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Abstract
This paper argues that most of the problems that actuaries have to deal with in the context of non-

life insurance can be usefully cast in the framework of computational intelligence (a.k.a. artificial

intelligence), the discipline that studies the design of agents which exhibit intelligent behaviour.

Finding an adequate framework for actuarial problems has more than a simply theoretical interest:

it also allows a knowledge transfer from the computational intelligence discipline to general

insurance, wherever techniques have been developed for problems which are common to both

contexts. This has already happened in the past (neural networks, clustering, data mining have all

found applications to general insurance) but not systematically, with the result that many useful

computational intelligence techniques such as sparsity-based regularisation schemes (a technique for

feature selection) are virtually unknown to actuaries.

In this first of two papers, we will explore the role of statistical learning in actuarial modelling. We

will show that risk costing, which is at the core of pricing, reserving and capital modelling, can be

described as a supervised learning problem. Many activities involved in exploratory analysis, such

as data mining or feature construction, can be described as unsupervised learning. A comparison of

different computational intelligence methods will be carried out, and practical insurance

applications (rating factor selection, IBNER analysis) will also be presented.

Keywords
Statistical learning; Machine learning; Intelligent agents; Risk agents; Regularisation; GLM;

Neural networks

1. Introduction

This paper aims to show that computational intelligence provides a natural framework for

understanding and managing risk in the context of non-life insurance, and possibly – although all

examples are taken from non-life insurance – in the context of life insurance, pension and risk

management as well. It does this by reviewing relevant computational intelligence methodologies,

and illustrating their possible use in non-life insurance.
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The use of computational intelligence techniques in non-life insurance is not new (see, e.g.,

Cummins & Derrig, 1997; Guo, 2003, Lemaire, 1990; Yao, 2008; Shapiro, 2004; Taylor, 2008).

This paper claims that this is not incidental: there is a profound analogy between the main problem

of computational intelligence – the discipline that studies the design of agents which exhibit

intelligent behaviour – and the problem of understanding and managing risk. The reason behind this

is that in order to manage risks successfully one also needs to understand the environment where

one operates: as an example (Terzopoulos et al., 1994), an artificial fish which has been made to live

in an artificial aquarium with other artificial fish has to learn from data, make decisions based on

limited information and compete for resources based on little certain knowledge of what its

competitors will do – much in the same way as an insurer does.

One reason why establishing this connection between non-life insurance and computational

intelligence is useful is of a theoretical nature: it leads us to a deeper understanding of the problems

we (as actuaries) face. Another reason is more practical and has to do with knowledge transfer: as

plenty of work has been done in computational intelligence on problems that are analogous to non-

life actuarial problems, many computational intelligence methods will be available off-the-shelf for

us to use. A secondary objective of this paper is therefore to provide a review of relevant

computational intelligence methods. Some of these methods (e.g. neural networks, Bayesian

networks) will be already familiar to many, but others will be new to most actuaries.

The paper is structured in two parts. In the first part (‘‘I. The role of statistical learning’’), we will

look at the role of statistical learning (a.k.a. machine learning) in risk costing, which may be defined

as the problem of estimating the future cost of risk and is an essential part of the three fundamental

activities of non-life insurance: pricing, reserving, and capital modelling.

Section 2 (‘‘Learning from data’’) shows that the problem of risk costing can be cast in the

framework of statistical learning theory, the branch of computational modelling which is concerned

with selecting and validating models of the environment. More specifically, we will see how risk

costing is an example of supervised learning. This is most obvious when many variables are

involved, such as in rating factors selection; however, it is a general fact that also applies, for

example, to the simple problem of fitting a severity distribution to a sample of data points.

Unsupervised learning will also be shown to play an important part in risk costing, as it provides

useful methods for discovering hidden patterns in data and has been successfully used in exploratory

analysis and data mining (Section 3, ‘‘Exploratory analysis’’).

Section 4 (‘‘Conclusions’’) draws the partial conclusions of this first part of the investigation.

In the second part of this paper (‘‘II. Dealing with uncertain knowledge’’), we will focus on how to

deal with uncertain data and knowledge, and how to make decisions in an uncertain environment.

2. Learning from Data

The fundamental actuarial problems of non-life insurance – pricing, reserving and capital modelling –

require a risk costing exercise which is (to a varying extent) driven by historical data. Predictive

modelling, a technique widespread among actuaries, is also an example of risk costing: it attempts to

infer from the data the factors that better explain the risk in order to price different policyholders a

different amount of money, or to reserve different types of claims differently.
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2.1. Generalities on supervised learning

Data-driven risk costing is a straightforward example of a statistical learning (a.k.a. machine

learning) problem. Specifically, it is an example of supervised learning. We will see that statistical

learning has a very rigorous way of building models based on data, parametrising them and

validating them. Also, it has developed many different techniques for building models, some of

which are little known to the actuarial community.

The term ‘‘learning’’ comes from the fact that we are trying to learn1 the features of a model (structure

and parameters) based on a sample of inputs and outputs, e.g. in rating factor selection the outputs are

the claims and the inputs are the candidate rating factors. The term ‘‘supervised’’ reflects the fact that

we know a number of actual outputs (e.g. the actual claims), and these drive our choice of the model.

For this reason, supervised learning is also called ‘‘learning with a teacher’’: during the training stage,

the teacher feeds the model with pairs of inputs and outputs, and then selects a model. During the

testing stage, the model is checked against new pairs of inputs and outputs.

A more mathematical definition, based on the discussion of statistical decision theory in Hastie et al.

(2001) (Section 2.4), is given below. According to this definition, supervised learning is a problem of

functional optimisation.

Supervised learning Given: (i) a real valued random input vector X2Rp, (ii) a real valued output

vector Y2R with joint distribution Pr(X,Y), (iii) a loss function L(Y, f(X)), that maps pairs (Y, f(X)) into

positive real numbers, find Y 5 f(X) that minimises the expected prediction error EPE(f ) 5 E(L(Y, f(X))).

This definition is helpful but loose: for example, it does not say to which class of function f must belong.

In many cases, a countable dictionary of basis functions {fa}aAN (the ‘‘basis functions’’) will be specified,

and f will be required to be written as a linear combination of these basis functions: f(x1, x2,yxn) 5P
aaa fa(x1, x2,yxn), with

P
ajaaj

2,N. However, other possibilities exist, as we will see later.

As mentioned above, supervised learning is a two-stage process: (i) a training stage during which a

model is fitted to the training data, i.e. a sample of pairs ðXi;YiÞ; i ¼ 1; . . .K
� �

, and (ii) a testing

phase, during which the model’s goodness-of-fit is assessed against an independent subset

ðXi;YiÞ; i ¼ K þ 1; . . .N
� �

of the data available.

One key issue is, as expected, the choice of the loss function. The most popular loss function for

regression is the squared loss LðY; f ðXÞÞ ¼ Y�f ðXÞ
�� ��2

L2
, where the functional �k k 2

L2
is the L2 -norm,

defined as f�g
�� ��2

L2
¼
R
O f ðxÞ�gðxÞð Þ

2dx for continuous functions and reducing to f�g
�� ��2

l2
¼P1

i¼ 1 f xið Þ�g xið Þð Þ
2 for discrete functions. Examples of alternative choices are the l1 norm, the lN

norm, the log P norm, etc.

2.2. Model selection

When selecting a model to interpret historical data, our main objective is to find one which has good

(possibly optimal) predictive accuracy when presented with new independent data. It turns out that

prediction accuracy is somehow related to the model complexity2.

1 Notice the linguistic change: in classical statistics we would have used ‘‘estimating’’ or ‘‘calculating’’ rather

than ‘‘learning’’.
2 Note that there is no universal measure of complexity in the context of learning algorithms. Rather,

complexity is problem-specific: for example, the number of parameters in a statistical model, or the effective

number of parameters in a neural network.
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This relationship is illustrated in Figure 1, which shows the expected prediction error on both the

training set (training error) and a test set (test error). The training error:

err ¼
1

N

XN
i¼ 1

L yi; f̂ xið Þ

� �
ð1Þ

always decreases as the model becomes more complex, as the model adapts to the nuances of the

historical data. However, the test error:

Err ¼ E L Y; f̂ ðXÞ
� �h i

ð2Þ

is large when the complexity is low (when the model is too simple to capture the regularities of the

data), then decreases, and then picks up again (when the model starts overfitting the data). There is

a point where the expected prediction error is minimal – the optimal complexity. The idea is that

our model will have predictive power if it identifies the genuine regularities in the data, without

adding any spurious features.

2.3. Model validation

The expected prediction error also guides the process of validating the model. With Solvency II

approaching, validation has become a topical issue in insurance. The reader is referred for example

to the report of the working party on model validation and monitoring presented at GIRO 2009 by

Berry et al. (2009) for a review.

