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DETECTION AND MODELING
OF REGRESSION PARAMETER
VARIATION ACROSS FREQUENCIES

WITH AN APPLICATION TO TESTING THE
PERMANENT INCOME HYPOTHESIS
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A simple technique for directly testing the parameters of a time-series regression
model for instability across frequencies is presented. The method can be implemented
easily in the time domain, so that parameter instability across frequency bands can be
conveniently detected and modeled in conjunction with other econometric features
of the problem at hand, such as simultaneity, cointegration, missing observations, and
cross-equation restrictions. The usefulness of the new technique is illustrated with an
application to a cointegrated consumption-income regression model, yielding a
straightforward test of the permanent income hypothesis.
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1. INTRODUCTION

The notion that relationships between macroeconomic time series vary across
frequencies has a distinguished history. Early authors expressed and analyzed this
variation in the time domain, distinguishing between the short period versus the
long period (Marshall, 1920), between the short run and the long run (Keynes,
1936), or between transitory income and permanent income (Friedman, 1957).
Later workers explicitly utilized the frequency domain as the field of discourse, e.g.,
Engle (1974, 1978), Lucas (1980), Geweke (1982, 1986), Mills (1982), Summers
(1983, 1986), Cochrane (1989), Phillips (1991), Thoma (1992, 1994), Corbae
et al. (1994), and Lee (1994).

In view of all of this activity, it is not surprising that several frameworks al-
ready exist for analyzing the frequency dependence of time-series relationships.
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Geweke (1982), for example, provides a measure of how the strength of a re-
lationship varies with frequency in a linear model. However, Tan and Ashley
(1997) argue on fundamental grounds that no linear model can capture frequency-
dependent relationships of the sort at issue here; they find that Geweke’s measure
actually only quantifies the degree to which an innovation in one series yields
low- or high-frequency variation in the other series. The other approaches cited
above generally trace their roots to either the band spectral regression model intro-
duced by Engle (1974), and or to the system spectral regression model of Phillips
(1991).

These spectral regression methods are asymptotically valid, conditional on an a
priori choice of which frequency bands to consider, but their actual utility is rather
limited. As ordinarily formulated, the band spectral regression approach is a single-
equation technique and only allows a test of whether a regression coefficient is
different over a single band of frequencies. The Phillips (1991) approach explicitly
considers a multidimensional cointegrated system, but it is so sophisticated that it is
difficult to imagine it coming into widespread use, particularly where adaptations
to specific data problems might require modifications to the technique or where the
credibility of the results hinges on the reader fully understanding the methodology.
In any case, the detection of parameter variation across frequencies implies that
models not allowing for this variation are misspecified, but this realization is of
little value unless the parameter variation can be incorporated in ordinary modeling
efforts.

We propose a new procedure for detecting and modeling regression-parameter
variation across frequency bands. This procedure has a number of advantages over
currently available techniques:

1. It does not require large samples, unlike Phillips’ approach.
2. It does not require that the frequency bands be specified a priori.
3. It does not require specialized estimation software.
4. It is implemented in the time domain and is fully compatible with whatever econo-

metric techniques and/or software are already in use.
5. It is so simple that it is potentially accessible to a variety of applied economists.

The band-spectrum regression approach of Engle (1974) is reviewed briefly
in Section 2, leading to a description of the proposed technique in Section 3.
This new technique is used to detect and model frequency dependence in the
income coefficient of a simple dynamic consumption-income relation in Section 4.
Section 5 provides concluding remarks.

2. BAND-SPECTRUM REGRESSION MODEL OF ENGLE (1974)

Suppose that thek explanatory variables in a multiple regression model have been
numbered in such a way that the issue at hand is whether, and in what way, the
relationship between the dependent variableYt and thekth explanatory variable
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Xtk depends on frequency. For simplicity of exposition, consider the ordinary
multiple regression model,

Y = Xβ + ε, ε ∼ N[0, σ 2I ], r (X) = k. (1)

Clearly, βk is the coefficient of interest. The approach proposed below applies
equally well to more complex situations in whichX is stochastic, whereε is non-
Gaussian, where var(ε) = σ 2Ä 6= σ 2I , where this is themth equation in a system
of simultaneous equations, and so forth; this simple model is considered here solely
for expositional clarity.

