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Abstract. The effect of radiation trapping is included in the standard collisional-
radiative model for atomic hydrogen under a typical condition of divertor plasmas.
The population of the first excited level of the ionizing plasma component is strongly
enhanced by the absorption of resonance line photons produced by the recombining
plasma component, and the effective ionization rate coefficient is also strongly
enhanced.

1. Introduction
In divertor plasmas, radiation trapping is sometimes quite substantial: in the Alc-
ator C-Mod divertor plasmas under detached conditions, for instance, it is found
that up to 50% of the Lβ emission is absorbed within the plasma [1], indicating
that the Lα line is even more strongly absorbed than the Lβ line. In applying the
standard collisional-radiative model to such plasmas, we must properly include the
effect of radiation trapping.
In the following we present our iterative method, which effectively solves the

radiation transport equation.

2. Iterative numerical method
Our approach is based on the following algorithm. (1) Divide space into cubic
cells of linear dimension ∆l. (2) Give the ground state atom density n(1), the ion
density nH+ , the electron density ne, the electron temperature Te, and the line
profile function gpq(ν) for the transition from upper level p to lower level q for
each cell. Set the frequency interval ∆ν for the following calculation of emission
and absorption. (3) Compute the population distribution of excited levels for each
cell using the ordinal optically thin collisional-radiative model [2] assuming no
radiation trapping. (4) Compute the emission intensity radiated in each cell and
the absorption in other cells using the population distributions obtained in step
(3). (5) Compute the population distributions for each cell using the collisional-
radiative model considering the absorption of photons. (6) Compute the emission
intensity radiated in each cell and the absorption in other cells using the population
distributions obtained in step (5). (7) Repeat steps (5) and (6). This iterative process
is continued until the above values converge. The details are given in the following.
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Optically thin collisional-radiative model

The collisional-radiative model has been used to calculate population distributions
of the excited levels and the excitation and de-excitation flows between the levels [2].
The population of an excited level is given by the rate equation in which excitation,
de-excitation and ionization by electron impact, three-body and radiative recom-
bination, and spontaneous transition are included. In this paper, for simplicity, we
neglect the contribution from molecules. In our code, the excited levels are specified
by the principal quantum number and are considered up to 40. According to the
quasi-steady-state solution [2], the population of the excited level p is given by

n(p) = R0(p)nH+ne + R1(p)n(1)ne (p � 2), (2.1)

where R0(p) and R1(p) are functions of electron density and temperature. The
first term and the second term are called the ionizing plasma component and
the recombining plasma component, respectively [2]. The time development of the
population of the ground state n(1) is given by

dn(1)
dt

= −SCRn(1)ne + αCRnH+ne, (2.2)

where SCR and αCR are called the effective ionization rate coefficient and the
effective recombination rate coefficient, respectively.
In our code, the atomic data are the same as in [2].

Inclusion of radiation trapping

The line profile function gpq(ν) is defined so that the probability of emission in the
interval ν ∼ ν + dν is gpq(ν)dν; the power radiated by any cell per unit frequency
interval is given by εpq(ν)= A(p, q)n(p)gpq(ν)hν∆V , where∆V is the volume of the
cell (=∆l3). The radiated photons spread and may be absorbed by other atoms.
Assuming isotropic photon emission, the energy density per unit frequency ρpq(ν)
at a cell is calculated by

ρpq(ν) =
εpq(ν)

c

1
4πr2

exp
[

−
∫ r

0
κqp(ν) dl

]
, (2.3)

where r is the distance from the source to the cell, and c is the light velocity. The
integration in exponential is on the line of sight from the source and the cell. Here,
κqp(ν) is the absorption coefficient,

κqp(ν) =
[B(q, p)n(q) − B(p, q)n(p)]hνgpq(ν)

c
, (2.4)

where B(q, p) and B(p, q) is the Einstein B coefficient. We assume complete fre-
quency redistribution: the same gpq(ν) is used for absorption. By adding the con-
tributions of photons coming from all of the cells, we calculate the total energy
density per unit frequency ρtotalpq (ν) at each cell. We calculate the population of the
excited atoms using the collisional-radiative model by adding the following term
to the rate equation for n(p):

∑
q�p

{
[B(q, p)n(q) − B(p, q)n(p)]

∑
ν

[
ρtotalpq (ν)gpq(ν)∆ν

]}
.
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Figure 1. Lα spectrum at z =0m (�) and the line profile g21(ν) (�). The ‘BLACKBODY’ line
is calculated assuming a uniform infinite volume plasma whose population distribution is the
same as that at z =0m. Lα spectrum calculated with RC =8.0 × 10−2m for reference (�).