The reason why the problem of model validation is so topical is that actuaries are subject,

in their daily practice, to the pitfalls of data snooping. Data snooping (a.k.a. data dredging, or data

fishing) is what happens when a data set is used to discover regularities, and the same data set is

used to test the statistical significance of these regularities. This is a particularly important concern

in disciplines where one makes intensive use of data mining (data mining will be mentioned more

extensively in Section 3), e.g in medical research (see for example the papers White, 2000 and by

Ioannidis, 2005).

Optimal
complexity

Model complexity
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Training set error
Validation set error

Figure 1. This graph illustrates a general behaviour of learning algorithms: the more complex the
model becomes, the lower the training set error (red line). As for the validation set error (green line),
it first decreases with complexity, and then picks up again. Model selection aims at striking the right
balance – finding the optimal complexity (the minimum in the graph above).
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That this is a common problem in actuarial practice may be realised by the simple example of

determining the severity distribution that fits a number of losses. If this is done without a clear

hypothesis to test (e.g., that the severity distribution be a lognormal) one ends up choosing that

severity distribution among those on offer in a distribution-fitting tool which happens to conform to

the data in the closest fashion, perhaps because it has the lowest Kolmogorov-Smirnov distance

(or any other statistical criterion). However, this closeness has typically no predictive value on

future losses, since by choosing among, say, 20 distributions, some of which have 3 or 4 parameters,

we are almost always bound to find a good fit by sheer chance. In other words, we have discovered

regularities that are not really there.

Statistical learning provides the ideal framework to deal with data snooping as rigorously as

possible, in that it provides clear protocols for model validation, by separating the process by which

the model is chosen from the process by which the model is validated.

The first step in understanding how this can be done is recognising that the only genuine and general

way of validating the model is against data points that have not been used during the learning

process: in the severity distribution example above, the only way of gaining confidence in the fact

that we have selected the correct distribution is to make sure we test our severity model against

losses that have not been used to choose the model in the first place.

In general (and ideally) one should divide the database randomly into three data sets: the training

set, used to fit and parameterise all the candidate models; the validation set, used to estimate the

expected prediction error on all candidate models, with the purpose of selecting the model with the

lowest expected prediction error; the test set, used to estimate the expected prediction error on the

‘‘best’’ model as selected in the previous step. This is a rigorous and general method, and has the

advantage of fully decoupling model selection and model validation. For the process to be rigorous,

the test set should be used only once, during the final estimation of the prediction error.

The three-sets method described above is fine in a data-rich situation, but may be unworkable

where data are scant. For this reason, approximate alternative methods to calculate the expected

prediction error EPE(f) are often used. Two of them, K-fold cross-validation and information

criteria, are explained below. More information is available in Hastie et al. (2001, Chapter 7).

Cross-validation. Cross-validation, or more specifically K-fold cross-validation, estimates the extra-

sample test error by dividing at random the data set into K different subsets. Each subset k 5 1,y K

is in turn removed from the data set and the model is fitted to the remaining K-1 subsets. The k-th

subset is used as a test set. The process is repeated for all subsets and the cross-validation estimate of

the prediction error is given by

CV ¼
1

N

XN
i¼ 1

L yi; f̂
k ið Þ

xið Þ

� �
where k : f1; . . .Ng7!ð1; . . .KÞ is an indexing function mapping the partition to which observation

i is allocated by the randomisation, and f̂
kðiÞ
ðxiÞ is the fitted function calculated with the k(i) -th

subset removed.

For model selection purposes, we do not have a single model to cross-validate but a set of different

models f ðx; aÞ indexed by a parameter a, which may represent for example the complexity of
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the model. For this set of models, we have a different value of CV(a) for every a, and the function

CV(a) is effectively an estimate of the test error curve depicted in Figure 1. The optimal model is

then f ðx; anÞ, where a* is the value that minimises CV(a).

One key issue with cross-validation is of course the choice of K. Anything from K 5 2 to K 5 N is

possible. Typical values are K 5 5 and K 5 10.

Analytical criteria. The use of the three-set protocol and cross-validation is not widespread among

actuaries, and usually limited to practitioners in personal lines insurance. One reason is that many

methods that actuaries use for feature selection come with built-in mechanisms to avoid using too

many features.

One such mechanism is the Akaike Information Criterion (AIC), which applies to maximum

likelihood estimators: adding one parameter to a statistical model can only be justified by a gain in

the log-likelihood at least equal to two. Several other analytical approaches are also possible. All of

these methods punish complexity, playing the same role as regularisation, and none of them requires

validating the model on a different set.

For a better understanding of how these methods work, notice that beside the training error

(Equation (1)) and the test error, a.k.a. extra-sample error (Equation (2)), we can define a third type

of error, the in-sample error, which gives the distance between the model and an independent sample

which shares with the original sample the points at which the model is evaluated. The idea is that

part of the discrepancy between the model and the test sample is due to the model being poor, and

part is due to the fact that in general the points at which the model is calculated differ from those of

the training sample. The in-sample error is defined as

Errin ¼
XN
i¼1

EyEYnew L Ynew
i ; f̂ xið Þ

� �

where the xi
0s are the training points and Ynew is the new response at the same points.

The in-sample error is not a completely satisfactory estimate of model error, and therefore is not

completely satisfactory for model validation purposes. However, it usually does a good job for

model selection purposes, where the main issue is not the absolute size of the error but how the error

of one model compares to the other.

The Akaike information is an estimate cErrin of Errin that can be used in the case of a log-likelihood

loss function (as is the case for GLM). It can be shown that the following holds:

cErrin / AIC ¼ �
2

N
loglik þ 2

d

N

asymptotically as N-N. As usual, loglik in the equation above is the maximised log-likelihood.

The Akaike Information Criterion for model selection prescribes to choose the model with the

smallest AIC over the set of models considered3.

3 A misconception about AIC is that it only serves to discriminate between nested models. This mis-

conception arose because Akaike himself stated that that was the case in his original paper. He later showed that

his criterion applied to any pair of models, but the misconception lingered on.
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A modified version of the AIC, denoted AICc, has been proposed to deal with the case when the

number of data points N is small or the number of parameters d is large:

AICc ¼
1

N
�2 loglik þ 2 d þ

2 dðd þ 1Þ

N�d�1

� �
Using this criterion – which obviously converges to AIC when N-N – has been shown to decrease

the probability of overfitting. This is also achieved by the Bayesian Information Criterion below.

The Bayesian Information Criterion (BIC) has a similar form to AIC:

BIC ¼ �2 loglik þ d log N

Since the factor 2 is replaced with log N, when the number of data points is 8 or more the penalty

for more complex models is larger for BIC for N . 8. It arises in the context of Bayesian model

selection, Bishop (2007), as the posterior probability of a model Mr given a choice among R

possible models and training data Z is

Pr MrjZð Þ ¼
e�

1
2 BICrPR

r¼ 1 e�
1
2 BICr

Other estimates of the in-sample error can be obtained using the Minimum Description Length

(MDL) criterion (Grunwald et al., 2005), which is formally identical to BIC, and the bootstrap

(Hastie et al., 2001).

Comparison of selection/validation methods. We now discuss how the different selection/validation

methods compare to one another.

> AIC and BIC are less general than cross-validation. They can be used in their basic form only for

the log-likelihood loss function and when the number of degrees of freedom is defined. For certain

nonlinear models, such as neural networks, the number of degrees of freedom can sometimes be

replaced with the effective number of parameters (see Hastie et al., 2001). However, for complex

models this soon becomes very difficult and AIC, BIC become impractical:

> the AIC and BIC tend to overestimate the test error by a much larger amount than cross vali-

dation. This may be a problem in model selection (but only if this changes the relative order of

models) and is certainly a problem in model validation, because the test error is exaggerated;

> BIC v AIC: BIC is asymptotically correct, in the sense that as the number N of data points tends to

infinity, the true model is selected with probability 1. AIC does not have this property, and it tends

to favour more complex models when N becomes very large. At the same time, BIC tends to over-

punish complexity for finite samples and pick models that are too simple;

> BIC, AIC are simpler to calculate than cross-validation, as they do not require splitting the data

into subsets and calculating the parameters many times.

Cross-validation therefore appears to be a far more general and more rigorous methodology, which

however often requires more discipline and extra work.

2.4. Efficiency of model selection/validation methods

A good model selection algorithm should be able to determine what the best model is and what its

parameters are in an efficient way – i.e. with low computational complexity.
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The brute-force approach to best subset selection, which simply looks all possible combinations of

features to choose those to include in the model, is computationally intractable (see Papadimitriou,

1994), as the time it takes to perform the selection increases exponentially with the number of

features (‘‘combinatorial explosion’’).

