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1. Introduction

The variation of Newton polygons of convergent F-isocrystals on algebraic varieties of

characteristic p > 0 is mysterious. It may depend on arithmetic and geometry of varieties.

In this paper we study constancy (i.e., non-variation) of Newton polygons in projective

smooth cases. We prove constancy of Newton polygons of all convergent F-isocrystals on

Abelian varieties over finite fields. We also give several examples of projective smooth

varieties such that any convergent F-isocrystal on the variety has constant Newton

polygons. Applying the constancy, we prove the isotriviality of proper smooth families
of curves on such varieties. The author wishes this study gives a new aspect on global

property of Frobenius slopes.

1.1. Problems

Let k be a perfect field of characteristic p, R a complete discrete valuation ring with

residue field k = R/m where m is the maximal ideal of R, and K the field of fractions

of R which is of mixed characteristic (0, p). Let ordp be the discrete valuation on K
normalized by ordp(p) = 1. Let σ be a q-Frobenius on K for a positive power q of p,

that is, a continuous lift of the q-power Frobenius on k. (See Remark 2.1 for the detail

of Frobenius σ .)

https://doi.org/10.1017/S1474748019000276 Published online by Cambridge University Press

mailto:tsuzuki@math.tohoku.ac.jp
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1474748019000276&domain=pdf
https://doi.org/10.1017/S1474748019000276


588 N. Tsuzuki

Let X be a scheme separated of finite type over Spec k, and M a convergent F-isocrystal

on X/K with respect to Frobenius σ (we simply say a convergent F-isocrystal on X/K
if there is no ambiguity of the choice of Frobenius σ ) which is introduced by Berthelot

[2–4]. For a point x ∈ X with a geometric point x above x , we define a polygon NP(M, x),
called Newton polygon of M at x , by the Newton polygon of the F-space i∗xM over

K (x) in the theory of Dieudonné–Manin. Here k(x) is a function field of x and K (x)
is an extension of K with the residue field k(x) as a discrete valuation field with the

same valuation group, and ix : Spec k(x)→ X is the canonical morphism. We normalize

slopes as ordp(a)/ordp(q) for the Frobenius ϕ = aσ (a ∈ K , a 6= 0) on an F-space of rank

one over K (note that q is the p-power of Frobenius σ ). We regard the application

x 7→ NP(M, x) as a function on the scheme-theoretic points of X . The smallest slope of

NP(M, x) is called the initial slope of M at x .

Definition 1.1. Let f : X → Spec k be a morphism separated of finite type.

(1) A convergent F-isocrystal M on X/K is said to be constant if M ∼= f ∗N for some

F-isocrystal N on Spec k/K . We denote by F-Isoc(X/K )CST the full subcategory

of constant convergent F-isocrystals in the category F-Isoc(X/K ) of convergent

F-isocrystals on X/K .

(2) A convergent F-isocrystal M on X/K is said to have constant Newton polygons

if the application x 7→ NP(M, x) is constant on X . We denote by F-Isoc(X/K )CNP

the full subcategory of convergent F-isocrystals with constant Newton polygons in

F-Isoc(X/K ).

Our problems are as follows.

Problem 1.2. Let X be a smooth geometrically connected scheme over Spec k, and Xk =

X ×Spec k Spec k the base change for an algebraic closure k of k.

(1) Is the condition F-Isoc(X/K ) = F-Isoc(X/K )CST equivalent to the triviality of

geometric etale fundamental group of X , i.e., πet
1 (Xk) = {1}? Here πet

1 (−) denotes

the etale fundamental group and we usually omit to indicate a base point because

we do not need the specific base point in this paper.

(2) Classify varieties X such that any convergent F-isocrystal on X/K has constant

Newton polygons, i.e.,

F-Isoc(X/K ) = F-Isoc(X/K )CNP,

and study properties of such varieties.

By definition there are natural inclusion relations

F-Isoc(X/K )CST
⊂ F-Isoc(X/K )CNP

⊂ F-Isoc(X/K ).

When X = P1
k is the projective line, any convergent F-isocrystal on X/K is constant.

Indeed, there is a natural isomorphism

M ∼= H0
rig(P

1
k/K ,M)⊗K O

]P1
k [
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as F-isocrystals. Note that the isomorphism above holds without assuming the existence

of Frobenius structures. On the other hand there exists a projective smooth curve C
over a finite field which has a convergent F-isocrystal on C/K with nonconstant Newton

polygons (see § 4.5 for the detail), and hence the inclusion relations

F-Isoc(C/K )CST ( F-Isoc(C/K )CNP ( F-Isoc(C/K )

hold. The first inequality holds when πet
1 (Ck) is nontrivial by Katz–Crew equivalence

between the category of p-adic continuous representations of πet
1 (C) and that of unit-root

convergent F-isocrystals on C/K [11, Theorem 2.1].

Our main interest is the mysterious gap of two categories F-Isoc(X/K )CNP
⊂

F-Isoc(X/K ). In this paper we give a new example of Problem 1.2(2), that is, we prove

that the inclusion relations

F-Isoc(X/K )CST ( F-Isoc(X/K )CNP
= F-Isoc(X/K )

hold for any Abelian variety X over a spectrum Spec k of a finite field k (see § 1.2).

Concerning Problem 1.2(1), T.Abe–H.Esnault and K.S.Kedlaya gave the affirmative

answer when k is a finite field applying the companion theorem [1, 35, 36]. In the

case of convergent isocrystals (without Frobenius structures) Esnault–Shiho studied the

constancy problem, called de Jong conjecture [19, Conjecture 2.1]. They proved the

de Jong conjecture under certain hypotheses for a general perfect field k [19, 20, 52].

Moreover the constancy of geometric convergent isocrystals (see Definition 2.10) is proved

in [20, Theorem 1.3]. As mathematical statements, the case of convergent isocrystals

is much stronger than that of convergent F-isocrystals. However, our interests in this

paper are the variation of Newton polygons of Frobenius structures and its application

to geometry. Returning to our problems, if X is proper smooth, then the triviality

πet
1 (Xk) = {1} is equivalent to the coincidence

F-Isoc(X/K )CST
= F-Isoc(X/K )CNP

of categories (Corollary 2.17). At this moment the author does not know whether

Problem 1.2(1), i.e., F-Isoc(X/K )CNP
= F-Isoc(X/K ), is valid or not in general even when

πet
1 (Xk) = {1} except the case where k is finite. Moreover, he would like to find a proof

by using only p-adic methods.

The author is ignorant of classifications of projective smooth curves of genus > 2 in this

aspect. He does not know whether the constancy problem of Newton polygons depends

on the base field k or not in general.

Remark 1.3. For the following projective smooth and connected variety X over an

arbitrary field k, any convergent F-isocrystal on X/K is constant:

(1) X admits a projective smooth lift X over Spec R such that πet
1 (XK ) = {1} for the

geometric generic fiber XK .

(2) X is separably rationally connected (see the definition in [37, IV, Definition 3.2]).

Indeed, in the case (1) any convergent isocrystal on X/K is constant, by rigid and complex

GAGA principles of de Rham cohomologies and [25, 40] (see Introduction of [19]), so that
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it is also constant for convergent F-isocrystals. In the case (2) we may assume that X
is geometrically connected, and then any two points are connected by rational curves

[37, IV,Theorem 3.9]. Hence any convergent F-isocrystal has constant Newton polygons.

Since the works of de Jong–Starr [14] and Kóllar (see [12, Corollary 3.6]) imply the simply

connectedness πet
1 (Xk) = {1}, the assertion follows from Corollary 2.17.

1.2. Constancy results

Our main result is the following:

Theorem 1.4 (Theorem 3.7). Let k be a finite field, and X an Abelian variety over Spec k.

Then any convergent F-isocrystal on X/K has constant Newton polygons, i.e.,

F-Isoc(X/K )CNP
= F-Isoc(X/K ).

The crucial idea of the proof is as follows. Let C be a projective smooth and

geometrically connected curve of genus > 1 over Spec k, M a convergent F-isocrystal

on C/K , and DM a reduced divisor of C consisting of points x at which the Newton

polygon NP(M, x) is different from that at the generic point. Estimating the degree of

DM in two ways, the congruence of the L-function L(X/k,M; t) of M modulo m and

the Euler–Poincaré formula (Proposition 3.1), we have an inequality

deg(DM) 6 B

for the degree of DM by a constant B which depends only on the cardinality of k, the

genus of C and the rank of M (Theorem 3.3 and Remark 3.5).

Now let X be an Abelian variety over Spec k. Let M be a convergent F-isocrystal on

X/K , and DM a set of X consisting of points at which the Newton polygon of M is

different from that at the generic point of X . When DM 6= ∅, DM is a closed subscheme

in X purely of codimension 1 by de Jong–Oort purity theorem [13, Theorem 4.1]. Suppose

DM 6= ∅. Then there exists a projective smooth and geometrically connected curve C of

genus > 1 in X (after we replace k by a finite extension) such that the degrees of the

reduced divisors (C ∩ D[n]∗M)red are unbounded on n, where [n] means the morphism of

multiplication on X with a positive integer n. Since the rank of [n]∗M is stable for n,

this contradicts the existence of bound with respect to the k-curve C .

1.3. Application to the isotriviality of families of curves

We will apply our study on constancy of Newton polygons to the isotriviality problem of

families of curves in characteristic p > 0. At first we recall the definition and review the

case of complex algebraic varieties.

Definition 1.5. Let S be a scheme separated of finite type over Spec k. A smooth family

X over S is isotrivial if, for any geometric points s, t ∈ S(k), the geometric fibers Xs and

X t of X at s and t , respectively, are isomorphic to each other as schemes over Spec k.

Here k is an algebraic closure of k.

In the case of complex algebraic varieties, the following results are known. Let X be

a proper smooth family of connected curves of genus g > 2 over a complex algebraic
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variety S. If a projective smooth S is either a simply connected variety (more generally

the topological fundamental group π
top
1 (S) is finite), an Abelian variety, a uniruled surface

over a curve of genus 6 1, or a surface of Kodaira dimension 0, then the family X is

isotrivial over S (see the detail in [15]). Note that when S = C or C× as a complex

algebraic variety, the isotriviality also holds since the coarse moduli space Mg of curves

of genus g is hyperbolic.

When k is a field of characteristic p > 0, the isotriviality of families of curves over

a projective smooth curve of genus 6 1 is known by L.Szpiro [53, Théorème 4]. More

generally he studied the isotriviality problem for families of semistable curves.

Our result is as follows.

Theorem 1.6 (Theorem 4.5). Let S be a projective smooth and connected scheme over

Spec k, and f : X → S a proper smooth family of connected curves. Suppose that any

geometric convergent F-isocrystal M on S/K (see Definition 2.10) has constant Newton

polygons. Then the family X over S is isotrivial.

If there exists at least a fiber which is an ordinary curve (see Definition 4.1) in the

family X over S, then X is a family of ordinary curves over S by the constancy hypothesis

of Theorem 1.6. In this case the Torelli theorem implies the isotriviality of the family

since the ordinary locus of coarse moduli space of Abelian varieties is quasi-affine [44,

XI, Théorème 5.2]. When there exists no ordinary point in S, we apply A.Tamagawa and

M.Säıdi’s works [49, 54] : there exists a finite etale covering f ′ : Y ′→ X ′ after a finite etale

base change S′ of S such that the new part J (Y ′, X ′) = J (Y ′)/( f ′)∗ J (X ′) of the relative

Jacobian variety over S′ is ordinary. Then J (Y ′, X ′) over S′ is isotrivial, and hence Torelli

theorem for new parts implies the isotriviality of X over S [54, Corollary 4.7].

Corollary 1.7. Suppose that S is a projective smooth and geometrically connected scheme

over Spec k satisfying one of the following:

(1) πet
1 (Sk) is finite.

(2) (Corollary 4.6) S is an Abelian variety.

(3) S is either a ruled surface over a curve of genus 6 1 or a projective smooth surface

of Kodaira dimension 0.

Then any proper smooth family of connected curves over S is isotrivial.

In order to prove (1) it is sufficient to prove the assertion when S is simply connected,

i.e., the geometric etale fundamental group πet
1 (Sk) is trivial. Then any geometric

convergent isocrystal on S/K is constant by [20, Theorem 1.3], so that it is also constant

as a convergent F-isocrystal. The isotriviality follows from Theorem 4.5. (3) follows from

the classification theorem of surfaces (see [39], for example), the previous (1), (2) and

Propositions 2.8 and 2.9.

The converse of Theorem 1.6 is also an interesting problem.

The content of the paper is as follows. We study basic properties of variation of Newton

polygons in § 2, and give a proof of existence of slope filtrations of F-isocrystals with

constant Newton polygons in our context in Appendix A (see § 2.3). In § 3 we prove the
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constancy of Newton polygons for any convergent F-isocrystals on an Abelian variety

over a finite field. In § 4 we apply our results on the constancy of Newton polygons to

the isotriviality of families of curves.

2. Newton polygon

In this section we study several properties of Newton polygons.

2.1. Frobenius σ

Let k be a perfect field of characteristic p > 0, R a complete discrete valuation ring with

residue field k = R/m, and K the field of fractions of R which is of mixed characteristic

(0, p). We fix a discrete valuation ordp on K (and its extension as valuation fields) which

is normalized by ordp(p) = 1. Let σ be a q-Frobenius on K for a positive power q of p,

that is, a continuous lift of the q-power Frobenius on k.

