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ON MAXIMUM LIKELIHOOD AND PSEUDO-MAXIMUM LIKELIHOOD 
ESTIMATION IN COMPOUND INSURANCE MODELS
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ABSTRACT

Non-life insurance payouts consist of two factors: claimsizes and claim fre-
quency. When calculating e.g. next years premium, it is vital to correctly model 
these factors and to estimate the unknown parameters. A standard way is to 
separately estimate in the claimsize and the claim frequency models.

Often there is a deductible with each single claim, and this deductible can 
be quite large, particularly in inhomogeneous cases such as industrial fi re insurance 
or marine insurance. Not taking the deductibles into account can lead to  serious 
bias in the estimates and consequent implications when applying the model.

When the deductibles are nonidentical, in a full maximum likelihood esti-
mation all unknown parameters have to be estimated simultaneously. An alter-
native is to use pseudo-maximum likelihood, i.e. fi rst estimate the claim-
size model, taking the deductibles into account, and then use the estimated 
probability that a claim exceeds the deductible as an offset in the claim fre-
quency estimation. This latter method is less effi cient, but due to complexity 
or time considerations, it may be the preferred option.

In this paper we will provide rather general formulas for the relative effi ciency 
of the pseudo maximum likelihood estimators in the i.i.d. case. Two special 
cases will be studied in detail, and we conclude the paper by comparing the 
methods on some marine insurance data.
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1. INTRODUCTION AND MODEL DESCRIPTION

As most practioners in non-life insurance know, making good and credible 
models for the data at hand is often a diffi cult task, and if  the models become 
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2 J. PAULSEN AND K. STUBØ

too complicated, statistical estimation can be very hard. Let us list three 
important issues to that effect. Note that we use the word claim even if  it is 
not reported to the company.

1. Deductibles: Only claims above a specifi ed deductible are reported to the 
company. This issue becomes even more complicated in the presence of a 
bonus system, since in order to avoid a loss of bonus, the insured may pay 
in full herself  some claims that exceed the deductible. Another complicat-
ing factor is the fact that deductibles and claims (size or frequency) may 
not be independent.

2. Covariates and random effects: Assuming the data are i.i.d. is often too 
simple. In car insurance, covariates can be the size of the car, the size of 
the engine or an indicator of  whether the driver is a male or a female. 
Random effects may be the driver himself, the district the car is registered 
in or the brand of the car. Covariates and random effects may be present 
in both the claimsize and the claim frequency parts of the model.

3. Registration errors: Unfortunately data are not always correct due to reg-
istration errors, or there may be missing values.

Trying to incorporate some or all of  these issues in a model may lead to a 
very complicated likelihood, and maximizing this to fi nd the MLE (maxi-
mum likelihood estimators) becomes hard or even impossible. That makes it 
necessary to either look for simpler models, or for simpler methods of  esti-
mation. One possibility in the second case is to use pseudo-MLE. This is a 
rather general term, but in this context it will mean that fi rst the parameters 
in the claimsize model are estimated, and then the estimated probability that 
a claim exceeds the deductible is used as an offset in the claim frequency 
estimation.

Another possibility that is frequently used in practice is to only model 
that part of  the claim that exceeds the highest deductible in the portfolio. 
Under the standard assumption that claimsizes are mutually independent and 
also independent of the claim numbers, using only the claims that exceed the 
highest deductible in the estimation, the pseudo-MLE and the full MLE are 
equal for that part of  the claims. However, it does not give any information
of  the claims below that deductible, but here simpler methods can be used. 
This may be a good solution when the portfolio is homogeneous, like in car 
insurance. But when the portfolio consists of heterogeneous risks with very 
different deductibles, this method is no longer feasible.

A third possibility, which unfortunately is in common use, is to ignore 
the deductibles altogether and treat the claims as if  the deductibles are zero. 
This can sometimes lead to serious bias and applications of the model may 
cause some unpleasant fi nancial distress to the company.

To give a more formal description of the problem we are going to study 
here, consider n risks where risk i has claims Xij

*, j  =  1,  …,  Ni
*. Assume that 

each risk has a deductible Di , i  =  1,  …,  n, and only those Xij
* larger than the 

corresponding Di are reported to the insurance company. We will assume 

94352_Astin41-1_01_Paulsen.indd   294352_Astin41-1_01_Paulsen.indd   2 12/05/11   14:2412/05/11   14:24

https://doi.org/10.2143/AST.41.1.2084384 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.1.2084384


 MAXIMUM LIKELIHOOD ESTIMATION IN COMPOUND INSURANCE 3

throughout that the Xij
*,  Ni

* and Di are all independent random variables. 
Although we are primarily interested in the distribution of the Xij

*, letting the 
Di be random variables is natural in an estimation context. But see Remark 2.3 
below for an alternative approach.

The data available to the company are Ni , i  =  1,  …,  n, Xij , j  =  1,  …,  Ni

and Di, i  =  1,  …,  n. The {Xij } consist of those {Xij
*} that are larger than their 

respective Di’s and so Ni  #  Ni
*. We will assume that for fi xed i, the Xij

* are i.i.d. 
with distribution function Fi (x; q)  =  P(Xij

*  #  x), where q is an unknown 
s-dimensional parameter vector. Then
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where Fi (x; q)  =  1  –  Fi (x; q). Assuming that the claim number distribution 
depends on a t-dimensional parameter l, write

 ii ( ; ) ( ), , , .p m P N m m 0 1l f= = =* *
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 Di i( | ) ( ; ( , ), ), 0,1, ,P m m mq li i f= = =DN p

for some function pi. We have,

 D {X D>

i

iD Di i iij i }
[ | ] ( ; ),E E E N1i

j

N

1
=

*

* i
=

F q*=N > 7H A/  (1.1)

so in particular E [Ni ]  =  E [Ni
*]  E [ Fi (Di; q)].

Let Di have distribution function Gi and assume that Fi and Gi have densi-
ties fi and gi with respect to some measure n. Then the likelihood is
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Note that we do not have to know the actual form of the gi to maximize(1.2) 
w.r.t. (q, l).

As an example, if  Ni
*  +  Po(li ) (Poisson) then conditional on Di , Ni  +

Po(li  Fi (Di; q)) so that
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As another example, assume that Ni
*  +  NBin(ai,  bi), i.e. with l  =  {(ai,  bi)},
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Now consider the claims only. Conditional on the number of claims and the 
deductibles the likelihood becomes
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Letting q̂n maximize (1.5) and plugging it into (1.2) yields the corresponding 
maximizer l̂n of  l. From (1.2) it is seen that l̂n is found by maximizing

 Nn n i;( , ) ( , ),L q qi
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l l)n p Du u` j%  (1.6)

w.r.t. l. The estimated (q̂n, l̂ ) will be called the pseudo-MLE.
Note that the setup (1.2) and (1.5)-(1.6) does not allow for the presence of 

random effects, but it can easily be extended to do so. The problem is not the 
general structure of the likelihood, the problem is to maximize it!