There are two typical approaches to break intractability:

> Use greedy algorithms: that is, start with a very basic model (for example one that includes

no features) and then start adding the features one by one, each time selecting the features

that give the most impressive results, e.g. the one that explains most of the variance. This

is the approach which is probably the most familiar to actuaries. The problem with this approach

is that there is no guarantee that a global minimum (a truly optimal subset of features) will be

reached: the order by which we add new features matters (especially when the features are

correlated).

> An alternative to greedy algorithms are the sparsity-based regularisation schemes such as the lasso

or elastic net, which will be introduced in Section 4.2. These work by adding a penalty term to the

loss function, thus creating a regularised loss function. The size of the penalty term is controlled

by a multiplicative parameter. By tuning this parameter, a different subset of features is auto-

matically selected. This is called continuous subset selection and in many cases can be performed

quite efficiently, as we will see in Section 2.6.

We now look into the most widespread techniques for feature selection, starting from that

which is most popular among actuaries, generalised linear modelling. Regularisation theory and

neural networks will also be described, and a comparison between the different methods will then

be attempted.

2.5. Model selection by GLM with forward/backward selection

GLM is an extension of the linear model, in which the outputs Y are related to the inputs

X ¼ ðX1; . . .XnÞ through a matrix of coefficients b, with the addition of Gaussian noise e which is

usually assumed to be independent of X : Y ¼ X � b þ �. The extension works by: (i) replacing the

simple linear combination of inputs with a linear combination of a wider dictionary of functions

cjðXÞ, e.g. X1; X1X2; log X1 þ X2ð Þ; . . .; (ii) replacing the Gaussian noise with a more general type

of noise, belonging to the so-called exponential family, which includes among the others Gaussian,

binomial, Poisson and Gamma noise and is dependent on X; (iii) introducing a further link function

g which transforms the responses so as to enforce certain constraints on the output (e.g. positivity).

This yields the general form of a GLM:

Y ¼ g�1
X

j

bj � cjðX1; . . .XnÞ þ �

 !

The parameters of a given model f Xð Þ ¼
P

jbj � cjðX1; . . .XnÞ can be calculated by maximum

likelihood estimation, or in other words by minimising a log-likelihood loss function:

L Y; f Xð Þð Þ ¼ �2 log Prf Xð ÞðYÞ

where the factor ‘‘2’’ has been introduced so as to reduce to the standard squared loss in the case of

Gaussian noise.
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As an example, claims frequency is usually modelled by a GLM with a Poisson link function and

Poisson noise, whereas claims amounts are often modelled using Gamma noise. See Modlin et al.

(2004) for a more thorough discussion.

The specific model for a set of data is usually selected using a greedy approach. This comes in two

varieties, forward selection and backward selection. Forward selection starts from the simplest model,

Y 5 constant, and adds at each step the function cj (X1,yXn) that reduces the loss function by the

largest degree4. Backward selection starts from the most complex model and removes functions one

by one: however, this method can only be applied when the dictionary of functions is finite.

To decide whether the selected additional function in forward selection is actually an improvement,

a typical test is to check whether the AIC decreases. A simplified, less rigorous test is whether the

coefficient of the newly introduced function is significantly different from zero.

2.6. Model selection by regularised regression

The main idea of regularisation as a tool for model selection is that minimising the functional

EPEðf Þ ¼ EðLðY; f ðXÞÞÞ on an independent sample is equivalent to (or rather, can be approximated

by) minimising a different regularised functional on the training sample:

f̂ ¼ argminb E L Y; f Xð Þð Þð Þ þ lgbðXÞ
n o

ð3Þ

The term gbðXÞ is called a penalty term and embeds our prior knowledge on what the desirable

features of the parameters are. The most famous example is ridge regression (or Tychonov

regularisation), in which5 gb Xð Þ ¼ b
�� ��2

l2
: in this case the idea is that coefficients should be as small

as possible.

Although theoretically any loss function could be used in Equation (3), in practice quadratic loss is

usually adopted when modelling quantitative (rather than categorical) responses, and most

computational methods to derive solutions have been devised for the quadratic loss case.

Table 1 shows some examples of regularisation schemes. Ridge regression has a long history, dating

back at least to Tychonoff’s work on ill-posed problems (Tychonoff, 1943), and is probably the best

known to actuaries. The reasoning behind this is that in the case of correlated variables, solutions

where one large coefficient is compensated by another large coefficient of opposite sign for a

correlated variable are common. The l2 penalty term tends to shrink the coefficients, keeping this

behaviour at bay, and therefore preventing the inclusion of spurious factors.

One of the advantages of ridge regression was that an analytical solution is available (see Table 1).

As computing power became more easily available, it was possible to experiment with other

types of penalty, achieving more sophisticated effects. In 1996 Tibshirani introduced the lasso, a

simple modification of Tychonoff’s regularisation scheme where the l2 penalty term was replaced

4 Assuming that the dictionary of functions is finite. When the dictionary is (infinite) countable, we need to

impose constraints on how we add functions. For example we may demand that at each step we only add one

extra variable of the n variables allowed.
5 The l2 norm is defined as the sum of squared differences over a Hilbert space: a�b2

l2
¼
P1

i¼1 ðai�biÞ
2, and

reduces to the standard Euclidean distance when the number of components is finite. The l1 norm is defined

similarly as a�bl1
¼
P1

i¼1 ai�bi

		 		.
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with an l1 term. The loss of the nice analytical properties of the ridge regression is compensated by

the fact that the lasso has the (perhaps surprising) effect of enforcing sparsity, i.e. forcing the

coefficients of the least important factors to zero and by that keeping the model simple. The

underlying reason for this counterintuitive effect is illustrated in Figure 2.

The most significant drawbacks of the lasso are that (Zou & Hastie, 2005) (i) when the number p of

predictors is larger than the number N of observations, the lasso selects at most N variables then

saturates; (ii) if there is a group of variables among which the pairwise correlations are very high,

the lasso tends to select only one variable from the group; (iii) when large pairwise correlations are

involved, the lasso has been shown to perform worse than ridge regression.

These are burning issues in some contexts, such as DNA microarray data analysis, which attempts

to find the combinations of genes responsible for a disease. In this case, the number of predictors

(genes) is typically larger than the number of observations (DNA samples). Furthermore, some of

the genes are highly correlated as they are part of small interacting networks which have to be

identified fully to understand the underlying biological mechanism. This has provided the

motivation to Zou & Hastie (2005) to come up with a regularisation scheme which would

overcome lasso’s shortcomings while preserving its sparsity-enforcing properties. The results of this

Table 1. Examples of regularisation schemes.

Regularisation

scheme Regularised functional Notes

Non-regularised Y�fbðXÞ
�� ��2

l2
> The solution is the standard least square solution:

b̂ ¼ XTX

 ��1

XTy (a linear function of the

observations)

Ridge regression

(Tychonoff, 1943)
Y�fbðXÞ
�� ��2

l2
þ l b
�� ��2

l2
> Performs coefficient shrinkage

> It has a simple analytical solution:

b̂ ¼ XTX þ lI

 ��1

XTy

Lasso (Tibshirani,

1996)
Y�fbðXÞ
�� ��2

l2
þ l b
�� ��

l1 > Note that the l1 norm (sum of absolute values) is

used in the penalty term

> Performs factor selection and coefficient shrinkage

> There is no analytical solution: the solution can be

obtained by quadratic programming, or by least

angle regression (Efron et al., 2004), which takes the

same time to compute as a single least squares

calculation

> Has problems when there are groups of variables

with strong correlations – only one variable from

each group is often selected in this case

Elastic net

(Zou & Hastie,

2005)

Y�fbðXÞ
�� ��2

l2
þ l b
�� ��2

l2
þm b
�� ��

l1
> Performs factor selection and coefficient shrinkage

> No analytical solutions

> Can address the case where the number of predictors

is .. of the number of data points

> Can also address the problems with correlation faced

by the lasso
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effort were the elastic net, which is effectively a hybrid of ridge regression and the lasso and uses a

composite l2/l1 penalty term (see Table 1). De Mol et al. (2009) provided mathematical foundation

for this regularisation scheme, showing that the elastic net solution can be interpreted as the fixed

point of a contraction in a Banach space, and that under suitable conditions the elastic net estimator

is consistent for both prediction and variable selection purposes.