In Engle’s approach, equation (1) is premultiplied by the complex-valued or-
thogonal matrixW whose( j, t)th element is

w j t = exp[i 2π( j − 1)(t − 1)/T ] (2)

to obtain

WY = W Xβ +Wε, Wε ∼ N[0, σ 2I ],
(3)

Y∗ = X∗β + ε∗, ε∗ ∼ N[0, σ 2I ],

whereY∗ = WY, etc. By construction, thej th element ofY∗, of ε∗, and of each
column of X∗ is the finite Fourier transform of the analogous column vector of
time-domain observations, evaluated at frequency 2π( j −1)/T . Note thatε∗ is not
identical toε, but it has the same distribution becauseW is an orthogonal matrix;
in contrast, the coefficient vectorβ is unaffected by the transformation. Most
important, each of theT elements ofY∗ and of the columns ofX∗ is a weighted
sum of the data from allT time periods—by construction, theseT observations
now correspond to the frequencies 0, 2π(1/T), 2π(2/T), . . . ,2π([T − 1]/T).

Least-squares estimation of equation (3) requires specialized software because
Y∗ andX∗ are complex-valued and, in any case, yields the same results as estimat-
ing the time-domain model, equation (1). Equation (3), however, makes it possible
to test whether theYt − Xtk relationship is different over one band of frequencies
versus the rest. Engle (1974) provides a Chow-type test of such a hypothesis that
can be performed using ordinary (real-valued) regression software.

Engle’s approach has three serious drawbacks, however. The first is only exposi-
tional, but illustrates the kind of arcana that limits the acceptance of most spectral
techniques: The test requires that frequency 2π([T − j ]/T) be included in the
frequency band to be tested whenever frequency 2π j/T is included. Thus, to test
whetherβk for observations 2 and 3 [corresponding to the two lowest nontrivial
frequencies, 2π(1/T) and 2π(2/T)] is the same as it is for the other frequencies,
the band of frequencies examined would have to include not only 2π(1/T) and
2π(2/T), but also the twohighestfrequencies: 2π([T−2]/T)and 2π([T−1]/T).
This is correct, but the explanation involves enough spectral theory that the unini-
tiated observer is likely to simply lose interest in the results at that point.
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Second, Engle’s test only addresses the constancy ofβk across partitions of
the sample into two frequency bands. Because the technique does not provide
any convenient means for visualizing the variation inβk across frequencies, this
partitioning is somewhat arbitrary, which limits the usefulness of the resulting
test.1

Finally, the band-spectrum regression test is closed-ended—it can indicate that
a regression parameter varies across frequencies and even, through a sequence of
tests, say something about the manner in which it varies, but it says little about
how to improve the specification of the original regression model.

3. BLOCKWISE TIME-DOMAIN SPECTRAL REGRESSION

3.1. Overview

The procedure proposed here consists of three steps:

1. Transform the original time-domain regression model, equation (1), into areal-valued
frequency-domain regression model using a transformation matrix based on the finite
sine and cosine transformations. This amounts to premultiplying equation (1) by a
real-valued orthogonal matrix,A, defined below.

2. Allow for variation inβk acrossm frequency bands—i.e., acrossm groups of obser-
vations in the frequency-domain regression model—using dummy variables.

3. Back-transform the resulting regression model to the time domain to estimate
β1 · · ·βk−1 and them dummy variable coefficients. This back-transformation merely
involves premultiplying the regression equation, augmented by the dummy variable
terms, by the transpose ofA.