When we consider Katz–Crew equivalence between continuous p-adic representations

and unit-root F-isocrystals [11, Theorem 2.1], we assume that

(i) Fq ⊂ k and

(ii) Kσ ⊗W (Fq ) W (k) ∼= K ,

where Fq is the finite field of q-elements, Kσ is the σ -invariant subfield of K and W (k) is

the ring of Witt vectors with coefficients in k. In this case we denote the ring of integers of

Kσ (respectively the maximal ideal, respectively a uniformizer of Kσ ) by Rσ (respectively

mσ , respectively π).

Remark 2.1. The above hypotheses (i) and (ii) on K and σ always hold if we replace

K by a finite unramified extension K ′ of K . Indeed, for any q-Frobenius σ , there is a

uniformizer π of the p-adic completion K̂ ur
= K ⊗W (k) W (k) of a maximal unramified

extension K ur of K such that π is σ -fixed, i.e., σ(π) = π . Here σ also denotes the unique

extension of Frobenius σ on K̂ ur. Indeed, for a uniformizer π ′ of K , one can solve the

equation σ(uπ ′) = uπ ′ on u in K̂ ur. Since K̂ ur is a finite extension of W (k)[1/p] generated

by π and the σ -invariant subring of W (k) is W (Fq), (K̂ ur)σ is a finite extension of Qp and

π is algebraic over K . If we put a composite K ′ = K (K̂ ur)σ of fields, then K ′ is unramified

over K by K ′ ⊂ K̂ ur and (K ′)σ ⊗W (Fq ) W (k′) ∼= K ′ for some finite extension k′ of k with

Fq ⊂ k′. The existence of a σ -invariant uniformizer after a finite unramified extension

also holds even when k is not perfect (see the beginning of A.2 in the appendix).

2.2. Variation of Newton polygons

Let us recall Dieudonné–Manin classification and Newton polygons of F-spaces over a

local field briefly (see [41, Chapter 2, Theorem 2.1] and [16]).

Let M be an F-space over K with respect to Frobenius σ , that is, a K -vector space M
of finite dimension with a σ -linear bijection

F : M → M
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which is called Frobenius. Suppose that the residue field k is algebraically closed. Then

the category of F-spaces is semi-simple with simple objects

Es/r = K [F]/(Fr
−π s) for (r, s) ∈ Z>0×Z with (r, s) = 1

where the relation Fa = σ(a)F holds for any a ∈ K in K [F], by Dieudonné–Manin’s

classification. The rational number sordp(π)/rordp(q) is called slope of Er,s and its rank

over K is r . If M =
⊕

i Emi
ri /si

with s1/r1 < s2/r2 < · · · < sl/rl , then the Newton polygon

of M is the lower convex hull of points

(0, 0), (m1r1,m1s1ordp(π)/ordp(q)), (m1r1+m2r2, (m1s1+m2s2)ordp(π)/ordp(q)), . . . ,
(m1r1+ · · ·+mlrl , (m1s1+ · · ·+mlsl)ordp(π)/ordp(q)).

Note that if F = qσ of rank 1, then it is of slope 1. Our definition of slopes is stable

under any extension of the field K and the change of power of Frobenius σ .

Let X be a scheme separated of finite type over Spec k and M a convergent F-isocrystal

on X/K . For a point x ∈ X (not necessary a closed point) and for a geometric point x
with a natural morphism ix : x → X , we define the Newton polygon of M at x by that

of F-space i∗xM over K (x). Here k(x) is the field of functions of x , and K (x) is the

extension of K as complete discrete valuation fields such that the residue field is k(x). It

is independent of the choice of geometric point x above x . We denote Newton polygon

of M at x by NP(M, x). Then

x ∈ X 7→ NP(M, x)

is a function on the set of points of X .

Let α and β be Newton polygons. We say that α is above β, denote it by α ≺ β, if α

and β have same endpoints and all polygons of α are upper than or equal to that of β.

Proposition 2.2 (Grothendieck’s specialization theorem [29, Theorem 2.3.1] [10, Theorem

2.1]). With the notation as above we have the following.

(1) Let x, y ∈ X . If x is a specialization of y, then NP(M, x) ≺ NP(M, y).

(2) Suppose X is irreducible. Then the set

U =
{

x ∈ X
∣∣∣∣The initial slopes of M at x and

that at the generic point coincide.

}
is open in X .

Proof. (2) Let y ∈ X \U , and x any specialization of y. Then the initial slope at x is

greater than or equal to the initial slope at y by (1). Hence x ∈ X \U . Since y is arbitrary,

X \U is closed.

Another important property of variation of Newton polygons is the purity theorem by

de Jong and Oort.

Theorem 2.3 [13, Theorem 4.1]. Let X be a smooth irreducible scheme separated of finite

type and η the generic point of X . For a convergent F-isocrystal M on X/K , any generic

point of the set-theoretical complement of the open subscheme

UM = {x ∈ X |NP(M, x) = NP(M, η)}

is of codimension 1 in X .
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2.3. Slope filtrations

Definition 2.4. Let X be a scheme separated of finite type over Spec k, and M a convergent

F-isocrystal on X/K .

(1) M is said to be isoclinic of slope γ ∈ Q if, for any geometric point x of X with a

natural morphism ix : x → X , the F-space i∗xM over K (x) is a direct sum of copies

of Eγ ordp(q)/ordp(π). M is said to be unit-root if it is isoclinic of slope 0.

(2) An increasing filtration {SλM}λ∈Q of M as convergent F-isocrystals on X/K is

called the slope filtration if it satisfies the following conditions

(i) SλM = 0 for λ << 0, SλM =M for λ >> 0 and Sλ+M = SλM for any λ;

(ii) SλM/Sλ−M is either 0 or isoclinic of slope λ for any λ,

where Sλ−M =
⋃
µ<λ SµM and Sλ+M =

⋂
µ>λ SµM.

The existence of slope filtrations of F-crystals on Spec k[[t]] having constant Newton

polygons up to isogenies was proved in [29, Corollary 2.6.3], and the case of unipotent

convergent F-isocrystals was proved in [6, Théorème 3.2.3]. The existence of generic slope

filtration for convergent F-isocrystals is proved in [51, Proposition 5.8]. In general case

the existence of slope filtration is given in [35, Corollary 4.2] with brief indication of the

proof. The author does not find a detailed proof in any published literature. So we prove

the following in Appendix A.

Theorem 2.5. Let X be a smooth scheme separated of finite type over k, and M a

convergent F-isocrystal on X/K . Suppose that the initial slope (i.e., the smallest slope)

of M of any generic point of X is γ and the rank of slope γ of F-isocrystal i∗xM (x ∈ X)

is constant on X , say the rank is r . Then there exists a convergent sub F-isocrystal L of

M on X/K which is isoclinic of slope γ and of rank r .

Corollary 2.6. Let X be a smooth scheme separated of finite type over Spec k, and M a

convergent F-isocrystal on X/K which has constant Newton polygons. Then M admits

a unique slope filtration {SλM}λ∈Q.

2.4. Properties of constancy of Newton polygons

Let X be a scheme separated of finite type over Spec k, and M a convergent F-isocrystal

on X/K . We define the convergent cohomology of X by

H i
conv(X/K ,M) = IHi (]X [P ,M⊗�•]X [P/K ).

Here we take a closed immersion X → P into a smooth formal scheme P over Spf R, ]X [P
is the associated rigid analytic tube [3, Section 1.1], and IH i (]X [P ,M⊗�•]X [P/K ) is the

hypercohomology of the de Rham complex M⊗�•
]X [P/K associated to the convergent

isocrystal M. The convergent cohomology is independent of the choice of the closed

immersion X → P. In [7, 58] the convergent cohomology H i
conv(X/K ,M) is denoted by

H i
rig((X, X)/K ,M), the rigid cohomology of X overconvergent along ∅, namely, we do

not consider the overconvergent regularity along boundary. When M = O]X [ (the unit

convergent F-isocrystal), we simply denote the convergent cohomology by H i
conv(X/K ).
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If X is proper over Spec k, then the convergent cohomology H i
conv(X/K ,M) is nothing

but the rigid cohomology H i
rig(X/K ,M). The convergent cohomology is furnished with

a σ -linear homomorphism

F : H i
conv(X/K ,M)→ H i

conv(X/K ,M)

which is called Frobenius. In general H i
conv(X/K ,M) may not be of finite dimension over

K and F may not act on it bijectively except i = 0. For a K -vector space with σ -linear

homomorphism F : V → V , we define a K -space Vfin by the subspace of V consisting of

elements w such that there exist elements a1, a2, . . . , an ∈ K with an 6= 0 satisfying Fnw+

a1 Fn−1w+ · · ·+ anw = 0. If W ⊂ V is a finite dimensional F-stable subspace of V such

that F : W → W is surjective, then W ⊂ Vfin. Hence, Vfin is an F-stable K -subspace of V .

In the case of rigid cohomology we have an equality H i
rig(X/K ,M)fin = H i

rig(X/K ,M) by

finite dimensionality and the bijectivity of Frobenius F ([57, Theorem 5.1.1] for constant

cases, and [31, Theorem 1.2.1, 1.2.3] for general coefficients). Note that the bijectivity of

Frobenius on rigid cohomology follows from the finiteness and Poincaré duality.

Proposition 2.7. Let 0→ L→M→ N → 0 be an exact sequence of F-Isoc(X/K ).

(1) M is an object in F-Isoc(X/K )CNP if and only if so are both L and N .

(2) If M is an object in F-Isoc(X/K )CST, then so are both L and N . Suppose

furthermore that H1
conv(X/K )fin = 0. Then the converse holds.

In particular, the category F-Isoc(X/K )CNP (respectively F-Isoc(X/K )CST) is an Abelian

subcategory of F-Isoc(X/K ).

Proof. (1) Suppose that M has constant Newton polygons. The slope filtration of M
in Corollary 2.6 induces the slope filtrations of L and N since homomorphisms of

F-isocrystals are strict with respect to slopes. Hence, both L and N have constant Newton

polygons. The converse is trivial.

(2) In the case of a connected X , the inequality dimK H0
conv(X/K ,M) 6 rankM holds

in general. Moreover, M is constant if and only if dimK H0
conv(X/K ,M) = rankM. Hence,

the constancy of M implies the constancy of L and N .

Since L ∼= H0
conv(X/K ,L)⊗O]X [ for a constant convergent F-isocrystal L, we have an

isomorphism H1
conv(X/K ,L) ∼= H0

conv(X/K ,L)⊗K H1
conv(X/K ). Hence the exact sequence

0→ H0
conv(X/K ,L)→ H0

conv(X/K ,M)→ H0
conv(X/K ,N )→ H1

conv(X/K ,L)fin

implies the converse since dimK H0
conv(X/K ,L) = rankL and the same holds for N .

We give several properties of constancy of Newton polygons.

Proposition 2.8. Let f : X → Y be a morphism of schemes separated of finite type over

Spec k.

(1) Suppose that Y is smooth and the set-theoretical complement of the image f (X)
in Y is of codimension > 2. If any convergent F-isocrystal on X/K has constant

Newton polygons, then the same holds for any convergent F-isocrystal on Y/K .
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(2) Suppose that X is connected and the morphism f is finite etale. If any convergent

F-isocrystal on Y/K has constant Newton polygons, then the same holds for any

convergent F-isocrystal on X/K .

Proof. (1) follows from Theorem 2.3.

(2) Let fconv∗ : F-Isoc(X/K )→ F-Isoc(Y/K ) be the push forward induced by the finite

etale morphism f : X → Y . For a convergent F-isocrystal M on X/K and the point

x ∈ X , the Newton polygon of fconv∗M at the point f (x) is a deg( f ) time Newton polygon

NP(M, x).

Proposition 2.9. Let X and Y be projective smooth and connected schemes over Spec k.

Suppose that X and Y are binational over Spec k. Any convergent F-isocrystal on X/K
is constant (respectively has constant Newton polygons) if and only if the same holds for

any convergent F-isocrystal on Y/K .

Proof. Since the set of fundamental points of binational transformations is closed of

codimension > 2 [27, V, Lemma 5.1], the assertion follows from Theorem 2.3 and

Kedlaya’s extension theorem [32, Proposition 5.3.3] (via the extension of overconvergent

F-isocrystals).

2.5. Geometric F-isocrystals

Definition 2.10. Let S be a smooth scheme separated of finite type over Spec k. A

convergent isocrystal (respectively F-isocrystal) M on S/K is geometric if there exists

a proper smooth morphism f : X → S such that M is isomorphic to a subquotient of

the relative rigid cohomology Ri frig∗O]X [ of X over S for some integer i as a convergent

isocrystal (respectively F-isocrystal).

We do not care about overconvergence along a boundary of S in the rigid cohomology.

Since f : X → S is proper smooth, the rigid cohomology is nothing but the convergent

cohomology of Ogus in [46] and the finiteness theorem below holds. Hence the above

definition makes sense.

Theorem 2.11 [46, § 3]. Let S be a smooth scheme separated of finite type over Spec k, and

f : X → S be a proper smooth morphism. Then the relative rigid cohomology Ri frig∗O]X [
is a convergent F-isocrystal on S/K .