Bayesian interpretation. It should be noted that all the regularisation schemes mentioned above are

liable to a simple Bayesian interpretation. In this framework, we are looking for the values of the

parameters that maximise the posterior probability given the data, and the penalty term

corresponds to the prior probability on the coefficients. The ridge regression penalty term

corresponds to a multivariate normal prior probability centred around zero: PrðbÞ / expð�l b
�� ��2

l2
Þ;

the lasso regression, to a Laplace distribution: Pr bð Þ / expð�m b
�� ��

l1
Þ; the elastic net to the

distribution PrðbÞ / expð�l b
�� ��2

l2
þ m b
�� ��

l1
Þ. This sheds further light on the nature of regularisation,

which is ultimately the incorporation of prior knowledge of the model into the fitting process. The

ridge regression reflects the belief that the parameters are small; the lasso reflects the belief that the

model is sparse; the elastic net reflects both beliefs.

Applications to general insurance. The lasso provides a simple alternative to the ‘‘GLM with

forward/backward feature selection’’ paradigm commonly used in insurance. This way is both

rigorous and efficient. As to the drawbacks listed above, the ‘‘large p, small N scenario’’ is usually

not a concern, at least for personal line insurance applications, but it may become so in applications

with sparse data (see Section 2.7 below).

The deterioration of prediction performance in the N . p scenario when highly correlated variables

are present is instead something that is quite applicable in our context, as many variables that are

considered during the underwriting process, such as the age of the driver and whether the policy

purchased is comprehensive or third-party, fire and theft (TPFT) liability only are strongly

correlated. An elastic net regularisation scheme might therefore be more adequate in many contexts.

The presence of small cliques of predictors that need to be preserved, however, seems to be more

specific to biology: there seems no harm in selecting any of a group of correlated variables as long as

the overall performance is good.

Figure 2. In the figure above, the ellipses represent points for which Y�fbðXÞ
�� ��2

l2
is constant,

whereas the geometric figure around the (0,0) point represents the set of points for which b
�� ��

l1
o s

(lasso, left) or b
�� ��

l2
o s (ridge regression, right). The minimisation of the regularised functional is

equivalent to the problem of finding b such that Y�fbðXÞ
�� ��2

l2
is minimal, subject to the condition

that b
�� ��

l1
o s ð or b

�� ��
l2
o sÞ. This will occur at a point for which the ellipsis just touches the circle/

rhombus. For ridge regression, this intersection point can be anywhere. In the case of the lasso, the
intersection is likely to be at one of the vertices for the lasso. This figure is taken from Hastie et al.
(2001, p. 71).
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2.7. Model selection by neural networks

Neural networks were initially developed as simple models for the human brain. The basic units of the

network correspond to the neurons, and the connections between these units correspond to the synapses.

This provided the inspiration for much research into artificial intelligence, in the hope to emulate the

desirable characteristics of the brain, such as Hertz et al. (1991): its robustness and fault tolerance; its

flexibility and ability to learn; its ability to deal with fuzzy, noisy or inconsistent information.

Research on artificial neural networks has gone in waves. The first wave can be traced back to a work

by McCulloch & Pitts (1943), and has culminated in a number of works by Rosenblatt (1958) in the

1960s on perceptrons, which were networks of neurons organised in layers, such as that in Figure 3,

with weights associated with each connection. The first generation of perceptrons – which were

single-layered – were found not to be able to perform some elementary computations (Minsky &

Papert (1969), and research stagnated, until in the mid-1980s the back-propagation algorithm (an

example of the gradient descent method) for updating the weights of a multi-layered neural network

was discovered by Rumelhart et al. (1987). Neural networks have ever since been applied to a wide

range of problems, from computer vision to particle physics, and as John Denker, an aviation scientist,

once famously remarked, they seem to provide ‘‘the second best way of doing just about anything’’.

Many researchers, however, have found it difficult to accept this paradigm, as the solutions it provides

are not transparent - neural networks work, but it is difficult to understand why!

As Hastie et al. (2001) observe – rejecting both the hype and an outright rejection, neural networks

are simply examples of non-linear statistical models, much like project pursuit regression.

Neural networks come in many flavours, the most classical of which is the single hidden layer, feed-

forward neural network shown in Figure 3. The single hidden layer, feed-forward neural network

shown there can be used for both regression and classification, although for regression there is only

one output ( whereas for classification more outputs are needed, the number K of units at the top

typically being equal to the number of classes.

The units at the bottom layer are called either features or simply inputs; those in the hidden layer are

called hidden units or derived features; and those of the top layer are called either outputs or responses.

Let us outline the main ingredients of the neural network model of Figure 3 and the equations

regulating its behaviour:

> Inputs: X1; . . .Xp

> Derived features: Z1; . . .ZM, where Zm ¼ s a0m þ aT
mX


 �
, m 5 1,yM. In this equation s is the

activation function. The most popular choice for the activation function is the sigmoid function,

s vð Þ ¼ ð1 þ exp �vð ÞÞ�1

Figure 3. A single hidden layer, feed-forward neural network.
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> Outputs: Y1; . . .YK, where Yk ¼ f k Xð Þ ¼ gk b0k þ bT
k Z


 �
, k 5 1,yK. Typically, g(T) 5 T

(identity function) for regression problems.

Solving a problem with a neural network means finding the correct weights y ¼ a0m; amjm ¼ 1; 2 . . .M;f

b0k; bkjk ¼ 1; 2 . . .Kg to use for a specific problem. The parameters are learned from the data

during the training stage, by minimising a suitable loss functions. For regression, this is normally the

sum of squares:

R yð Þ ¼
XK

k¼ 1

XN
i¼ 1

yik�f kðxiÞ

 �2

The minimisation can be performed for example by back-propagation, which is an application of

dynamic programming.

A key issue with neural networks is that since there are usually many weights there is a

danger of overfitting, by adapting too closely to the nuances of the data. To avoid this one can

introduce a penalty term and find a regularised solution, for example by minimising

R yð Þ þ lJ yð Þ instead of R yð Þ;where J yð Þ ¼
P

kmb
2
km þ

P
mla

2
ml. This form of regularisation is

called weights decay and is analogous to ridge regression. Alternatively, one can use (as it used

to be in the early days of neural networks) an early stopping rule, by which the training of the model

is stopped way before a global minimum is reached.

It should be noted that neural networks are very general and that when they include hidden layers

they can express any function6 (see the list of examples in Lowe & Pryor, 1996). Furthermore, they

can be validated like any other method and should not therefore be rejected on the grounds that

their results are not reliable.

There is, however, another important reason why neural networks are not suitable for many

applications, and it is their lack of transparency: it is difficult to interpret the results of these models.

Neural networks ‘‘are effective where prediction without interpretation is the goal’’ (Hastie et al.,

2001) – less so when it is important to understand the roles of individual inputs. E.g., they will

determine how much a specific customer should be charged, but it will not be obvious what

characteristics of the customer have led to that decision. However, the extraction of explanations

from neural networks is the topic of active research (see, e.g., Jacobsson (2006), and the very brief

discussion of how some authors address the interpretation problem in Hastie et al., 2001).

Applications to insurance. In certain circumstances, the opacity of neural networks may be an

advantage as a detailed model specification is not required.

However, the fact that it is difficult to interpret the results of neural networks is certainly a problem

in general because they are not going to help us with understanding risk. It is therefore difficult to

see how underwriters, managers at an insurance company or the regulator could accept lightly

pricing, reserving, capital modelling decisions based on neural networks. Furthermore, they are

computationally very demanding.

Despite this problem, some applications of neural networks to general insurance have been

attempted, for example by Dugas et al. (2003), which investigated their use for motor rating in

North America. Furthermore, neural networks are routinely used for exploratory analysis as part of

data mining and in other financial contexts such as for credit card fraud detection.

6 This is a weaker statement than stating that neural networks can learn any function.
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Let us now present a simple specific example from general insurance to make it easier to follow the

subsequent sections, and go through some general considerations regarding how models should be

selected and validated.

2.8. Other methods for supervised learning

This section is a quick foray into a number of more advanced statistical learning techniques, which

could be loosely grouped under the header of ‘‘kernel methods’’. The reader who is keen to explore

the topic in more depth is referred to the books by Bishop (2007), Hastie et al. (2001) and MacKay

(2003). This section follows mainly Bishop (2007) (chapters 6 and 7) in the way the material is

presented. As usual, we have focused on the problem of regression, although all of these methods

can be equally well (and sometimes more naturally, as is the case of support vector machines) used

for classification purposes.