The appropriate number of frequency bands,m, is determined using standard
model selection tools—e.g., minimizing the Schwarz criterion. Parameter con-
stancy across the frequency bands corresponds to the null hypothesis that allm
dummy variable coefficients are equal; this can be tested readily using standard
methods.

Actually, the back-tranformation of step 3 is not always necessary; the estimation
and parameter stability testing can be done just as easily in the frequency-domain
regression model. However, ifβk is found to vary significantly across them fre-
quency bands, then it is convenient in subsequent modeling to replaceXtk with
them back-transformed dummy variables; indeed, that is precisely what is done
in the regression model of step 3.

3.2. Real-Valued Frequency Domain Regression Model

Engle (1974) premultiplies the original time-domain regression model, equation 1,
by a complex-valued matrixW whoseT rows are the finite Fourier transform
coefficients for frequencies 2π( j − 1)/T, j = 1 . . . T . Here, equation 1 instead
is premultiplied by the real-valued transformation matrixA, first suggested by
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Harvey (1978), with( j, t)th element:

aj,t =


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1
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) 1
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) 1
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cos

[
π j (t − 1)

T

]
for j = 2, 4, 6, . . . ,

(T − 2) or (T − 1);(
2

T

) 1
2

sin

[
π( j − 1)(t − 1)

T

]
for j = 3, 5, 7, . . . ,

(T − 1) or T;(
1

T

) 1
2

(−1)t+1 for j = T and T is even,

t = 1, . . . , T.

(4)

to obtain the real-valued frequency-domain regression equation,

AY = AXβ + Aε, Aε ∼ N[0, σ 2I ],
(5)

Y∗∗ = X∗∗β + ε∗∗, ε∗∗ ∼ N[0, σ 2I ],

whereY∗∗ = AY, etc.A is known to be orthogonal,2 and so,ε∗∗ is not identical toε
of equation (1), but it has the same distribution;β itself is unchanged. Equation (5)
can be estimated directly with ordinary regression software because the elements
of Y∗∗ andX∗∗ are real-valued.

The relationship between the rows ofA [the “observations” in equation (5)]
and the corresponding frequencies is summarized in Table 1. The second and third

TABLE 1. Frequency corresponding to each
observation in equation (5)

Observation No. Frequency

1 0
2 π{1/T}
3 π{1/T}
4 π{2/T}
5 π{2/T}
6 π{3/T}
7 π{3/T}
· · ·

T − 2 π{(T/2)− 1}/T
T − 1 π{(T/2)− 1}/T

T π
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rows of A are the coefficients in the finite sine and cosine transforms at the lowest
nonzero frequency,π(1/T); the fourth and fifth rows are the coefficients for the
transforms at the next frequency,π(2/T), etc. The first row ofA corresponds to
zero frequency; ifT is even, there is also a single row corresponding to the highest
frequency,π .

Some authors express these frequencies divided by a factor of 2π . This makes
no difference; the essential feature is that the low and high frequencies associated
with the rows ofAcorrespond in a straightforward way to what is meant by phrases
such as “the relationship at low frequencies” or “the high-frequency component.”

Consider how the various rows ofA operate on a column vector of observations
on a time series. The first row averages allT observations together with equal
weights; any fluctuation in the time series that largely averages out to zero over
the entire period will yield a small component at frequency zero. The third row
averages allT observations also, but its weights make one complete sine oscillation
during the course of the sample. Thus, any fluctuation in the time series that takes
place sufficiently quickly as to largely average out to zero during either the first
half or the second half of the sample will contribute little to the third observation
in the frequency domain. The second row is similar, but here the weights make
one complete cosine oscillation during the sample, so that any fluctuation in the
time series that takes place sufficiently quickly as to largely average out to zero
during either the first quarter, the middle half, or the fourth quarter of the sample
will contribute little to the second observation in the frequency domain. Similarly,
the weights for rows 4 and 5 make two complete cosine and sine oscillations,
respectively, during the course of the sample, and so, fluctuations in the time series
must complete themselves (average out to zero) something like twice as quickly in
order to contribute little to observations 4 and 5 in the frequency domain. Clearly,
the transformation corresponding to the low-frequency rows of theA matrix is
ignoring the quickly fluctuating parts of the data vector and thereby extracting the
most smoothly and slowly varying components. Finally, suppose thatT is even and
consider the highest-frequency row ofA. This row simply averagesT/2 changes
in the data; clearly, it is ignoring any slowly varying components of the data vector
and extracting the most quickly varying component.3