Remark 2.12. In this paper we use the finiteness theorem only in the case of constant

coefficients. Recently Xu proved that the relative convergent cohomology Ri frig∗M is

convergent F-isocrystal on S/K for an arbitrary proper smooth morphism f and an

arbitrary convergent F-isocrystal M [59, Theorem 1.9] (see the detail around Berthelot’s

conjecture on the coherence of relative rigid cohomology in [38]).

We will use the following proposition to reduce the problem to the case where k is a

finite field. The similar argument for constant convergent isocrystals is discussed in [20,

§ 5.4].
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Proposition 2.13. Let κ be a perfect field, T a smooth integral scheme separated of finite

type over Spec κ, and f : X → S a proper smooth morphism of smooth schemes separated

of finite type over T . Let k be a perfect field which includes the function field κ(T ) of T ,

and f : X → S the base change of f : X → S by the natural morphism Spec k → T via

the generic point of T . Suppose that, for any closed point t of T over Spec κ, the relative

rigid cohomology Ri ft,rig∗O]Xt [ on St/K (t) has constant Newton polygons, where κ(t) is

the function field of t and K (t) = Kσ ⊗W (Fq ) W (κ(t)). Then the relative rigid cohomology

Ri frig∗O]X [ on S/K has constant Newton polygons.

Proof. We may assume that S is irreducible. Let U be an open subscheme of S consisting

of points at which the Newton polygon of the relative rigid cohomology Ri frig∗O]X [
coincides with that at the generic point of S, and hence with that at the generic point of

S. The open subscheme U is defined over Spec κ by Grothendieck’s specialization theorem.

If g : S → T denotes the structure morphism, then g(U) is an open subscheme of T over

Spec κ and g−1(g(U)) = U since Newton polygons of Ri ft,rig∗O]Xt [ are constant on St by

our hypothesis. Hence S ⊂ U ×T Spec k, and Ri frig∗O]X [ has constant Newton polygons

on S. Note that, if it : St → S and jS : S→ S are the canonical structure morphisms,

the base change homomorphisms

i∗t Ri frig∗O]X [→ Ri ft,rig∗O]Xt [ and j∗S Ri frig∗O]X [→ Ri frig∗O]X [

are isomorphisms since the relative cohomologies are coherent [58, Corollary 2.3.3].

2.6. Constancy versus constant Newton polygons

Proposition 2.14. Let X be a smooth geometrically connected scheme separated of finite

type over Spec k. Then the following conditions (i) and (ii) are equivalent.

(i) F-Isoc(X/K )CST
= F-Isoc(X/K )CNP.

(ii) πet
1 (Xk) = {1} and H1

conv(X/K )fin = 0 (see the definition before Proposition 2.7).

Proof. (i) ⇒ (ii): Recall that there exists a natural commutative diagram

RepKσ (Gal(k/k))
∼=
−→ F-Isoc(Spec k/K )0

↓ ↓

RepKσ (π
et
1 (X))

∼=
−→ F-Isoc(X/K )0,

where the horizontal arrows are Katz–Crew equivalences between the category of p-adic

continuous representations of etale fundamental groups and the category of unit-root (i.e.,

isoclinic of slope 0) convergent F-isocrystals [11, Theorem 2.1]. Let ρ : πet
1 (X)→ GLr (Kσ )

be a p-adic continuous representation, and M the unit-root convergent F-isocrystal on

X/K associated to ρ by the equivalence above. Under the fiber sequence

1→ πet
1 (Xk)→ πet

1 (X)→ Gal(k/k)→ 1,

we have ρ(πet
1 (Xk)) = {1} since M is constant by our hypothesis. In order to prove that

(i) implies πet
1 (Xk) = {1}, it is sufficient to show the existence of a p-adic representation

ρ of πet
1 (X) with ρ(πet

1 (Xk)) 6= {1} under the hypothesis πet
1 (Xk) 6= {1}. Suppose now that
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πet
1 (Xk) 6= {1}. Then there exists a finite Galois extension k′ of k and a nontrivial finite

etale Galois covering f : X ′→ X ×Spec k Spec k′ of degree r for some r such that, if ρ′ :

πet
1 (X

′)→ GLr (K ′σ ′) is the corresponding representation, then ρ′(πet
1 (Xk)) 6= {1}. Taking

the push forward of ρ′ (the induced representation and the restriction of scalar), we have

a continuous representation ρ̃ : πet
1 (X)→ GLr̃ (Kσ ) for some positive integer r̃ such that

ρ̃(πet
1 (Xk)) 6= {1}.

Let us prove that (i) implies H1
conv(X/K )fin = 0. Suppose H1

conv(X/K )fin 6= 0. Then there

exists a nontrivial F-subspace L ⊂ H1
conv(X/K )fin over K . Let e1, . . . , er be a basis of L

and e∨1 , . . . , e∨r be a dual basis of the dual F-space L∨ of L. Then

w = e1⊗ e∨1 + · · ·+ er ⊗ e∨r ∈ H1
conv(X/K )fin⊗K L∨ ⊂ H1

conv(X/K ,O]X [⊗K L∨)

is a nontrivial element satisfying F(w) = w. Indeed, if A ∈ GLn(k) is a Frobenius matrix

of L, i.e., F(e1, . . . , er ) = (e1, . . . , er )A, then the Frobenius matrix of L∨ is t A−1. Hence

w satisfies the relation F(w) = w. The nonzero 1-cocycle w determines a nontrivial

extension

0→ O]X [⊗K L∨→M→ O]X [→ 0

of convergent F-isocrystals on X/K by Lemma 2.15. The extension M has constant

Newton polygons by Proposition 2.7(1), but it is not constant. This contradicts our

hypothesis.

(ii) ⇒ (i): By Katz–Crew’s equivalence above the triviality πet
1 (Xk) = {1} implies that

the natural inverse image functor F-Isoc(Spec k/K )0 → F-Isoc(X/K )0 is an equivalence.

Let M be a convergent F-isocrystal on X/K which is isoclinic of slope γ , and take a

finite extension K ′ of K whose valuation group contains γ . Let k′ be a residue field

of K ′, X ′ = X ×Spec k Spec k′, and M′ the inverse image of M on X ′/K ′. Then M′ is

a tensor product of a rank 1 constant object and a unit-root object, and hence M′ is

constant. Since H0
conv(X/K ,M)⊗K K ′ ∼= H0

conv(X
′/K ′,M′), M is constant. The rest is to

prove that the slope filtration (Corollary 2.6) is split for any object of F-Isoc(X/K )CNP.

Suppose L is a constant convergent F-isocrystal on X/K . Then L = O]X [⊗K L with the

F-space L = H0
conv(X/K ,L), and

H1
conv(X/K ,L) ∼= H1

conv(X/K )⊗K L .

Hence the vanishing H1
conv(X/K )fin = 0 implies the splitting of the exact sequence

0→ L→M→ N → 0

with constant convergent F-isocrystals L and N since the extension class of F-isocrystals

belongs to H1
conv(X/K ,L∨⊗N )fin by Lemma 2.15.

The cohomological interpolation of Hom and Ext for convergent isocrystals in [3,

Proposition 2.2.7] and [5, Proposition 1.2.2] implies the lemma below. The last assertion

in the lemma below follows from the finite dimensionality of 0th convergent cohomology.

Lemma 2.15. Let M,N be convergent F-isocrystals on X/K , and let us denote a
Kσ -space of homomorphisms as convergent F-isocrystals (respectively a Kσ -space of
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extension classes of convergent F-isocrystals) on X/K by HomF-Isoc(M,N ) (respectively
Ext1F-Isoc(M,N )). Then there is an exact sequence of Kσ -spaces:

0 → HomF-Isoc(M,N ) → H0
conv(X/K ,M∨⊗N ) 1−F

→ H0
conv(X/K ,M∨⊗N )

→ Ext1F-Isoc(M,N ) → H1
conv(X/K ,M∨⊗N ) 1−F

→ H1
conv(X/K ,M∨⊗N ).

Here M∨ is the dual of M. If furthermore the residue field k is algebraically closed, then

the homomorphism H0
conv(X/K ,M∨

⊗N ) 1−F
→ H0

conv(X/K ,M∨
⊗N ) is surjective.

The author does not know whether πet
1 (Xk) = {1} implies H1

conv(X/K )fin = 0 or not

in general because the convergent cohomology (not the rigid cohomology!) is huge in

general. Esnault and Shiho proved the following theorem by a comparison with `-adic

cohomology theory. Hence H1
conv(X/K )fin = H1

rig(X/K ) = 0 at least when X is proper and

πet
1 (Xk) = {1} holds.

Theorem 2.16 [20, Theorem 5.1]. Let X be a smooth geometrically connected scheme

over Spec k. Suppose that either X is proper over Spec k or p > 3. Then the triviality

π
et,ab
1 (Xk) = {1} implies the vanishing H1

rig(X/K ) = 0. Here π
et,ab
1 (Xk) is the maximal

Abelian quotient of geometric etale fundamental group πet
1 (Xk).

Corollary 2.17. Let X be a smooth geometrically connected scheme over Spec k. Suppose

that X is proper over Spec k. Then the equivalence F-Isoc(X/K )CST
= F-Isoc(X/K )CNP

of categories holds if and only if πet
1 (Xk) = {1}.

3. Constancy of Newton polygons on Abelian varieties

In this section we prove any F-isocrystal on an Abelian variety over a finite field has

constant Newton polygons.

3.1. An estimate of number of jumping points

Suppose k is a finite field of q elements in this section, and denote an algebraic closure of

k by k. In this case our q-Frobenius σ is the identity map on K . When we replace k by a

finite extension k f of q f elements, then we also change the Frobenius σ by the identity

map σ f on the unramified extension K f of K with the residue field k f .

Let C be a projective smooth and geometrically connected curve of genus g over Spec k
with p-rank e, i.e.,

e = rankFp J (C)[p](k) = dimK H1
rig(C/K )0.

Here J (C) is the Jacobian variety of C , J (C)[p] is the subgroup scheme of J (C) which

is the kernel of the multiplication by p, H i
rig(C/K ) is the ith rigid cohomology of C/K ,

and H i
rig(C/K )0 is the unit-root subspace of the F-space H1

rig(C/K ). Then 0 6 e 6 g.

Proposition 3.1. With the notation as above, suppose g > 1. Let M be a convergent

F-isocrystal on C/K which satisfies the following conditions:

(i) The initial slope of M at the generic point of C is 0 of rank 1;
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(ii) Let U be the open subscheme {x ∈ C | the initial slope of M at x is 0} of C with the

open immersion jU : U → X , L the rank 1 unit-root convergent sub F-isocrystal of

j∗UM on U/K by Theorem 2.5, and ρ : πet
1 (U )→ R× the p-adic representation

corresponding to L by Katz–Crew’s equivalence such that the representation ρ

satisfies

ρ ≡ 1 (mod mR).

If Z = C \U is a reduced divisor of C over Spec k, then we have an inequality

e+ deg Z 6 1+ 2(g− 1)rankM.

Proof. If U = C , then there is nothing to prove. So we suppose U 6= C and hence the

rank of M is greater than or equal to 2. Let us calculate the L-function

L(C/k,M; t) =
∏

x :closed points of C

det(1− Fdeg(x)
x tdeg(x)

; i∗xM)−1
∈ R[[t]]

of M modulo m by two ways. Here deg(x) is the degree of the function field k(x) of x
over k and ix : x → C be the canonical morphism. At a closed point x of U all the p-adic

valuations of Frobenius eigenvalues of i∗xM except one eigenvalue which is 1 modulo m
are positive. At a closed point x in Z all the p-adic valuations of Frobenius eigenvalues

of i∗xM are positive. Hence we have

(∗)

L(C/k,M; t) ≡
∏

x :closed points of U

(1− tdeg(x))−1

≡ Zeta(C/k; t)Zeta(Z/k; t)−1

≡

det(1− Ft; H1
rig(C/K ))Zeta(Z/k; t)−1

1− t
(mod mR[[t]])

in k[[t]], where Zeta(C/k; t) (respectively Zeta(Z/k; t)) is the zeta function of C
(respectively Z) over k. Since

deg(det(1− Ft; H1
rig(C/K )) (mod mR[[t]])) = e

deg(Zeta(Z/k; t)−1 (mod mR[[t]])) = deg(Z)

in k[t], we have

deg((1− t)L(C/k,M; t) (mod mR[[t]])) = e+ deg(Z).

On the other hand, let us calculate the L-function of M modulo m using Lefschetz

trace formula

L(C/k,M; t) =
∏

i

det(1− Ft; H i
rig(C/K ,M))(−1)i+1

for rigid cohomology [21, Théorème 6.3]. Since the characteristic polynomial of Frobenius

in each degree belongs to 1+ tOK [t] by Remark 3.2, it makes sense to take the reduction

modulo m.

Let N be an irreducible subquotient of M as a convergent F-isocrystal on C/K such

that N includes the generic slope 0 part. Since any slope of Frobenius Fx on i∗xN at any

point x of Z 6= ∅ is positive, N is not constant and is of rank > 2. If N∨ denotes the dual
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of N , then H0
rig(C/K ,N ) = H0

rig(C/K ,N∨) = 0 by the irreducibility. Hence, Poincaré

duality [31, Theorem 1.2.3] implies H2
rig(C/K ,N ) = 0 and then dimK H1

rig(C/K ,N ) =
2(g− 1)rankN by Euler–Poincaré formula of rigid cohomology of curves [9, Corollaire

5.0-12]. If N ′ 6= N is another subquotient of M, then any slope of Frobenius Fx on i∗xN ′
at any point x is positive since the generic slope 0 subpart is of rank 1 and is included

in N . It implies that any slope of Frobenius F on the rigid cohomology H i
rig(C/K ,N ′) is

positive for i = 0, 1, 2 by Remark 3.2 if it does not vanish. Hence, we have a congruence

L(C/k,M; t) ≡ det(1− Ft; H1
rig(C/K ,N )) (mod mR[[t]]).

