aspects in a microfluidic T-junction. New applications have also emerged in recent
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years, for example energy harvesting using ferrofluid droplets (Kim et al. 2015; Kim
& Yun 2015), micro-structure printing (Fattah, Ghosh & Puri 2016) and optofluidic
devices (Gu et al. 2015). Recently, in an experimental work, Gu, Chow & Morris
(2016) have observed the nonlinear behaviour of a ferrofluid droplet under the
application of a periodic field. Lira & Miranda (2016) found a very interesting
family of stable polygonal shapes of a ferrofluid droplet for quasi-two-dimensional
conditions using a vortex-sheet formulation. Most recently Rowghanian, Meinhart &
Campàs (2016) have obtained further important insights into the ferrofluid deformation
dynamics.

It is notable that although a decent amount of research has been conducted on the
ferrofluid droplet behaviour inside a non-magnetizable environment, the inverse
system has not been explored up to its fundamental dynamical and interfacial
details. Relevant exceptions are the studies by Duplat & Mailfert (2013), where
the researchers have studied a bubble shape in a magnetically compensated gravity
environment inside liquid oxygen, by Ueno, Higashitani & Kamiyama (1995), Ueno,
Nishita & Kamiyama (1999) and Korlie et al. (2008) for bubbles in simplified uniform
field conditions. Again, a heavy settled droplet rise against gravity in a non-uniform
field condition was not tackled. Although globally the droplet will respond along the
applied field gradient in the inverse system (repel away from the magnetic source),
the difference lies in the fact, as will be shown in our study, that the local flipping
of the direction between the curvature and the magnetic force at the interface in the
inverse system can cause intriguing interplay between the magnetism and the fluid
flow, especially under the non-uniformity of the magnetic field, and results in unique
droplet shapes and interfacial features. Furthermore, the inverse system is technically
equally relevant to droplet manipulation technologies, creating gravity compensation
environments for the small scale droplets, and in sensing applications based on such
principles, although this has not received due attention.

In free space, it is well known that a stable levitation of a permanent magnet
is proven to be not possible by Earnshaw’s theorem – a consequence of the fact
that the Maxwell’s equations do not permit a magnetic field maximum in free
space (Geim et al. 1999). Although the opposite is possible for a diamagnetic
substance, which requires a field minimum rather than a maximum. However, if the
surrounding medium is not free space and is instead fluid, and at the same time,
is itself magnetizable, the situation is then different for a dispersed diamagnetic
substance. In addition this system even permits the levitation of a non-magnetic
object.

In this work, the temporal dynamics and the spatial shapes of a plane non-
magnetizable liquid droplet levitating inside a ferrofluid against gravity due to a
spatially complex, but systematically generated, magnetic field have been studied
in a two-dimensional environment, primarily through numerical computations. The
coupled Maxwell’s magnetostatic equations and the flow dynamic equations are
integrated computationally, utilizing a finite-volume-based conservative second-order
pressure projection algorithm combined with the front-tracking algorithm for the
advection of the interface of the droplet. To support our simulations, we demonstrate
the non-magnetizable droplet levitation experimentally and compare the interfacial
singular projections obtained from the simulations with the experimental observations.
Finally, we present a nonlinear analytical model for the droplet trajectory in the
vertical direction.

The mathematical formulation of the problem, and the physical basis for it, is
presented in §§ 2 and 3 while the numerical solution methodology is described in § 4.
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10 mm

(a) (b)

FIGURE 1. (Colour online) (a) The PMMA sheets used to manufacture the Hele-Shaw
cell together with a pair of neodymium magnets. (b) Recorded image sequence showing
a water droplet levitating inside a ferrofluid sample contained in the Hele-Shaw cell. Only
a part of the cell is shown. The droplet radius is ≈2 mm. The levitation is initiated when
the cell is placed on a magnet surface. The gravity acts vertically downward in the figure.

The discussion and analysis of the levitation phenomenon is broken into several parts
– § 5 describes basic characteristics of the droplet shape, time-dependent levitation
height and the effect of non-dimensional parameters on the same; the effects due to
viscosity ratio between the two phases are explored in § 6; the effects of the nonlinear
magnetization of the ferrofluid are presented in § 7. We study the stability conditions
for the levitation path and the final equilibrium location in § 8 and compare the
experimentally observed phenomenon with the simulation in § 9. In § 10, we describe
the analytical model for the levitation height, the necessary condition for the onset of
the levitation as well as the transitions in the solution behaviour near the equilibrium
levitation point. Finally we summarize our findings in § 11.

2. Phenomenon
2.1. Set-up and visualization

To define the physical basis for the numerical computations, first we experimentally
demonstrate the phenomenon of a non-magnetizable droplet levitation inside a
ferrofluid. This approach has actually helped us to first understand about a realistic
set of magnetic field boundary conditions that can lead to a stable levitation of the
droplet.

The levitation of the droplet is visualized in a Hele-Shaw cell arrangement. The
cell is made up of two closely spaced transparent poly-methyl-methacrylate (PMMA)
sheets of size 20 mm× 20 mm, shown in figure 1(a). The figure shows the PMMA
sheets prior to the manufacture of the cell. The four sides of the cell are closed
by inserting a 1.0 ± 0.01 mm thin polymer sheet cuttings in between the PMMA
sheets. The final effective volume of the cell is measured to be 17.7 mm×17.7 mm×
1.0 mm.

The cell is filled with a sample of kerosene-based ferrofluid (a precise description of
the magnetic characterization of the ferrofluid sample, apparatus and image analysis is
given later in § 9 while comparing with the simulations). A small droplet of water with
volume πδHR2 is placed into the cell before its closure, where R is the droplet radius
and δH is the gap between the walls of the Hele-Shaw cell. The size of the droplet is
predicted using image processing after it is dispensed into the cell (R≈ 2 mm). The
plane of the cell is kept parallel to the direction of the gravity, and thus in the absence
of the field, the droplet remains settled at the bottom.
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The levitation against the gravity is now initiated by placing the cell on the surface
of a permanent magnet; the magnets used are of neodymium and a pair is shown
in figure 1(a) together with the cell. Figure 1 shows the phenomenon recorded during
one of the experiments under the above stated conditions. Seven different time instants
during the evolution of the droplet are shown in the figure. Initially, the droplet rests
on the bottom wall. After the application of the field at the bottom of the cell, the
droplet begins to levitate and the shape of the droplet alters – it elongates laterally
and attains a concavity at the bottom. Eventually it attains almost an elliptic shape.

2.2. Stable levitation
Under the influence of a single magnet at the base, it is noticed that the location of the
levitated droplet is not exactly stable; there is a side-wise movement of the droplet in
addition to its vertical rise and the levitation path is not exactly a straight trajectory. In
other words, a stable levitation is not achieved using a single magnet at the bottom;
after some initial period the droplet path tilts towards the side walls. To achieve a
stable levitation and to restrict the side-wise drift of the droplet, an additional pair
of neodymium magnets, one at each side wall of the cell, is attached to provide a
force on the droplet directing from the side walls towards the centre of the cell. The
single magnet at the bottom is now also replaced with a pair so that the north and
south ends of the magnets make contact with each other in an alternating fashion and
thus remain attached to the cell. That is, if the north pole of a magnet is in contact
with the wall, then its adjacent magnets will have their south poles in contact with
the respective walls – an arrangement very similar to the Halbach array of magnets
(Halbach 1985). One pair of magnets at the top wall closes the loop. The presence of
this complimentary pair at the top wall is expected to reduce the levitation height of
the droplet, but its absence gives rise to a field configuration which affects the stability
of the levitation negatively and in an interesting way (here briefly, the absence of this
pair of magnets at the upper wall gives rise to more than two possible equilibrium
locations for the droplet; we elaborate on this in § 8). In figure 1(a), one such pair of
magnets is shown. The complete schematic for the magnet arrangement is shown in
figure 3, and is further explained below in § 3.

One of the experimental demonstrations conducted with this arrangement of magnets
is shown in figure 2. Eight different time instants are shown in the figure. Initially the
water droplet remains in the vicinity of the bottom wall. Under this arrangement of
magnets, the droplet eventually finds a stable equilibrium position depending upon the
balance between the gravitational, buoyancy and the magnetic forces. Certainly, other
magnet arrangements for a stable levitation of the water droplet may also be possible;
the current alternating arrangement has proven specifically helpful in incorporating the
magnetic field boundary conditions conveniently in terms of sine functions multiplied
by the maximum strength of the magnet (§ 3.2). This Halbach array arrangement is
also practically helpful in keeping the magnet edges in contact with each other without
any external forcing.

2.3. Physical explanation
A possible physical explanation of the phenomena can be given after Rosensweig
(1985). First, let us assume that there is no droplet. When the cell is brought
into contact with the magnet, and then held stationary, the ferrofluid is attracted
towards the magnet. For an initial period of time, some transients appear inside the
ferrofluid due to this attractive force. However, as the cell is then kept stationary
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FIGURE 2. The recording of one demonstrative experiment with a weakly magnetizable
ferrofluid sample. The bottom pair of magnets remains fixed at the base and the cell is
placed onto the magnets, initiating the levitation of the non-magnetizable droplet.

and there is not a continuous supply of work, the stationary magnetic force cannot
make the ferrofluid move continuously due to the thermodynamic constraints. The
stresses inside the ferrofluid reorient themselves to counter this perpetual motion,
much like the pressure redistribution in the gravitational field. The net response
from the ferrofluid in this static condition is the redistribution of the mechanical
pressure to balance the magnetic and gravitational forces; the pressure being higher
in higher magnetic field regions. Now, if a non-magnetizable object is placed inside
the ferrofluid, it experiences the developed pressure gradient and starts moving away
from the magnet. In the next section we describe the mathematical basis of our
computations.

3. Mathematical formulation
The kerosene-based ferrofluid–water combination inside the cell in our experiments

represents an immiscible, incompressible two-phase system in two dimensions. We
mimic this flow environment inside the cell by considering a square domain Ω ⊂R2.
The domain consists of two fluid phases. The ferrofluid makes the bulk phase (Ωf ),
while a non-magnetizable droplet of an immiscible liquid (Ωd) is considered inside it
(figure 3). The cell is covered with four magnet pairs in a Halbach array arrangement,
as shown. The bottom pair of magnets initially remains detached from the cell and
the droplet remains settled at the bottom. The levitation is initiated when this pair is
brought in contact to the bottom wall. In other words, both the fluid phases initially
remain quiescent under the gravity and the magnetic field (applied at the top and the
side walls). The flow is then initiated at some time instant (marked as t= 0) when the
magnetic field is applied at the bottom wall. For computational simplicity, we utilize
a two-dimensional idealization of the actual cell in our simulations. Considering the
fact that the PPMA sheets were coated against the adhesion of the liquids, any effect
arising due to the contact line pinning with the parallel walls are neglected. We also
neglect the effects of the interfacial curvature along the third dimension perpendicular
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FIGURE 3. The initial description of the problem domain, together with the arrangement
of external permanent magnets. The flow domain (0 6 x 6 L, 0 6 y 6 L) consists of a
non-magnetizable droplet (Ωd) immersed in an immiscible ferrofluid (Ωf ). The magnets
are arranged in an alternate arrangement and the bottom pair of magnets is brought to
contact at t= 0, which initiates the levitation of the droplet. Here N and S represent the
north and south poles of the magnets respectively.

to the plane of the cell. Although in general this can have an effect on the stability
of the interface, we shall show, while comparing the simulations in § 9, that these
idealized simplifications have not introduced any considerable and qualitative change
in the dynamics and geometry of the droplet interface during its rise.