3.3. Testing for Parameter Stability in the Frequency Domain

Because the real-valued spectral regression model, equation (5), is an ordinary
regression equation—the only difference being that itsT observations correspond
to the frequencies given in Table 1 rather than to time periods—the stability of the
Yt − Xtk relationship across frequencies can be tested using established methods
for assessing the stability of regression coefficients. A number of such methods
exist, including those of Chow (1960), Farley et al., (1975), Brown et al., (1975),
Garbade (1977), LaMotte and McWhorter (1978), Ashley (1984), and Watson and
Engle (1985).
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The stabilogram test given by Ashley (1984) is used here. In the present context
this test partitions the sample ofT observations in the frequency domain into
m more-or-less equal subsamples or frequency bands. These bands are generally
somewhat unequal in length, partly becausem does not always divideT evenly
and partly because there are two observations at each nonzero frequency ifT is
odd. (If T is even, there is also a single observation at frequencyπ .)

Dummy variables(D1
j · · · Dm

j ) are created, one for each of these subsamples,
such thatDs

j = X∗∗jk if observationj is in frequency bands andDs
j = 0 otherwise.

The regression model,

Y∗∗ = X∗∗{k}β{k} + Dγ + ν∗, ν∗ ∼ N[0, σ 2I ] (6)

then is estimated, whereX∗∗{k} is X∗∗ with its kth column removed,β{k} is theβ
vector with itskth component removed, andD is theT ×m matrix [D1 · · ·Dm].
The number of frequency bands,m, is chosen by minimizing a corrected goodness-
of-fit measure, such as the Schwarz criterion.4 Finally, the null hypothesis that all
m components ofγ are the same—which corresponds to the null hypothesis that
βk, the coefficient quantifying the strength of theYt − Xtk relationship, is constant
across frequencies—is tested using standard methods.5

The stabilogram test is a natural choice in the present context for several rea-
sons. It is straightforward to implement using standard regression software, yet
simulations reported by Ashley (1984) show that its power is similar to that of the
alternative tests in samples of modest size. Moreover, the stabilogram itself, a plot
of the estimated 95% confidence intervals for ˆγ1 · · · γ̂m, provides a convenient way
to visualize the variation in the strength and/or sign of theYt − Xtk relationship
across frequencies. Finally, the stabilogram dummy variables,D1 · · ·Dm, can be
back-transformed easily to yield a time-domain version of the test.

3.4. Testing for Frequency Dependence in the Time Domain

Because the transformation matrixA is orthogonal, its transpose is its inverse.
Consequently, premultiplying equation (6) byAt yields an equivalent time-domain
regression model,

AtY∗∗ = At X∗∗{k}β{k} + At Dγ + Atν∗, Atν∗ ∼ N[0, σ 2I ],
(7)

Y = X{k}β{k} + D∗γ + ν, ν ∼ N[0, σ 2I ],

whereY is the (time domain) vector of dependent variable data in equation (1),
and X{k} is a T × (k − 1) matrix consisting of the firstk − 1 columns ofX, the
matrix of observations on the explanatory variables in equation (1).

Them columns ofD∗ are essentially filtered versions of thekth column ofX.
Figure 1 illustrates the relationship between theD and D∗ matrices form = 3
where Xtk is PPIt , the deviation of the growth rate in the U.S. Producer Price
Index from its sample mean, over a sample of 72 observations from June 1982 to
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FIGURE 1. Frequency-domain dummy variables for PPIt and time-domain equivalents.