Since dimK H1
rig(C/K ,N ) = 2(g− 1)rankN 6 2(g− 1)rankM, we have the desired

inequality.

Remark 3.2. Let M be an overconvergent F-isocrystal M on a smooth scheme X
separated of finite type over Spec k such that all slopes of M at generic points are

nonnegative.

(1) All slopes of H i
rig(X/K ,M) are nonnegative for i = 0, 1. Indeed, when i = 0, the

overconvergent F-isocrystal H0
rig(X/K ,M)⊗K j†O]X [ is regarded as a subobject of

M. In the case where i = 1 the nontrivial 1-cocycle in H1
rig(X/K ,M) of slope µ

determines an F-space L over K with purely of slope µ and a nontrivial extension

0→M→ E → L ⊗K j†O]X [→ 0

of overconvergent F-isocrystals on X/K by Lemma 2.15. This extension is nontrivial

on any open dense subscheme U of X as overconvergent F-isocrystals [32, Theorem

5.2.1] and is also nontrivial in the category of convergent F-isocrystals on U/K [30,

Theorem 1.1]. However, if µ < 0, then the extension above must be split. Indeed,

there exists an open dense subscheme U of X with the open immersion jU : U → X
such that the Newton polygons of j∗UM are constant on U by Proposition 2.2(2).

Then there is a slope filtration {Sλ} of j∗UM by Corollary 2.6 and we have an

isomorphism Sµ ∼= L ⊗K O]U [ as convergent F-isocrystals. This contradicts the

nontriviality of the extension on U . Hence µ is nonnegative. The same holds for

H i
conv(X/K ,M)fin for i = 0, 1 by using the full faithfulness in [32, Theorem 5.2.1]

[33, Theorem 4.2.1].

(2) In the case where X is a curve all slopes of H2
rig(X/K ,M) are greater than or equal

to 1 by Poincaré duality [31, Theorem 1.2.3].

(3) Suppose X is purely of dimension d. In the case M = j†O]X [ all slopes of H i
rig(X/K )

are in the interval [max{0, i − d},min{i, d}] [6, Theorem 3.1.2].

Let C be a projective smooth and geometrically connected curve over Spec k with the

generic point η of C , and M a convergent F-isocrystal on C/K . We study the closed

subscheme

DM = {x ∈ C |NP(M, x) 6= NP(M, η)}

which is regarded as a reduced divisor.
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Theorem 3.3. There exists a constant B depending on a positive power q of p, a

nonnegative integer g, and a positive integer r such that the inequality

deg(DM) 6 B

holds for any projective smooth and geometrically connected curve C of genus g over the

spectrum Spec k of the field k of q elements and any convergent F-isocrystal M on C/K
of rank r with respect to q-Frobenius σ .

In order to apply Proposition 3.1 we prepare the lemma below.

Lemma 3.4. Let Y be an irreducible scheme separated of finite type over Spec k with the

generic point η, and N a convergent F-isocrystal on Y/K . Let γ1 < γ2 < · · · < γm be the

generic slopes of N of ranks r1, r2, . . . , rm .

(1) For l = 1, . . . ,m, the exterior power ∧r1+···+rlN of N has an initial slope of r1γ1+

· · ·+ rlγl of rank 1.

(2) For a point y ∈ Y , NP(N , y) 6= NP(N , η) if and only if there is an integer l with 1 6
l 6 m such that the initial slope of ∧r1+···+rlN at y is greater than r1γ1+ · · ·+ rlγl .

Proof. The assertion immediately follows from the properties of slopes under exterior

powers.

Proof of Theorem 3.3. Suppose M is a convergent F-isocrystal on C/K of rank r with

the generic slopes γ1 < γ2 < · · · < γm of ranks r1, r2, . . . , rm . If we put Ml = ∧
r1+···+rlM,

then

DM =
⋃

l

Zl , Zl = ZMl =

{
x ∈ C

∣∣∣∣The initial slope of Ml at x
is greater than that at η.

}
by Lemma 3.4(2). Applying Lemma 3.4(1) to each Ml , we may suppose the initial generic

slope of Ml is 0 of rank 1 by a suitable twist of Frobenius. By taking a self tensor

product, M⊗(q−1)
l satisfies the conditions (i) and (ii) of Proposition 3.1. Since Zl =

ZM⊗(q−1)
l

as closed subsets of C , deg(Zl) is bounded by a constant depending only on g

and rankM⊗(q−1)
l . Therefore, the bound B exists since m 6 r .

Remark 3.5. (1) More precisely, the upper bound B in Theorem 3.3 depends on the

genus g of curves, a p-power q of q-Frobenius, and the rank r of convergent

F-isocrystals, but not on the cardinality of k. Indeed, if k is a field of q f

elements and σ is a q-Frobenius satisfying the conditions in § 2.1, then the

πet
1 (U )-representation of rank one arising from the generic slope 0 convergent sub

F-isocrystal M is an Rσ -representation. Hence, after the (q − 1)-st self tensor

product, the representation modulo mσ is equivalent to the trivial representation.

Even if we replace q-Frobenius by q f -Frobenius on K in order to apply

Proposition 3.1, M⊗(q−1) satisfies the hypothesis of Proposition 3.1 and we do

not need any further self tensor product to kill the representation modulo mσ .

(2) One can take an upper bound B = r + 21+(q−1)r (g− 1) in Theorem 3.3. Indeed,
at the lth generic slope the number of jumping points is 6 1+ 2(g− 1)
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rank (∧r1+···+rlM)⊗(q−1). Hence, we have an estimate

B 6
∑m

l=1(1+ 2(g− 1)(rank ∧r1+···+rl M)⊗(q−1))

6
∑r

j=1(1+ 2(g− 1)(rank ∧ j M)⊗(q−1))

6 r + 2(g− 1)× (2r )q−1.

This upper bound is not sharp.

3.2. The case of elliptic curves

To clarify the idea of proof, we first prove the constancy theorem in the case of elliptic

curves.

Theorem 3.6. Let k be a finite field, and X an elliptic curve over Spec k. Then any

convergent F-isocrystal M on X/K has constant Newton polygons.

Proof. Suppose M is an F-isocrystal on X/K with nonconstant Newton polygons. Let

DM 6= ∅ be the reduced divisor of X consisting of the points x such that

NP(X, x) 6= NP(X, η)

where η is the generic point of X . Let [n] : X → X be the morphism of multiplication n
for a positive integer n. If n is prime to p, then [n] is a finite etale morphism and we have

deg(D[n]∗M) = n2deg(DM).

It is a contradiction to the boundedness of deg(D[n]∗M) in Theorem 3.3. Therefore, any

F-isocrystal on X/K has constant Newton polygons.

3.3. The case of Abelian varieties

Let us now prove our main theorem for general Abelian varieties.

Theorem 3.7. Let k be a finite field, and X an Abelian variety over Spec k of dimension

g. Any convergent F-isocrystal M on X/K has constant Newton polygons, i.e.,

F-Isoc(X/K )CNP
= F-Isoc(X/K ).

Proof. Suppose M is a convergent F-isocrystal on X/K with nonconstant Newton

polygons. Let DM 6= ∅ be the closed subscheme of X consisting of the points x such

that

NP(X, x) 6= NP(X, η)

as in the proof of Theorem 3.6. Then DM is purely of codimension 1 by de Jong–Oort’s

purity theorem (Theorem 2.3). After replacing k by a finite extension, we can find a

projective smooth geometrically connected curve C over Spec k such that

(a) for any closed integral subscheme Z over Spec k of codimension 1 in X , the

set-theoretical intersection C ∩ Z is nonempty;

(b) O ∈ C and O 6∈ DM,
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where O is the origin of the Abelian variety X . Indeed, if we fix an embedding X into a

projective space, then by Bertini’s theorem and Moishezon–Nakai’s criterion of ampleness

[27, Appendix A, Theorem 5.1], one can obtain a projective smooth geometrically

connected curve C in X as an intersection of different g− 1 hyperplane sections such

that the condition (a) holds after replacing k by a finite extension. Note that the genus

of C is greater than or equal to g by weak Lefschetz theorem. Since DM is of codimension

1, one can choose C so that C 6⊂ DM. Taking a translation by a k-rational point after

replacing k by a finite extension if necessary, we may also assume the condition (b).

Lemma 3.8. (1) For any positive integer n, we have C ∩ D[n]∗M 6= ∅ and C 6⊂ D[n]∗M.

(2) If we put � = {x ∈ C(k) | x ∈ C ∩ D[n]∗M for some n > 0}, then � is infinite.

(3) If C ∩ D[n]∗M denotes the set-theoretical intersection and (C ∩ D[n]∗M)red denotes

a reduced divisor of C, then

sup
n

deg((C ∩ D[n]∗M)red) = ∞.

Proof. First we remark D[n]∗M = [n]−1(DM) set-theoretically.

(1) It follows from the condition (a) and O 6∈ C ∩ D[n]∗M for any n.

(2) Suppose that � is finite, namely, � = {y1, y2, . . . , ys}. Let n be a positive integer

such that n is a multiple of orders of all y1, y2, . . . , ys . Since [n](yi ) = O, yi 6∈ C ∩ D[n]∗M
for any i . This contradicts C ∩ D[n]∗M 6= ∅.

(3) For a finite extension k f of k of degree f , the cardinality of X (k f ) is finite. Hence

there is a properly infinitely increasing sequence f1 < f2 < · · · such that x fi ∈ �∩ X (k fi )

and x fi 6∈ X (k′) for any proper subfield k′ of k fi by (2). Since C and D[n]∗M are defined

over Spec k, the cardinality of the set-theoretical intersection C ∩ D[n]∗M is greater than

or equal to fi if x fi ∈ C ∩ D[n]∗M because of Galois conjugation.

Now we return to the proof of Theorem 3.7. Since rank [n]∗M = rankM for any positive

integer n, the degree of (C ∩ D[n]∗M)red in C is bounded by a constant independent of n
by Theorem 3.3. The assertion of Lemma 3.8 (3) contradicts this boundedness. Therefore,

any F-isocrystal on X/K has constant Newton polygons.

4. Isotriviality of a family of curves

In this section we study the isotriviality of proper smooth families of connected curves

in positive characteristic p. Let k be an algebraically closed field of characteristic p.

4.1. Isotriviality of families of ordinary Abelian varieties

We recall some definitions.

Definition 4.1. Let κ be a perfect field of characteristic p and κ an algebraic closure of κ.

(1) An Abelian variety S of dimension g over Spec κ is said to be ordinary if

dimFp S[p](κ) = g. Here S[p] is the subgroup scheme defined by the kernel of

multiplication with p.
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(2) A projective smooth geometrically connected curve S over Spec κ is said to be

ordinary if so is the Jacobian variety J (S) of S.

The quantity dimFp S[p](κ) is called p-rank of Abelian variety S and the equality

dimFp S[p](κ) = dim H1
rig(S/K )0 holds as well as in the case of curves (see the beginning

of § 3.1).

Theorem 4.2. Let S be a projective smooth connected scheme over Spec k such that any

geometric convergent F-isocrystal on S/K has constant Newton polygons. Suppose f :
X → S is a polarized Abelian scheme relatively of dimension g and of degree d2. If there

is a point t ∈ S such that the fiber X t of X at t is an ordinary Abelian variety, then any

closed fiber of X is isomorphic to each other as polarized Abelian varieties. In particular,

X is isotrivial over S. Moreover, for any closed point s ∈ S, there is an etale morphism

g : U → S with s ∈ g(U ) such that X ×S U is a trivial deformation over U , that is, X ×S
U ∼= Xs ×Spec k U as U -schemes.

Proof. Let us consider the relative first rigid cohomology R1 frig∗O]X [ which is a

convergent F-isocrystal on S/K (see Theorem 2.11). Since there is a point t ∈ S such

that X t is ordinary, X is a family of ordinary Abelian varieties by our hypothesis on

Newton polygons. Let Ag,d,n/k be the moduli space of g-dimensional polarized Abelian

varieties of degree d2 and with full level-n structure over Spec k (see [45] for the detail).

Because the ordinary locus Aord
g,d,1/k of the coarse moduli space Ag,d,1/k is a quasi-affine

scheme by [44, XI, Théorème 5.2], the canonical morphism S→ Aord
g,d,1/k is constant.

Fix an integer n > 3 which is relatively prime to p. If [n] : X → X is the morphism

of multiplication n, then Σn = Ker([n]) is a finite etale group scheme over S. For each

closed point s ∈ S, one can take an etale morphism g : U → S of irreducible schemes

with s ∈ g(U ) such that Σn ×S U ∼= (Z/nZ)2g
U as group schemes on U . Then the polarized

Abelian scheme X ×S U over U with the level structure Σn ×S U ∼= (Z/nZ)2g
U induces a

commutative diagram

U
g
→ S

↓ ↓

Ag,d,n/k → Ag,d,1/k .