3.1. Dimensional form of the governing equations
The motion of the non-magnetic droplet inside the ferrofluid medium, and the
continuous local flow and the magnetic field, are described by a coupling between
the Navier–Stokes equations and Maxwell’s equations of electromagnetism. If the
fluids are considered electrically non-conducting, and assuming that the relaxation
time of the magnetic nano-particles in the ferrofluid is much smaller than the relevant
hydrodynamic time scales, then Maxwell’s equations reduce to the magnetostatic
form,

∇ ·B= 0, ∇×H= 0,
B=µo(M+H),

}
in Ω, (3.1)

where B, H and M are the magnetic flux density, the magnetic field and the
magnetization respectively while µo is the free space magnetic permeability. The
irrotationality of H permits the relation

H=∇φ, (3.2)

where φ is a scalar magnetic potential. Also M is constitutively related to H through

M= χH, (3.3)
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where χ is the magnetic susceptibility. For ferrofluids in general, the magnetization
is itself governed by a differential equation involving the magnetization relaxation
time, however, here we assume that the relaxation time is small and the magnetization
relaxes in an infinitesimally small time, the so-called quasi-equilibrium
ferrohydrodynamic hypothesis. A single scalar equation can be obtained using (3.2)
and (3.3) in (3.1), expressed as

∇ ·µo(1+ χ)∇φ = 0, in Ω, (3.4)

where the quantity µo(1+ χ) is equal to the magnetic permeability µ.
The ferrofluid susceptibility varies with the magnetic field strength and other

thermodynamic variables. In this study we consider it either a constant or a function
of the local magnetic field. The simplifying assumption of constant permeability of the
ferrofluid is used in the first two sets of simulations to obtain the basic characteristics
of the droplet shape and levitation height, while being computationally efficient. The
results from the constant permeability assumption have also served as a reference
for further refinement of our simulations using a more realistic field-dependent
permeability model, when the experimentally observed shape is compared with the
simulations. In the latter case, the magnetization relation (3.3) can be written in
its nonlinear form, i.e. M = χ(H)H. Then the equation for the magnetic potential is
different for Ωf and Ωd and is expressed as (using Langevin’s nonlinear magnetization
equation)

∇ ·µo

(
1+

Ms

|∇φ|

[
coth γ |∇φ| −

1
γ |∇φ|

])
∇φ = 0, in Ωf if χf = χf (H),

∇ ·µo(1+ χf )∇φ = 0, in Ωf if χf is constant,

∇ ·µo(1+ χd)∇φ = 0, in Ωd,

 (3.5)

where Ms is the saturation magnetization of the ferrofluid and γ = 3χo/Ms. It should
be noted that this specific nonlinear ferrofluid magnetization model assumes that
the ferrofluid exhibits nearly a paramagnetic behaviour and also does not reflect
the hysteresis of magnetization. It further assumes a nearly mono-disperse size
distribution of the magnetic nano-particles and negligible dipole–dipole interactions.
For non-magnetic liquids, the magnetic susceptibility is usually negligible, or in other
words, the permeability can be considered equal to the free space permeability µo.
Equation (3.5) serves as the key to obtaining H over the whole domain Ω .

The equations for the isothermal and incompressible flow field are

∇ · v = 0,

ρ
Dv

Dt
=∇ · (−pI + S + Sm)+ ρg+ f s,

 in Ω, (3.6)

where p, S, Sm, g and f s are the mechanical pressure, viscous stress tensor, magnetic
stress tensor, gravitational acceleration and the interfacial force respectively. The
Newtonian viscous stress tensor is η(∇v + (∇v)T). The force f s is expressed as
σκnδs and acts singularly at the interface. Here κ is the local curvature of the
interface, n is the unit outward normal at the interface and δs is the delta function at
the interface.

The driving force in the present study is due to the magnetic stresses. There
are number of different expressions for Sm that exist in the ferrohydrodynamic
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literature; interestingly, under incompressible and isothermal conditions and for
isotropic permeability µ = µ(H), the existing expressions for the magnetic stress
tensor reduce to the form

Sm =−aI +µHHT, (3.7)

where the first part −aI , which contains the isotropic magnetic pressure, can safely be
lumped with −pI (Rosensweig 1985; Afkhami et al. 2008). This form of the magnetic
stress tensor is particularly well adaptable to a conservative finite-volume formulation
in comparison to the magnetic body force density expressions such as the Kelvin force
density or the Korteweg–Helmholtz force density which are derivable by taking the
divergence of Sm. We directly discretize the divergence of (3.7) on finite-volume cells
utilizing

∫
V ∇ · Sm dV =

∫
S ns · Sm dS (where V, S and ns denote the computation cell

volume, cell surface and the outward normal at the cell surface respectively), which
conserves the magnetic force fluxes for each individual computational cell.

3.2. Initial, boundary and interfacial conditions
The no-slip and the no-penetration flow boundary conditions are considered at all four
walls while sinusoidal boundary conditions are considered for the gradient of magnetic
potential to replicate the Halbach array of magnets, described as

v = 0, on ∂Ω,

∇φ · nb =


Ho sin(2πx/L), on ∂Ωt,

Ho sin(2πy/L), on ∂Ωl,

−Ho sin(2πy/L), on ∂Ωr,

−Ho sin(2πx/L), on ∂Ωb,


(3.8)

where nb is the unit normal at the walls pointing into Ω and subscripts t, l, r and b
represent top, left, right and bottom wall respectively.

Although the conditions at the interface are not explicitly needed in the numerical
treatment of the two-phase, one-fluid formulation (Tryggvason, Scardovelli & Zaleski
2011), we state them below for the sake of completeness. At the interface, the normal
component of the magnetic flux density, the tangential component of the magnetic
field, the tangential component of the total stress and the velocity are continuous,
while there is discontinuity in the normal component of the total stress,

n · [B] = 0, n× [H] = 0, [tTTn] = 0, [v] = 0,
[nTTn] = σκ,

}
(3.9)

where T =−pI + S + Sm is the total stress tensor and [x] denotes the difference of a
quantity, x, right across the interface.

3.3. Non-dimensionalization
From the governing model, the flow solution is dependent on the following
dimensional parameters

v = v(x, t; ρ, η, R, g, σ , µ, γ ,Ho,Ms). (3.10)

The number of independent variables is reduced by properly identifying the
non-dimensional groups which influence the flow solution. Taking Ωd as the reference
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for all of the properties except the magnetic permeability, for which ferrofluid has
a permeability higher than that of the droplet medium, and considering the following
reference scales,

∇∼ R−1, ρ ∼ ρd, η∼ ηd, µ∼µf ,

v ∼ ηd/ρdR, t∼ ρdR2/ηd, p∼ η2
d/ρdR2,

H∼Ho, B∼µoHo, M∼Ms, f s ∼ σ/R
2,

 (3.11)

the equations of fluid motion are normalized to the following form

∇
∗
· v∗ = 0,

ρ∗
Dv∗

Dt∗
=∇

∗
· (−p∗I + S∗)+ Lam∇

∗
· S∗m +Ga ρ∗g∗ + La f ∗s ,

 in Ω, (3.12)

where the non-dimensional group

La=
σρdR
η2

d
(3.13)

is the Laplace number signifying the ratio of the interfacial force to the viscous force,

Lam =
µfρdH2

oR2

2η2
d

(3.14)

is the magnetic Laplace number signifying the ratio of the magnetic force to the
viscous force and

Ga=
gρ2

d R3

η2
d

(3.15)

is the Galilei number signifying the ratio of the gravitational force to the viscous
force.

Maxwell’s equations transform to the following non-dimensional form,

∇
∗
·B∗ = 0, ∇∗ ×H∗ = 0, B∗ =H∗ +

[
1
ξo

]
M∗, (3.16a−c)

where ξo =Ho/Ms. The magnetization relation takes the following normalized form

M∗(H∗)=
[

coth γoH∗ −
1

γoH∗

]
H∗

H∗
= χ∗(γo,H∗)H∗, (3.17)

where
γo =

3χoHo

Ms
= 3χoξo. (3.18)

Using this relation for magnetization, the equation for magnetic potential takes the
following non-dimensional form

∇
∗
·

(
1+

1
ξo|∇

∗φ∗|

[
coth γo|∇

∗φ∗| −
1

γo|∇
∗φ∗|

])
∇
∗φ∗ = 0, (3.19)

or

∇
∗
·

(
1+

1
ξo
χ∗(γo,H∗)

)
∇
∗φ∗ = 0. (3.20)
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Therefore, four non-dimensional parameters, La, Lam, Ga and γo are significant and
thus the flow solution in the case of field-dependent ferrofluid susceptibility can be
expressed by the functional form

v∗ = v∗(x∗, t∗; La, Lam,Ga, γo). (3.21)

In the case of constant ferrofluid susceptibility, where there is no bound on M, the
reference scale for the magnetization is chosen equal to Ho. In such a case the
functional form of the flow solution reads

v∗ = v∗(x∗, t∗; La, Lam,Ga). (3.22)

The parameter γo depicts the effect of nonlinearity of the magnetization on the flow
solution. In the following sections we drop the star symbols on the non-dimensional
variables for convenience.

4. Numerical method
We solve the flow dynamic equations (3.6) numerically utilizing the one-fluid

approach (Tryggvason et al. 2011) in which the set of equations over the whole
domain Ω can be solved if the spatial distributions of the fluid properties are known.
We perform the space discretizations of the flow dynamic equations (3.6) as well as
the magnetic potential equation (3.5) using the finite-volume method over a standard
staggered rectangular grid. To march in time, we utilize a second-order pressure
projection algorithm. The two phases are recognized using a marker function

C(x, t)=
{

1, in Ωf ,

0, in Ωd.
(4.1)

To advect the marker function, we use the front-tracking scheme of Unverdi &
Tryggvason (1992), in which the interface location is first updated using the
velocity field solution and then the marker function is reconstructed from the
known interface location. The detailed description of the projection algorithm, the
front-tracking algorithm and the principles of finite-volume discretization are presented
in Tryggvason et al. (2011), and here we only describe the incorporation of the
equation for the magnetic potential (3.4), the handling of the magnetic permeability
field µ and the incorporation of the magnetic stresses in the equation of motion (3.6)
in the overall algorithm.

4.1. Description of the algorithm
Initially at t = 0, both the fluids are considered quiescent (v(x, 0) = 0). The initial
location of the interface between the two phases is considered to be known, or in other
words, the initial discrete distribution of the fluid property fields – ρi,j, ηi,j, µi,j – on
the grid is considered to be known; i, j being the indices associated with the concerned
grid point. Knowing µi,j at t=0, the equation for the magnetic potential φ (3.4) is first
solved. Obtaining φ, H is obtained from H = ∇φ. Once H is known, the magnetic
body force is computed. The equation of motion (3.6) is then solved for the velocity
field v using the pressure projection algorithm (Tryggvason et al. 2011). Using v,
the location of the interface is then advected, and from this updated location of the
interface, the discrete marker function Ci,j is reconstructed using the front-tracking
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algorithm (Unverdi & Tryggvason 1992; Tryggvason et al. 2011). The discrete density
and viscosity fields are then interpolated from Ci,j as

ρi,j = ρf Ci,j + ρd(1−Ci,j), ηi,j = ηf Ci,j + ηd(1−Ci,j). (4.2a,b)

The permeability µi,j is obtained in a similar fashion if it is assumed constant in
both the phases. However, when the nonlinear magnetization model is considered,
the permeability is considered constant only in the non-magnetizable phase. In
the magnetizable phase, it is predicted using Langevin’s relation for the ferrofluid
magnetization. Both of the above cases are summarized as

µi,j =µf Ci,j +µd(1−Ci,j), if µf is assumed constant,

µi,j =µo

(
1+

Ms

|∇φ|

[
coth γ |∇φ| −

1
γ |∇φ|

])
Ci,j +µd(1−Ci,j), if µf =µf (H).