Kernel methods
Kernel methods are based on the observation that for many learning algorithms the predicted

output is a function of the features (basis functions) cjðxÞ built upon the input vector x only through

the scalar product wT ðxÞw ðx0Þ. The idea then arises to replace such scalar product with another

function k(x,x0) of the inputs which exhibits some desired properties, e.g. to depend only on the

distance ||x–x0|| between x and x0. Commonly used kernels are:

> k x; x0ð Þ ¼ xTx0 (linear kernel)

> k x; x0ð Þ ¼ wT
ðxÞwðx0Þ (linear kernel – linear in the features space)

> k x; x0ð Þ ¼ k x� x0ð Þ (stationary kernel)

> k x; x0ð Þ ¼ k kx� x0kð Þ (homogeneous kernel, or radial basis function)

> k x; x0ð Þ ¼ expð�kx� x0k2=2s2Þ (Gaussian kernel – an example of a homogenous kernel)

There are many ways to construct valid kernels (see Bishop (2007) for a review) and one crucial

aspect of this is that kernels can be defined over such disparate objects as sets and graphs.

To see with a simple example how kernels arise in practice, consider a least-squares problem solved

with ridge regression, which involves minimising the regularised error function

J bð Þ ¼
1

2

XN
n¼ 1

ðbTw xnð Þ�tnÞ
2
þ

l
2

bTb

Given a new input x, the predicted output for such model is

y xð Þ ¼ bTw xð Þ ¼ k xð ÞTðK þ lINÞ
�1t

where K is the Gram matrix K ¼ WTW, an N 3 N matrix with elements

Kn;m ¼ w xnð Þ
Tw xmð Þ ¼ kðxn; xmÞ ð4Þ

and k(x) is the vector whose elements are k(xn, x). Therefore, the least-squares solution is expressed

solely in terms of the kernel function k and the vectors and matrices built upon it. As a result, it is

possible to replace the linear kernel with another valid kernel (i.e. a kernel for which the Gram

matrix is positive semidefinite) and the solution will still be in the format above. Note that this also

makes it unnecessary to introduce basis vectors ca

� �
explicitly.
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Gaussian processes
Gaussian processes can be viewed as an application of kernel models: for a Gaussian process, the

kernel is simply the covariance function of the predictor. However, Gaussian processes have a more

general interest in that they represent a different approach to supervised learning based on a

Bayesian framework, and therefore deserve to be given some space on their own.

The ideas around Gaussian processes have been around for a long time and in such diverse fields as

geophysics (where Gaussian process regression is called kriging) and control theory (the Kalman

filter can be seen as an example of Gaussian process). The most comprehensive text on Gaussian

processes is the book by Rasmussen & Williams (2006). More succinct treatments can be found in

MacKay (2003) and in Bishop (2007), this paper combines the material in these books.

We saw in Section 2.6 that many regularisation schemes are liable to a simple Bayesian

interpretation: a particular choice of the penalty function can be viewed as the imposition of a prior

distribution on the parameters of the model in the form y x;bð Þ ¼ bTw xð Þ (a linear combination of

basis functions). The prior distribution incorporates our prior expectations on the model, e.g. that

the coefficients b be as small as possible, or that the model is as sparse as possible (fewer basis

functions involved).

More generally, in a Bayesian framework the problem of supervised regression can be reformulated

as the problem of inferring the true function y(x) based on a set of noisy observations t1; . . . tNf g

corresponding to input data points fx1; . . . xNg : tk ¼ yðxkÞ þ �k where ek is random noise. A prior

distribution Pr(y(x)) is defined directly over the space offunctions. Upon presentation of a new

input x, we can calculate the predictive distribution for y(x) conditional on the data:

Pr y xð Þjt1; . . . tN; x1; . . . xNð Þ ¼
Pr t1; . . . tNjy xð Þ; x1; . . . xNð ÞPrðy xð ÞÞ

Pr t1; . . . tNjx1; . . . xNð Þ
ð5Þ

Naturally if our model is parametric, e.g. y x;bð Þ ¼ bTw xð Þ, the prior distribution on y(x) will

simply correspond to a prior distribution Pr(b) on the coefficients b. However, the inference process

described above is more general and also holds when Pr(y(x)) is defined on the space of functions

directly.

Gaussian processes can now simply be defined as a way of associating a probability distribution

Pr(y(x)) over functions y(x) so that the vector fy x1ð Þ; . . . y xNð Þg of y(x) evaluated at an arbitrary set

of points x1; . . . xN follows a joint Gaussian distribution which is (by definition) completely

specified by its mean and covariance matrix. Since we are working in the space of functions, both

the mean and the covariance are themselves functions: specifically, the covariance C(x, x0) is a

function which expresses the covariance between the values of the function y at points x and x’.

Let us now go back to our supervised regression problem tk ¼ yðxkÞ þ �k. In a Gaussian process,

the error ek is itself Gaussian: � � N 0; b�1

 �

, where b represents the ‘‘precision’’ of the noise. The

joint distribution on the data points t1; . . . tN conditioned on x1; . . . xN is again Gaussian and is

given by t � N 0;Cð Þ where

C xn; xmð Þ ¼ k xn; xmð Þ þ b�1dnm ð6Þ

The reason why there are two terms in this covariance matrix is that there are two sources of

randomness which are independent: first of all y(x) is a random element in the space of functions
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(distributed according to a Gaussian distribution by definition) and that of the random noise. Since

the two sources of randomness are independent, their covariances simply add up.

The interesting term in equation (6) is the kernel k xn; xmð Þ, which is the Gram matrix

for the noiseless version of the Gaussian process (e5 0). For a parametric model using basis

functions, e.g. y(x,b) 5 bTc(x), the kernel k xn; xmð Þ is given by equation (4). However, we can use

the kernel trick and replace it with, e.g., a Gaussian kernel k x; x0ð Þ ¼ expð�kx�x0k2=s2Þ or an

exponential kernel k x; x0ð Þ ¼ expð�y kx�x0kÞ, obtaining Gaussian processes that do not use basis

functions.

We are now in a position to calculate the predictive distribution of tN11 for a new point x given the

observations ðx1; t1Þ; . . . ðxN; tNÞ, which is what we set out to do in the first place and for which we

have already written down the generic solution in the Bayesian context, equation (5).

It is easy to prove that the conditional distribution pðyðxÞjt1; . . . tNÞ is a Gaussian distribution with

mean and covariance given by

mðxÞ ¼ kTC�1t

s2 xð Þ ¼ c�kTC�1k

where

c ¼ k x; xð Þ þ b�1

and: C is the matrix whose elements are given by equation (6), k a vector with elements k xk; xð Þ for

k ¼ 1; . . .N.

Note that the formulae for the mean and covariance above define the predictive distribution for

Gaussian process regression with an arbitrary kernel, the only constraint being that the covariance

matrix be positive definite (not semidefinite). For this to be true it is sufficient that k xn; xmð Þ be

positive semidefinite since the eigenvalues of C are li þ b�1 with li � 0; b40.

The advantage of such an elegant model as Gaussian process regression is that the output of the

regression is not just a number but a full predictive distribution, and the definition of a prior forces

analysts to make explicit all the expectations that they have on the types of function that can be

fitted to the data (or, expressing this more neutrally, to make explicit all the desired properties of the

regression function).

One disadvantage (apart from the obvious limitation that Gaussian processes must be, by definition,

Gaussian) is that solving Gaussian processes regression normally involves inverting an N 3 N

matrix (which takes O(N3) steps) and this is to be compared with the usual basis function model

with M basis functions, which takes O(M3) steps. Typically M ,, N (the number of model

parameters is far smaller than the number of training points) and therefore it is more efficient to

deal with basis functions. However, it should be mentioned that (i) what seems like a disadvantage

becomes an advantage in the case where the number of basis functions is very large, or actually

infinite, and (ii) approximate solutions to the regression problem which are more efficient are

available (see Bishop (2007) for a list of references).
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Sparse kernel machines
One of the problems of non-linear kernel algorithms is that k xn; xmð Þ needs to be evaluated for

each pair of training points, and this may be computationally demanding for large numbers of

data points.

A possible way of increasing efficiency is using algorithms for which the solution of the learning

problem does not depend on the whole training set but only on a subset of the training points. An

example is given by support vector machines (SVM), which owe their name to the fact that the

solution depends only on a small number of training points, which are called ‘‘support vectors’’.

A good introduction to support vector machines (and relevance vector machines, which are their

Bayesian counterpart) is provided in Bishop (2007).

SVM for regression is best approached by an example. Let us start by reminding ourselves how

linear regression works. In linear regression, the solution to a learning problem is obtained by

maximising an error function of the form

1

2

XN
n¼ 1

yn�tn

� �2
þ

l
2
kwk2

In this formulation, the value of the parameters that minimise the error function will depend on all

data points.