Here the bottom arrow is a level forgetful map which is finite. Hence, the canonical

morphism U → Ag,d,n/k is constant. Since Ag,d,n/k is a base change of the fine moduli

scheme with the universal family [45, Chapter 7], X ×S U is a trivial deformation of Xs
over U .

Corollary 4.3. Let S be a projective smooth connected scheme of finite type over Spec k
such that any geometric convergent F-isocrystal on S/K has constant Newton polygons.

Suppose X → S is a proper smooth family of connected curves of genus g. If there is a

point s ∈ S such that the fiber Xs of X at s is ordinary, then X is isotrivial over S.

Note that Raynaud and Szpiro studied the isotriviality for a family of ordinary curves

over a curve by using intersection theory [53, Théorème 5].
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Proof of Corollary 4.3. Consider the relative Jacobian variety J (X) of X over S. Then

J (X) is a principally polarized Abelian scheme over S with an ordinary fiber J (X)s . Hence

the canonical morphism S→ Ag,1,1/k associated to the family is constant by Theorem 4.2.

Now apply the Torelli theorem (see [43, Theorem 12.1], for example), and then the family

X is isotrivial over S.

Proposition 4.4. Let S be an Abelian variety over Spec k. Then any geometric convergent

F-isocrystal on S/K has constant Newton polygons. In particular, if X is a polarized

Abelian scheme over S with an ordinary fiber Xs for a point s ∈ S, then the conclusions

of Theorem 4.2 hold for the family X over S.

Proof. Let Y → S be a proper smooth morphism. Then there exist a smooth integral

scheme T separated of finite type over a spectrum Spec κ of a finite field κ such that

κ(T ) ⊂ k, an Abelian scheme S over T and a proper smooth morphism g : Y → S such

that the base change by the morphism Spec k → T is the given morphism Y → S. Here

κ(T ) is the function field of T . Then, for any closed point t ∈ T , the relative rigid

cohomology M = Ri grig∗O]Y[ has a constant Newton polygon on St by Theorem 3.7.

Hence, any geometric convergent F-isocrystal on S/K has constant Newton polygons by

Proposition 2.13. The rest follows from Theorem 4.2.

4.2. Isotriviality of family of curves

We will prove the isotriviality of a family of curves (Theorem 1.6) in the rest of this

section. When the genus g of fibers is 6 1, the isotriviality holds without the hypothesis

of constancy of Newton polygons. Indeed, the coarse moduli space is a point if g = 0.

When g = 1, one may assume the family has a section and the isotriviality follows from

the fact that the coarse moduli space of elliptic curves is an affine line.

Theorem 4.5. Let S be a projective smooth and connected scheme over Spec k, and f :
X → S a proper smooth family of connected curves of genus g > 2. Suppose that any

geometric convergent F-isocrystal on S/K has constant Newton polygons. Then the family

X over S is isotrivial.

We give a proof of Theorem 4.5 in § 4.4. The next corollary is a consequence of

Proposition 4.4.

Corollary 4.6. Let S be an Abelian variety over Spec k. If f : X → S is a proper smooth

family of connected curves, then the family X over S is isotrivial.

4.3. Torelli theorem

In this subsection we recall Tamagawa’s work in [54]. Let X be a projective smooth curve

of genus g > 2 over Spec k.

Definition 4.7. The gonality of X is a minimum degree of nonconstant morphisms X →
P1

k .
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By [54, Theorem 2.7, Proposition 2.14] we have the following theorem.

Theorem 4.8. Suppose that the p-rank of X is neither 0 nor g. For any sufficient large

integer n which is prime to p, there exists a finite etale morphism Y → X cyclic of degree

n such that the gonality of Y is greater than or equal to 5.

Remark 4.9. Tamagawa gave a positive lower bound of number of finite etale Galois

coverings Y of X with a certain condition “strictly non-P1/1” under the assumption that

X is non-almost elliptic, i.e., the Jacobian variety J (X) is not isogenous to Eg for an

elliptic curve E over Spec k in [54, Proposition 2.14]. He also studied lower bounds of

gonalities of coverings of curves and proved the gonality of Y is greater than or equal to
√

n under the condition above in [54, Theorem 2.7]. Theorem 4.8 states what we need

for the proof of Theorem 4.5.

Definition 4.10. Let f : Y → X be a finite etale morphism of projective smooth and

connected curves over Spec k, J (X) = Pic0(X) and J (Y ) = Pic0(Y ) the Jacobian varieties

of X and Y , respectively, and define the new part of Jacobian variety of Y relatively to

X by the Abelian variety

J (Y, X) = J (Y )/ f ∗ J (X)

with a polarization. The finite etale covering Y over X is said to be new-ordinary if

J (Y, X) is an ordinary Abelian variety.

Theorem 4.11 [48, Theorem 4.3.1], [54, Corollary 5.3]. Let X be a projective smooth curve

of genus g > 2. For any sufficiently large prime number l which is prime to p, there exists

a nontrivial µl-torsor Y of X which is new-ordinary. Here µl is the locally constant etale

sheaf consisting of lth roots of unity.

Let Ck be a category of Artinian local k-algebras with residue field k. For a proper

smooth connected scheme T0 over Spec k, we define a deformation functor

MT0 : Ck → (Sets),

that is, for R ∈ Ck , the set MT0(R) is a set of isomorphism classes of pairs (T, ϕ) such that

T is a proper smooth scheme over Spec R and ϕ is an isomorphism T ×Spec R Spec k ∼=
T0. If T0 is a projective smooth connected curve or an Abelian variety, then MT0 is

pro-representable by the formal spectrum of a ring of formal power series over k.

Now let l be a prime number which is prime to p, X0 a projective smooth connected

curve of genus > 2 over Spec k, Y0 a µl -torsor of X0 which is associated to a nontrivial

element L0 ∈ J (X0)[l](k) ∼= H1
et(X0, µl), and J (Y0, X0) the new part of Jacobian variety

of Y0 with respect to X0. Then there is a canonical map

TL0(R) : MX0(R)→ MJ (Y0,X0)(R)

as follows. For X ∈ MX0(R), there exists a unique µl -torsor f : Y → X over Spec R
which is a lift of the µl -torsor f0 : Y0 → X0 over Spec k by [26, I, Corollaire 8.4]. Then

TL0(R)(X) is the new part J (Y, X) = J (Y )/ f ∗ J (X) of the relative Jacobian variety J (Y )
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of Y with respect to the relative Jacobian variety J (X) of X with a natural isomorphism

J (Y, X)×Spec R Spec k ∼= J (Y0, X0). Hence one has a Torelli morphism

TL0 : MX0 → MJ (Y0,X0).

By the numerical estimates in [54, Corollaries 4.7, 5.3] one has the following theorem.

Theorem 4.12 [49, Theorem 3.3]. With the notation as above, suppose that the gonality of

X0 is greater than or equal to 5. Then, for any sufficiently large prime number l which is

prime to p, there exists a nontrivial element L0 ∈ J (X0)[l](k) such that the corresponding

µl-torsor Y0 of X0 is new-ordinary and the Torelli morphism TL0 is an immersion.

4.4. Proof of Theorem 4.5.

First we prepare several assertions. Lemmas 4.13 and 4.16 are higher dimensional

generalizations of Lemma/Definition 4.7 and Lemma 2 in [49], respectively.

Lemma 4.13. Let f : X → S be a proper smooth morphism of smooth schemes separated

of finite type over Spec k such that S is connected and each fiber of f is a connected curve,

t ∈ X (k(S)sep) a point of degree d over k(S) where k(S)sep is a separable closure of the

function field k(S) of S, and n a positive integer which is prime to p. Let s be a closed

point of S, and Ys a µn-torsor of the fiber Xs of f at s. If n is prime to d, then there exist

a finite etale morphism S′→ S with a base change morphism f ′ : X ′ = X ×S S′→ S′ and

a µn-torsor Y ′→ X ′ such that, for s′ ∈ S′ which goes to s in S, the µn-torsor Y ′s′ of X ′s′
is naturally isomorphic to the µn-torsor Ys of Xs .

Proof. Since we may identify µn with the constant etale sheaf Z/nZ, R1 fet∗µn is locally

constant. Moreover, we can take a finite etale cover S′ of S such that R1 fet∗µn is constant.

Take a point s′ ∈ S′ with a closed immersion is′ : s′→ S′ such that s′ is above s. Then we

have an isomorphism i∗s′R
1 f ′et∗µn ∼= H1

et(Xs′ , µn) by proper base change theorem of etale

cohomology. Since R1 f ′et∗µn is constant, the natural homomorphism

H0
et(S
′, R1 f ′et∗µn)→ H1

et(X
′

s′ , µn) ∼= H1
et(Xs, µn)

is bijective. By composing with the exact sequence

0→ H1
et(S
′, µn)→ H1

et(X
′, µn)→ H0

et(S
′, R1 f ′et∗µn)→ H2

et(S
′, µn)→ H2

et(X
′, µn)

arising from Leray spectral sequence, we have only to prove that the natural

homomorphism H2
et(S
′, µn)→ H2

et(X
′, µn) is injective. Indeed, if this is proved, the

homomorphism

H1
et(X

′, µn)→ H1
et(Xs, µn)

is surjective, and hence there exists a µn-torsor Y ′→ X ′ whose fiber at s′ is isomorphic

to the given µn-torsor Ys → Xs .

Let T be the normalization of S in the function field k(S)(t) of t . Then the restriction

g = f |T : T → S is generically etale and finite of degree d. Since X is proper over S, there

exists a morphism h : T → X over S except a closed subscheme of codimension > 2 in
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T . If we put T ′ = T ×S S′ with a finite morphism g′ : T ′→ S′, then there exists a closed

subscheme E ′ of codimension > 2 in S′ such that h induces a commutative diagram

T ′ \ g′−1
(E ′)

h′
→ X ′ \ f ′−1

(E ′) ⊂ X ′

g′′ ↘ ↓ f ′′ ↓ f ′

S′ \ E ′ ⊂ S′,

where g′′ is the restriction of g′ to T ′ \ g′−1
(E ′). Hence we have a commutative diagram

of etale cohomology groups:

H2
et(S
′, µn)

( f ′)∗
→ H2

et(X
′, µn)

∼=↓ ↓∼=

H2
et(S
′
\ E ′, µn)

( f ′′)∗
→ H2

et(X
′
\ f ′−1

(E ′), µn)

(g′′)∗ ↘ ↓ (h′)∗

H2
et(T

′
\ g′−1

(E ′), µn).

Indeed, both upper vertical maps are isomorphisms by the cohomological purity since

E ′ (respectively f ′(E ′)) is of codimension > 2 in the smooth scheme S′ (respectively X ′)
[42, VI, Theorem 5.1]. The injectivity of ( f ′)∗ follows from that of (g′′)∗ which will be

proved in Proposition 4.14.

Proposition 4.14. Let S be a smooth connected scheme separated of finite type over Spec k
of an algebraic closed field k of characteristic p > 0, and g : T → S a generically etale and

finite morphism of degree d such that T is normal. Suppose n is a positive integer which

is prime to dp (respectively d) if p > 0 (respectively p = 0). Then the homomorphism

g∗ : H2
et(S, µn)→ H2

et(T, µn)

is injective.

Proof. Let U be an open dense subscheme of S such that the inverse image g−1(U ) is

regular and the complement E of U in S is of codimension > 2. Such a U exists since T
is normal and g is finite. Then we have a natural commutative diagram

H2
et(S, µn)

g∗
→ H2

et(T, µn)

↓ ↓

H2
et(U, µn) →

g∗
H2

et(g
−1(U ), µn).

Since the left vertical homomorphism is injective by the cohomological purity theorem,

we may assume that T is smooth over Spec k.

Let us take a largest open dense subscheme V of S such that the inverse image W =
g−1(V ) is etale over S, and E (respectively F) is the complement of V (respectively W )

in S (respectively T ). Let us now consider the commutative diagram

H2
et,E (S, µn) → H2

et(S, µn) → H2
et(V, µn)

g∗ ↓ g∗ ↓ ↓ g∗

H2
et,F (T, µn) → H2

et(T, µn) → H2
et(W, µn)

g∗ ↓ g∗ ↓ ↓ g∗
H2

et,E (S, µn) → H2
et(S, µn) → H2

et(V, µn),
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where the left items are etale cohomology groups with supports, each sequence

of horizontal homomorphisms is a localization sequence. The homomorphisms g∗ :
H2

et(T, µn)→ H2
et(S, µn) are defined by Poincaré duality

〈g∗(a), b〉S = 〈a, g∗(b)〉T
for a ∈ H2

et(T, µn) and b ∈ H2dimS−2
et,c (S, µ⊗dimS−1

n ) where g∗ : H2dimS−2
et,c (S, µ⊗dimS−1

n )→

H2dimT−2
et,c (T, µ⊗dimS−1

n ) is a pullback of etale cohomology with compact supports and

µ⊗l
n is a tensor product of l copies of µn . Note that Poincaré duality is applicable

since g : T → S is a finite morphism of smooth schemes [42, VI, Remark 11.6]. The

same works for the etale cohomology with supports. Then the composite g∗g∗ in the

left (respectively right) vertical homomorphisms is the map of multiplication with d by

Lemma 4.15 (respectively the finite etaleness of W over V ). Hence, the middle g∗g∗

is surjective. Indeed, for any a ∈ H2
et(S, µn), g∗g∗(a)− da is included in the image of

H2
et,E (S, µn). Hence there exists an element b ∈ H2

et(S, µn) coming from H2
et,E (S, µn)

such that g∗g∗(a+ b) = da. Therefore the finiteness of H2
et(S, µn) implies that the

homomorphism g∗ : H2
et(S, µn)→ H2

et(T, µn) is injective.