(4.3)

Once the property fields are advected, the algorithm is advanced to the next time step
and the numerical cycle is repeated until the desired time.

The use of constant magnetic permeability is a greater computational simplification
and results in lower computational times. Therefore it is useful for obtaining very
basic features of the flow, and also when parameters other than magnetic permeability
(or susceptibility) are varied. An example is the variation of the viscosity ratio,
which is not related to the permeability or magnetization of the ferrofluid in our
formulation. However, instead of varying the permeability ratio, and for comparison
with experiments, we adopt the nonlinear magnetization model.

The spatial as well as the temporal discretizations in our scheme are second-order
accurate. The advection term in the momentum equation is handled using a
second-order essentially non-oscillatory (ENO) scheme while the standard second-
order centred in space discretization is applied to the diffusive viscous terms.
The interpolations of the viscosity at the computational cell faces are performed
harmonically while the density and the permeability are interpolated arithmetically.
A highly optimized V-cycle MULTIGRID method is implemented for the solution of
the pressure Poisson equation and the equation for the magnetic potential.

4.2. Set-up of simulations

The properties of the two fluids are presented in table 1, where ρd∼ 103 kg m−3, ηf ∼

10−2 Pa s and σ ∼ 10−3 N m−1. We consider a water droplet of radius of ∼1 mm.
The magnetic fields used in our experiments are of Ho∼ 102 kA m−1 while the order
of permeability of the ferrofluid is considered a multiple of µo. For these orders of
magnitude of the properties, the La ∼ 10 and Ga can be as high as ∼102, while a
realistic Lam turns out to be ∼104. Considering these, we simulate for La and Ga in
the range 0.1–100 while for Lam in the range 10–1000. Being conservative, the Lam

is not increased further to avoid any numerical instability arising due to the higher
order of the magnetic source term in the momentum equation.

The value of the parameter γo changes due to changes in Ho, as χo and Ms do
not vary for a given ferrofluid sample. Here, the initial susceptibility of ferrofluids is
measured to be ≈0.0819, while Ms ∼ 103 A m−1(57.7 G). Thus for an applied field
in the range 103

− 104 A m−1, the order of γo= 3χoHo/Ms is expected to vary in the
range 0.2–2.0. We simulate for γo in the range 0.1–2.
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Phase ρ (kg m−3) η (Pa s) µ (N A−2) Ms (G) χo σ (N m−1)

Ferrofluid (Ωf ) 868.0 0.025 a 57.7 0.0819 0.97× 10−3
Water (Ωd) 1000.0 0.001 µo — 0.0

TABLE 1. Physical properties of both the phases. The saturation magnetization of the
ferrofluid sample is measured by an EverCool SQUID VSM DC magnetometer and the
interfacial tension is determined by a technique used in Zhu et al. (2011a).

aComputed using Langevin’s function for ferrofluid magnetization.

The breakup of the simulations and all the corresponding simulation parameters
are summarized in table 2. The simulations are divided into six different sets with
different foci. In the first set, we simulate for constant permeability in both the phases.
Next, the effect of viscosity ratio is investigated. In the third set of simulations,
the effects of field-dependent ferrofluid permeability, or equivalently the effects of
nonlinear magnetization, are simulated. The stability of levitation is the focus of the
subsequent set, while the appearance of interfacial singularity and comparison with
experiment are addressed through the last set of simulations. The same hierarchy, as
listed in table 2, is utilized for sectioning the results.

4.3. Output fields and variables
Besides the magnetic and velocity field solutions, we study the shapes of the levitating
droplet, the final levitation height, the time-dependent displacement and velocity of the
droplet tip/nose, the droplet deformation (defined below) and the time-averaged change
in the droplet deformation. In certain cases, we also utilize the absolute magnetic field
contours and the vorticity contours.

The discrete information about the interface is described by two vectors – {xk} =

(x1, x2, . . . , xN)
T and {yk}= (y1, y2, . . . , yN)

T – storing x and y coordinates of N discrete
interface points. This structure is compatible with the implementation of the front-
tracking algorithm. The total number of interface points N, however, can be different
for each time step due to their dynamic addition or deletion, a part of the front-
tracking algorithm. From this information about the interface, the vertical distance of
the tip of the droplet from the bottom wall is extracted using

htip(t)=max({yk}), (4.4)

and the speed of the tip is computed using

vtip(t)= [htip(t+1t)− htip(t)]/1t, (4.5)

where 1t is the time step.
To study the time-dependent deformation of the levitating droplet, a global droplet

deformation parameter or shape factor, D, is computed from the interface information
using

D(t)=
Ax(t)− Ay(t)
Ax(t)+ Ay(t)

,

Ay(t)=max({yk})−min({yk}),

Ax(t)=max({xk})−min({xk}).

 (4.6)
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Notice that D(t) can be negative if Ax(t) <Ay(t), which implies that the vertical span
of the droplet is greater than its horizontal span.

To show the complete D(t) curve for all the simulations is a cumbersome task. To
mark the average extent of the droplet deformation over all times, a time-averaged
shape factor, 〈D〉, is computed. It reduces the results for the shape factor to one value
for one simulation. The expression for 〈D〉 is

〈D〉 =
1

tend

tend∑
t=0

(D(t+1t)−D(t)), (4.7)

where tend is the time up to which the flow is simulated.

4.4. Code validation and grid and time-step independence
The computational code FERRO is developed and tested for single-phase as well as
two-phase viscous incompressible flow, with and without the magnetic effects, and
has been successfully applied to problems by the authors to predict the interfacial
(Singh, Das & Das 2016b) and relaxation mechanisms (Singh, Das & Das 2016a)
in ferrofluids. We incorporate the nonlinear magnetization/field-dependent permeability
model and the conservative discretization of the full magnetic body stress tensor, and
a highly optimized multigrid technique for the solution of the pressure Poisson and
the magnetic potential equations. For the problem at hand, the grid as well as the time
step independence of the code are carefully studied. The details of these consistency
checks have been presented in the Appendix. Besides these quantitative consistency
checks, the physical correctness is also confirmed in our study through its ability to
predict the experiments, especially the fine features at the interface (§ 9).

5. Droplet shapes and levitation height: effect of La, Lam and Ga

In the first set of simulations, the magnetic permeabilities (µf , µd) are considered
constant. As discussed before, this theoretical assumption served as a reference for
further refining of our simulations using a more realistic field-dependent permeability
model. The simulation parameters are given in the second column of table 2. The
intermediate case of La, Ga and Lam – respectively 1.0, 1.0 and 360 – is first
discussed, while the variations in La,Ga and Lam are discussed afterwards.

The numerically predicted movement of the droplet for the above values of the non-
dimensional numbers is shown in figure 4. The gravity is pointing vertically downward
and the droplet is levitating upward, defying the gravitational field. Both the magnetic
field lines (figure 4a) and the absolute magnetic field contours (figure 4b) around the
droplet are shown. The patterns of the magnetic field lines due to the Halbach array
of magnets at the walls are apparently quite complex but symmetric in configuration.
The lines are originating and are terminating at the alternate magnet surfaces; the
originating lines are more concentrated near the centre of the magnets.

The mechanism behind the droplet levitation against gravity is better understood by
looking at the absolute field contours in the right column of figure 4. The absolute
magnetic field contours are normalized with Ho and thus their magnitudes vary from 0
to 1. The absolute H field is higher near the walls of the domain while it approaches
zero near the centre of the domain, implying that the field gradient is acting from the
walls towards the centre of the domain. Near the bottom part of the droplet at the
initial condition, the value of H/Ho is nearly 0.7 while it is between 0.1 and 0.2 near
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FIGURE 4. (Colour online) The interface of the levitating droplet, the magnetic field lines
(a) and the absolute magnetic field contours (b) at different instants of time. La = 1.0,
Ga= 1.0, Lam = 360. Here gravity points downwards.
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the top of the droplet. Thus, in a global sense, the droplet experiences a net upward
magnetic force proportional to this gradient, which in this case, has turned out to be
sufficient for the levitation of the droplet against the downward gravitational force.
A minimum magnetic field region has established at the centre of the domain, and
the droplet (as a bulk) seeks this region of minimum magnetic field strength. As the
droplet moves upward, the field gradient across its poles reduces. Observing the time
instants t= 0.2, 0.5, 1.0 and 2.0 in figure 4, it is estimated that the difference between
the field strength at the bottom and the top of the droplet reduces, respectively from
0.3, 0.16, 0.09 to approximately 0.03. As the droplet approaches the centre of the
domain, it retards and finally reaches an equilibrium location and shape. A concavity
at the tail of the droplet develops during its rise, its extent reaches a maximum and
then it reduces until an equilibrium configuration of the tail is attained.

5.1. The effect of change in La
The non-dimensional number La is varied for fixed Ga and Lam. The interface of
the levitating droplet for Ga= 1.0 and Lam = 360 is shown in figure 5. The flow is
simulated for three distinct La – 0.1, 1.0 and 10.0. Note that only a part of the domain
(0.325 6 x 6 0.675, 0.0 6 y 6 1.0) is shown. The absolute field strength contours
are also presented. Whereas the steady state levitation height of the droplet seems
nearly independent of La, the difference lies in the extent of the deformation of the
interface. For La= 10.0, it is only during the very start of the phenomenon (instant
t= 0.5 and 1.0) when the droplet shape deviates from its initial round configuration.
The droplet regains a nearly round shape at around t = 1.5. As La is decreased, the
deformation of the interface becomes more prominent. The tail of the levitating droplet
deforms to have a concavity. As time progresses, this feature at the bottom of the
droplet disappears in the case of La = 1.0. However, this feature at the tail of the
droplet stays in the case of La = 0.1. The shape in the case of La = 0.1 seems to
resemble a crescent, except for the fact that round projections appear instead of sharp
cusps at the tail. The increase in the droplet deformation due to a decrease in La is
expected, as a smaller La signifies a lower interfacial energy. However, the transition
specifically towards the crescent-like shapes is worth noting. The droplet retains its
symmetry about the vertical axis and is asymmetric about the horizontal axis. Its shape
is nearly an oval in the case of La = 10.0 and at low time t = 0.5. Lowering the
interfacial energy further by reducing La=1.0 results in a transition from oval towards
crescent. At longer time, the droplet regains its round shape at high La while the
deformed shapes persist for low La. The change in the final average levitation height
of the droplet due to the change in La is meagre.