In order for the plug-in method to be useful it is necessary that the pseudo-
MLE are not too poor compared to the full MLE. To make comparisons, the 
notion of asymptotic relative effi ciency is useful. To explain, let h(q, l) be a 
function of (q, l), and assume that asymptotically
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The asymptotic relative effi ciency of h(q̂n, l̂n) is then
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 MAXIMUM LIKELIHOOD ESTIMATION IN COMPOUND INSURANCE 5

If  the model is suffi ciently regular, the asymptotic effi ciency of  the MLE 
implies that ARE (h(q, l))  #  1. In order for h(q̂n, l̂n) to be useful, ARE (h(q, l)) 
should be near 1. If for example cn  =  n , which is the typical case, then if n i.i.d. 
risks are necessary to get a certain precision of h(q, l) using the MLE h(q̂n, l̂n), 
to obtain the same precision using h(q̂n, l̂n) would require n /ARE (h(q, l)) i.i.d. 
risks.

The actuarial literature has not paid much attention to the fact that most 
policies carry a deductible. For example, the book Loss models. From data
to decisions (2004) by Klugman et al., is to a large extent about statistical 
methods for estimating insurance losses, but it pays rather lip service to the 
problem with deductibles. Paulsen et. al. (2008) consider the problem of fi tting 
linear mixed models to insurance claimsize data in the presence of deductibles, 
and it is clear from their fi ndings that estimation is complicated. In statistical 
terms, the problem with deductibles is a problem with left truncated data.
In biostatistics such data are sometimes called ascertained, and in econometrics 
they belong to the class of  Tobit models. A fairly extensive bibliography of 
papers dealing with such data in all these fi elds can be found in Paulsen et al. 
(2008).

In the actuarial literature a lot more attention has been given to the use of 
covariates and random effects, and then in particular in the framework of 
GLM and GLMM. However, deductibles are left out of  the consideration. 
In fact, taking deductibles into account would destroy the GLM and GLMM 
structure of the model. It would go too far to list all relevant papers here, but 
several references can again be found in Paulsen et al. (2008). More recent 
contributions, including extensive bibliographies, are Garrido and Zhou (2009) 
and Frees et. al. (2009).

An alternative to using maximum likelihood is to take a Bayesian approach. 
Using MCMC methods, quite complicated models can be estimated, as exem-
plifi ed in e.g. Dimakos and di Rattalma (2002) and Gschlössl and Czado 
(2007). However, incorporating deductibles into the framework of MCMC is 
not a trivial matter, and as far as we know this still remains to be done.

Pseudo-MLE are quite popular in statistics. An example that is of interest 
to actuaries is in the estimation of copulas. Again the full likelihood can be 
very complicated, so instead the marginal distributions are fi rst estimated, and 
then the result from this estimation is plugged into the copula itself  so that 
what remains in the second stage is to estimate the copula parameters only. 
However, it is shown by Joe (2005) that this method can cause a severe loss of 
effi ciency compared to a full MLE.

The rest of the paper goes as follows. In Section 2 we give formulas for the 
asymptotic distribution of both the MLE and the pseudo-MLE in the i.i.d. 
case. The corresponding asymptotic distributions for the net premiums above 
a given deductible are also found. In Section 3 the results are specialized to 
the case when the claim numbers are Poisson distributed. Letting both claims 
and deductibles be exponentially or Pareto distributed, numerical values are 
given for the asymptotic relative effi ciencies of the estimated net premiums for 
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6 J. PAULSEN AND K. STUBØ

various values of the deductibles. Then in Section 4 some data from marine 
insurance are analyzed, and the effect on the net premium are compared when 
using pseudo-MLE versus full MLE. This effect is compared to that of using 
different claimsize distributions, and also to that of using different covariates.

Compared to the complexities that are discussed at the beginning of this sec-
tion, the models analyzed in Section 3 are rather simple. In fact, for the models 
in Section 3 a full MLE is easy. Unfortunately, an in depth analysis of a compli-
cated case where the pseudo-MLE is the only alternative, is intractable. In spite 
of this gap, we feel that an in depth analysis of a simple model can give a useful 
insight into the problem of estimation in actuarial models with deductibles.

2. SOME GENERAL RESULTS

We will write P q, l for the probability measure when the true parameter is (q, l) 
and e.g. just Pq when l is not relevant.

For h(x, y) we write e.g. 4x h(x, y) for the gradient w.r.t. x and 4x, y h(x, y) 
for the gradient w.r.t. both parameters. Furthermore, Hxx h(x, y) is the Hessian 
w.r.t. x and Hxy h(x, y) is the second partial derivative matrix w.r.t. both x and y. 
Finally, with Hxxx h(x, y) we mean the 3-dimensional array obtained by taking 
the three times partial derivatives of  h w.r.t. x. Similarly Hxyy h(x, y) is the 
3-dimensional array obtained by taking once partial derivative w.r.t. x and twice 
w.r.t. y. For A any number, vector, matrix or 3-dimensional array, by |A| we 
mean the Euclidean norm.

In addition to the assumptions made in Section 1 we shall assume that
the Ni

* are i.i.d., the Xij
* are i.i.d. and the Di are i.i.d. Consequently we shall 

omit the subscript i in the distribution, so in particular the loglikelihood of 
(1.2) becomes
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Defi ne (provided the relevant differentials exist), 
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We also let K be the (s  +  t)  ≈  (s  +  t) symmetric matrix blockdivided as 
(again assuming the relevant differentials exist),
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We need the following rather lengthy set of assumptions. It is assumed that 
(q, l)  !  Q  ≈  L, open sets in Rs and Rt respectively.

B1. For all m and d, ln p(m,(q, l), d) are three times continuously differentiable 
in (q, l).

B2. Interchange of differentiation (w.r.t. (q, l)) and integration of ln p(n,(q, l), d) 
is allowed up to the second derivative.

B3. For all x, ln f(x; q) and ln F(x; q) are three times continuously differenti-
able in q.

B4. For all d and all q

Hq qdd fqq qq( .fd
3 3

; ) ( ; ) ( ) ( ; ) ( ; ) ( )x d x H d x d xandq q q q= =
d d

n nF F# #

 Furthermore
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q q= =F Fd 8 8B B
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B5. For all (q, l) there are open sets U and V with (q, l)  !  U  ≈  V so that for 
all (q1, l1)  !  U  ≈  V,

qd ln
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B7. For all q there is an open set U with q  !  U so that for all q1  !  U,
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 and Eq  [M1 (X* )  +  M2 (D) |    <    3.

B8. For any (q1, l1)  !  (q, l),
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B10. The quantity A is positive and the matrices J  –  C and K22 are positive 
defi nite.

Note that if  either N*  +  Po(l) or N*  +  NBin(a, b), then conditions B1, B2, B5 
and B6 are satisfi ed if  conditions B3, B4 and B7 are.

Here is the main theoretical result of the paper. Its proof is given in the 
appendix.

Theorem 2.1. Assume B1-B10 and that the equations 4q   l(n)(q)  =  0 and 4q,l  l(n)

(q, l)  =  0 both have unique solutions q̂n and (q̂n, l̂n) for all n. Assume also that the 
equation 4l  l(n) (q̂n, l)  =  0 has a unique solution l̂n for all n. Then as n " 3,
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Here
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Remark 2.1. Since K is nonnegative defi nite,
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Therefore, we have proved directly that SP –  SM is nonnegative defi nite, a fact 
that also follows from the effi ciency of the MLE. For a general sequence {Yn}, 
denoting the asymptotic variance of nYn by aVar (Yn), note that for any b 
and A  =  – Rb,

 l l+ +b bA ,AVar VarT T T=q qT
n nn naa t t u u` `j j

i.e. for such particular linear combinations of the parameters the estimators are 
equally effi cient.