Lemma 4.15. With the notation in Proposition 4.14, the following hold.

(1) Any generic point of complement of V in S is pure of codimension 1. The same

holds for the complement of W in T .

(2) Let E1, . . . , Er be reduced irreducible components of the complement E of V in S,

and Fi,1, . . . , Fi,si the reduced irreducible components of the inverse image Fi of Ei
in T with multiplicity ei, j of Fi, j in T ×S Ei and the degree fi, j of Fi, j over Ei
(here we consider the ramification index and the residual degree for the extension

OT,Fi, j /OS,Ei of discrete valuation rings, respectively). Then
∑

j ei, j fi, j = d for

any i .

(3) The homomorphism g∗ : H2
et,Ei

(S, µn)→ H2
et,Fi

(T, µn) is given by the

homomorphism

g∗ : H0
et(Ei , µn)→⊕ j H0

et(Fi, j , µn)

under the isomorphism (and the same for Fi, j ) induced by the bottom horizontal

Gysin isomorphism [42, VI, Theorem 5.1]:

Z/nZ = H0
et(Ei , µn)(−1) → H2

et,Ei
(S, µn)

∼=↓ ↓∼=

H0
et(E

sm
i , µn)(−1)

∼=
→ H2

et,Esm
i
(S \ E sing

i , µn),

where E sing
i is a singular locus of Ei (note that E sing

i is of codimension > 2 in S),

E sm
i = Ei \ E sing

i , and (−1) means the (−1)-st Tate twist.

(4) The homomorphism g∗ : H2
et,Fi

(T, µn)→ H2
et,Ei

(S, µn) is given by the

homomorphism

⊕ j H0
et(Fi, j , µn)→ H0

et(Ei , µn) (a j ) 7→
∑

j

a j

under the isomorphisms as in (3).

https://doi.org/10.1017/S1474748019000276 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000276


Constancy of Newton polygons and isotriviality of families 611

(5) The composite g∗g∗ : H2
et,E (S, µn)→ H2

et,E (S, µn) is the map of multiplication

with d.

Proof. (1) Since V is the largest and T is finite over S, the assertion follows from

Zariski–Nagata purity theorem [24, X, Théorème 3.4].

(2) is standard. (3) follows from the functoriality of Gysin morphisms.

(4) The homomorphism is induced by the natural homomorphism

g∗ : H2dimEi
et,c (Ei , µn)→ H2dimFi

et,c (Fi , µn) ∼= ⊕ j H
2dimFi, j
et,c (Fi, j , µn).

(5) Since H2
et,E (S, µn) ∼=

⊕
i , H2

et,Ei
(S, µn), the assertion follows from (2), (3), and (4).

Lemma 4.16. Let S be a projective smooth and connected scheme over Spec k, and X a

proper smooth family of connected curves of genus g > 2. Let S′→ S be a finite etale

morphism and Y ′→ X ′ = X ×S S′ a finite etale morphism. If the family Y ′ over S′ is

isotrivial, then so is the family X over S.

Proof. When S is a curve, the lemma is just Lemma 2 in [49, p.435]. Let T be a

projective smooth curve in S, and T ′, XT , X ′T , Y ′T base changes of S′, X, X ′, Y ′ by T → S,

respectively. Then the family XT over T is isotrivial. By varying projective smooth

curves in S, there exists an open dense subscheme U of S such that XU = X ×S U over

U is isotrivial by Bertini’s theorem. Hence, the family X over S is isotrivial because

the canonical morphism S→Mg is constant, where Mg is the coarse moduli space of

projective smooth curves of genus g.

Now let us prove Theorem 4.5. The following arguments are essentially due to the proof

of [49, Theomre 4.6]. Let us fix a closed point s in S. If the fiber Xs of X at s is ordinary,

then the assertion follows from Corollary 4.3. Hence we may suppose the fiber Xs is not

ordinary. Then there exist

1◦ (only in the case where the p-rank of Xs is 0; if not, then S0 = S and s0 = s) a point

t0 of X (k(S)sep) of degree d0, a finite etale morphism S0 → S of connected schemes

and a finite etale morphism Y0 → X0 = X ×S S0 such that, for a closed point s0 of

S0 which goes to s in S, Y0 → X0 is a µl0 -torsor for a prime number l0 which is

prime to pd0 and that the p-rank of the fiber Y0,s0 of Y0 at s0 is neither 0 nor g;

2◦ a point t1 of Y0(k(S0)
sep) of degree d1, a finite etale morphism S1 → S0 of connected

schemes and a finite etale morphism Y1 → X1 = Y0×S0 S1 such that, for a closed

point s1 of S1 which goes to s0 in S0, Y1 → X1 is a µl1 -torsor for a prime number l1
which is prime to pd1 and that the gonality of the fiber Y1,s1 of Y1 at s1 is greater

than or equal to 5;

3◦ a point t2 of Y1(k(S1)
sep) of degree d2, a finite etale morphism S2 → S1 of connected

schemes, a prime number l2 which is prime to pd2, and a nontrivial µl2 -torsor

Y2 → X2 = Y1×S1 S2 such that, if s2 is a closed point of S2 which goes to s1 in S1 and

L ∈ J (X2,s2)[l2](k) corresponds to the µl2 -torsor Y2,s2 → X2,s2 , then (i) Y2,s2 → X2,s2

is new-ordinary and (ii) the Torelli morphism TL : MX2,s2
→ MJ (Y2,s2 ,X2,s2 )

is an

immersion.
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by Theorem 4.11 and Lemma 4.13 for 1◦, by Theorem 4.8 and Lemma 4.13 for 2◦, and

by Theorem 4.12 and Lemma 4.13 for 3◦. Note that the existence of t0, t1, t2 in separable

closures follows from [60, 0CD4, Lemma 50.13.9]. Hence the gonality of X2,s2
∼= Y1,s1 is

greater than or equal to 5 by 2◦. In this situation we have only to prove the family X2
over S2 is isotrivial under the assumption that any geometric convergent F-isocrystal on

S2/K has constant Newton polygons. Indeed, one can replace X/S by X0/S0, X0/S0 by

X1/S1, and X1/S1 by X2/S2 by Proposition 2.8(2) and Lemma 4.16.

Let J (X2) and J (Y2) be relative Jacobian varieties over S2 and define the new part

J (Y2, X2) = J (Y2)/ f ∗2 J (X2)

where f2 : Y2 → X2 is the canonical morphism. Then J (Y2, X2) is a principally polarized

Abelian scheme over S2. Since J (Y2, X2)s2 = J (Y2,s2 , X2,s2) is an ordinary Abelian variety,

there exists an etale morphism g : U → S2 with s2 ∈ g(U ) such that J (Y2, X2)×S2 U
is a trivial deformation of J (Y2,s2 , X2,s2) over U by Theorem 4.2. Hence the formal

deformation J (Y2, X2)×S2 Spf ÔS2,s2 of J (Y2,s2 , X2,s2) over Spf ÔS2,s2 is trivial where ÔS2,s2

is the completion of OS2 along s2. Since the Torelli morphism TL is an immersion by 3◦,
the formal deformation X2×S2 Spf ÔS2,s2 of X2,s2 over Spf ÔS2,s2 is also trivial. It implies

an existence of an etale morphism h : V → S2 with s2 ∈ h(V ) such that X2 is a trivial

deformation of X2,s2 over V by [50, Proposition 2.6.10]. Note that the projectivity X2
over S2 is required in the proposition of [50] and it follows from the fact that J (X2) is

projective over S2 (see [22, Proof of Theorem 1.9]). Therefore, X2 is isotrivial over an open

subscheme of S2 including s2 and then the canonical morphism S2 →Mg2 is constant

where g2 is the genus of the geometric generic fiber of X2 over S2. This completes a

proof.

4.5. Existence of convergent F-isocrystals with nonconstant Newton

polygons

In the study of nonconstant geometric etale fundamental groups on a family, M.Säıdi

proved the following theorem.

Theorem 4.17 [49, Theorem 4.5]. Let C be a projective smooth and connected curve over

Spec k, and f : X → C a proper smooth family of connected curves of genus > 2. If X is

not isotrivial over C, then the p-ranks of fibers Xs are not constant on C.

Since there always exists a projective smooth and connected curve C with a

nonisotrivial family of curves (see [47, Theorem 3.1], [17]), we have an existence theorem

below. Moreover, such a curve C and a convergent F-isocrystal are possibly defined over

a finite base field in any characteristic p.

Corollary 4.18. There exist a projective smooth and connected curve C over Spec k and

a convergent F-isocrystal on C/K with nonconstant Newton polygons.
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A. Proof of Theorem 2.5.

A.1. First reduction

In this appendix we will prove the following theorem.

Theorem A.1. Let X be a smooth scheme separated of finite type over k, and M a

convergent F-isocrystal on X/K . Suppose that

(∗) the initial slope of M at the generic point of X is greater than or equal to 0 and

the rank of slope 0 of F-isocrystal i∗xM is constant on points of X .

Then there exists a unit-root convergent sub F-isocrystal L of M on X/K of rank r0 (if

r0 = 0, then L = 0), where r0 is the rank of slope 0 at the generic point.

Theorem 2.5 follows from the theorem above. Indeed, by taking a ramified finite

extension K ′ of K with an extension of Frobenius such that the valuation corresponding

to the initial slope is contained in the valuation group of K ′, we can reduce the assertion

to that in the case where the initial slope is 0 by Lemma A.2.

Lemma A.2. Let K ′ be a finite extension of K with a residue field k′ such that there exists

a q-Frobenius σ ′ on K ′ satisfying σ ′|K = σ , and put X ′ = X ×Spec k Spec k. Let M be a

convergent F-isocrystal on X/K , and M′ the inverse image of M on X ′/K ′. Suppose

there exists a convergent sub F-isocrystal L′ of M′ such that all slopes of i∗x (M′/L′) are

greater than those of i∗xL′ for any point ix : x → X . Then there exists a convergent sub

F-isocrystal L of M on X/K such that the inverse image of L on X ′/K ′ is isomorphic

to L′.
Proof. Let g : X ′→ X be a canonical morphism. If we put L to be the kernel of the

natural homomorphism M→ g∗M′/g∗L′, i.e.,

L = Ker(M→ g∗M′/g∗L′),

then L is the desired convergent sub F-isocrystal of M by the hypothesis of slopes.

In order to prove Theorem A.1 we may assume that the conditions (i) and (ii) of

Frobenius σ in § 2.1 and X are geometrically connected by Lemma A.2. Our strategy of

the proof of Theorem A.1 is as follows:

1◦ To construct a Gal(k(X)sep/k(X))-representation V (M) over Kσ which corresponds

to the unit-root sub of M at the generic fiber. Here k(X) is the function field of X
and k(X)sep is a separable closure of k(X).

2◦ To show V (M) is unramified at each point of X of codimension 1. Then V (M) is

a representation of πet
1 (X) by Zariski–Nagata purity theorem [24, X, Theorem 3.4].
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3◦ To take a unit-root convergent F-isocrystal L on X/K corresponding to V (M) by

Katz–Crew equivalence [11, Theorem 2.1].

4◦ To show L is a subobject of M.

A.2. Unramified representations at a point of codimension 1

Let E be a complete discrete valuation field of mixed characteristic (0, p), and RE , kE ,mE
the ring of integers, the residue field (allowing a non-perfect field), and the maximal ideal

of RE , respectively. Let ϕ be a q-Frobenius on E . Suppose that (i) Fq ⊂ kE and (ii) the

absolute ramification index of E is equal to that of Eϕ . Here Eϕ is a ϕ-invariant subfield of

E and it is a totally ramified finite extension of the field of fractions of W (Fq). Note that,

for arbitrary E and ϕ, the hypotheses (i), (ii) hold after a finite unramified extension of

E . Indeed, a ϕ-invariant uniformizer π exists in the extension Êur,pf of E which is defined

in the next paragraph and π is algebraic over Qp by Remark 2.1.

Let kalg
E (respectively ksep

E ) be an algebraic closure of kE (respectively a separable closure

of kE in kalg
E ), Êur the p-adic completion of a maximal unramified extension of E , and

Êur,pf the p-adic completion of the inductive limit of the inductive system

Êur ϕ
→ Êur ϕ

→ Êur ϕ
→ · · ·

such that Êur
→ Êur,pf is defined by the inclusion into the first component. Êur

(respectively Êur,pf) is a complete discrete valuation field of mixed characteristic (0, p)
with residue field ksep

E (respectively kalg
E ). Then the q-Frobenius ϕ on E extends uniquely

on Êur and Êur,pf where the Frobenius on Êur,pf is induced by (ϕ, ϕ, ϕ, . . .) on the inductive

system, and we also denote them by ϕ.

Lemma A.3. (1) There exists a canonical isomorphism

Êur,pf ∼= Eϕ ⊗W (Fq ) W (kalg
E )

such that the isomorphism commutes with Frobenius and the actions of

Gal(ksep
E /kE ). Here Frq is the canonical q-Frobenius on W (kalg

E ), the Frobenius ϕ̃

on Eϕ ⊗W (Fq ) W (kalg
E ) is defined by idEϕ ⊗Frq , Gal(ksep

E /kE ) acts on W (kalg
E ) by each

entry of Witt vectors and on Eϕ ⊗W (Fq ) W (kalg
E ) by 1⊗ τ for τ ∈ Gal(ksep

E /kE ).