5.2. The effect of change in Lam

The deformation of the droplet is not solely sensitive to La. In this subset of
simulations, the La and Ga numbers are fixed while the deformation is studied with
changing Lam. These results are depicted in figure 6. The droplet rises to a relatively
greater height and its deformation is also enhanced at increased Lam. A further
difference is noted for Lam = 640 and 1000. In these two cases, the shape of the
rising droplet is more skirted for t 6 2.0. For Lam = 1000, the interfacial deformation
is more pronounced and the droplet eventually gains a segmented-ring-like shape for
t > 1.0. The increase of Lam from 40 to 1000 leads to a further shape transition at
late times – first from oval to nearly crescent, and then to a nearly segmented ring.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

73
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.733


416 C. Singh, A. K. Das and P. K. Das

0.03

0.03

0.3

0.2

0.4

0.03

0.030.03

0.3 0.3

0.3

0.7

0.03

0.03

0.3 0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.03

0.030.03

0.3 0.3

0.3

0.7

0.03

0.03

0.3 0.3

0.2

0.4

0.03

0.030.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.60.4 0.60.4 0.6
0

0.2

0.4

0.6

0.8

1.0

0.03

0.030.03

0.3 0.3

0.3

0.7

t = 0 t = 0.5 t = 1.0 t = 1.5 t = 2.0 t = 3.0 t = 4.0 t = 5.0

0.03

0.03

0.3 0.3

0.2

0.4

0.03

0.030.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.03

0.03

0.3

0.2

0.4

0.4
x x

0.6
x x x x x x

y

0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.60.4 0.60.4 0.6
0

0.2

0.4

0.6

0.8

1.0(a) t = 0 t = 0.5 t = 1.0 t = 1.5 t = 2.0 t = 3.0 t = 4.0 t = 5.0

0.4 0.6

y

0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.60.4 0.60.4 0.6
0

0.2

0.4

0.6

0.8

1.0
t = 0 t = 0.5 t = 1.0 t = 1.5 t = 2.0 t = 3.0 t = 4.0 t = 5.0

0.4 0.6

y

(b)

(c)

FIGURE 5. The interface of the levitating droplet and the absolute magnetic field lines
for La= 10.0 (a), 1.0 (b) and 0.1 (c). Ga= 0.1, Lam = 360.

The levitation height increases with Lam due to the stronger field gradients caused
by the increase in Lam. The reasons behind the transitions in the shape of the
droplet, however, seem more involved. For Lam= 1000, the initial transition from the
round towards a skirted configuration, and eventually to the segmented-ring shape,
is particularly intriguing. A possible physical explanation is as follows. In figure 6,
the droplet at t= 5.0, for all Lam, is close to its steady state. It is clear that as Lam
increases, the droplet attains its equilibrium increasingly close to the centre of the
domain (y = 0.5), where the magnetic field lines (not absolute field contours) are
more distorted. In the case of lower interfacial energy for lower La, the field patterns
near the centre of the domain tend to deform the droplet into a segmented-ring-like
shape. On the other hand, lower Lam magnitudes fail to raise the droplet to such
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FIGURE 6. The interface of the levitating droplet for different Lam. Ga= 1.0, La= 0.1.

field line regions, and this results in less alteration in the interface configuration. The
magnetic field is primarily responsible for the deformation of the droplet at steady
state when the flow velocity vanishes. The hydrodynamic flow field is thus at play
primarily during the rise of the droplet before the steady state. As the maximum
extent of the concavity at the tail of the droplet is observed during the rise of the
droplet, the hydrodynamic flow helps in enhancing the deformation caused by the
magnetic interfacial force. Once the steady state is reached, the flow field dies out and
only the balance between magnetic, interfacial tension and gravity forces governs the
deformed shape. This insight is also quantitatively supported by the time curves of the
droplet deformation 〈D〉 (see the Appendix), where a peak in 〈D〉 is observed before
the steady state. The deformation relatively decreases after this hydrodynamically
dominated regime.
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FIGURE 7. (Colour online) The change in the global time-averaged deformation parameter
〈D〉 (equation (4.7)) with respect to Lam and La, quantitatively signifying that the
deformation of the droplet increases with increasing Lam but decreasing La. Ga= 1.0.

The extent of deformation of the droplet with respect to La and Lam is quantified
in figure 7 with the help of the time-averaged droplet deformation parameter. This
supports the fact that the deformation significantly increases with increasing Lam,
provided La is low enough. For example at La = 0.1, the deformation parameter
increases from 0.1 to 0.33 as Lam is increased from 40 to 1000. On the other hand,
at three orders of magnitude higher La= 10, the value of the deformation parameter
is negligible, and stays close to zero even for high Lam. This clearly suggest that the
deformation of the droplet is maximized at low La and higher Lam. In addition, the
time-averaged deformation increases nearly linearly with Lam. The slope of the linear
dependence is dependent on La. At high La, the slope is close to 0. A decrease in
La amplifies the effect of Lam on the global deformation of the droplet.

5.3. The effect of change in Ga

The Ga number signifies the extent of the gravitational force on the droplet relative to
the viscous force. We vary Ga for fixed La and Lam. Figure 8 depicts the results when
Ga is varied from 0.1 to 10.0 at intermediate values of La= 1.0 and Lam = 360. As
expected, increased Ga decreases the levitation height of the droplet. In addition, the
droplet is more suppressed in the case of Ga= 10.0 as compared to Ga= 0.1 and 1.0.
Observing this, it is certainly possible that if Ga is increased further, the droplet may
settle down instead of levitating. Although there is not a considerable deviation of
the droplet shape for Ga= 0.1 and 1.0 from the previously discussed simulations, a
new transition to a tooth-like shape occurs near the steady state in the case of higher
Ga (= 10). In this case, if the top portion of the droplet interface becomes concave
upward, the shape will nearly be a tooth surface. We show in § 5.5 that for certain
combinations of La, Lam and Ga, the droplet closely resembles such a shape.
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FIGURE 8. The interface of the levitating droplet for different Ga. La= 1.0, Lam = 360.

5.4. Levitation height and speed characteristics
In this subsection, we study the levitation height and the speed of the droplet as a
function of time and look for different temporal modes to reach the equilibrium shape.
For the time-dependent levitation height, the vertical location of the tip/nose of the
droplet, denoted as htip(t) (§ 4.3), is tracked with time. The results are depicted in
figure 9. The La number increases from left to right while the Ga number increases
from top to bottom. In each of the nine plots, five different Lam cases are considered.

It is observed that the La number has the least effect on the htip(t) curves. Although
the droplet shape has turned out to be quite sensitive to La (as discussed previously),
its evolution in time shows an opposite nature.

The effect of Lam on the htip(t) curves is quite intriguing. First, we take the case
when both La and Ga are 0.01 (top-left plot in figure 9). For Lam values of 40 and
160, the droplet approaches an equilibrium location, without crossing the steady state
levitation height. However, with further increase of Lam to 360 and 640, there start
to appear a cross-over/overshoot in the curve. At Lam = 1000, the overshoot is quite
apparent; the value of htip starts increasing, reaches a maximum and then begin to
decrease while approaching the stationary state. Physically this implies that if the order
of magnitude of the magnetic levitation force on the non-magnetic droplet, relative
to the viscous and gravitational forces on it, is considerably higher, then the droplet
can cross the equilibrium location before finally attaining it. This also suggest that the
effect of the hydrodynamic flow during the rise of the droplet is not always the same;
the viscous resistance is opposed more efficiently at increased Lam, as suggested by
the overshoot. This same behaviour is depicted for all the three La and Ga between
0.1 and 10. The system behaviour experiences a transition in the nature of its temporal
response; here the transition is due to the control parameter Lam. In the analytical
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FIGURE 9. (Colour online) The time-dependent vertical location of the tip of the droplet
for different La,Ga and Lam.

model in § 10 it is shown that this transition is indeed a standard transition between
two fixed points of type node and spiral.

At a given Lam, the increase in the Ga number alters the time response in three
ways. One of them has already been discussed which is that as the Ga is increased,
the equilibrium height for the droplet tip decreases. The second effect is that the
time to reach the equilibrium state considerably reduces with increasing Ga. The third
observation is that at Ga= 10 and Lam= 40, the droplet tip moves downward instead
of moving upward, as expected in § 5.3. Also, provided that the value of Lam is such
that it causes an overshoot, the number of cross-overs around the steady state location
increase with increasing Ga.

Whereas the droplet reaches a steady state relatively early in the case of higher
Ga, reaching equilibrium is apparently asymptotic in the case of Ga= 0.1. For Ga=
10.0 and 1.0, the steady state is reached exactly well before t = 20. However when
Ga = 0.1, the htip value has not exactly reached its steady state even at t = 35. The
droplet essentially creeps towards the equilibrium. The viscosity is thus more dominant
at low Ga and Lam. This also holds true from the fact that O(Gaρ∗g∗) <O(∇∗ · S∗)
as Ga→ 0 for Ga< 1 and O(Lam∇

∗
· S∗m)→O(∇∗ · S∗) as Lam→ 1 for Lam > 1.

We further elaborate on the different characteristics of the time-dependent evolution
of the droplet by analysing the vertical velocity of the tip of the droplet. The results
are presented in figure 10. First, the maximum rise in velocity is encountered only
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FIGURE 10. (Colour online) The time-dependent vertical velocity of the tip of the droplet
for different La,Ga and Lam. The highest peak in vtip increases with Lam.

during the very initial transient stage. In all of the cases, starting from rest, the droplet
gains a maximum velocity which again becomes negligible within a non-dimensional
time of approximately t= 5.0. This further refines our intuition that the hydrodynamic
flow is dominant during the initial rise of the droplet. It is again observable that La
has a negligible effect on the time-dependent evolution of the droplet and it primarily
influences only the shape of the droplet. The Ga and the Lam numbers, on the other
hand, considerably change the levitation velocities. The oscillations of the droplet
around the final equilibrium position at increased Ga are appreciably resolved via the
velocity characteristics. This feature was less appreciable in the displacement plots.
Now at least two periods of oscillation around the equilibrium are clearly identifiable
for Ga= 10.0. For this value of Ga, it is depicted that the levitation velocity can also
be negative after reaching its positive maximum, or even at the very beginning of the
phenomenon if Lam is low, indicating the downward motion of the droplet after the
overshoot.

The temporal route to the final equilibrium state thus can be either monotonic,
or through undulations. Further, the monotonic levitation can be asymptotic in
nature where the droplet takes a long time to reach its final equilibrium (creep).
The displacement plots have revealed the monotonicity and the asymptotic nature,
while the velocity plots have resolved the undulations around the equilibrium more
apparently.
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FIGURE 11. (Colour online) The summary of the shapes of the droplet for different La
and Ga at various time instants. The Lam = 1000 in this case.

5.5. Summary of droplet shapes and levitation height for constant permeability
The observations under the constant ferrofluid permeability assumption are summarized
in terms of the droplet shapes and the corresponding levitation height. First we discuss
the shapes.

Different interfacial configurations of the droplet emerge when the combination of
La, Lam and Ga is changed. These shapes also vary with time for given La, Lam and
Ga. A summary of the levitating droplet shapes with changing time, La and Ga is
presented in figure 11. The Lam number is 1000. The droplet shapes are more stable
for higher magnitude of La. On the other hand, at low La = 0.1, highly deformed
droplet shapes are observed. In this regime, the shape of the droplet is skirted near
the initiation of the phenomena, at t= 0.5 and 1.0. Afterwards, a transition to a tooth-
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FIGURE 12. (Colour online) The summary for the steady state height of the tip of the
droplet for different La,Ga and Lam. The steady state droplet shapes are also presented.

shaped or segmented-ring-shaped configuration takes place, depending on the value
of Ga. For example, for La= 0.1 and Ga= 0.1, the transition is from skirted towards
ring segment, while for La= 0.1 and Ga= 10.0, the droplet transforms from a skirted
to a tooth-like shape. These shapes are suppressed for higher Ga (=10.0). An increase
in La transforms the droplet shape towards an oval.