Now, let us replace the quadratic term
PN

n¼ 1 yn�tn

� �2
with a function such as

EAðyðxÞ�tÞÞ ¼
0 if y xð Þ�t

		 		oA

y xð Þ�t
		 		�A otherwise

:

(

This has the property of being zero when the difference between the model and the target values is

smaller than A. It is easy to convince oneself that when minimising the error function

C
XN
n¼ 1

EAðyðxnÞ�tÞÞ þ
1

2
wj jj j2

the training points that are within a distance of A from a given model y(x) do not contribute to the

error and therefore to the predictions (however, there is a subtlety: it is not possible to say a priori

which points can be discarded until the model is actually calculated!). Note how in the error

function above the parameter C works as a regularisation parameter, which needs to be determined

through cross-validation.

Formally, one finds (see Bishop, 2007) that the prediction for a new input x is

y xð Þ ¼
XN
n¼ 1

qnk x; xnð Þ þ b ð7Þ

where qn is zero for all points xn for which y xnð Þ�t
		 		oA, and k(x,xn) is given by (4). All the other

points xn are the support vectors of the prediction, and are the only ones for which k(x,xn) needs to

be calculated. As usual, one can perform the kernel trick by replacing the standard form (4) with

another positive definite kernel with the desired properties.
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The idea of support vector machines has been developed further by the Bayesian community, in

order to find a learning algorithm based on the same principle which could produce (as in the case

of Gaussian processes) a full predictive distribution as an output, rather than a single number. This

has given rise to relevance vector machines (RVM). The general form of the prediction for a new

input is Equation (7) as for SVMs: however, the method has certain advantages: (i) there is no

regularisation parameter to be optimised; (ii) there is no requirement for k to be positive-definite;

and most importantly, (iii) the kernel is usually far sparser than for SVMs (often using a number

of relevant vectors which is an order of magnitude lower than the number of support vectors for

a SVM).

2.9. Practical general insurance example: rating factor selection for
reinsurance

Consider the problem of predicting the reinsurance premium charged for a given layer to different

insurance companies for a specific line of business (motor, in this case) based on the profile of the

insurer. This is an exercise in second-guessing how reinsurers rate excess-of-loss reinsurance for

layers where loss experience is limited.

The factors that define the profile of the insurance company are chosen from a list including:

> percentage of private (v commercial) vehicles

> percentage of comprehensive (v TPFT) policies

> percentage of male drivers

> percentage of young drivers (r25 y.o.)

> percentage of mid-age (26-y ) drivers

> percentage of drivers with Z60% no-claims discount

> Average direct (original) premium

> Market share

> y

The input is in the form of a table such as that shown in Table 2. This table is based on real data but

have been scrambled and scaled beyond recognition.

This is not a very sophisticated example and a multivariate Gaussian model of the linear variety will

suffice: i.e., we model the reinsurance premium Y as a linear function of the rating factors: Y ¼

a0 þ a1X1 þ . . . þ anXn

GLM approach. The standard approach to this problem with GLM is through forward or

backward selection of the best model. Forward selection is a form of greedy approach and starts

with the simplest model (in our case, Y ¼ a0; or Y � 1 in GLM shorthand), then adding at each

step the variable which reduces the variance between the model and the empirical data by the largest

amount, until the addition of a new variable does not add a statistically significant advantage.

Backward selection (which will not be used here) works the other way round, starting from the

complete model (that where all the variables are included) and removing one variable at a time.

Figure 4 shows the application of the forward selection model to our case, which leads to the selection

of the model Y � ADP þ %Young. Table 3 provides the background numbers for this choice.

Pietro Parodi

324

https://doi.org/10.1017/S1748499512000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499512000036


The main problem with this approach lies in the model selection process, which does not guarantee

that it will not fall into local minima, and is relatively inefficient.

Regularisation approach. We now use a simple lasso regularisation approach to solve the same

problem. We use an R package called ‘‘LARS’’, authored by Hastie & Efron (2012). This package

performs an automatic selection process which is guaranteed to find the global minimum, and it

does it within the time it takes to do a single least square regression.

Table 2. Reinsurance premium xs £5 m and possible rating factors for different insurance companies. Figures

are based on real data but are scrambled and randomised beyond recognition.

Client Private Fleet Male Young MidAge Comp NCB AvgPremium Mktshare R/i premium

1 81% 0.0% 52% 3% 63% 0% 74% 255.2 8% 2.4

2 45% 45.6% 47% 1% 73% 80% 49% 720.9 1% 7.7

3 58% 6.2% 74% 3% 60% 58% 48% 318.9 12% 3.6

4 41% 11.8% 60% 2% 58% 83% 0% 412.6 6% 4.5

5 100% 0.0% 54% 4% 72% 98% 91% 325.2 6% 2.9

6 68% 6.9% 74% 2% 46% 79% 58% 287.5 2% 4.3

y y y y y y y y y y y

14 75% 0.0% 67% 37% 59% 55% 0% 446.2 1% 6.8

15 98% 0.0% 51% 20% 61% 90% 59% 430.3 6% 5.8

Figure 4. Illustration of the forward selection method.

Table 3. Increasingly complex models for the reinsurance premium, and their statistical significance. Every

time the variable that explains most of the residual variance is added to the model, the variance is reduced.

The column Pr(.jtj) gives the probability that the ratio between the coefficient and the standard error of the

latest variable added is larger than jtj by chance although the true value of the coefficient is zero. A value

above a significance value of 5–10% indicates that the coefficient is not significantly different from zero.

More rigorously, the drop in variance obtained by the addition of a new variable is statistically significant

only if the value of AIC (fourth column) decreases. Both these criteria indicate in this case that the best

model is Y � ADP þ %Young.

Model Variance Pr(.jtj) AIC

Y , 1 54.8 2.1028 69.1

Y , ADP 12.1 6.1026 46.9

Y , ADP 1 %Young 7.1 0.009 40.3

Y , ADP 1 %Young 1 MktShare 6.6 0.39 41.3
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The coefficient values are plotted against the regularisation parameter l, which is expressed as a

fraction of tn ¼
Pp

1 b̂j

			 			, where b̂ is the least squares estimate of coefficient bj: Note that when the

regularisation parameter becomes larger than t*, the lasso estimates coincide with those of least

squares regression. Owing to the nature of the lasso, the coefficients are all zeros when l5 0, then

as we increase l the coefficients become positive one by one, as in Figure 5.

As Figure 5 shows, the first coefficient to become non-zero is that for the average direct premium,

and the second is that for the percentage of young drivers, then all the others, one by one.

The same package offers a method to decide which value of l should be selected based on cross-

validation, as shown in Figure 6, which gives the expected prediction error as a function of the value

of l, again expressed as a fraction to the largest coefficient.

The minimum value of the prediction error is obtained around 0.05. This corresponds to including

the variables ADP and %Young, exactly as for the GLM model. The model has however been

obtained effortlessly and is guaranteed to yield the global minimum.

Figure 5. Illustration of the least-angle regression method (LARS) to generate all lasso solutions for
different values of the regularisation coefficient.

Figure 6. Expected prediction error for different values of the regularisation parameter, obtained
through cross validation.
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2.10. Comparison of different techniques for supervised learning

We now summarise our considerations on the different techniques for supervised learning that we

have investigated so far, in order to give an at-a-glance comparison among these techniques.

Neural networks

> Neural networks are very flexible: they are not limited by linearity and they can express any

function of the data.

> Neural networks do not require any model specification, and are therefore easy to implement.

> A key disadvantage of neural networks is that they provide ‘‘prediction without interpretation’’: the

output of a risk costing exercise are the values assigned to the weights of the network, which have no

intuitive meaning. This does not mean that they are any less rigorous than GLM or regularisation:

their models can be validated exactly in the same way. However, they do not help us understand risk

and this makes their acceptance by underwriters, management and regulators problematic.

> Neural networks are computationally demanding: training them takes a fair amount of time.

Generalised linear modelling

> The loss function can be chosen to reflect (to some degree) the underlying process noise.

> Generalised linear models are easy to interpret: the factors included in the model are those that

have a significant impact on the risk, and the chosen functional dependency (e.g. exponential,

polynomial) is usually simple.

> Generalised linear models are limited by linearity. However, in practice, a large dictionary of

functions is possible and linearity in the coefficient will seldom be impairing.

> Model selection with forward or backward selection is computationally awkward and may get

trapped in local minima.

> Standard methods for model validation (as those based on AIC) may overestimate the test error.

Regularised regression

> Feature selection is completely automated, and a global minimum is guaranteed to be reached.

Model selection and validation can be performed very efficiently, avoiding the combinatorial

explosion of best subset selection.

> The interpretation of regularisation results is easy as for GLM.

> Specific types of regularisation such as the elastic net can address the problems arising when there

are highly correlated variables and when the number of predictors exceeds the number of

available data points.