(2) (Êur,pf)ϕ = (Êur)ϕ = Eϕ.

Proof. It follows from the universal property of Witt vector rings.

Even in the case where kE is an arbitrary field of characteristic p, one can also define

F-spaces over E , slopes of Frobenius, and slope filtrations of F-spaces as in § 2.2 and 2.3.

We replace the notation of Frobenius F of F-spaces by 8 in this Appendix. An F-space

M over E is unit-root, i.e., all slopes are 0, if and only if there exists a finitely generated

8-stable RE -submodule L in M such that L ⊗RE E ∼= M and 8(L) generates L over RE .

Such an L is called a lattice of M . Indeed, when the residue field kE is infinite, there exists

a cyclic vector v ∈ M , namely {v,8(v), . . . , 8r−1(v)} forms a basis of M (see [55, Lemma

3.1.4]). If 8r (v)+ a18
r−1(v)+ · · ·+ arv = 0 for some a1, . . . , ar ∈ E (ar 6= 0), then the
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unit-rootness of M is equivalent to the conditions a1, . . . , ar ∈ RE and ordp(ar ) = 0. Hence

a unit-root F-space over E admits a lattice L. When kE is finite, L Êur ∩M is a lattice

of M where L Êur is a lattice of M ⊗E Êur. For the converse, we may assume the residue

field kE is algebraically closed and then it follows from Dieudonné–Manin classification

theorem.

For an F-space M over E , we put

VE (M) := Ker(1−8⊗ϕ;M ⊗E Êur) = {v ∈ M ⊗E Êur
| (8⊗ϕ)(v) = v}.

Then VE (M) is an Eϕ-space of dimension 6 dimE M since the canonical map VE (M)⊗Eϕ
E → M is injective by Lemma A.3(2). The Kσ -space VE (M) is furnished with a

Gal(ksep
E /kE )-action defined by 1⊗ τ (τ ∈ Gal(ksep

E /kE )).

Proposition A.4. Let M be an F-space over E.

(1) There is a slope filtration {SλM} of M as F-spaces over E.

(2) Suppose Sλ = 0 for λ < 0. If L is a lattice of S0 M, then

VE (M) ∼= VE (S0 M) ∼= Ker(1−8⊗ϕ; L ⊗RE RÊur)⊗(RE )ϕ Eϕ

and it is of dimension r0 = dimE S0 M. Here RÊur is the integer ring of Êur.

(3) VE (M) ∼= Ker(1−8⊗ϕ;M ⊗E Êur,pf) by the natural inclusion.

Proof. (1) See [34, Remark 1.7.8] and [8, Theorems 2.4].

(2) The first equality is trivial by slopes under the hypothesis. Let (e1, . . . , er0) be a

basis of S0 M and put 8(e1, . . . , er0) = (e1, . . . , er0)F for an F ∈ GLr0(E). Then

VE (M) ∼= {y ∈ (Êur)r0 | Fϕ(y) = y}.

If one takes a basis of M in L, then F ∈ GLr0(RE ) and it implies that the second equality

of the assertion. The Frobenius equation has enough solutions by [28, Proposition 4.1.1]

([23, A1.2] or by direct calculations of the equations modulo mn
Êur step by step and

completeness of RÊur). Hence dimEϕ VE (M) = r0.

(3) It follows from Lemma A.3(2).

Let us put E[[t]]0 = RE [[t]][1/p] (respectively E = ̂E[[t]]0[1/t] to be the p-adic

completion of E[[t]]0[1/t]), and ϕ a q-Frobenius on E[[t]]0 (respectively the unique

extension to E) with respect to the Frobenius ϕ on E , that is, ϕ(a) ≡ aq (mod mRE [[t]])
for a ∈ RE [[t]]. We define the Gauss norm on E[[t]]0 (respectively E) by∣∣∣∣∑

n

an tn
∣∣∣∣
Gauss
= sup

n
|an|p,

where |a|p = p−ordp(a) is the p-adic norm. Note that E[[t]]0 is a principal ideal domain

by Weierstrass preparation theorem such that it is complete in (t, p)-adic topology, and

E is a complete discrete valuation field under Gauss norm. The ϕ-invariant subfield Eϕ
of E coincides with Eϕ , and hence the conditions (i), (ii) at the beginning of A.2 hold for
E and ϕ.
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For either B = E[[t]]0 or E , a (ϕ,∇)-module (M,∇,8) over B is a free B-module of

finite rank with a E-connection ∇ : M → M ⊗B �
1
B/E , (�

1
B/E = Bdt) and a Frobenius

8 : ϕ∗M
∼=
→M such that 8 is a horizontal isomorphism with respect to connections. Then

the category of (ϕ,∇)-modules over B is Abelian and it is independent of the choice of

ϕ up to canonical equivalences [56, Proposition 3.4.9].

A generic slope (respectively a special slope) of a (ϕ,∇)-module M over E[[t]]0 is a

slope of the (ϕ,∇)-module M ⊗E[[t]]0 E over E (respectively the ϕ-module M ⊗E[[t]]0 E over

E , where the specialization map E[[t]]0 → E is defined by
∑

n an tn
7→ a0). We define

generic (respectively special) Newton polygon of M by Newton polygon of M ⊗E[[t]]0 E
(respectively M ⊗E[[t]]0 E). A (ϕ,∇)-module M over E[[t]]0 is said to be unit-root if all

slopes both at the generic point and at the special point are 0.

Theorem A.5. Let M be a (ϕ,∇)-module M over E[[t]]0.

(1) ([29, Corollary 2.6.2] if kE is perfect, [8, Theorems 6.21] in general) If a (ϕ,∇)-

module M over E[[t]]0 has constant Newton polygons (i.e., both generic and

special Newton polygons are same), then M admits a slope filtration {SλM}λ as

(ϕ,∇)-modules over E[[t]]0. If furthermore that M is unit-root and the residue field

kE of E is separably closed, then M is isomorphic to a direct sum of copies of the

trivial (ϕ,∇)-module E[[t]]0.

(2) Suppose M admits a slope filtration {SλM}λ such that SλM = 0 for λ < 0. Then

there are natural isomorphisms

VE (M ⊗E[[t]]0 E)
∼=
← Ker(1−8⊗ϕ;M ⊗E[[t]]0 Êur

[[t]]0)
∼=
→ VE (M ⊗E[[t]]0 E)

which are compatible with the actions of Gal(kE ((t))sep/kE ((t))). In particular, the

representation VE (M ⊗E[[t]]0 E) is unramified, that is, the Galois group acts via the

quotient Gal(kE ((t))ur/kE ((t))) ∼= Gal(ksep
E /kE ).

Proof. (2) If we put r0 = dimE S0 M , then VE (M ⊗E[[t]]0 E) (respectively the middle term,

respectively VE (M)) is of dimension r0 by Proposition A.4(2) (respectively by (1) for the

middle term). Hence the natural maps are isomorphisms. By the construction they are

compatible with the Galois actions, and it implies that the representation VE (M ⊗E[[t]]0 E)
is unramified.

A.3. Construction of a functor V

Now we return to the situation of Theorem A.1. We will define a functor

V : F-Isoc(X/K )(∗)→ RepKσ (π
et
1 (X))

and show several properties of V , where F-Isoc(X/K )(∗) is the full subcategory of

F-Isoc(X/K ) consisting of objects which satisfy the hypothesis (∗) in Theorem A.1 and

RepKσ (π
et
1 (X)) is the category of continuous finite dimensional Kσ -representations of

πet
1 (X).
Let X be a smooth geometrically connected scheme separated of finite type over

Spec k. We may assume that X is affine by gluing after Lemma A.7. Then there exists
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a smooth affine formal scheme Spf A topologically of finite type over Spf R such that

X = Spec A⊗R k and A is furnished with a q-Frobenius endomorphism ϕA compatible

with the q-Frobenius σ on K . Indeed, such a lift A (respectively a Frobenius ϕA on A)

exists by [18, Théorème 6] (respectively by formal smoothness).

Let E A be the field of fractions of the p-adic completion of the localization Am of A
along mA, and Êur

A the p-adic completion of the maximal unramified extension of E A,

and Êur,pf
A as before. Then

K ⊂ E A ⊂ Êur
A ⊂ Êur,pf

A

is a sequence of extensions of discrete valuation fields with residue fields k, k(X), k(X)sep

and k(X)alg respectively such that they have Frobenius ϕA which are unique extensions

of that of A. The ϕA-invariant subfields of them coincide with Kσ by the hypotheses (i),

(ii) in § 2.1, the formal smoothness of A over R and Lemma A.3. So the conditions (i),

(ii) at the beginning of A.2 hold. Moreover, the absolute Galois group Gal(k(X)sep/k(X))
of the function field k(X) of X acts continuously on the above sequence.

Let Spf B be another formally smooth lift of X over Spf R, and take EB ⊂ Êur
B ⊂ Êur,pf

B
and ϕB as before. Let A⊗̂R B be the tensor product of A and B over R in the category

of formal R-algebras, and pA : Spf A⊗̂R B → Spf A and pB : Spf A⊗̂R B → Spf B two

projections.

Lemma A.6. Let ]X [Spf A⊗̂R B be the tubular neighborhood of X in Spf A⊗̂R B (see [3] for

rigid analytic spaces and the definition of tubular neighborhoods), and f1, . . . , fs ∈ A⊗̂R B
lifts of generators of the kernel of the multiplication map A/mA⊗k B/mB → 0(X,OX ).

(1) Let π be a generator of the maximal ideal mσ of Rσ (note that it is also a generator

of m). If Un denotes an affinoid subspace of the quasi-Stein space ]X [Spf A⊗̂R B which

is defined by | f qn

i | 6 |π | for n > 1, then

C := 0(]X [Spf A⊗̂R B,O]X [Spf A⊗̂R B ) = lim
←

n

Cn

where

Cn := 0(Un,O]X [Spf A⊗̂R B ) =
(A⊗̂R B)[tn,1, . . . , tn,s]̂[1/p]

(π tn,i − (ϕA⊗̂ϕB)n( fi ); i = 1, . . . , s)
Cn+1 → Cn tn+1,i 7→ πq−1tq

n,i − (ϕA⊗̂ϕB)
n( f q

i )/π+ (ϕA⊗̂ϕB)
n+1( fi )/π,

and ̂ means the p-adic completion. Moreover, the Frobenius ϕA⊗̂ϕB on A⊗̂R B
induces a Frobenius ϕC : C → C which is given by

Cn → Cn+1 tn,i 7→ tn+1,i .

(2) Let A[1/p] → Kσ ⊗W (Fq ) W (k(X)alg) be a K -algebra homomorphism which is a

composite of A[1/p] → Êur,pf
A and the canonical isomorphism Êur,pf

A
∼= Kσ ⊗W (Fq )

W (k(X)alg) in Lemma A.3(1), and the same for B. Then they induce a K -algebra

homomorphism

µ : C → Kσ ⊗W (Fq ) W (k(X)alg)

such that µ commutes with Frobenius ϕC and ϕ̃ = idKσ ⊗Frq , respectively.
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(3) If Q is the topological closure of the field of fractions of µ(C) under the p-adic

norm, then we have a commutative diagram

A[1/p] → E A → Êur
A → Êur,pf

A
↗ ↓ ↓ ↑∼=

K → C → Q ⊂ Kσ ⊗W (Fq ) W (k(X)alg)

↘ ↑ ↑ ↓∼=

B[1/p] → EB → Êur
B → Êur,pf

B

of topological K -algebras such that all morphisms commute with Frobenius and the

actions of Gal(k(X)sep/k(X)).

Proof. (1) Since (ϕA⊗̂ϕB)( fi ) ≡ f q
i (mod m(ϕA⊗̂ϕB)), the condition | f qn

i | 6 |π | is

equivalent to |ϕn( fi )| 6 |π | on ]X [Spf A⊗̂R B . Since |ϕn( fi )/π | 6 1 on Un , the K -algebra

homomorphism Cn+1 → Cn is well defined.

(2) Put h : (A⊗̂R B)[1/p] → Kσ ⊗W (Fq ) W (k(X)alg) to be the induced morphism. Since

fi = 0 in 0(X,OX ), the inequality |h( fi )| 6 |π | holds in Kσ ⊗W (Fq ) W (k(X)alg) and

h((ϕA⊗̂ϕB)
n( fi )/π) exists in Rσ ⊗W (Fq ) W (k(X)alg). Hence the K -algebra homomorphism

µ exists. Lemma A.3(1) and the universal property of tensor products induce the

compatibility of Frobenius and h, so that µ is compatible with Frobenius.

(3) It follows from (1), (2) and Lemma A.3(1).

Now we define the functor V . Let M be a convergent F-isocrystal on X/K which

satisfies the hypothesis (∗) of Theorem A.1. Put M = 0(]X [Spf A,M). Then M is a

projective A[1/p]-module of finite type which is furnished with an integrable connection

∇M : M → M ⊗A �
1
Spf A/Spf R and a Frobenius 8M : ϕ

∗M
∼=
→M such that 8M is horizontal

with respect to integrable connections. We define a Kσ -space V (M) by

V (M) = Ker(1−8M ⊗ϕA;M ⊗A[1/p] Êur
A ).