It is interesting to note that, for La= 0.1 and 1.0, the maximum deformation of the
droplet occurs between t= 1.0 and t= 4.0. From the velocity plots, this is the period
when the droplet is retarding after attaining a maximum velocity. However, for La=
10.0, the maximum deformation occurs before t=1.0, when the droplet is accelerating.
Thus a stiffer interface (higher La) deforms maximally while in acceleration and a
flexible interface (lower La) exhibits maximal deformation while in retardation.

Figure 12 presents the vertical height of the droplet tip as Lam is varied at
different La and Ga. The levitation height is along the abscissa and the Lam increases
along the ordinate logarithmically. The three zones, separated by two dashed lines,
are for different Ga while in each zone, the line plots are for different La. The
corresponding droplet shapes are also shown, except for the intermediate case of
La= 1.0. A significant outcome from this semi-log graph is that the equilibrium state
levitation height of the droplet increases nearly exponentially with Lam, for all the
simulated La and Ga. The roles of the non-dimensional numbers – La, Ga and Lam
– are now more understandable from this plot. Whereas Ga has the least effect on
the droplet shape, La has the least effect on the levitation height. The Lam number
influences the phenomenon significantly in both ways. The shapes in figure 12 are
taken at t= 30. At this time the shapes are at steady state, except for the cases where
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the droplet creeps towards the equilibrium. However, even for the creeping cases, the
shapes at t= 30 are expected to be quite close to the equilibrium, as indicated from
the displacement plots in figure 9.

6. The effect of viscosity ratio

In the previous discussions the density, as well as viscosity, of the non-magnetizable
droplet was considered to be greater than the ferrofluid. As the levitation against
gravity makes sense only if the droplet density is greater than the ferrofluid, the
density ratio ρd/ρf is kept greater than 1.0 for all the simulations in this study.
However, the viscosity ratio ηd/ηf for an arbitrary combination of a ferrofluid sample
and a non-magnetizable droplet can be either >1.0 or <1.0. In the last section, the
value of ηd/ηf was 2.0. In this section, the ratio is reduced below 1.0 and the changes
in the dynamics of the levitation of the droplet and its shapes are discussed.

For the same set of non-dimensional and other parameters, the viscosity ratio ηd/ηf

is now changed to 0.5 (table 2, second row). The ferrofluid is now more viscous
than the non-magnetic fluid and its viscosity is now taken as the reference viscosity.
The comparison between these two cases of ηd/ηf > 1.0 and ηd/ηf < 1.0 is shown in
figure 13. A significant difference appears at the tail of the droplet where the geometry
of the two projections has changed due to the change in the viscosity ratio. The two
projections are now more cusped. The droplet is no longer skirted during its rise. For
the viscosity ratio 0.5 (ηd/ηf < 1), it resembles a crescent shape more closely than
the case ηd/ηf = 2.0.

The cusped nature of the projections at the tail gives rise to a curiosity regarding
whether any singularity is possible at the interface of a non-magnetizable droplet
levitating in a ferrofluid, and what might be the physical mechanism behind such a
behaviour. Considering the unit normal pointing outwards at the interface, the signed
curvature at the top of the droplet is positive while at the middle of the tail, it is
negative. Thus it must change its sign, either smoothly or abruptly, at some point
along the interface in between these two locations. The abruptness or smoothness must
depend on the capability of the interfacial tension against other forces. It is observed
that the curvature changes its sign smoothly at the projections when ηd/ηf = 2.0 (>1).
However, the surface tension fails to maintain the smoothness of the interface if the
fluidity of the outer liquid is less than the liquid of the droplet, or in other words, if
the outer phase (ferrofluid) is relatively more viscous. Also the height of levitation
is reduced, in other words, the phenomenon is now slower than the previous case of
viscosity ratio >1. This indicates that the net downward component of the viscous
forces at the surface of the droplet has essentially increased due to increased outer
viscosity, retarding the droplet motion. It is rather intriguing that the droplet travels
to a greater height in a given time when ηd/ηf = 2.0 rather than when ηd/ηf = 0.5,
even though it is comparatively more blunt in the former case. This indicates that the
increase in net viscous drag on the rising droplet is less influenced by the geometric
configuration of the droplet, specifically the frontal area, and the increased viscosity
of the outer phase dominates the change in the net drag.

In addition to the fact that the droplet levitates to a lesser height in a given time
in the case of ηd/ηf < 1, the time-dependent change in its shape is also swift. The
droplet does not continue to deform for a longer period of time. This fact becomes
apparent when the positions at the time instants t= 0.8 and t= 3.0 are compared for
the two cases with different viscosity ratios (figure 13). Whereas the droplet is still
under deformation after t = 0.8 in the case of ηd/ηf = 2.0, it gains nearly a steady
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FIGURE 13. The effect of viscosity ratio on the levitating droplet – ηd/ηf = 2.0 for (a)
while ηd/ηf = 0.5 for (b). Ga= 1.0, La= 0.1.

shape in the case of ηd/ηf = 0.5. The higher outer viscosity helps the droplet to attain
its equilibrium shape relatively early in time, and at the same time, it reduces the
levitation height. It should also be noted that at the equilibrium, the flow field and
the viscous force vanish, and it is expected that the final droplet shape and height do
not depend on the viscosity ratio, if other parameters are fixed. During the later times,
when the flow field vanishes and the droplet approaches steady state, we do observe
similar equilibrium shapes for different viscosity ratios, provided that the simulation
parameters do not belong to the creeping regime. Of course it is expected that in the
creeping regime the droplet shape can take a comparatively long time to relax, but
eventually it should also attain a shape independent of the viscosity ratio. For the
creeping case, t≈ 30 is found to be sufficient to obtain similar equilibrium shapes for
different viscosity ratios. This order of time to obtain steady shapes in the creeping
scenario was also indicated in figure 9.
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7. The effect of nonlinear magnetization

The constant permeability assumption for the ferrofluid phase, so far, has helped us
to understand the very basic features of the levitation phenomenon. As we discussed
in § 3.1, this simplifying assumption of constant permeability of the ferrofluid is
used in the first two set of simulations for its computational effectiveness, and it has
served as a reference for further refining of our simulations using a more realistic
field-dependent permeability model. The assumption is very rational for the low
applied magnetic field regimes. For high applied fields, at least a switch in the
susceptibility magnitude is necessary after a certain strength of the magnetic field,
around which the magnetization curve changes its slope considerably. If only a single
constant value for the susceptibility is considered, then this assumption does not put
any upper bound on the ferrofluid magnetization. In such a case, the solution might
be unrealistic. To refine this, the effect of nonlinear magnetization is incorporated
in the numerical scheme by considering a field-dependent magnetic susceptibility
instead of a constant one, as described in § 3.1 (equation (3.5)) and § 4.1. The total
number of influencing parameters has now increased since an additional parameter
γo= 3χoHo/Ms= 3χoξo, which changes the characteristics of the magnetization curve,
enters the simulations (equation (3.21)). The parameter γo is varied from 1.667 to
0.111 for given Ga and La. The results are depicted in figure 14.

7.1. The effect of parameter γo

Apparently, the parameter γo has a considerable effect on the deformation of the
droplet, as well as on the levitation height. For γo = 0.111, the droplet has a nearly
round shape during its rise (figure 14). A concavity starts appearing at the tail of the
droplet for γo = 0.278, and for a given time, the extent of the concavity increases
as γo increases. The droplet shapes at γo = 0.278 and 0.389 are similar to that of a
cardioid without a cusp. For γo = 0.556, 0.833 and 1.111, the bottom feature of the
droplet has widened and at γo = 1.389 and 1.667, the droplet is more flattened and
skirted.

In this subset of simulations, the non-dimensional numbers La, Ga and ξo are
all kept constant. Except for the magnetic permeability, the other quantities in the
expression of Lam are also fixed. This essentially implies that the changes in the
dynamics of the flow come from the non-uniform spatial distribution of µf . This
non-uniformity makes it intuitive that µf along the interface of the droplet is no
longer an invariant. We seek the effects of the variability of µf , due to different γo,
by plotting the contours of H/Ho around the initial state of the droplet. The contours
are depicted in figure 15. The four frames are for γo= 1.667, 1.111, 0.556 and 0.111.
The spatial non-uniformity of H/Ho is sensitive to the parameter γo. The difference
in the field strengths at the top and the bottom pole of the droplet (1H), or in other
words, the field gradient along the vertical axis of the droplet, in a global sense,
increases with increasing γo. The local gradients across this axis are relatively smaller
for lower values of γo, for example in the plot for γo = 0.111. Thus, a rational
explanation is that the increase in γo increases the field gradient across the droplet,
and thus the acceleration of the levitating droplet is higher for larger γo (figures 14
and 15).

The fundamental change in the droplet response due to the nonlinearity caused by
the additional parameter γo= (3χoξo), which basically controls the magnetization curve
of the ferrofluid, is deducible by deriving asymptotic expressions for the order of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

73
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.733


Levitation of non-magnetizable droplet inside ferrofluid 427

0.4
©o = 1.667 ©o = 1.389

0.6
0

0.2

0.4
y

y

0.6

0.8

1.0(a) (b) (c) (d)

(e) (f) (g) (h)

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

©o = 1.111
0.4 0.6

©o = 0.833

©o = 0.556 ©o = 0.389 ©o = 0.278 ©o = 0.111

0.4 0.6 0.4 0.6

0.4
x x

0.6 0.4 0.6 0.4 0.6 0.4 0.6
x x

FIGURE 14. The effect of parameter γo on the levitating droplet, with γo decreasing from
(a) to (h). The four time instants in each frame are t= 0.0, 0.8, 1.5 and 5.0, from bottom
to top. The permeability in the expression of Lam is now field dependent while the fixed
parameters are Ga= 0.1, La= 0.1, ξo = 0.185.

magnetic force in the limits γo → 0 and γo → ∞. By transforming the following
expression for the field-dependent permeability

µf =µo(1+ χ(H))=µo

(
1+

Ms

|∇φ|

[
coth γ |∇φ| −

1
γ |∇φ|

])
, (7.1)

to its non-dimensional form

µf =µo

(
1+

1
ξo|∇

∗φ∗|

[
coth γo|∇

∗φ∗| −
1

γo|∇
∗φ∗|

])
, (7.2)

that for bounded |∇∗φ∗|,

µf ∼µo, as γo→ 0, and,

µf ∼µo

(
1+

1
ξo

)
, as γo→∞.

 (7.3)
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the expression of Lam is now field dependent while the fixed parameters are Ga = 0.1,
La=0.1, ξo=0.185. All four frames are at initial time t=0.0. The field strength difference
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Using the above asymptotic relations, the order of the magnetic force, say fm, becomes

fm ∼

(
µf H2

o

R

)
∼

(
µoH2

o

R

)
, as γo→ 0, and,

fm ∼

(
µf H2

o

R

)
∼

(
1+

1
ξo

)(
µoH2

o

R

)
, as γo→∞.

 (7.4)

Rewriting the quantity µoH2
o/R as ξ 2

oµoM2
s /R (as Ho= ξoMs), the order of the magnetic

force is rewritten to
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FIGURE 16. The effect of eccentricity of the initial location of the droplet. The droplet
stably approaches the same steady state location. In this case, all of the four walls are
covered with an alternate arrangement of magnets.

fm ∼ ξ
2
o

(
µoM2

s

R

)
, as γo→ 0, and,

fm ∼ ξ
2
o

(
1+

1
ξo

)(
µoM2

s

R

)
, as γo→∞.