3. Results
We applied the above method to a plane-parallel slab which extends infinitely in the
x and y directions, and from−5×10−3 to 5×10−3m in the z-direction. It is assumed
that the slab plasma has a uniform temperature Te =TH+ = TH = 1 eV, electron and
proton density ne = nH+ = 1021 m−3, and ground state density n(1)= 1020m−3. The
absorption of Lα and Lβ are considered. It is assumed that the line profile function
gpq(ν) is given by the Doppler broadening. The value of 1/κqp(ν) at the center
frequency of Lα is 2.0 × 10−3m; we divide the plasma volume into cubic cells
of ∆l = 2.0 × 10−4m. We calculate the ρtotalpq (ν) along the z-axis considering the
emission coming from cells within a cylinder with a radius of RC = 4.0 × 10−2m
around the z-axis. For the integration in (2.3), the r-axis is divided into equal
intervals of width ∆r = 2.0×10−4m. The ν-axis is also divided into equal intervals
of width ∆ν as shown in Fig. 1. Using ρtotalpq (ν) along the z-axis, the population
density is calculated for each cell on the the z-axis. This population density is
common to all the cells having the same z position in step (5).
Figure 2 shows the population of the excited levels calculated without the radi-

ation trapping. Figures 3(a) and (b) show the dominant flux into and from each
excited level for the recombining and the ionizing plasma components. The effect-
ive ionization and recombination rate coefficients without radiation trapping are
SCR = 2.5 × 10−19 and αCR = 4.6 × 10−18 (m3 s−1), respectively. Equation (2.2) is
given numerically as

dn(1)
dt

= −SCRn(1)ne + αCRnH+ne = −2.5 × 1022 + 4.6 × 1024m−3 s−1, (3.1)

which means that the plasma is recombining.
The convergence requires about 10 iterations. The population distribution of

the excited levels of the ionizing plasma component that are obtained after the
convergence is achieved is shown in Fig. 2 (for the Lα line profile, see Fig. 1).
In our framework, the recombining component is unaffected because the induced
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Figure 2. Population densities of the excited levels.
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Figure 3. The excitation and de-excitation flow of (a) the recombining plasma component, (b)
the ionizing plasma component (radiation trapping OFF), (c) the ionizing plasma component
(radiation trapping ON) at the center z =0m of the slab. The figures of 1,2, . . . , 6 denote
the principal quantum number. The thin solid line, the broken line, and the thick solid line
denote the transition by electron collision, the spontaneous emission, and the absorption of
the photon, respectively. For example, 0.347E25 denotes 0.347 × 1025m−3 s−1.

emission is negligible. The population of the excited level p = 2 of the ionizing plasma
component is enhanced to a value close to the recombining plasma component;
Fig. 3(c) shows dominant flows among each excited level. The Lα photons emitted
from the recombining component are absorbed by the ionizing plasma component.
The population of the excited level p = 2 of the ionizing plasma component is
established by the balance of the absorption of the photons which originate from the
recombining component, and spontaneous emission. The effective ionization rate
coefficient increases to SCR = 1.9 × 10−17m3 s−1 due to the absorption of photons,
which is followed by the ladder-like excitation–ionization for levels of p� 2. The
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αCR does not change. Equation (2.2) is given numerically as

dn(1)
dt

= −SCRn(1)ne + αCRnH+ne = −1.9 × 1024 + 4.6 × 1024m−3 s−1. (3.2)

The plasma changed to an only slightly recombining plasma.
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