Since M ⊗A[1/p] E A admits a slope filtration {Sλ} with Sλ = 0 for λ < 0 by Theorem A.5,

there is an equality V (M) = Ker(1−8M ⊗ϕA; S0⊗E A Êur
A ) by the inclusion S0 ⊂

M ⊗A[1/p] E A. Hence V (M) is a Kσ -space of rank r0(= dimE S0) with a continuous action

of the Galois group Gal(k(X)sep/k(X)) by Proposition A.4. Moreover, there is a canonical

isomorphism

V (M) ∼= Ker(1−8M ⊗ϕA;M ⊗A[1/p] Êur,pf
A ).

of Kσ -representations of Gal(k(X)sep/k(X)) by Lemma A.3(2) and Proposition A.4.

Lemma A.7. The Kσ -representation V (M) of Gal(k(X)sep/k(X)) does not depend on the

choices of the lift Spf A of X over Spf R and the Frobenius ϕA on Spf A up to canonical

isomorphisms.

Proof. Keep the notation in Lemma A.6. Let Spf B be another formally smooth lift of

X over Spf R. We fix the notation as in Lemma A.6. If N is a convergent F-isocrystal

on X/K with respect to the frame (X,Spf B) which corresponds to M, then there is a

canonical isomorphism

ε : p∗BN
∼=
→ p∗AM
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of convergent F-isocrystals on X/K with respect to the frame (X,Spf A⊗̂R B) and a

commutative diagram

ϕ∗C (p
∗

BN )
ϕ∗C ε
→
∼=

ϕ∗C (p
∗

AM)

1⊗8N ↓ ↓ 8M ⊗ 1

p∗BN
∼=
→
ε

p∗AM

of Frobenius.

Let eM (respectively eN ) be a basis of M ⊗A[1/p] E A (respectively N ⊗B[1/p] EB for

N = 0(]X [Spf B,N )). Then there exist matrices FM ∈ GLr (E A), FN ∈ GLr (EB), and H ∈
GLr (C) such that

8M (1⊗ eM ) = eM FM , 8N (1⊗ eN ) = eN FN , ε(1⊗ eN ) = (eM ⊗ 1)H.

Then the above commutativity on Frobenius induces the identity

FM ϕ̃(µ(H)) = µ(H)FN

in GLr (Q) ⊂ GLr (Kσ ⊗W (Fq ) W (k(X)alg)). Let us consider a Kσ -space

Ker(1−8M ⊗ ϕ̃;M ⊗A[1/p] (Kσ ⊗W (Fq ) W (k(X)alg)))
∼= {y ∈ (Kσ ⊗W (Fq ) W (k(X)alg))r | FM ϕ̃(y) = y}

for M and the same for N . Then we have an equivalence

FM ϕ̃(y) = y⇔ FN ϕ̃(µ(H)−1y) = µ(H)−1y.

Since H is fixed by the action of Gal(k(X)sep/k(X)), we have isomorphisms

V (M) = Ker(1−8M ⊗ϕA;M ⊗A[1/p] Êur,pr
A )

∼= Ker(1−8N ⊗ϕB; N ⊗B[1/p] Êur,pf
B ) = V (N ).

as Kσ -representations of Gal(k(X)sep/k(X)).

Applying Theorem A.5 at each point of X of codimension 1, we have the following

proposition.

Proposition A.8. Let M and N be convergent F-isocrystals on X/K which satisfy the

hypothesis (∗) in Theorem A.1.

(1) Gal(k(X)sep/k(X)) acts on V (M) via the etale fundamental group πet
1 (X) of X .

(2) The functor V : F-Isoc(X/K )(∗)→ RepKσ (π
et
1 (X)) is exact and satisfies

V (M⊗O]X [ N ) ∼= V (M)⊗Kσ V (N ).

Proof. (1) Let x be a point of X of codimension 1, and px the inverse image of the

prime ideal associated to x by the natural surjection A→ A/mA. Let Ax be the p-adic

completion of the localization of A along px , Âx the completion of Ax along px Ax ,

px Âx = (m, tx ) Âx for tx ∈ px Ax such that tx (mod mAx ) is a local parameter at the point
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x in X , and Ex the field of fractions of Ax/tx Ax . Such tx can be taken since Ax is

a regular local domain of dimension 2 with the maximal ideal px Ax . The ring Âx is

an integral domain and we have an isomorphism Âx [1/p] ∼= Ex [[tx ]]0. We put Ex to

be the p-adic completion of Ex [[tx ]]0[1/tx ] and we regard E A as a subfield of Ex by

the natural injection A→ Ex . If we denote the field of fractions of Âx/m Âx by k(X)x ,

then the residue extension of E A → Ex is a natural embedding k(X) ⊂ k(X)x . Let us fix

an embedding k(X)sep
⊂ k(X)sep

x . Then the embedding induces a continuous K -algebra

homomorphism Êur
A → Êur

x which is compatible with Frobenius by the uniqueness of

extension and with the actions of Gal(k(X)sep
x /k(X)x ) via the induced homomorphism

Gal(k(X)sep
x /k(X)x )→ Gal(k(X)sep/k(X)).

Let M be a convergent F-isocrystal on X/K satisfying the condition (∗), x ∈ X a point

of codimension 1, and use the notation as before. By comparing the dimensions over Kσ ,

the inclusion Êur
A ⊂ Êur

x provides an isomorphism

V (M)
∼=
→ VEx (M ⊗A[1/p] Ex )

by Proposition A.4(2). Since M ⊗A[1/p] Ex has a (ϕ,∇)-submodule M ⊗A[1/p] Ex [[tx ]]0 over

Ex [[tx ]]0, the compatibility implies that V (M) is unramified at x by Theorem A.5(2) and

Lemma A.7. Here we may replace Frobenius ϕA by what induces Frobenius on Ex [[tx ]]0.

Applying Zariski–Nagata purity theorem [24, X, Theorem 3.4], V (M) is a representation

of πet
1 (X).

(2) The exactness follows from the additivity of ranks of graduation of slope filtrations.

Theorem A.9. Let X be a smooth geometrically connected scheme of finite type over k.

Then the functor V is compatible with the functor V 0 of Katz–Crew’s equivalence:

F-Isoc(X/K )(∗)
V
−→ RepKσ (π

et
1 (X))⋃

↗

V 0

F-Isoc(X/K )0

where F-Isoc(X/K )0 is the full subcategory of F-Isoc(X/K ) consisting of unit-root

convergent F-isocrystals.

Proof. We recall a construction of the functor V 0 which is a quasi-inverse of the

equivalence G : RepKσ (π
et
1 (X))→ F-Isoc(X/K )0 defined by Crew in [11, Section 2]. Let

M be a unit-root convergent F-isocrystal on X/K of rank r0. By patching technique, we

may assume that X is affine, and hence we follow the notation at the beginning of this

subsection. Let M be a unit-root convergent F-isocrystal on X/K . Since M is unit-root,

there is a locally free OSpf A-module L of finite rank with Frobenius 8 : ϕ∗AL
∼=
→ L such

that the analytification of L⊗R K is M. Such an L is called an F-lattice of M and it

always exists by [11, Proposition 2.5]. Then there is a sequence

X = X0 ← X1 ← X2 ← X3 ← · · ·

of finite etale Galois coverings of X with structure morphisms πn : Xn → X and a sequence

Spf A = Spf A0 ← Spf A1 ← Spf A2 ← . . . ,
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of lifts of X0 ← X1 ← X2 ← · · · over Spf R with a system of embeddings An → Êur
A and

a system of Frobenius ϕn compatible with Frobenius ϕA on Êur
R such that π∗n (L/mnL) is

a trivial ϕn-module over An/mn An . Then

0n = Ker(1−8⊗ϕn;0(Spf An, π
∗
n (L/mnL)))

is a free Rσ /mn
σ -module of rank r0 with an action of Gal(Xn/X) and {0n}n forms a

projective system of πet
1 (X)-representations by [28, Proposition 4.1.1]. Then V 0 is defined

by

V 0(M) := Kσ ⊗Rσ lim
←
n

0n .

The fact that V 0 is a quasi-inverse of Crew’s functor G follows from a projective system

of isomorphisms 0n ⊗Rσ [Gal(Xn/X)]OSpf An
∼= L/mnL, where Gal(Xn/X) is the Galois group

of the covering Xn over X . Hence we have isomorphisms

V 0(M) ∼= Kσ ⊗Rσ lim
←
n

Ker(1−8⊗ϕA;0(Spf A,L/mnL)⊗A/mn A RÊur/mn
Êur)

∼= Kσ ⊗Rσ Ker(1−8⊗ϕA;0(Spf A,L)⊗A RÊur)

= V (M)

as Kσ -spaces with continuous πet
1 (X)-actions by our construction of V in § A.3. Indeed,

the first isomorphism follows from the fact that the ϕ-invariant subring of RÊur
A
/mn

Êur
A

coincides with Rσ /mn
σ , and the second isomorphism follows from p-adic completeness.

Therefore our construction is compatible with Crew’s one.

A.4. End of the proof of Theorem A.1

Keep the notation as in the previous section.

Lemma A.10. Let M be a convergent F-isocrystal on X/K which satisfies the hypothesis

(∗) of Theorem A.1. Suppose that V (M) contains a trivial representation V0(∼= Kσ ) of

rank 1. Then there exists a convergent sub F-isocrystal of M which is isomorphic to the

unit-root trivial object (O]X [, d, ϕ) of rank 1.

Proof. We may suppose X is affine by the full faithfulness of restriction functors of

F-isocrystals [32, Theorem 5.2.1] [33, Theorem 4.2.1] and assume the same geometric

situation as in the proof of Proposition A.8 holds. Let us put M = 0(]X [Spf A,M). Then

M is a projective A[1/p]-module of finite rank. Our claim is that V0 ⊂ M under the

inclusion

V0 ⊂ V (M) = Ker(1−8M ⊗ϕA;M ⊗A[1/p] Êur
A ) ⊂ M ⊗A[1/p] Êur

A .

Indeed, O]X [ = V0⊗Kσ O]X [ is a unit convergent sub F-isocrystal of M.

Since V0 is Gal(k(X)sep/k(X))-invariant, V0 is included in M ⊗A[1/p] E A. Let us take a

point x of X of codimension 1, and keep the notation as in the proof of Proposition A.8.

The identity VEx (M ⊗A[1/p] Ex ) = Ker(1−8M ⊗ϕA;M ⊗A[1/p] Êur
x [[tx ]]) (Theorem A.5(2))

implies that V0 is included in M ⊗A[1/p] Âx [1/p]. Moreover, since M is a direct summand

of a free A[1/p]-module of finite type, the equality

M ⊗A[1/p] Ax [1/p] = (M ⊗A[1/p] E A)∩ (M ⊗A[1/p] Âx [1/p])
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holds in M ⊗A[1/p] Ex by Lemma A.11(1). Hence V0 is included in M ⊗A[1/p] Ax [1/p].
Now our claim V0 ⊂ M follows from Lemma A.11(2).

Lemma A.11. With the notation above, we have

(1) Ax [1/p] = E ∩ Âx [1/p] in Ex .

(2) A[1/p] = ∩
x

Ax [1/p] in E A, where x runs through all points of X of codimension 1.

Proof. Since E A ⊂ Ex is an extension as discrete valuation rings, we have only to prove

Ax = Âm ∩ Âx and A =
⋂

x Ax , where Âm is the p-adic completion of Am. Since the

ideals generated by m are prime in A, Ax , Âx and Am and since all rings are complete

and separated in p-adic topology, respectively, it is sufficient to prove Ax/mAx =

(Am/mAm)∩ ( Âx/m Âx ) and A/mA =
⋂

x Ax/mAx . Note that K (X) = Am/mAm is a field

of fractions of A/mA, Ax/mAx is a localization of A/mA at the point x , and its completion

by the ideal of definition of x is Âx/m Âx . Hence (1) holds. Since A/mA is a Noetherian

normal domain, it is an intersection of all localizations of height one prime ideals. Hence

(2) holds.

Now let us complete a proof of Theorem A.1. Let M be a convergent F-isocrystal on

X/K which satisfies the hypothesis of Theorem A.1. We have only to prove that there

exist a unit-root convergent F-isocrystal N on X/K with a nontrivial homomorphism

N →M. Indeed, when such an N exists, the quotient M/Im(N →M) satisfies the

hypothesis of Theorem A.1. Repeating this argument, one has the unit-root subobject L
of M whose rank is r0. Hence L is a desired unit-root convergent F-isocrystal on X/K .

Applying Katz–Crew’s quasi-inverse G of V 0, we have a nontrivial unit-root convergent

F-isocrystal N = G(V (M)) on X/K since V (M) is a continuous Kσ -representation

V (M) of πet
1 (X) of dimension r0 by Proposition A.8(1). Applying Proposition A.8(2)

and Lemma A.10 to N∨⊗O]X [M, we have a unit-root trivial convergent subobject in

N∨⊗O]X [M. Hence we have a nontrivial homomorphism N →M.

Remark A.12. If L is the maximal unit-root subobject of M, then

L ∼= G(V 0(L)) ∼= G(V (L)) ∼= G(V (M))

by Katz–Crew equivalence and Theorem A.9.
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Éditeur, Paris, 1968).
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