Remark 2.2. When q is known, the MLE l̂n of  l is obtained by maximizing 
L(n)(q, l) w.r.t. l. As above we get as n " 3,

 – 1n , .K P0 underl l
,q l

22"
-d

n Ns` ^j h
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10 J. PAULSEN AND K. STUBØ

It follows from Theorem 2.1 and Remark 2.1 that

 nn( ) ( ) ( ),Var Var Varl l ln# #a a as t u

where for nonnegative defi nite matrices A1 and A2, by A1  #  A2 we mean that 
A2  –  A1 is nonnegative defi nite. Inference on l̂n using K22

 – 1, or an estimator of it, 
as variance may give wrong conclusions, for example confi dence regions for l 
will be too narrow. A proper adjustment taking the uncertainty of using q̂n 
instead of q into account may be diffi cult for complex non i.i.d. models, and 
this is a drawback with the pseudo-MLE. One possible way out is to use a 
bootstrap method, but this can be very time consuming.

Remark 2.3. Instead of assuming the Di i.i.d., we could let them be determinis-
tic d1,  d2 ,  … satisfying some proper limit assumptions such as the existence of

 n i(lima d1
i

n

1
=

n"3
=

F ); q/

and so on. This would give a result similar to Theorem 2.1 where the terms 
in SM and SP evaluated as expectations now would be evaluated as limits of 
averages.

The following not obvious result is easy to prove using Theorem 2.1 and 
Remark 2.1.

Corollary 2.1. In addition to the assumptions of Theorem 2.1, let q  =  q and 
l  =  l be scalars. Then

 ( ) ( ),lARE AREq #

with strict inequality whenever C  >  C�.

A quantity of great interest in insurance is the net premium, i.e. the expected 
total claim paid by the insurance company for a risk with deductible d,

 x– ( ;d ( ( .l ld

3

i
def

( , ) ( ) ) ( )m mm E dxq l q
,q

i
d

1
= =+ =F

=

)l m q

*N

d
)X *> H/ #

In reinsurance md  (q, l) is called the net excess of loss (XL) premium. The next 
result follows directly by using Theorem 2.1 and the delta method on md  (q, l)  = 
m(l) md  (q).

Corollary 2.2. Under the assumptions of Theorem 2.1, as n " 3,

 ,M mn d d
–n( ) ( , ) ,m m under P0q l q l

,q l
d "

d
n N

2, st t` aj k
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 MAXIMUM LIKELIHOOD ESTIMATION IN COMPOUND INSURANCE 11

and

 ,P mn d dn , under P0 ,q l
d "

d
n N–( ) ( , )m mq l q l

2, su u` aj k

w.r.t. Pq, l. Here

 
,M ln lnd l l

l l

m q qm

,1

d +
d

–d �( ( )

( ) (

R J C R

K

m m m

m

ln ln

ln ln

1
l d

T
d

T

1

22

= +

+

-

-

)
2

m

m m2 d d

d d )

s _ _ac i ik

k

where m  =  m(l), md   =  md (q) and md  =  md (q, l).
Furthermore, s2

P, md
 is the same as s2

M, md 
, but with (J  –  C�) – 1 replaced by 

(J  –  C) – 1.

3. THE I.I.D. COMPOUND POISSON CASE

In this section we shall assume that N* +  Po(l) so that N  +  Po(l F(D; q )).
As mentioned in Section 2, this means that conditions B1, B2, B5, B6 and B8 
of Section 2 are satisfi ed if  conditions B3, B4 and B7 are.

Taking the logarithm in (1.3) and then differentiating gives for the gradient,

 lnq fd q i iD ;
i

l –( ( , ) ( ) ( ), .l ll X 1
q q q,q l ij

j
i

i

n

11
d =)n ;

N

==

– DF ;d ( )qFN`f j p//  (3.1)

Set 4l  l(n)(q, l)  =  0, solve for l and insert this l into 4q  l(n)(q, l)  =  0. This gives that 
q̂n solves

 q qd dln i

D
D(

i
i

i

;
;i –

i

i

1

1 F( )
( )

) ,f X
N

0q
q

q
ji

n

j n

n

i

n

11 1
=

=

=
N

== =F
;//

/
/

/  (3.2)

and then

 i

Di ni 1

l
F ( ; )

.
N

= n
i 1

=

n
=

q
n t/

/
 (3.3)

Taking the logarithm in (1.5) and differentiating gives that q̂n solves

 Dq qln ;d d ( )qi =
D

F
i

i;
f 0

i

i
i 1

( )
( )

.X
N

q
qji

n

j

n

11
–

F==

N

=
;// /  (3.4)
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12 J. PAULSEN AND K. STUBØ

Finally, taking the logarithm in (1.6) and differentiating w.r.t. l then gives

 i

Di ni 1

l
( ; )

.
N

= n
i 1

= F

n
=

q
n u/

/
 (3.5)

A comparison of (3.2)-(3.3) with (3.4)-(3.5) shows that basically (see Lemma 3.1 
below) (q̂n, l̂n)  =  (q̂n, l̂n) if  and only if  D1  =  …  =  Dn. Because of the simple 
form (3.2)-(3.3), in the i.i.d. case it does not seem more complicated to fi nd the 
MLE than the pseudo-MLE. However, as discussed in the introduction, this 
is no longer the case with more general models.

Using that

 N lln – –; ( , ), ( ; ) ( ; ) !l lln lnp N N D D Nq q q= + F ,ln FD^ h

some straightforward calculations using Lemma A.1 gives,

 l , .K B K lC K A1and11 12 22= = =

Furthermore, C�  =   A
1  BBT.

Lemma 3.1. Assume that ln F(x; q) is differentiable in q and that Eq [4q  F(D;  q)]  = 
4q A. Then the matrix C  –  C� is positive defi nite unless for some nonzero vector 
A, AT  U equals a constant, where U  =  – 4q  ln  F(V;  q) and V has the distribution

 .
v

V #( ) ( ) ( )P v A d dG d1
qq = F ;

0
#

This result is proved in the appendix. We saw above that D1  =  ···  =  Dn implies 
that (q̂n, l̂n)  =  (q̂n, l̂n) so in this case the ARE equals 1. It is therefore natural that 
the ARE will decrease as the Di gets more spread out. The following result, 
proved in the appendix, shows that such a hypothesis indeed makes some sense.

Corollary 3.1. Let U be as in Lemma 3.1, and assume that q  =  q is a scalar. 
Then under the assumptions in Theorem 2.1,

 
[ ]

[ ]
[ ]

U

U
U

2

2

2

–
–

–
– –

( )
[ ]

,

( )
[ ]

[ ]
,

q

l

ARE
E

Var U

ARE
Var U E

E Var U

1

1

A

A A

1

1 1

=

=

q

q

q

q

q

q

J

J J` `j j

 
[ ] [ ]

[ ]

U U

U
2

–
– –

( , 1
[ ]

.q l
ln

ln
ARE m

E E E

E Var U

q
d

A A d
d

d

d
d

dq

1 1
=

+ +

+
q q q

q

2[ ]U

q

)
m

m
2

2

J J
_

` `b

`
i

j j l

j
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 MAXIMUM LIKELIHOOD ESTIMATION IN COMPOUND INSURANCE 13

Furthermore, ARE(q)  #  ARE(l) with strict inequality whenever C  >  A
B2

, or 
equivalently whenever Varq [U ]  >  0.