> The use of quadratic loss function for classical regularised regression is limited and causes

degradation of performance with some types of noise. This has been demonstrated in Parodi

(2009)with the use of artificial data for the case of Poisson noise: the expected prediction error

increases as the Poisson rate of the underlying processes decreases (this makes sense as for large

Poisson rates the distribution of the number of losses will be near-Gaussian).

> A different loss function can be used, but some of the theoretical results obtained for squared loss

may be lost, and the solution may not be as simple (see Rosasco et al., 2004).

The comments above reflect the ‘‘textbook approach’’ of the relevant methodologies. It is fair to

mention, however, that these methodologies come in many flavours and that hybrid approaches are

possible and have actually been attempted. As an important example, GLM can be coupled with
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regularisation: see for example Park & Hastie (2007), where l1–regularization (lasso) was applied to

a log P loss function. In the author’s opinion this is one of the most promising avenues that actuaries

should explore.

Also, cross-validation is used more in the context of neural networks and regularised regression

than in the context of GLMs, but there is no reason why it should not be used for GLM as well. In a

paper presented last year by a general insurance research organising (GIRO) working party (see

Berry et al., 2009), the use of a hold-out sample was advocated as an important validation tool.

2.11. Dealing with sparse data

It is fair to mention at this point that most techniques discussed in this section work best when there

is a large amount of data to play with. Indeed, techniques such as GLM are mostly used in personal

lines insurance where the quantity of data is not an issue. However, statistical learning can in

principle be applied as well where data are sparse, and some techniques have either been developed

exactly to deal with the data sparsity issue or they help address data scarcity.

More specifically:

> some regularisation techniques such as the elastic net were devised to address the problem where

the number of data points is much smaller than the number of explanatory factors (a clear case of

data sparsity, and a counterintuitive one);

> in at least one context where data sparsity is almost physiological, i.e. the modelling of large

losses, extreme value theory provides theoretical constraints on the type of models that can be

fitted (e.g. a generalised Pareto distribution must be used to model the severity of losses above a

large threshold). This has an interesting interpretation in terms of statistical learning, as one of the

methods to avoid overfitting is to limit the number of models that one can choose from. In the

case of EVT, the model selection phase can actually be skipped altogether and we can jump

straight to model parameterisation and model validation;

> if we adopt a Bayesian approach to statistical learning, it is possible to incorporate the prior

probability of models (see II. Dealing with uncertain knowledge, Section 2.4), and also to

incorporate expert judgment. In this context, statistical learning provides a way of making up for

the lack of data by tilting the balance away from the actual experience and towards prior or

external knowledge.

The issue of the sparsity of data and how statistical learning can help with it was recently addressed

in a talk at GIRO (see Chhabra & Parodi, 2010).

3. Exploratory Analysis

Section 2 (Learning from data) endeavoured to show that data-driven loss modelling can be

described as problems of supervised learning. This section holds that another branch of machine

learning, unsupervised learning, also has an important (albeit more tentative) role to play in

insurance.

Informally (and loosely), unsupervised learning is finding patterns in data without a ‘‘teacher’’, i.e.

someone who can confirm whether the patterns we have found correspond to something more

meaningful than random fluctuations.
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To make a simple example, suppose you want to group people in Italy according to the dialect

they speak, based on a number of unlabelled recordings of their speech that have been delivered

to you by mail. You may select a number of features to analyse, perhaps properties of the frequency

spectrum.

If you can hire an interpreter in the initial stage of your research, you will be able to classify a

sample of the recordings (the training sample) by giving it the proper label: e.g. Piedmontese,

Ligurian, Neapolitan, etc. When you receive a new recording, you will then be able to attempt

classifying it as one of the previously labelled dialects based on the algorithm developed during the

training stage. This is supervised learning.

In unsupervised learning, you may want to solve the same problem, but this time there is no one

who can help you with labelling each speech sequence. However, you will still be able to perceive

differences between the speeches – Calabrese will sound rather different from Venetian, even if you

know nothing else – and your algorithm is likely to detect similarities between people using the same

dialect. This is unsupervised learning. Actually there is an element of cheating here because

the underlying categories (the dialects) are ultimately verifiable, whereas in most practical cases we

are not that lucky.

Using the language of probability, unsupervised learning is characterised in Hastie et al. (2001 as

follows:

Unsupervised learning. Given a set of observations ðX1; . . .XnÞ of a random p-vector X having a

joint density Pr(X), infer the properties of Pr(X) without the help of a teacher.

(This definition is still quite loose, as it does not make it clear what these ‘‘properties’’ should be.

Since unsupervised learning is in itself a very open-ended activity, it is difficult to produce a more

formal definition. Ultimately, the activity of unsupervised learning is justified by the use we make of

its outputs for further analysis.)

In unsupervised learning the target is unknown, and there are no dependent variables. This is to be

compared to supervised learning, where one is concerned with determining Pr(YjX) from a training

sample (x1,y1),y(xn,yn), where Y is the dependent variable.

According to Hastie et al. (2001), the main problems of unsupervised learning are:

> Clustering. Find convex regions of the X2 space containing modes of Pr(X) (that is, can Pr(X) be

represented as a mixture of simpler densities?). More informally, this means segmenting data

points into sets so that points in the same set are as similar as possible to each other and points in

different sets are as dissimilar as possible.

> Association rules. Construct simple descriptions that describe regions of high density for high-

dimensional (usually binary-valued) data (for example, market basket analysis)

Applications of unsupervised learning to general insurance problems are for example:

> Exploratory analysis, to check if there are patterns in data that may lead to further investigation.

> Descriptive data mining, which is actually a more organised version of exploratory analysis which

is usually applied to large bases of data that would be otherwise difficult to make sense of.
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A specific example from the insurance literature is that of territories clustering as performed, for

example, by Yao (2008). The input was the output of a GLM exercise, where a number of features –

excluding location – was used to produce a predictive model of claims experience for various

categories of drivers. By performing clustering, the author creates an extra variable describing the

residual effect of location, and this variable can then be used as a rating factor.

The most important example of the use of clustering and association rules is arguably in data mining,

which is the efficient discovery of previously unknown patterns in large databases. Data mining is used

by many large companies (not necessarily, and not especially, in the financial sector) to make sense of

their large collection of data and spot business opportunities. It is not a single technique – more an

ongoing activity based on a collection of techniques which are embedded in an ad-hoc software system.

For this reason, we will focus here on the most important of these techniques – clustering – and refer

the interested reader to the paper by Guo (2003) for an example of actuarial application.

Here we just want to mention a couple of examples of data mining applications to general insurance:

> descriptive data mining has allowed the discovery of surprising relationships, e.g. the fact that the

credit rating of an individual is strongly linked to the individual’s propensity to claim;

> for one insurer it has been found out by this method that a subset of a very risky category (males

less than 21 y.o.) in its portfolio, those that have vintage cars, were far less risky than average, and

could therefore be targeted with special prices.

As important as data mining is, it is important to notice that data mining lends itself by construction

to the problem of data snooping: having a large data set at our disposal with the stated goal of

finding regularities, we are bound to find some regularities simply by chance. It is therefore

important to apply model validation techniques to all findings by data mining techniques.

The issue of data snooping in data mining is especially insidious in the analysis of financial time

series, as – since there is only one series to analysis – the scope for validating the results against an

independent data set is very limited, and the only option is really to hold out a sample of the more

recent data points. As a consequence, some degree of data snooping is inevitable in this case.

In the rest of the section we will focus on clustering. We will first look at a number of different

clustering techniques (Section 3.1). We will then illustrate in some detail a practical general

insurance application (Section 3.2).

3.1. Clustering techniques

One possible categorisation of clustering techniques is this:

> Partitioning techniques (K2means, K-medoids, EM), which partition data based on a given

dissimilarity measure.

> Hierarchical methods, which subdivide data by a successive number of splits.

> Spectral clustering, which works by graph partitioning techniques after a transformation into a

suitable space.

> Dimensionality reduction techniques (principal component analysis, self-organising maps

(SOMs), generative topographic mapping, principal component analysis, etc), which are based on
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the observation that often the data points lie in (possibly non-linear) low-dimensional manifolds

embedded in a data space with many more dimensions.

> Other: density-based methods, grid methods, kernel clustering. These will not be dealt with here.

We are going to look at each of them in turn.

Partitioning techniques. Partitioning techniques subdivide data based on a given (dis)similarity

measure. The most popular algorithm for clustering is perhaps K-means, as it is simple and

intuitive.

The dissimilarity measure for K-means is typically (but not necessarily) the squared Euclidean

distance d xi; xj


 �
¼ xi�xj

�� ��2
(notice that xi and xj are in general vectors in Rp).