 (7.5)

The factor in the expression for the order of magnetic force is ξ 2
o (1+ 1/ξo). The value

of this function has a global minimum at ξo=−1/2. As by definition Ho and Ms are
positive, ξo is also positive in the interval of interest, and thus any increase in ξo (or
equivalently γo) will also increase fm. However, as the behaviour of fm near γo= 0 and
in the limit γo→∞ is different, its effect on the droplet response in the two regimes
is also expected to be different. This is depicted by simulations in figure 14 where
the droplet responds differently with increasing γo.

8. Stability of levitation
The stability of levitation is highly desirable if the phenomenon is to replicated

experimentally in a controlled fashion. We shift the initial location of the centre of
the droplet laterally from (0.5, 0.15) to (0.6, 0.15). As shown in figure 16, the droplet
again approaches the stable horizontal location x= 0.5. The levitation is stable under
this Halbach configuration of the magnets where all of the four walls are covered by
an alternating arrangement of magnet poles.

The special Halbach arrangement of magnets at all of the four walls of the domain
has proven to be an appropriate choice for ensuring the stability of the levitating
droplet. The driving field gradient is due to the bottom two magnets. The magnets
on the left and right sides restrict sideways movement of the droplet. The role of the
two top magnets is also crucial as their presence ensures that only one minimum field
strength region is established, and that occurs near the centre of the domain (topic
of the subsection below). Under this arrangement, the droplet approaches a unique
steady state location, even if any eccentricity in the initial location or any lateral
movement of the levitating droplet is forced. This arrangement has also proven to be
simpler in handling the field boundary conditions mathematically, as the conditions
are simply sinusoidal function multiplied with the maximum strength on the magnet
surface. In this section, we simulate the effects caused by altering the configuration
of the Halbach array.
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FIGURE 17. The absolute magnetic field contours around the eccentrically placed droplet
when – from left to right – (a) all of the four walls are covered with alternate magnetic
poles, (b) the bottom and both the side walls are covered and (c) only the bottom wall
is covered.

8.1. Single and multiple stable and unstable states
First, we study the field contours for three different arrangements of the magnetic
poles at the boundaries. The three arrangements are (i) all of the four walls are
covered with alternating magnetic poles, (ii) the bottom and side walls are covered
by alternating poles of magnets and only the top wall is free to the field and (iii) only
the bottom wall is covered by the magnetic poles while the top and the side walls
are free. Figure 17 shows the absolute field contours around the initial state of the
eccentrically placed droplet for these three cases.

When all of the four walls are covered with alternating magnetic poles, a minimum
field region is created near the centre of the domain (figure 17a). The field gradient
is everywhere pointing inward to the domain and it is expected to be the equilibrium
location for the droplet after levitation.

In the second, particularly interesting case (figure 17b), where only the top wall
is free from the magnetic poles, two minimum field regions are established, which
indicates the possibility of multiple stable states. The two low field regions give rise
to a cat-eye-like field configuration. As the droplet is closer to the right eye, there is
an increased probability that it will be trapped in that region.

In figure 17(c), the top and the side walls are now free from the magnetic poles
while the bottom wall field boundary condition is the same as before. In this case,
the droplet is expected to levitate, but as the field gradient is diverging or equivalently
the contours are concave downward throughout the domain, the stability may not be
ensured.

The movement of the droplet is now simulated and the validity of the above
intuitions, made by looking at the initial field contours alone, is tested. The movement
of the droplet under the above stated three magnet arrangements is shown in figure 18.
In the first case the droplet seeks a stable horizontal location, x = 0.5. The vertical
location is such that the magnetic forces balance the weight of the droplet. In the
second case, although there are two minimum field locations, the droplet seeks the
nearby one, as argued previously. In the third and the final case, the path of the
droplet levitation is unstable. The equilibrium in this case is only possible when a
physical support from the side walls is present; otherwise, it can only be marginally
stable if a perfect symmetry is maintained during the experiment. The mechanism is
further explored below.
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FIGURE 18. The interface of the eccentrically placed droplet when – from left to right
– (a) all of the four walls are covered with alternate magnetic poles, (b) the bottom and
both the side walls are covered and (c) only the bottom wall is covered.

8.2. Interplay between magnetic forces and vorticity: stability of levitation path
One non-trivial and counter-intuitive observation is made in regard to the unstable
path of the droplet levitation in figure 18(c). At the first look, the field contours
in figure 17(c) are such that their normal is pointing in the direction shown by the
dashed line. As this direction is parallel to ∇H, the droplet is expected to move
along this direction. However, in figure 18(c), the path of the droplet exhibits an
opposite behaviour. For some initial time, the droplet moves along ∇H, alters its
direction and then starts moving towards the north-west. This behaviour of the droplet
levitation directs that although the instability of the levitation is predictable from the
configuration of the absolute magnetic field, the predictability of the actual unstable
path is more involved. Essentially, the information about the magnetic field patterns
alone is not sufficient to predict the path of the droplet if the levitation becomes
unstable. The magnetic field contours and the hydrodynamic flow field around the
droplet should be analysed in a coupled way.

We study the velocity field solution when the eccentricity in the horizontal location
of the droplet is zero. The same is presented in figure 19. In this case, there is no
sideways movement of the droplet and the path of levitation is a straight vertical
line. The magnetic field is due to only two magnets with alternating poles at the
bottom wall, while the other three walls are not covered with the magnets. As can
be observed, two counter-rotating vortices originate at the tail of the droplet during
the very initiation of the phenomenon. The situation is horizontally symmetric and
there are no net lateral forces on the droplet due to the flow dynamics. The flow,
however, does not show a similar character when the initial location of the droplet
is not horizontally central. The velocity field solution for this situation is shown in
figure 20. The asymmetry in this situation causes one of the vortices, which is closer
to the horizontal centre (x = 0.5) to have more size and strength. This is evident
by looking the left counter-clockwise rotating vortex in figure 20 for t = 0.2, and
the corresponding vorticity map. The magnetic forces have given rise to a vortex
structure which is actually tilting the droplet laterally away from the expected path
of the droplet. The levitation path eventually deviates from the direction along ∇H
due to a coupled interplay between the magnetic and the hydrodynamic flow field.

The arrangement of the magnets has a vital role in the stability of the levitation.
In the absence of the magnets at the top and side walls, the lateral perturbations
in the droplet path do not decay. The selection of the magnetic source arrangement,
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FIGURE 19. (Colour online) The maximum value of the normalized absolute vorticity (a),
and the velocity vector field (b) in and around the levitating droplet. The initial horizontal
location of the droplet is central in this case.
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FIGURE 20. (Colour online) The maximum value of the normalized absolute vorticity (a),
and the velocity vector field (b) in and around the levitating droplet. The initial horizontal
location of the droplet is eccentric in this case.

thus, should be a carefully considered design feature and stable levitation is certainly
possible under an appropriately chosen magnetic field.

Based on the above observations from the simulations, a schematic can be proposed
in terms of the initial field contour configurations, which can help to depict the
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FIGURE 21. The schematic for determining the stability of the levitation: (a) stable,
(b) unstable and (c) possibility of multiple stable states. 1H is the difference in the field
at the bottom and the top of the droplet.

stability, instability or multiple stabilities of the droplet levitation. The schematic is
presented in figure 21. The mechanism is analogous to the classical ball-on-ramp
example which is often used to understand the concept of stability, and this analogy
can be applied to study the stability of levitation by solving for the absolute field
contours in the domain produced by a given arrangement of magnets. The stability of
the droplet path, however, can be non-trivial and should be analysed in conjunction
with the hydrodynamic flow field near the droplet.

9. Comparison with experiment
From experiments, the typical time scale of the phenomenon is noted to be of the

order of fraction of a second, and thus it is recorded at a high frame frequency of
2000 frames per second for a sufficient temporal resolution using a monochromatic
camera (Phantom v7.0). Due to the small size of the cell, the original grey scale
image of the droplet is not very clear, as can be noticed in figure 2. For this, we
zoom near the relevant portion of the domain and then sharpen the images, converting
them to binary form. Eventually the phase boundaries are then extracted from the
binary image data, shown in figure 23. This sequence gives a comparatively clear
description of the interface of the droplet. The image processing sufficiently resolves
the changes in the configuration of the interface and the dynamics of the tail of
the droplet during its rise. After calibrating the frames for further measurements, an
xy coordinate system is chosen with its origin placed at the centre of the bottom
wall (figure 23). The coordinates are measured in mm. The time instant at which
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FIGURE 22. (Colour online) (a) The magnetization curve of the ferrofluid sample used in
demonstration experiments. (b) The shape of the droplet when it is settled at the bottom
of the cell in the absence of a bottom pair of magnets. The image from the experiment
(b), the binary counterpart of the same (c) and the shape from the simulation (d).

the droplet just starts experiencing the influence of the magnetic field is marked as
t = 0.0 s. The domain dimensions, the droplet size at the initial condition and the
details about the pixel resolutions of the area covering the droplet and the domain, are
given in table 3, while the fluid properties were given in table 1. In this simulation set,
we use the fluid properties and other relevant parameters in their dimensional form,
so that the results can be directly compared with the experimental measurements.
Standard properties of water are taken for Ωd. For properties of Ωf , the ferrofluid
sample has been characterized, except for its interfacial tension with water. For this
we use the method of Zhu et al. (2011a) where the researchers compared the initial
conditions of the experiment and simulation to determine the coefficient of interfacial
tension. Using this approach we predict that σ = 0.0097 N m−1. The initial shape of
the droplet in the simulations compares well with the experimental initial shape. The
comparison is shown in figure 22(b–d). The magnetization curve for the ferrofluid
sample has been characterized using an EverCool SQUID VSM DC magnetometer
and is shown in figure 22(a). The initial susceptibility χo and saturation magnetization
Ms, as depicted from the magnetization curve, are 0.0189 and 57.7 G respectively.
Thus the ferrofluid sample is weakly magnetizable and a shorter levitation height of
the water droplet is expected.

9.1. Singularity at the tail of the droplet
The shapes of the droplet at different instants of time from the experiment and
simulation are compared in figure 24. For the above characterized samples of fluids,
we notice that the levitation height is small, which is due to the weakly magnetizable
nature of the ferrofluid sample (Ms = 57.7, χo = 0.0189). Interestingly, a formation
of singular projection at the tail of the levitating droplet is observed in both the
experiment and the simulation. The central portion of the tail of the droplet remains
adhered in the vicinity of the bottom wall for some initial time, although there is a
layer of ferrofluid separating it from the bottom wall. The width of this adhered part
of the interface reduces gradually and, at approximately t= 0.035 s in the experiment,
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FIGURE 23. (Colour online) The phase boundaries extracted from the binary image
sequence from the experiment.

Domain size 17.7 mm× 17.7 mm
Initial location of droplet centre (8.850 mm, 1.725 mm)
Droplet shape and sizea Elliptic, a= R+ 0.4125 mm, b= R− 0.4125 mm,

R= 1.35 mm
Grid resolution ∆= R/17.39 mm
Time step 1t= 0.5× 10−4 s
Solver absolute convergence tolerances 1.0× 10−6

TABLE 3. The simulation parameters for the comparison of numerical solution with the
experimental results in § 9. The fluid properties are given in table 1.

aHere a and b represent semi-major and semi-minor axes of the elliptical droplet
respectively.

it detaches from the bottom wall. The singularity is formed after this instant at the
tail of the droplet (t = 0.036 s). As the droplet levitates, the singular point appears
to being pulled towards the bulk of the droplet. Eventually the singularity disappears
and the droplet tail becomes smooth and concave downward. The simulations have
predicted this phenomenon reasonably well. This also strongly supports our argument
in § 6 that the interfacial singularities or cusps at the interface of the levitating droplet
in a ferrofluid can be ubiquitous, especially for low interfacial tension (low La).