Example 3.1. Assume that D  +  exp (a), and that X * +  exp (q), meaning e.g. 
that f (x; q)  =  qe – qx 1{x  >  0}. Using that F(x; q)  =  e – qx, x  $  0, it is not diffi cult to 
show that

 3–
a

a

a

a

( )
.q q q q

qA J 1and 2

2 2
= + =

+
+

This then gives that

 
a( )

.
q qA

1 1 2
2= +

+2J

With reference to the notation of Corollary 3.1, we see that V  =  U  +  exp (a  +  q). 
Therefore,

 2a a a
[ ] , [ ]

( )
[ ]

( )
.q q q

E U E U1 2 1and Varq q
2= + =

+
=

+
q U2

Finally, md  =  q
1  e – qd so that d

d
q  ln md  =  –  ( q

1   +  d ). Some straightforward, but 
slightly tedious calculations using that Eq [X*]  =  q

1  and Eq [D]  =  a
1  gives that

1

1

1
1

1

+

+

+
+

+

+

+

–

– – –

–

( )

[ ]
[ ]

,

( )

[ ]
[ ]

( ( )) ,

( ( , ))

[ ]
[ ]

[ ]
[ ] [ ]

[ ]
[ ] [ ]

.

q

l q

q l

E D
E

E D
E

m

E D
E

E D
E E

d

E D
E E

d

1

1

1

1

1

1 1 1

1

1 1 1

1

ARE

ARE ARE

ARE d

2 2
2

2
2

=

= =

=

+ + +

+

*

*

*

* *

* *

q

q

q

q

q

q

q

q q

q

q q

X

X

X
X X

X X

2

2

J

L

K
K
K

J

L

K
K
K
K

J

L

K
K
K

f

ff

ff

N

P

O
O
O

N

P

O
O
O
O

N

P

O
O
O

p

p p

p p

Tables 3.1 and 3.2 give ARE (q), ARE (l) and ARE (md  (q, l)) for various
values of  

*[

[
a]

]

E

E D

X
q

q

q

=  and 
*[ ]E X

d
q . From Table 3.2 it is seen that as long as the
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14 J. PAULSEN AND K. STUBØ

deductibles are moderately large compared to the claims, i.e. 
*[

[

]

]

E X

E D
q

q

 is not
more than 0.5, the loss in effi ciency from using the pseudo-MLE is not unduly 
high when ARE (md  (q, l)) is the quantity of interest. Finally we notice that
ARE (md  (q, l)) is decreasing in both 

*[

[

]

]

E X

E D
q

q

 and 
*[ ]E X

d
q .

Example 3.2. Assume that D  +  Pa(b, q) (Pareto distributed) and that X  +  Pa(a,  p), 
meaning e.g. that f (x; a, p)  =  pa p(a  +  x) – (1  +  p) 1{x  >  0}. Then

 
+( )p1- (

3
dxp

a a( ) ) .bA p x xb q

0
= + + -q #

This can be integrated numerically. Similar expressions for B, C and J can be 
derived, for example

 ( )p2- + (1 dx( –
a

a a) .b bA p px xp q q

0

2
2

= +- -3
a( )x+ )#

Finally

 .–
a a1 ( )p dd

p1= + -
p

m

TABLE 3.1

VALUES OF ARE(q) AND ARE(l) FROM EXAMPLE 3.1 FOR VARIOUS VALUES OF 
[ ]

[

E

E
q

q

*X

D]
.

[ ]

[

E

E
q

q

*

D

X

]
0.1 0.2 0.5 1 2 5 10

ARE (q) 0.9918 0.9730 0.9000 0.8000 0.6933 0.5902 0.5475

ARE (l) 0.9999 0.9993 0.9900 0.9600 0.9053 0.8320 0.7953

TABLE 3.2

VALUES OF ARE (md (q, l)) FROM EXAMPLE 3.1 FOR VARIOUS VALUES OF 
[ ]

[

E

E
q

q

*X

D]
 AND 

[ ]E
d

q *X
.

[ ]

[

E

E
q

q

*

D

X

]

0.1 0.2 0.5 1 2 5 10

[ ]E
d

q *X

0.1 0.9997 0.9982 0.9842 0.9471 0.8861 0.8092 0.7717

0.2 0.9994 0.9968 0.9779 0.9342 0.8680 0.7884 0.7504

0.5 0.9979 0.9917 0.9590 0.9000 0.8333 0.7377 0.6991

1 0.9955 0.9844 0.9360 0.8615 0.7738 0.6841 0.6449

2 0.9933 0.9777 0.9155 0.8346 0.7302 0.6356 0.5953

5 0.9931 0.9739 0.9034 0.8064 0.7016 0.6019 0.5601

10 0.9919 0.9732 0.9009 0.8018 0.6950 0.5936 0.5513
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 MAXIMUM LIKELIHOOD ESTIMATION IN COMPOUND INSURANCE 15

Using the formulas in Corollary 2.2 we can easily calculate numerically 
ARE (md  (q, l)). We have done so both for the case with p known, i.e. q  =  a, 
and the case with both a and p unknown, i.e. q  =  (a,  p). This to see if  the loss 
in effi ciency is higher or lower in the multiparameter case compared to the one 
parameter case.

In Tables 3.3 and 3.4, ARE (md  (q, l)) values are given for the same values
of 

*[ ]E X
d

q  and 
*[

[

]

]

E X

E D
q
p

1
1

q

q

= -

-  as in Table 3.2. The parameters are a  =  2, p  =  3

and q  =  8. In Table 3.3, q  =  p, i.e. p is known, while in Table 3.4, q  =  (a,  p).
As opposed to the case in Example 3.1, the ARE (md  (q, l)) are not inde-

pendent of the parameters. Therefore, in Tables 3.5 and 3.6 the same quantities 
are presented, but now with the more heavy tailed distributions with a  =  1, 
p  =  2 and q  =  4. In Table 3.5, q  =  p, while in Table 3.6, q  =  (a,  p).

Comparing Tables 3.3 and 3.4 it is seen that the loss in effi ciency is always 
smaller in the two parameter case, and at times it is considerably smaller. This 

TABLE 3.3

VALUES OF ARE (md (q, l)) FOR VARIOUS VALUES OF 
[ ]

[

E

E
q

q

*X

D]
 AND 

[ ]E
d

q *X
.

THE PARAMETERS ARE a  =  2, p  =  3 AND q  =  8. THE PARAMETER p IS ASSUMED KNOWN.

[ ]

[

E

E
q

q

*

D

X

]

0.1 0.2 0.5 1 2 5 10

[ ]E
d

q *X

0.1 0.9843 0.9619  0.9130 0.8777 0.8651 0.8891 0.9199
0.2 0.9834 0.9592 0.9043 0.8604 0.8358 0.8444 0.8690
0.5 0.9814 0.9539 0.8874 0.8333 0.7769 0.7473 0.7473
1 0.9798 0.9494 0.8736 0.7992 0.7303 0.6687 0.6450
2 0.9785 0.9459 0.8630 0.7788 0.6965 0.6138 0.5743
5 0.9775 0.9432 0.8550 0.7643 0.6732 0.5779 0.5297
10 0.9771 0.9431 0.8532 0.7591 0.6654 0.5664 0.5156

TABLE 3.4

VALUES OF ARE (md (q, l)) FOR VARIOUS VALUES OF 
[ ]

[

E

E
q

q

*X

D]
 AND 

[ ]E
d

q *X
.