May 1988. The three diagrams on the left side of Figure 1 plot the 72 elements of
each of the three columns of theD matrix against frequency; the three diagrams
on the right plot the 72 elements of each of the analogous columns of theD∗

matrix against time. The sum of these three columns ofD∗ precisely reproduces
the sample data on PPIt .6
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By partitioning Xtk = PPIt into these three components and allowing equa-
tion (7) to fit potentially different coefficients to each, this procedure allows for
the possibility that fluctuations in the low-frequency component of PPIt—i.e.,
changes in its smooth, relatively predictable, local trend—might affectYt differ-
ently than the erratic, relatively unpredictable, high-frequency component of PPIt .
As with equation (3), testing for frequency dependence in theYt−PPIt relationship
involves nothing more than testing the null hypothesis thatγ1 = γ2 = γ3.

The frequency-domain test [using equation (6)] and the time-domain test [using
equation (7)] are both straightforward parameter-restriction hypothesis tests on
an ordinary regression equation; because they are equivalent, they give identical
results. However, the time-domain approach has a major advantage in that the
disaggregation ofXtk across frequencies provided by them columns ofD∗ can
be used inany time-domain econometric modeling effort to test and/or allow for
frequency dependence in relationships involvingXtk, using whatever econometric
technique (cointegration, 2SLS, probit, etc.) is appropriate for that context.

4. ILLUSTRATIVE APPLICATION: A TEST OF THE PERMANENT
INCOME HYPOTHESIS

Numerous macroeconomic relationships are thought to vary with frequency: money-
income, money-inflation, output-inflation, inflation-interest rate. Yet, surely the
canonical example in which theory suggests that such variation is important is the
consumption-income relation. Therefore, the technique proposed above is applied
here to test for and model frequency dependence in the coefficient on income in a
dynamic model for U.S. consumption expenditures.

Monthly data on real consumption expenditures and real personal income
(GMCQt and GMPY82t , respectively) are obtained from the CITIBASE Data
Bank for the period February 1959 to October 1991—the full interval over which
GMPY82t is available. The sample behavior of each of these time series clearly is
dominated by a unit root, and so, the analysis is done using the logarithmic growth
rate of each series, denotedct andyt , below.

Plotted,ct andyt both appear to be covariance stationary over the entire time
period. Consequently, the sample initially was partitioned into two 196-month
subsamples, to provide for model cross validation and/or postsample forecasting.
However, thect–yt relationship becomes unstable during the second subsample,
and so, results are reported here only for the first period, which runs from March
1959 through June 1975.7

There is ample reason to expect GMCQt and GMPY82t to be cointegrated;
consequently, the Engle and Granger (1987) two-step estimation method is used,
yielding the estimated cointegrating equation

log(GMCQt ) = 0.5303+ 0.9221 log(GMPY82t )+ ν̂t (8)
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and the estimated error-correction equation

ct = 2.591− 1.892ν̂t−1+ 0.274yt + ε̂t , R̄2 = 0.065,
(4.86) (3.13) (3.48) DW = 2.03.

(9)

The fitting errors from the cointegrating equation(ν̂t ) are correlated serially, but a
time plot indicates that they areI (0) and covariance stationary. The significance
of the estimated coefficient on ˆνt−1 in the error-correction equation confirms that
cointegration is present. Additional lags inct and yt entered with insignificant
coefficients.8

Before examining the coefficient onyt for instability across frequencies, it was
tested first for instability of the ordinary kind, across the sample observations. It
appears to be quite stable over this time period: Partitioning the sample period into
six approximately equal subperiods and estimating a separate coefficient onyt for
each subperiod yields the stabilogram (a plot of the six dummy variable coefficient
estimates and their associated 95% confidence intervals versus time) given in
Figure 2. Although the coefficient is a bit larger and more precisely estimated in
the latter part of the sample period, the null hypothesis that all six coefficients are
identical cannot be rejected. Analogous tests on stabilogram regressions with 2 to
10 subperiods yield similar results: The coefficients differ from one another only
at significance levels ranging from 12% to 54%.