Although the capture of the singular shape requires full simulations, a scaling
argument for the interface shape just before the appearance of the singularity is
given as follows. As initially a segment of the droplet interface is settled near the
bottom wall, the field strength along this portion of the interface is approximated as
H(x)|y=0 = −Ho sin(2πx/L), according to the field boundary condition at the bottom
wall. For a small initial time δt we assume that the magnetic field at this segment
of the interface is close to the field value at the wall itself. The order of the vertical
magnetic force on this segment of the interface is then fm ∼ ∇ · Sm ∼ −(1/2)H21µ,
where 1µ is the permeability difference across the interface. Using the field strength
along this interface segment, fm∼−(1/2)H2

o sin2(2πx/L)1µ. For a small initial period
of time δt, the segment will rise faster if fm at the wall is higher and vice versa. If the
displaced vertical location of this segment after δt is δy, then δy(x)∼ fm(x)∼ sin2(x).
The squared sine interface description at the tail of the droplet is closely resembled
at t = 0.030 s in the simulations and at t = 0.035 s in the experiments in figure 24,
where the tip of the projection is still close to the wall and is not cusped (also
indicated by smoothness of sin2(x)). However, at relatively larger time the sin2(x)
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FIGURE 24. Comparison between the experimental image sequence and the simulation.
The tail of the droplet passes through a stage of singularity, captured both in experiment
and simulation. The binary images are utilized to make the singularity more visible. The
time increases from bottom to top.

feature transitions towards a cusp, and the approximation that the field value at the
segment is equal to the field value at the bottom wall is no more valid. After this
regime, the hydrodynamics and the effect of higher outer liquid viscosity (see § 6)
become significant.

The sharp singular tips are observed in droplet systems, for example in Stone,
Lister & Brenner (1999) under an electric field and by Rowghanian et al. (2016)
for a magnetic drop under a uniform magnetic field. Stone et al. (1999) have
concluded that the conical tips appear for a certain threshold electric field strength
and dielectric constant ratio. Rowghanian et al. (2016) focus on curved tip regimes,
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and clearly discuss that sharp tips are possible due to destabilization of the droplet
under high field strengths and high localization of the magnetic stresses at the
droplet poles. In the present study, the situation is, however, dynamic and the field is
non-uniform. A low interfacial tension (low Laplace number La) in combination with
the hydrodynamic viscous stress difference (exhibited through viscosity ratio change)
across the interface are two additional important factors which can help realize such
sharp conical tips. In practical situations, the former is reasonably modifiable using a
surfactant solution and the latter by taking a different non-magnetic droplet medium
in a ferrofluid (or a non-magnetic medium outside of a ferrofluid droplet).

Although the droplet is essentially moving in a quasi-two-dimensional cell, and it
might be more appropriate to use gap-averaged Navier–Stokes equations, it turns out
that the current two-dimensional mathematical description captures the droplet’s shape
reasonably well. Thus the spatial solution is quite accurate. However, during the later
stages of the droplet rise, the solution is temporally deviating (figure 24). As far as
the spatial shapes of the droplet are concerned, any three-dimensional effects due to
the out-of-plane curvature of the droplet in the Hele-Shaw gap are not dominant. We
attribute the accurate capturing of the droplet interface shape to the following points:
(i) careful characterization of the ferrofluid sample nonlinear magnetization curve, as
well as some other properties, and implementing of the same in the simulations using
Langevin’s nonlinear magnetization model (figure 22), (ii) implementing the initial
interface condition precisely similar to that which we find for a resting droplet in the
experiments, (iii) convenience in closely realizing the actual field boundary conditions
due to the Halbach array, (iv) modelling similar flow boundary conditions as in the
experiments and (v) using state-of-the-art numerical techniques for computational
accuracy. In addition, the ferrofluid sample in the experiments is characterized and
found to be weakly magnetizable. The numerical solution is then expected to be more
accurate due to a less sharp change in the magnetic properties and field (and thus
a softer jump in the magnetic force term in the Navier–Stokes equations) across the
interface. The possible reasons why temporally the two-dimensional assumption is
only reasonable might be due to the following unrelaxed assumptions: (i) neglecting
the out-of-plane curvature in simulations due to the Hele-Shaw geometry, or in other
words, neglecting the quasi-two-dimensional nature of the problem and considering it
as a two-dimensional problem in the simulations, (ii) neglecting an important aspect of
the magnetization relaxation dynamics in ferrofluids and considering instantly relaxing
magnetization when the magnetic field changes. We believe that incorporation of the
magnetization relaxation time effect coupled with a two-phase model for the ferrofluid
interface, together with corrections due to the third dimension (e.g. implementing
the Darcy law (Gondret & Rabaud 1997) together with inertial corrections for it
(Ruyer-Quil 2001)), can closely resolve the temporal details.

10. Dynamical model

A differential model for the vertical trajectory of the levitating droplet is constructed
to obtain an analytical expressions for the onset condition of levitation, levitation
height and conditions for transitions in the droplet time response near the equilibrium.
This was previously analysed by the displacement and velocity plots from the
simulations in § 5.4. In this model, the levitation path is assumed to be stable in
the lateral direction and thus the droplet is assumed to move only in the vertical
dimension. A single magnetic source of strength Ho is considered at the bottom wall
while no source is assumed on the side or top. Additionally, we assume the droplet
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to be spherical. For simplicity of the formulation, the local magnetic field distortions
due to the presence of the droplet are neglected, and the local field is assumed equal
to a local field which would be present if there is no droplet. At any time t, if the
vertical position of the droplet is denoted by ζ (t), then Newton’s equation of motion
for the droplet can be written as

ρdVdζ̈ = ρf Vdg︸ ︷︷ ︸
buoyancy

− ρdVdg︸ ︷︷ ︸
gravity

− 6πηf Rζ̇︸ ︷︷ ︸
Stokes’ drag

−µoχf H(ζ )
dH(ζ )

dζ
Vd︸ ︷︷ ︸

magnetic levitation force

, (10.1)

where H(ζ ) is the field strength along the vertical direction ζ . We assume that the
field strength decays as H(ζ ) = Hoe−kζ from the magnetic source of strength Ho at
ζ = 0 with a decay constant k (in units of 1/length). Notice that dH/dζ =−kHoe−kζ

is negative and thus provides a positive upward levitation force. The above equation
describing the decay of the magnetic field along the vertical direction (+y or ζ ) is
assumed to be valid only along the vertical direction but only away from the bottom
wall, due to the fact that the droplets initial location in the simulations was considered
to be above the bottom wall (see for example figure 4). Using this in (10.1), and
rearranging, we get

ζ̈ +

[
6πηf R
ρdVd

]
ζ̇ +

[
ρd − ρf

ρd

]
g=

[
µokχf H2

o

ρd

]
e−2kζ . (10.2)

To compare the vertical trajectories ζ (t) with simulations, the above equation is non-
dimensionalized using the same reference scales used in (3.11), which casts it in terms
of Lam and Ga as

¨̃
ζ +

9
2

[
ηf

ηd

]
︸ ︷︷ ︸

V

˙̃
ζ +Ga

[
1−

ρf

ρd

]
︸ ︷︷ ︸

G

= Lam

[
1−

µo

µf

]
(2kR)︸ ︷︷ ︸

L

e−
K︷ ︸︸ ︷

(2kR) ζ̃ , (10.3)

where ζ̃ = ζ/R, and the right-hand side is basically a nonlinear forcing function due
to the magnetic source. For simplicity, we write the above equation as

¨̃
ζ + V ˙̃ζ + G =Ψ (ζ̃ ),
Ψ (ζ̃ )=Le−Kζ̃ .

}
(10.4)

The equation is sensitive to four parameters, V = V(ηf /ηd), G = G(Ga, ρf /ρd), L =
L(Lam, µo/µf ) and the non-dimensional constant K= 2kR carrying information about
the vertically decaying magnetic field strength.

10.1. Levitation height and onset condition
The differential equation (10.4) is a second-order ordinary but nonlinear equation due
to the form of Ψ (ζ̃ ). It is reduced to a first-order system of two differential equations
by introducing a variable Π = ˙̃ζ , written as

˙̃
ζ =Π,

Π̇ =−VΠ − G +Ψ (ζ̃ ).

}
(10.5)
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The long-time equilibrium or fixed point of the system is obtained by setting the
droplet speed ˙̃ζ =Π , and acceleration Π̇ to 0 in (10.5), which for non-zero Ψ , gives
the steady state fixed point (Π∗, ζ̃∗)

Π∗ = 0, steady state velocity,
Ψ (ζ̃∗)= G, equation for steady state levitation height.

}
(10.6)

As Ψ (ζ̃ )=Le−Kζ̃ , it turns out that

Π∗ = 0, steady state velocity,

ζ̃∗ =−
1
K

ln
G
L
=

1
K

ln
L
G
, steady state levitation height.

 (10.7)

The steady state levitation height of the droplet depends on parameter K and the ratio
G/L (which is ∝Ga/Lam), and is independent of the parameter V . This is expected as
V is the strength of the viscous drag force opposing the droplet motion and it must
vanish at steady state. If the levitation height ζ̃∗ is to be a non-zero positive, then
(1/K) ln (L/G)> 0, which provides the condition for the onset of levitation

L> G, or,
Lam

Ga
> α1

(1− ρf /ρd)

(1−µo/µf )
, (10.8a,b)

where α1= 1/K is constant. If the onset condition is satisfied, the levitation height is

ζ̃∗ = α1 ln
Lam(1−µo/µf )

Ga(1− ρf /ρd)
. (10.9)

The above expression is physically is in agreement with the facts – the rise of the
droplet will increase in a ferrofluid sample of higher permeability, with lower droplet
mass densities, with the increase in Lam or decrease in Ga.

10.2. Transition in the nature of the fixed point
The transitions in the nature of the fixed point are revealed by evaluating the
eigenvalues of the Jacobian J for the system (10.5), which is

J =

 0 1
dΨ

dζ̃
−V

 . (10.10)

If λ are the eigenvalues of J, then the characteristic equation |J − λI| = 0 is
λ2
+ Vλ − dΨ/dζ̃ = 0 and the eigenvalues or the characteristic values of the

fixed point, λ1,2, are λ1,2 = −(V/2) ± (1/2)(V2
− 4(−dΨ/dζ̃ ))1/2. This gives the

possibilities V2 >−4(dΨ/dζ̃ ) (distinct real eigenvalues), V2
=−4(dΨ/dζ̃ ) (identical

real eigenvalues) and V2 < −4(dΨ/dζ̃ ) (complex conjugate eigenvalues). The first
case physically suggests that the fixed point is of type node and the droplet will
approach the steady state monotonically. The third case of complex eigenvalues,
however, suggest that the fixed point is of type spiral and the droplet will oscillate
around the fixed point before reaching the steady state. The second case gives the
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critical value of the parameter V , at which the stable fixed point ζ∗ changes its type
from spiral to node or vice versa, according to

V2
c =−4

[
dΨ

dζ̃

]
ζ̃∗

=−4
[

d

dζ̃
Le−Kζ̃

]
ζ̃∗

= 4KG. (10.11)

Thus from the condition of complex conjugate eigenvalues, V2 < −4(dΨ/dζ̃ ),
oscillations around the equilibrium point do occur if

V2 < 4KG, or,
ηf

ηd
<α2

√(
1−

ρf

ρd

)
Ga, (10.12a,b)

where α2 = (4/9)K1/2 is constant. It is important to note that the parameter L does
not influence the condition for the oscillations around the equilibrium; it only appears
in the expression of the steady state levitation height.