THE PARAMETERS ARE THE SAME AS IN TABLE 3.3, BUT NOW BOTH a AND p ARE ASSUMED UNKNOWN.

[ ]

[

E

E
q

q

*

D

X

]

0.1 0.2 0.5 1 2 5 10

[ ]E
d

q *X

0.1 0.9966 0.9886 0.9587 0.9189 0.8812 0.8734 0.8998 
0.2 0.9965 0.9881 0.9546 0.9072 0.8573 0.8333 0.8508 
0.5 0.9972 0.9891 0.9516 0.8903 0.8132 0.7406 0.7350 
1 0.9986 0.9929 0.9589 0.8934 0.7946 0.6734 0.6202 
2 0.9995 0.9968 0.9734 0.9154 0.8132 0.6535 0.5586 
5 0.9982 0.9960 0.9819 0.9410 0.8548 0.6915 0.5731 
10 0.9964 0.9929 0.9796 0.9453 0.8705 0.7195 0.6009
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16 J. PAULSEN AND K. STUBØ

TABLE 3.5

VALUES OF ARE (md (q, l)) FOR VARIOUS VALUES OF 
[ ]

[

E

E
q

q

*X

D]
 AND 

[ ]E
d

q *X
.

THE PARAMETERS ARE a  =  1, p  =  2 AND q  =  4. THE PARAMETER p IS ASSUMED KNOWN.

[ ]

[

E

E
q

q

*

D

X

]

0.1 0.2 0.5 1 2 5 10

[ ]E
d

q *X

0.1 0.9732 0.9419 0.8837 0.8405 0.8150 0.8206 0.8481

0.2 0.9708 0.9387 0.8751 0.8316 0.7884 0.7765 0.7915

0.5 0.9684 0.9330 0.8602 0.7972 0.7430 0.6999 0.6894

1 0.9667 0.9358 0.8494 0.7779 0.7118 0.6482 0.6203

2 0.9653 0.9334 0.8415 0.7642 0.6902 0.6138 0.5752

5 0.9643 0.9333 0.8356 0.7542 0.6749 0.5903 0.5453

10 0.9639 0.9331 0.8335 0.7506 0.6694 0.5831 0.5351

TABLE 3.6

VALUES OF ARE (md (q, l)) FOR VARIOUS VALUES OF 
[ ]

[

E

E
q

q

*X

D]
 AND 

[ ]E
d

q *X
.

THE PARAMETERS ARE THE SAME AS IN TABLE 3.5, BUT NOW BOTH a AND p ARE ASSUMED UNKNOWN.

[ ]

[

E

E
q

q

*

D

X

]

0.1 0.2 0.5 1 2 5 10

[ ]E
d

q *X

0.1 0.9975 0.9902 0.9596 0.9117 0.8485 0.7778 0.7608 

0.2  0.9975 0.9901 0.9578 0.9057 0.8343 0.7469 0.7149

0.5  0.9979 0.9910 0.9580 0.9006 0.8155 0.6956 0.6307

1 0.9983 0.9934 0.9633 0.9058 0.8150 0.6733 0.5801 

2 0.9982 0.9937 0.9686 0.9172 0.8359 0.6763 0.5650 

5 0.9968 0.9932 0.9719 0.9356 0.8497 0.7017 0.5829 

10 0.9955 0.9907 0.9713 0.9320 0.8592 0.7183 0.6009

indicates that for more complex models when the need to use the plug-in method 
is much more prevalent, the loss in effi ciency may be quite insignifi cant. The 
same is seen when comparing Tables 3.5 and 3.6, except for the cases with
large 

*[

[

]

]

E X

E D
q

q

 and small 
*[ ]E X

d
q . However, such cases are not commonly encoun-

tered in practice.
It is also worth noting from Tables 3.3 and 3.5 that for known p,

ARE (md  (q, l)) is decreasing in 
*[ ]E X

d
q  for fi xed 

*[

[

]

]

E X

E D
q

q

. However, when 
*[ ]E X

d
q

is fi xed, ARE (md  (q, l)) is not necessarily decreasing in 
*[

[

]

]

E X

E D
q

q

, this in contrast
to the situation in Example 3.1. When both a and p are unknown, ARE (md  (q, l)) 
is not decreasing in any direction.
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 MAXIMUM LIKELIHOOD ESTIMATION IN COMPOUND INSURANCE 17

4. ANALYSIS OF MARINE INSURANCE DATA

The idea for this investigation arose from problems in marine insurance. To indi-
cate the complexities involved in this particular business, let there be m ship-
owners, where shipowner i has ni ships. For each ship there are covariates such 
as the value of the ship, tonnage, age, speed and several others, depending on 
availability, like the number of times it has been detained at a harbour due to 
poor conditions. Transformations and combinations of these covariates are 
often useful. Then there are dummy variables like type of ship, type of engine, 
geographical areas the ship is sailing and so on. Finally, there may be random 
effects like shipowner, or ships nested within shipowners. Other reasonable 
random effects could be registration country of the ship or alternatively of the 
shipowner. All or some of these factors can be present both at the claimsize 
distribution as well as at the claim frequency distribution. Finding full MLE 
for such complicated models can be an impossible task, and a two-step proce-
dure may be the only option. Even without introducing random effects, in the 
above example it may be time saving to explore the effects of covariates on 
claimsizes and claim frequency separately, and once good covariates have been 
identifi ed, full MLE can be found. In fact, we have practiced this method for 
some time.

The models fi tted here will be rather simple, but due to the heterogeneity 
of the data, it is necessary to include some covariates. The model assumptions 
are, assuming there are n ships,

– i APo( , ,l llnN i 1withi i i f= �+ ) w = .n,*

– sij izLN( , ), , , ,bX N1 1i f2� ,j if+ = , =* ,n*

i.e. ln Xij
* is normally distributed with expectation b�zi and variance s2. The wi 

and the zi are covariate vectors, while (A, b, s2) are unknown parameters.
We will always include an intercept, i.e. wi1  =  zi1  =  1.

We have a fair amount of experience with various claimsize distributions, 
and the conclusion is that the lognormal distribution in general performs very 
well. In terms of its heavy-tailedness it lies between the two distributions of 
Examples 3.1 and 3.2.

In order to assess what is most crucial for the estimation of the net premi-
ums, claimsize distributions or estimation method, we tried the full MLE with 
two more claimsize distributions, and compared the results with the lognormal 
case. These distributions were Weibull and Pareto, i.e. 

– ij i1, 1,i( t i =, ) , , ,zlnX W a N i ngwith i f f=a =� j,+ ,* *

– ij i1, 1,i( ip =, ) , , ,Pa zlnX N i ndwith i f f= =� .jb ,+ b* *

By Y  + W(a,t) we mean that

 -( 1 , 0,y e y >Y
a
y

–)
t

=F a k
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18 J. PAULSEN AND K. STUBØ

and the defi nition of Pa(b, p) is given in Example 3.2.
For the net premiums without deductibles, these three distributions give

 (

s2

–

[ ] [ ]

, ,

1 )

1 1, .

E N E

e e

e

e p p

t
1

Lognormal

Weibull,

Pareto>

� �

� �

� �

a

a

a

z w

z

w z

w

b

g

d

1

2
1

= +

+

+ -

+

* * ,X

,

G

Z

[

\

]
]

]
]

We see that all these expressions are comparable. Since we only compute
net premiums, the choice of claim number distribution does not matter much. 
The corresponding formulas with deductibles are a bit more complicated, for 
example in the lognormal case

         
s se d

–

–

( , , ) [ ] [( ]

,
z z

b

b b

s

s
ln ln

Am E N E d

e
d d�a zbw

d
2 =

=

+
**

� – –
X

F F
� �

+

)

c cc m mm
 (4.1)

where F is the standard normal distribution function.