The coefficient onyt then was examined for stability across different frequencies
using the procedure proposed above, based on equation (7). Form= 2, theD and
D∗ matrices are both 196× 2. The first 99 elements of the first column ofD are

FIGURE 2.Time-domain stabilogram foryt coefficient in equation (9). [Using the procedure
suggested by Ashley (1984) the coefficient is tested for stability over time by partitioning
the sample into six subperiods and estimating the coefficient separately over each using
dummy variables. Here, the resulting six-parameter estimates and associated 95% confi-
dence intervals are plotted against time. Other partitionings give similar results.]

https://doi.org/10.1017/S1365100599010032 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100599010032


PARAMETER VARIATION ACROSS FREQUENCIES 79

the first 99 elements ofAy; the remaining elements are zero. The first 99 elements
of the second column ofD are zero; the remaining 97 elements are the last 97
elements ofAy. So, theD∗ matrix is

D∗ = At D = At


e1 0
e99 0
0 e100

0 e196

 Ay,

whereei denotes thei th unit row vector of whatever length the context requires.
The two bands are uneven in length because the first band contains the single obser-
vation corresponding to frequency zero and the 98 elements ofAy corresponding
to the first 49 nonzero frequencies, whereas the last band contains the 96 elements
of Ay corresponding to the next 48 nonzero frequencies plus the last element of
Ay, which corresponds to frequencyπ .

Similarly, for m= 3, the D and D∗ matrices have three columns. The first
column ofD has, as its first 65 elements, the corresponding elements ofAy; these
consist of the frequency zero observation plus the observations for the first 32
nonzero frequencies. The second column ofD has the next 66 elements equal
to the corresponding elements ofAy; these are the observations for the next 33
frequencies. The third column ofD contains the remaining 65 elements ofAy;
these consist of 64 observations corresponding to the next 32 frequencies plus the
single observation at frequencyπ . Thus, form= 3, theD∗ matrix is

D∗ = At D = At D = At


e1 0 0
e65 0 0
0 e66 0
0 e131 0
0 0 e132

0 0 e196

 Ay,

and so forth.9

Equation (7) was estimated form = 2, 3, . . .10; the optimal value form is 4
using the Schwarz criterion. The resulting stabilogram for this model is plotted in
Figure 3; the estimated model is

ct = 2.590− 2.368ν̂t−1+ 0.758D(∗1)
t + 0.019D(∗2)

t

(4.20) (4.02) (5.72) (0.13)

+ 0.094D(∗3)
t + 0.159D(∗4)

t + η̂t ,

(0.71) (0.98)
(10)

whereD(∗ j )
t is the period-t observation from thej th column ofD∗. TheF(3, 190)

statistic for testing the null hypothesis that all fourD(∗ j )
t coefficients are equal is

6.760, and so, this null hypothesis can be rejected at the 0.02% level. Evidently, it
is either primarily or entirely the low-frequency component ofyt that affectsct .
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FIGURE 3. Four-band frequency-domain stabilogram foryt coefficient [equation (10)].
[Here, the parameter estimates and associated 95% confidence intervals for the coefficients
on D∗1 · · · D∗4 in equation (10) are plotted against frequency.]

FIGURE 4. Ten-band frequency-domain stabilogram foryt coefficient. [Here, the parame-
ter estimates and associated 95% confidence intervals for coefficients onD∗1 · · · D∗10 are
plotted against frequency in a model analogous to equation (10) only with 10 bands.]