The nature of the stable fixed point ζ∗ and transitions in its behaviour are further
studied through phase portraits in the (ζ , ζ̇ ) plane. The differential equation for (ζ , ζ̇ )
from (10.5) is

dΠ

dζ̃
=

d ˙̃ζ

dζ̃
=
Π̇

˙̃
ζ
=
−VΠ − G +Ψ (ζ̃ )

Π
. (10.13)

Using this, first we show the effect of variation of V (∝ viscosity ratio) at fixed G
(∝Ga) and L (∝Lam). This is depicted in figure 25 for different initial conditions
(ζ (0), ζ̇ (0)) on a circle around the fixed point. For ηf /ηd= 0.5, V = 2.25, and thus we
vary V around O(1). The behaviour of the linearized solution around the fixed point
ζ∗ is clearly sensitive to V , although the actual magnitude of ζ∗ depends on L/G. The
variation in V changes the nature of the fixed point from being a spiral to a monotonic
attractor at Vc. This observation is in good agreement with the simulations in figures 9
and 10, where the transition between monotonicity and oscillations of the curves was
noted.

We conclude by explicitly comparing the solution of the analytical model (10.3) to
the simulations of figure 9. In the simulations we noted that the response changes
from monotonic to undulatory when Ga is increased (figure 9). Here we take the
extreme cases of Ga = 0.1 and 10 considered there. The comparison is shown in
figure 26. The corresponding trajectories in the (ζ̃ , ˙̃ζ ) plane are also depicted in the
inset. The Lam value is chosen from the results of figure 9 such that the ratio L/G
is more or less the same in the dynamical model. This results in nearly the same
final levitation height according to ζ̃∗ =K−1 ln(L/G), and thus only the nature of the
response can be closely compared. We have obtained a reasonable agreement between
the simulations and the dynamical model regarding the statement of transition between
monotonic and undulatory droplet levitation.

Thus the model captures the essential features of the levitation dynamics of the
droplet, and at the same time, it provides a simpler alternative in place of fully fledged
simulations to predict the condition for the onset of levitation, the levitation height, the
condition for oscillations around the equilibrium and the nature of the solution around
the equilibrium. The model, however, does not care about the lateral stability of the
levitation path. Those conditions for the lateral stability need a coupled analysis of
the magnetic field and the flow solutions (§ 8).
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FIGURE 25. The behaviour of the solution of (10.3) near the equilibrium/fixed point,
depicted by the phase portraits in the displacement–velocity (ζ̃ ,

˙̃
ζ ) plane with varying

V (V is proportional to the viscosity ratio). The nature of the fixed point (ζ̃∗,
˙̃
ζ∗) =

((1/K) ln (L/G), 0) changes at critical Vc = 1.804 from a stable spiral to a stable node.
Here, L/G = 1.21 and K=π/5.

11. Conclusions and discussion
In this study, we show that the stable levitation of a non-magnetizable droplet

immersed inside a ferrofluid is possible with the help of an appropriately generated
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FIGURE 26. (Colour online) The comparison of the time displacement of the droplet
between the simulations and the analytical model for two extreme cases of Ga (= 0.1
and 10). The Lam for the two cases is chosen such that the levitation height ζ̃∗ (∝Lam/Ga)
remains in the same range. Both approaches have predicted that there is a transition
between a node and a spiral.

spatially non-uniform magnetic field; the levitation can be unstable, or can have
multiple stable states, essentially depending upon the spatially inhomogeneous
magnetic field strength. The dynamics of the levitating droplet is analysed primarily
through computations based on a conservative finite-volume-based pressure projection
algorithm coupled with a multigrid solver for the magnetic field solution and the
front-tracking algorithm for the interfacial advections. Physical demonstrations to
support the simulations are presented. A dynamical model is proposed for the
prediction of the onset of levitation, the steady state levitation height and the time
evolution of the droplet in the vertical direction. In this inverse system, where the
droplet is non-magnetizable and the outer liquid is a ferrofluid, the droplet is forced
in the direction opposite to the field gradient.

The conclusions from the study are focused in terms of the following three
fundamental curiosities: (i) the shape of the levitating droplet and the appearance
of interfacial singularity, (ii) the stability of the levitation path and the existence of
multiple possible final states and (iii) the nature of the droplet time response around
the steady state levitation point. The conclusions about these three aspects from our
study are discussed below one by one.

(i) The shape of the levitating droplet and the appearance of interfacial singularity.
The non-magnetizable droplet levitation in a ferrofluid is simulated inside a bounded
square domain under the magnetic field generated by a Halbach array of magnets. The
system in general is sensitive to the Laplace number La, the magnetic Laplace number
Lam and the Galilei number Ga. The shape of the levitating droplet primarily depends
on the magnitudes of La and Lam; the Lam dependence being apparent only at low La.
The shape is weakly influenced by the changes in Ga. For high La, the shape of
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the droplet remains nearly circular, or at most, attains only a slight deformation. On
the other hand, the deformation can be more pronounced at low La due to spatially
complex magnetic field. Also, this minor deviation from the circular shape in the case
of higher La occurs only during the initial transient stage. As the La number decreases,
the deformation of the interface at the tail of the droplet increases. The deformation
becomes more pronounced for La of order 10−1. In this regime, unique shapes of the
levitating droplet are observed, e.g. the segmented-ring, crescent and tooth-like shapes;
the shape transitions from one type to another occur over time or with a change of
the above control parameters.

The above observations are for the droplet having a viscosity higher than that of
the ferrofluid. If the viscosity of the droplet is lower than that of the ferrofluid, it is
noticed that the local dynamics of the interface alters. Under these circumstances, the
tail of the droplet might show cusped features at sufficiently high Lam. The previously
discussed crescent-like shapes now approach exact crescent shapes. It is shown that
there is a possibility of the appearance of singularities at the surface of the non-
magnetizable droplet during its field guided motion inside the ferrofluid; such singular
projection at the tail of the droplet is physically demonstrated and also predicted by
the simulation.

The deformation of the droplet is also sensitive to the degree of nonlinearity in
the magnetization curve of the ferrofluid sample. A change of even one order in the
magnitude in the parameter γo = 3χoHo/Ms can significantly alter the droplet shape,
nature of interfacial projections and the levitation height.
(ii) The stability of the levitation path. The path of the levitating droplet has
shown quite a sensitivity to the spatial description of the magnetic field; not every
arrangement of magnets can provide a stable levitation mechanism. The motion of the
non-magnetic droplet, and the flow resulting due to this motion, is primarily due to
the application of the magnetic field gradient and is parallel to ∇H. But interestingly,
if the horizontal symmetry of the field around the initial location of the droplet is not
maintained, the flow vortices generated near the tail projections of the droplet can be
capable of deviating the droplet from its path parallel to ∇H. The magnetic forces
and the resulting flow show mutually competing influences on the trajectory of the
levitating droplet and this interaction can cause the droplet trajectory to deviate from
what is expected. We show that an appropriate magnetic arrangement can constrain
this instability of the droplet levitation path.
(iii) The nature of the droplet time response and the existence of multiple possible
final states. Besides the levitation path, the stability of the final equilibrium location
of the droplet is also investigated. It is found that there may exist magnetic fields
which can give rise to multiple stable states of the levitated droplet. The regions of
minima of the magnetic field strength, local or global, act as attractors to the droplet.
If the magnet arrangement generates multiple such local minima, multiple stable states
can exist. The final equilibrium of the droplet is then affected by the initial location
of the droplet and its relative distance to various regions of field minima.

The onset condition for the levitation, the temporal evolution of the droplet, its
steady state levitation height and the nature of the stationary point are predicted by a
dynamical model, provided that the droplet levitation path is laterally stable/constrained.
The model has verified the statement, which was initially based on the simulations,
that the response of the droplet can be either monotonic, or it can oscillate about the
equilibrium location before reaching the steady state depending on the viscosity ratio,
density ratio and Ga. Specifically a transition between a stable spiral and a stable
node is identified; the transition between the two occurs at V2

c = 4KG, and the steady
state levitation height can be quickly predicted by ζ̃∗ =K−1 ln(L/G).
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FIGURE 27. The interface of the levitating droplet compared for different grid resolutions
under constant permeability assumption. The non-dimensional parameters are La = 0.1,
Ga= 0.1 and Lam = 1000.
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FIGURE 28. The interface of the levitating droplet compared for different grid resolutions
under variable permeability formulation using Langevin’s relation. The non-dimensional
parameters are La= 0.1, Ga= 0.1 and Lam= 1000. As the permeability of the ferrofluid in
the latter case is variable and determined by Langevin’s function, the vacuum permeability
is used to calculate this characteristic value of Lam.
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Appendix. Grid and time-step independence
To study the grid and time-step independence of the simulations, a combination of

non-dimensional groups is first selected, from the range simulated in the present study,
for which the droplet undergoes maximum deformation and levitation height. It is
intuited that a grid resolution which is sufficient for this extreme case will serve the
purpose for the rest of the simulation sets. For the constant permeability assumption,
the droplet deformation is maximum for La= 0.1 and its levitation is maximum when
Ga = 0.1 and Lam = 1000. For variable permeability the same is true for La = 0.1,
Ga = 0.1, Lam = 1000 and γo = 1.666. Thus for these set of parameters, we resolve
the grid starting from d/∆= 9.6 to 32.0 and look for the saturation in the outcomes
at some grid resolution. Here d is the diameter of the round droplet and ∆ is the
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FIGURE 29. The droplet deformation (D(t)) curve for different grid resolutions, both for
constant permeability and variable permeability. The non-dimensional parameters are La=
0.1, Ga= 0.1 and Lam = 1000 (see caption of figure 28 regarding the value of Lam).

t
5

Ît = 1.0 ÷ 10-3

Ît = 0.5 ÷ 10-3

Ît = 1.0 ÷ 10-4

Ît = 0.5 ÷ 10-4

10 15

d
(t

)

(a) (b)

Constant permeability assumption Variable permeability
(using Langevin’s function)

0
t

5 10 150

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

FIGURE 30. The droplet deformation (D(t)) curve for different time steps, both for
constant permeability and variable permeability. The non-dimensional parameters are La=
0.1, Ga= 0.1 and Lam = 1000 (see caption of figure 28 regarding the value of Lam).

d/∆ 9.6 12.8 19.2 25.6 32.0

Constant permeability assumption (%) 25.76 9.11 3.32 0.71 0.00
Variable permeability (%) 15.36 6.35 2.76 0.67 0.00

TABLE 4. The relative mean percentage error (RMPE) in the droplet deformation (D(t))
curve with respect to the grid resolution, both for constant permeability assumption and
the variable permeability formulation.

computational cell size. The outcomes judged are the interface shapes (figure 27
under constant permeability assumption and figure 28 for variable permeability case)
and the relative mean percentage error in the droplet deformation parameter curve
D(t) (table 4 and figure 29). The grid resolution of d/∆= 25.6 has proven to be a
reasonable choice.
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Likewise, the time independence of the simulations is also assured by comparing
the signature of the droplet deformation parameter with respect to time for different
time steps (figure 30). The simulations have shown time-step independence at 1t =
1.0×10−4. The droplet shapes are also found to be independent of the time step below
1t= 1.0× 10−4, and thus this value is adopted.
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