The data analyzed are partial hull claims, i.e. total losses are excluded since 
they are usually priced separately. They are provided to us by NHC (Norwegian 
Hull Club) and cover the years 1997-2003. The data used in Paulsen et al. 
(2008) is from the same database, but covering a slightly different time period 
(1995-2001). Since shiptypes are very different, we have concentrated on two 
types, bulk and tank. According to Wikipedia, bulk ships are specially designed 
to transport unpacked bulk cargo such as grains, coal, ore and cement, while 
tank ships are designed to carry liquid in bulks. There were several covariates 
available, and we have chosen to pick from the following.

– ln S, where S is sum insured, i.e. total value of the ship.
– ln (A  +  2), where A is the age of the ship.
– ln G, where G is gross tonnage (GRT).
– I, where I is an indicator that equals 1 if  the engine is a 4-stroke and 0 if  it 

is a 2-stroke. Only these two kinds of engines are considered.

This gives for the net premium without deductibles in the lognormal case

 Se 2[ ] [ ] ,E N E G e ea a a ab b b b I1 1 2 2 3 3 4 4 5 2
1 2

= + + + +* * ( )A a+X s

where in practice several of the ai and bi are zero. Thus S, A  +  2 and G enter 
in a multiplicative fashion. Since A is zero for new ships, we chose to add
2 years to all ships. This is of course a bit arbitrary, but there is some experi-
mentation behind it.
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 MAXIMUM LIKELIHOOD ESTIMATION IN COMPOUND INSURANCE 19

The covariate ln S is always included in the claimsize distribution, and 
therefore we have not made any further corrections for infl ation.

A summary of the data and the covariates is given in Table 4.1. In addition, 
250 of the bulk policies were four stroke and 440 of the tankers. From the table 
we can see that even within the same shiptype data are very heterogeneous.

After some experimentation, assuming claims lognormally distributed, we 
ended up with the covariates given in Table 4.2.

TABLE 4.1

SUMMARY OF DATA USED IN THE STUDY. HERE d IS DEDUCTIBLE, S IS SUM INSURED, A IS AGE AND

G IS GROSS TONNAGE. SUM INSURED IS IN DOLLARS. SINCE NUMBERS ARE IN TERMS OF POLICY YEARS,
THE SAME SHIP CAN BE COUNTED SEVERAL TIMES.

POLICIES

Shiptype Policy years Claims min S
d max S

d min d max d

Bulk 3957 245 0.00071 0.370 17500 2500000

Tank 5773 440 0.00004 0.083 935 2500000

COVARIATES

Shiptype min S max S min A max A min G max G

Bulk 1048600 1.4  ·  108 0 49 309 304000

Tank 1250000 3.6  ·  108 0 46 383 261453

TABLE 4.2

COVARIATES CHOSEN IN THE ANALYSIS. BY 1 IS MEANT A CONSTANT TERM.

Claim frequency Claimsize

Bulk 1  +  ln S  +  ln (A  +  2)  +  I 1  +  ln S

Tank 1  +  ln S 1  +  ln S  +  ln (A  +  2)  +  I

In Table 4.3 estimated parameters are reported together with their estimated 
standard errors for shiptype bulk. The estimated standard errors are obtained 
from the Hessian of  the loglikelihoods at the maximum points. However,
when calculating the standard error for the pseudo-MLE Â  of A, the estimated 
Fi  (di ;  b̂,  s

2) is used as a fi xed offset, i.e. as if  b  =  b̂ and s2  =  s2 are known, and 
as pointed out in Remark 2.2 this underestimates the true standard error of 
Â. Nevertheless, these underestimated standard errors are included as a com-
parison.

We see from Table 4.3 that there are some differences in the estimated 
parameters. The standard errors of the bi are a little higher than those of the 
bi, as expected. Surprisingly, the standard error of s is lower than that of s. 
This is no contradiction, these are estimated standard deviations, not the true 
ones. The standard errors of the ai are always lower than those of the ai, but 
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20 J. PAULSEN AND K. STUBØ

as discussed above, since these are calculated using the wrong assumptions, 
this is to be expected.

It is diffi cult to read off  from the estimated parameters the impact of their 
differences when put into practical use. Therefore, in Table 4.4 we have calcu-
lated net premiums for various methods and models. To better compare these, 
we have also calculated the percentage differences 

 
–

d

d100 .m
m m

d
d=r  (4.2)

Here md is always md  (Â, b̂, s2) from (4.1), using full MLE and the covariates 
from Table 4.2. Then md estimates the same quantity, but it can be either using 
pseudo-MLE in (4.1), or using full MLE but a different distribution for the 
claimsizes, or also using full MLE and lognormal distribution, but with slightly 
different covariates, see the table caption for details. All calculations are done 
for an average ship, i.e. w and z are the averages of the wi and zi in their ship-
type category. Instead of giving the results as a function of the deductible d, 
we give them as a function of the relative deductible, i.e. of r  =  S

d .
Table 4.4 basically speaks for itself, and it is clear that pseudo-MLE gener-

ally causes less deviation than using either different claimsize distributions or 
different covariates in the claimsize distributions. Although no examples are 
given in the table, it can be mentioned that using different covariates in the 
claim frequency distribution does not matter so much for the net premium 
calculations. For small and moderate deductibles, the net premiums do not 
differ by very much. For (unrealistically) high deductibles, there are fairly large 
differences, and this matters if e.g. the model is used for pricing XL premiums 
in reinsurance. In Table 4.5 the distribution of the relative deductibles in the data 
is given, and we see that 98.73% of the bulk ships have a deductible that is
5% or less of sum insured. The two other rows in Table 4.3 is to facilitate the
comparison with the tables in Section 3, where instead of S

d , 
*[ ]E X

d
q   =  

*[ ]E X S
dS

q

is used. The factor 
*[ ]E X

S
q  is obtained by dividing average sum insured by esti-

mated claimsize, using the model from the full MLE with covariates from the 
average ship, giving an estimated factor of 37.1. This procedure, taking the

TABLE 4.3

ESTIMATED PARAMETERS WITH STANDARD ERRORS FOR SHIPTYPE BULK.
AGAIN 1 IN THE COVARIATE ROW MEANS A CONSTANT.

Parameter a1 a2 a3 a5 b1 b2 s
(Covariate) (1) (ln S) (ln (A  +  2)) (I) (1) (ln S)

Estimate full MLE –9.896 0.704 0.369 0.888 9.036 0.194 1.069
St. errors  2.355 0.182 0.129 0.171 2.223 0.135 0.089

Estimate pseudo-MLE –8.923 0.683 0.313 0.898 7.410 0.294 1.042
St. errors  2.079 0.179 0.111 0.169 2.316 0.139 0.082
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TABLE 4.4

ESTIMATED NET PREMIUMS AND RELATIVE DIFFERENCES. RELATIVE DIFFERENCES ARE AS CALCULATED IN (4.2), 
ALWAYS RELATIVE TO FULL MLE WITH LOGNORMAL CLAIMSIZE DISTRIBUTION. THE COVARIATES ARE AS IN 

TABLE 4.2, BUT IN THE ROW “ln G included” UNDER BULK, THE ADDITIONAL COVARIATE ln G IS USED IN THE 
CLAIMSIZE DISTRIBUTION. FURTHERMORE, IN THE ROW “Only ln S” UNDER TANK, ONLY A CONSTANT TERM 

AND ln S ARE USED AS COVARIATES IN THE CLAIMSIZE DISTRIBUTION. IN BOTH THESE CASES FULL MLE
WITH LOGNORMAL CLAIMSIZE DISTRIBUTION IS USED.