Because the pattern of variation of the income coefficient with frequency is
of interest in its own right, a more detailed stabilogram based on 10 frequency
bands is plotted in Figure 4. This diagram indicates that the income coefficient
is significantly positive only for the first two bands. The first band corresponds
to frequencies zero throughπ (9/196); the second band includes frequencies up
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throughπ (20/196). The most quickly varying component in the first band com-
pletes nine full cycles during a sample of 196 months, for a period of 22 months;
any fluctuation inyt that substantially reverses itself within 11 months will have
little impact on the dummy variable corresponding to this first band. Similarly, the
most quickly varying component in the second band completes 19 full cycles in
196 months, for a period of 10 months; thus, a fluctuation inyt that takes longer
than 5 months but less than 11 months to complete itself will impact the dummy
variable corresponding to this second band. Essentially, households seem to ig-
nore income fluctuations that they expect to last for notably less than 6 months,
give some weight to fluctuations that they expect to last for 6 to 12 months, and
they base changes in their consumption spending decisions primarily on income
fluctuations that they expect to last for a year or more.

5. CONCLUSIONS

It is shown in Section 3 that partitioning (filtering) a seriesyt into m components,
D(∗1)

t · · · D(∗m)
t , corresponding tom frequency bands is actually quite straightfor-

ward. Once this partitioning is done, testing and allowing for frequency dependence
in the relationship involves little more than replacingyt with thesem alternative
regressors in the estimation equation. Similarly, the choice of how many frequency
bands to consider does not require experience in spectral analysis—it is just an-
other modeling decision of the usual form: choosing one set of regressors over
another.

Frequency dependence is thought to characterize many of the most important
relationships in macroeconomics, but detecting and modeling this aspect of these
relationships has heretofore been considered a challenging and rather specialized
endeavor. That is no longer the case. The results reported in Section 4 on the
relationship between aggregate personal income and aggregate consumption ex-
penditures illustrate how easy and effective it is to use the proposed technique to
detect and model frequency variation in regression coefficients.

NOTES

1. The plot of MPC vs. frequency given by Engle (1974, Fig. 2) is not from the spectral regression at
all—it is the gain of the estimated cross spectrum between the two series. This approach to visualizing
the frequency dependence ofβk is only feasible for bivariate regression models and even then would
be confounded by feedback relationships.

2. See Tan (1995). The rows ofA are just linear combinations of the rows ofW, reflecting the fact
that the regression models of equations (1), (3), and (5) are all essentially equivalent.

3. In contrast, a low-frequency band in Engle’s approach will contain observations at frequencies
close to zero and close to 2π ; and in Phillips’ approach, the high-frequency band includes frequencies
close toπ as well as frequencies close to−π .

4. The Schwarz criterion [ln(SSE/T)+ (k+m−1) ln T/T here] is discussed by Judge et al. (1985,
p. 245).
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5. For equation (6), (RSS−URSS)(T − k−m+ 1)/[URSS(m − 1)] is distributed F(m− 1,
T − k−m+ 1) under this null hypothesis, where URSS is the sum of squared residuals and RSS
is the sum of squared residuals from estimating equation (1) or (5).

6. The columns ofD∗ are reminiscent of the filtered series used by Cochrane (1989) and Lee (1994).
Where band-pass filtering per se is the purpose, their filtering methods may be preferable. The frequency
bands must be chosen arbitrarily in their approaches, however, and their filtered components do not
aggregate back up to the original time-domain data. Also, their approaches consider theYt − Xtk

relationship at each frequency band in isolation, which limits the contact between their results and
subsequent time-domain modeling.

7. Also, the cointegrating relationship between GMCQt and GMPY82t is notably different between
the two subperiods.

8. Lagged personal income,yt−1, remains insignificant when the contemporaneous term is elimi-
nated, so it is not possible to analyze this relation in reduced form. The estimated coefficient onyt is
doubtless biased because of the joint endogeneity ofct andyt ; elimination of this bias via instrumental
variables is not undertaken here, however, because it would unduly complicate the example.

9. Software that computesD andD∗ for givenT , m, andy is available from the authors.
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