Rel. ded. r  =  S
d 0 0.01 0.02 0.05 0.10 0.20 0.30 0.50

Bulk

Logn. full MLE 55014 37738 27285 12992 5471 1697  733 215

Logn. pseudo-MLE 54610 37079 26438 12128 4872 1414  583 159

Weibull full MLE 57170 38036 27815 13087 4852 1006  273  30

Pareto full MLE 56952 39005 28646 14438 6853 2764 1536 703

ln G included 55163 38130 27539 12939 5317 1583  663 185

rd logn. pseudo-MLE  0.7  1.7  3.1   6.7  10.9  16.7   20.5   26.0

rd Weibull full MLE –3.9 –0.8 –1.9  –0.7  11.3  40.7   62.7   85.8

rd Pareto full MLE –3.5 –3.4 –5.0 –11.1 –25.3 –62.9 –109.5 –227.2

rd ln G included –0.3 –1.0 –0.9   0.4   2.9   7.2   10.6   16.3

Tank

Logn. full MLE 34168 24726 17384 6611 1847 290  73  9

Logn. pseudo-MLE 34453 25053 17673 6738 1876 292  73  9

Weibull full MLE 34953 24856 18097 7460 1913 157  15  0

Pareto full MLE 35474 25483 18733 8314 2794 562 174 32

Only ln S 35944 26503 19243 8189 2698 544 166 28

rd logn. pseudo-MLE –0.8 –1.3  –1.7  –1.9  –1.6  –0.6    0.5    4.0

rd Weibull full MLE –2.3 –0.5  –4.1 –12.8  –3.6  46.0   79.4   98.0

rd Pareto full MLE –3.8 –3.1  –7.8 –25.8 –51.3 –93.8 –137.0 –241.3

rd only ln S –5.2 –7.2 –10.7 –23.9 –46.1 –87.5 –126.2 –199.9

TABLE 4.5

DISTRIBUTION OF THE RELATIVE DEDUCTIBLES, I.E. DEDUCTIBLE DIVIDED BY SUM INSURED.

ESTIMATED 
*[

[

]

]

E X

E D
q

q

 FOR THE AVERAGE SHIP EQUALS 0.305 FOR BULK AND 0.155 FOR TANK.

Rel. ded. r  =  S
d 0 0.01 0.02 0.05 0.10 0.20 0.30 0.50

Bulk

Est. 
[ *]E X
d

q 0 0.4 0.7 1.9 3.7 7.4 11.1 18.6

Percentage 0 61.71 89.60 98.73 99.93 99.93 99.98 100

Tank

Est. 
[ *]E X
d

q 0 0.3 0.6 1.4 2.9 5.7 8.6 14.3

Percentage 0 62.66 85.55 95.85 99.87 100 100 100
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average of all deductibles within the shiptype to estimate Eq [D] also gave for
the average ship an estimated ratio 

*[

[

]

]

E X

E D
q

q

 equal to 0.305. Looking at the tables

in Section 3 with 
*[ ]E X

d
q  about 1.9 (the 98.73 quantile) and 

*[

[

]

]

E X

E D
q

q

 about 0.305,

we see that the loss in effi ciency in the i.i.d. case is never very large. This is
of course a different model, but the fact that for the Pareto distribution in 
Example 3.2 the loss in effi ciency was typically smaller when two parameters 
was estimated than just one gives a reason to believe that the tables of Sec-
tion 3 are not overly optimistic.

5. CONCLUDING REMARKS

Under the standard assumption that claim numbers and claimsizes are inde-
pendently distributed, when there are no deductibles or when the deductibles 
are the same for all policies, maximum likelihood estimation can be separated 
into claim number estimation and claimsize estimation. This is no longer the 
case when policies have different deductibles, now maximum likelihood estima-
tion requires that the two distributions have to be estimated jointly. For simple 
models that is usually not a big problem. For complex models an alternative 
is to use pseudo-maximum likelihood which here means that fi rst the claimsize 
distribution is estimated, and then the estimated probability of a damage exceed-
ing the deductible is used as an offset in the claim number estimation. The ques-
tion is then how big is the loss in effi ciency by using this procedure? Here we 
have focussed on the impact on the estimated net premiums for various deduct-
ibles. We have been able to theoretically quantify the relative effi ciency when 
using the pseudo-MLE versus the full MLE for simple i.i.d. models. Numerical 
examples showed that the loss in effi ciency using the pseudo-MLE is rather 
modest, at least when the deductibles are not exceedingly high, which is typically 
the case in applications. We also used data from marine insurance to calculate 
estimated net premiums for the two estimation procedures. This was done for 
two different shiptypes. Comparing the results, it again turned out that unless 
the deductibles are exceedingly high, the estimated net premiums did not differ 
very much. In fact, changing the distribution class for the claimsizes resulted 
in much larger differences, and the same happened when the distribution class 
was held fi xed, but different covariates to explain the claimsizes were used.

On the basis of our fi ndings we can conclude that a succesful use of his-
torical data to estimate net premiums depend more on the models chosen than 
on the estimation procedure. Of course, if  a full MLE is possible there is no 
reason not to use it, but the prospect of having to use pseudo-MLE should 
not be a deterrent against making realistic and useful models.
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A. APPENDIX: PROOFS

Let Z1,  …,  Zn be i.i.d. with density m(z; q, l) w.r.t. some s-fi nite measure. Let 
the loglikelihood be

 ( ( , ) ( , ) .q ll ln mq l)n i
i

n

1
=

=

Z ;/

Here (q, l)  !  Q  ≈  L where Q is an open subset of Rs and L an open subset of Rt.
Defi ne, if it exists, I as the (s  +  t)  ≈  (s  +  t) symmetric matrix blockdivided as

 

[ ( ; , )],

[ ( ; , )],

[ ( ; , )] .

q

q l

q l
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ln
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E m Z

E m Z

E m Z

l
,

,

,

q

q l
q

q l

l

l

ll

qq11
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22

=

=

=

–

–

–

H

H

H

I

I

I

The following are multivariate versions of the assumptions made in Gong and 
Samaniego (1981). 

A1. For all (q, l), l(n) (q, l) is three times continuously differentiable.
A2. Interchange of differentiantion and integration of m is allowed up to the 

second derivatives.
A3. I exists and I22 is positive defi nite.
A4. For all (q, l) there are open sets U and V with (q, l)  !  U  ≈  V so that for 

all (q1, l1)  !  U  ≈  V,

 1

( ; , )
( ; , )

( ; ),
q l

q
lln m z

m z
M z<q

1

1
1

l
d

 where Eq, l [M(Z; l1)]  <  3.
A5. For all (q, l) there are open sets U and V with (q, l)  !  U  ≈  V so that for 

all (q1, l1)  !  U  ≈  V,

| ( ; , ) | | ( ; , ) | | ( ; , ) | ( ),q q l q lln lnm z m z m z M zl <qq ql ll lll1 1 1 1+ +HlnH H

 where Eq, l [M(Z )]  <  3

A6. For any (q1, l1)  !  (q, l), Pq, l (m(Z; q, l)  =  m(Z; q1, l1))  <  1.

 ( ( ; , ) ( ; , )) 1.q l qP m Z m Z l <,q l
1 1=

The following result is a multivariate generalization of Theorem 2.2 in Gong 
and Samaniego (1981). The proof is basically the same as that in Gong and 
Samaniego and is omitted. That S12  =  0 is proved in Parke (1986).

Theorem A.1. Let Z1,  …,  Zn be i.i.d. as above and let q̂n  =   q̂n  (Z1,  …,  Zn ) be such 
that (q̂n  –  q)  =  (p )n 2

1-O . Assume that the equation 4l l(n) (q̂n, l)  =  0 has a unique 
solution l̂n for all n. Also suppose that as n " 3,
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 l–n P,q l(( , ( )) (0, )q q ln under1
N)

,q
n n "d S

d lu u

and that

 ,q l P( ( , ) (0, ) .q l
n

under1
N I)

,q
n "d

dl l

Let the (s  +  t)  ≈  (s  +  t) matrix S be blockdivided similar to I. Then S12  =  0 and 
furthermore as n " 3,

 n – Pn(( , ) ( , )) (0, ) ,q l q l underN
,q

n " S
d lu u

where S is the (s  +  t)  ≈  (s  +  t) symmetric matrix blockdivided as

 –

S

S

,

,

.

11 11

12 11 12 22

22 22 22 21 11 12 22

S

S

S

=

=

= +

1

1 1 1

-

- - -S

I I

I I I I I

It is of  course not necessary that the Zi are i.i.d. in order for a result such
as Theorem A.1 to hold. It could easily be extended to e.g. a regression-like 
model, but at the expense of more conditions. In Pierce (1982) results similar 
to Theorem A.1, but less specifi c, are given for non i.i.d. data. We think the 
i.i.d. assumption strikes a reasonable balance between simplicity and illumina-
tion of the differences in the estimation methods.

From here on, all relevant defi nitions are given in Section 2.

Lemma A.1. Assume B3 and B4. Then

 [ ( )] ,E G X Aq =*  (A.1)

 j –q B( ; ) ( ) ,q llnE f X m,q

j

N
l

1
d =

=
> H/  (A.2)

 q qj jln ln( ( ; )) ( ( ; )) ( ) ,Jq q lE f X f X m,q l

j

N
T

1
=d

=

d> H/  (A.3)

 H j (lln J–;( ) [ ( ( ; ) ( ) ( ),q q llnE f X E G X f X Am, * *q l
qq

q
qq qq

j

N

1
=

=

] m=) H H)> H/

 (A.4)

 .C–( ;D[ )] ( ) [ ( ; ) ( ; )] ( ) ( )q l q q lln lnE E D D Am m,q l
qq

q
qq qq= =FH H FN HF

 (A.5)
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In particular from (A.4) and (A.5),

 – E [ ( ) ( ; )]J qlnH A G f X* *
qq qq= q X H

and

 – E E qq–[ ( ; ) ( ; )] [ ( ) ( ; )] .J q q qlnC D D G H f X* *
qq= q qlnH XFF

Proof. Equation (A.1) is just a simple application of Fubinis theorem. For (A.2) 
we have
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Similarly for (A.3)
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and this proves the equality between the left and the right terms in (A.4). For 
equality between the middle and right terms we use (A.1), the above arguments 
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and the fact that Hqq ln g(q)  =  q( )g
1  Hqq g(q)  –  (4q  ln g(q)) (4q  ln g(q))T. Finallly, 

(A.5) follows by similar arguments.

Lemma A.2. Assume B1-B4. Then as n " 3,

 ,q ln
Pl( ( , ) (0, ) ,q l under1

N I)
,q

n "d
d l

where I is the (s  +  t)  ≈  (s  +  t) matrix blockdivided as

 – = =C( ) ( ) .K KlK andm11 11 12 12 22 22+= J ,I I I

Proof. By (2.1),
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1 1
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N D
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F
> H

/

Since the Yi are i.i.d. loglikelihood derivatives, the result follows by differen-
tating once more w.r.t. both q and l and taking expectations, using (A.3) and 
(A.4).

Lemma A.3. Assume B1-B10 and that the equation 4q  l(n)(q)  =  0 has a unique 
solution for all n. Then as n " 3,

 – l Pn S( , ( , )) (0, ) ,q q ln n l under1
N( )

,q
n "

d
q d lu

where

 .K0, =–= =S S S( ) ( )
lm C and1

11
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1 222 22
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Proof. It follows by uniqueness and Theorem 5.42 in van der Vaart (1998) that 
q̂n is consistent. Using Taylor’s formula and the defi nition of q̂n,
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where q̂n lies between q and q̂n. Here, for a three times differentiable function 
k(q), Hqq (4q  k(q)) is an s  ≈  s matrix where the i’th row equals Hqq ( iq

2
2 k(q)). 

From (2.2), (A.4) and (A.5) and the law of large numbers,

 – – Ci il l( ) [ ( )] ( ) ( ) .q q lmn H E H1
qq

q
qq

i

n

1
" =a.s.

=

J/

Therefore, arguing as in e.g. Ch. 4.2.2 in Serfl ing(1980), using Lemma A.1 we 
fi nd that w.r.t. Pq, l,

 – – q– Cn il( ) ( ( ) ( ) (1)) ( ) .q q l qmn o
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This gives

 p
l

–
(1),

l n
n

(

n

)n
i( , )

q q

q l
Y

n
o1

1
i

n

1d
= +

=

u

> H /

where

 
– q q

i

=
; ;lnX Dd

i

ln (

–i

i

1

2

(( ) ( )
.Y

Y
l

q qm lnY f N1
i

N

ij i i

il

1

1

i

d
=

-

; ( , ),q lp Nd

)
=

)

F– C

D

( )J f p

R

T

S
S
S
S

>

V

X

W
W
W
W

H
/

Since the Yi are i.i.d. asymptotic normality follows. The expressions for S11 
and S22 are also straightforward, and that S12  =  0 follows from Theorem A.1.

Proof of Theorem 2.1
By uniqueness of solutions of the likelihood equations, the result for (q̂n, l̂n) 
follows easily from Lemma A.2 and Theorems 5.41 and 5.42 in van der Vaart 
(1998). The form of SM  =  I – 1 is a consequence of a small variation of the 
formula given in Exercise 2.7 p. 33 in Rao (1973).

That q̂n  –  q  =  Op (n 2
1- ) follows again from Theorems 5.41 and 5.42 in van 

der Vaart (1998). The rest of the result for (q̂n, l̂n) is then a consequence of 
Theorem A.1 and Lemmas A.2 and A.3.

Proof of Lemma 3.1
The covariance matrix of U is

 – �( , ) [ ] [ ] ( )U U U C CE E A
1Cov T T= =q q qq –UU [ ]UE

and this proves the fi rst part. Since Eq [(AT U)2 ]  =  Eq [AT U ]2 if  and only if  AT U 
is a constant, the rest of the result follows.
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Proof of Corollary 3.1
We only prove the result for ARE(q) as the two others are similar, but more 
tedious. Note that we have

 –[ ] [ ] [ ] .E U A E U A U A C A
BB C 1and therefore Var
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= = =2 qq q, c m
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