The aim is to minimise the within-cluster point scatter:

WðCÞ ¼
1

2

XK

k¼ 1

X
CðiÞ¼ k

X
CðjÞ¼ k

d xi; xj


 �
¼

¼
1

2

XK

k¼ 1

Nk

X
CðjÞ¼ k

d xj;mk


 �

The method works iteratively by

1. Choosing the number K of clusters

2. Choosing randomly (or cleverly) K data point as the initial cluster means mk

3. Assigning each object x to the closest cluster mean

4. Updating cluster means by minimising W(C) with respect to the mk’s

5. Iterating steps 3 and 4 until assignment does not change

This method’s advantages are that it is easy to understand and apply. Also, it always converges

quickly. However, it has several disadvantages:

> the number of clusters must be decided in advance. Different values of K have therefore to be tried

to check which value gives the ‘‘best’’ results;

> in case the Euclidean distance is used, the method is sensitive to noise, as the sum of the squared

distance between points may be overly influenced by a few data points with larger distance;

> the algorithm may get stuck in a suboptimal local minimum. As regards to this, the choice of the

initial clusters is crucial;

> clusters lie in disjoint convex sets of the underlying space. This may be a disadvantage when the

actual shape of the ‘‘real’’‘ clusters is unusual, as in Figure 7;

> there are issues when the density of different clusters is not uniform.

Examples of other partitioning methods (besides K-means) are K-medoids and expectation

maximisation. K-medoids is very similar to K-means, but rather than choosing freely among points

in the underlying space to be the cluster means, it always chooses one of the actual points in the

dataset. Expectation maximisation is a ubiquitous technique in statistics, that can be applied to a

number of contexts, including clustering. See for example Hastie et al. (2001) for an explanation.
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Hierarchical methods. Hierarchical methods use cluster-to-cluster similarity in order to decide

whether to merge/split clusters. They create a hierarchical decomposition forming a dendrogram

(a tree that splits recursively). The idea behind a dendrogram is that depending on the dissimilarity

threshold at which you decide that two clusters should be merged (y–axis), the number of clusters

(i.e., the number of vertical lines crossed by a line with constant y varies. An example of a

dendrogram is shown in Figure 8.

Hierarchical methods have some similarity with rule-induction systems, which segment data

according to their attributes, e.g. based on a number of ‘‘If-Then’’ conditions applied to each

attribute in turn (see, e.g., Liang, 1992).

One advantage of hierarchical methods is that – unlike K-means – they do not commit to a number

of clusters K in advance, giving them more flexibility. Also, they are easy to understand

Figure 7. The clusters in this figure are not convex. This will cause problems with k-means.
The clusters here are obtained using spectral clustering (explained later on in this section).
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Figure 8. An example of dendrogram [modified from Yao paper, Yao, 2008]. Notice how the
number of clusters depends on the dissimilarity measure at which two dendrograms are split.
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(the dendrogram provides a highly intuitive description of the product of hierarchical clustering at

different levels of dissimilarity) and apply.

One disadvantage is that the dendrogram does not provide any clear decision criteria – judgment must

be used to select the threshold of the dissimilarity measure which will then produce a specific clustering.

Spectral clustering. Spectral clustering is becoming one of the most popular techniques in clustering,

owing to its flexibility, its efficiency and its theoretical elegance. Only a cursory overview will be given

here, but the interested reader will find an entertaining reference in the tutorial by von Luxburg (2007).

Spectral clustering has its roots in graph theory, and its central idea is to solve the problem of

clustering not in the original space (as K-means does) but on a transformed space embedded in a

graph, the so-called similarity graph. The similarity graph is a graph whose vertices are the

data points and two data points are connected by an edge if they are similar, as in Figure 9.

The similarity function is somehow related to the ‘‘distance’’ between the points in a suitable

space. For example, in a Euclidean space Rk the similarity function might be defined as

s xi; xj


 �
¼ expð�kxi�xjk

2=2s2Þ; where kxi � xjk is the Euclidean distance in Rk. F i n d i n g t h e

clusters in the data set is then equivalent to finding partitions (groups of vertices) in this graph

which are weakly connected to each other but whose vertices are very similar inside.

The essential aspect of spectral clustering is how you build the similarity graph, so it is perhaps

worth spending a few words on this. Three types of similarity graphs are commonly used:

> the e-neighbourhood graph, in which every pair of vertices for which the similarity function is

larger than e is connected (see Figure 9(left)). This graph is usually unweighted;

> the k-nearest neighbour graph, in which the k nearest neighbours of a given vertex are connected

to that vertex (see Figure 9(centre and right). This type of similarity graph is useful especially

when we have clusters at different scales - that is, one cluster may be denser, the other more

rarified, as in Figure 7;

> the fully connected graph, in which all vertices are connected. This graph will obviously be

weighted and the weighting should decay exponentially, thus effectively defining a neighbourhood

radius.

Figure 9. Different types of similarity graph: e-neighbourhood graph (left), k-NN graph (centre),
mutual k-NN graph (right). The difference between k-NN and mutual k-NN is that in the latter we
include an edge between vertices vi and vj only if the vertices are both among each other’s k nearest
neighbours. Notice the non-convex shape of the clusters and the fact that the clusters have different
densities. The figure is borrowed from von Luxburg (2007).
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One version of the spectral clustering algorithm (‘‘unnormalised spectral clustering’’) works as follows:

1. Build the similarity graph G 5 (V, E) where V ¼ fv1; . . . vng are the vertices (the data points),

E is a set of edges, i.e. a subset of V3V (pairs of vertices). The graph is assumed to be undirected.

If the graph is weighted, that means that every edge (vi, vj) will have an associated weight wi,j.

The matrix W ¼ wi;j

� �
i;j¼ 1;...n

is called the weighted adjacency matrix.

2. Calculate the graph Laplacian L ¼ DW, where W is the adjacency matrix defined above and

D ¼ diag d1; . . . dnð Þ, where di ¼
P

jwi;j. The laplacian L has many interesting properties: for

example, it is symmetric and positive semi-definite, and has n non-negative, real-valued eigen-

values 0 ¼ l1 � l2 � . . . � ln. The multiplicity k of the eigenvalue 0 of L equals the number

of connected components A1; . . .Ak in the graph.

3. Calculate the first k eigenvectors u1; . . . uk of L and build the matrix U ¼ u1; . . . ukð Þ (columns)

¼ y1; . . . yn


 �T
(rows).

4. Group points y1; . . . yn into k clusters C1; . . .Ck using; e:g:; K-means

This algorithm produces sensible clusters, but it is not obvious why! Several arguments have been

put forward to explain why spectral clustering works: see for example von Luxburg (2007). The

perturbation theory argument is probably the most intuitive, and can be outlined as follows.

Perturbation theory studies how the behaviour of eigenvalues and eigenvectors changes if one

applies a small perturbating matrix H to the original matrix A. This may help us understand the

workings of spectral clustering by considering the ideal case – that is, the case where the clusters are

already perfectly separated at the stage when one builds the similarity graph. In this case, the points

y1; . . . yn built by the algorithm above will have the simple form (0,y0,1,0,y0), and the position of

the 1 indicates the connected component this point belongs to. All the vectors belonging to the same

connected component are coincidental, and identifying the clusters is trivial.

If we now perturb the original matrix by a small amount, the points yi will not be exactly

0; . . . 0; 1; 0; . . . 0ð Þ as above; but a K-means algorithm will still find the same clusters.

The pros and cons of spectral clustering as listed below are mostly borrowed from von Luxburg

(2007).

> No strong assumptions on the shape of the clusters are needed. In particular, it is not necessary for

clusters to be convex in the original space (see for example the moon-slice-shaped clusters in Figure 7).

> Spectral clustering is efficient on sparse graphs – of course, it is up to us to ensure that we choose

the similarity graph so that it is sparse!

> Finding the solution given the similarity graph is a linear problem and therefore one cannot get

stuck in local minima. Also, it is not necessary to restart the algorithm several times with different

initial values, as for many other clustering methods.

> On the downside, the choice of a good similarity graph is crucial and not always easy. It is

unstable under different choices of the parameters for the neighbourhood graph. All this amounts

to saying that spectral clustering cannot be used as a black box!

> Spectral clustering may be difficult to understand/communicate: the very reason why it works is

not obvious. However, its obscurity is not of the same type as that of neural networks, because

here it is clear what the algorithm is trying to achieve – finding clusters on the similarity graph

rather than on the original space.
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Dimensionality reduction techniques. These techniques are based on the observation that data

points, although they may live in a data space with many dimensions, in practice may all lie close to

a low-dimensional manifold7 embedded in the data space.

As an example, buyers of house insurance may be described as points in a space with as many

dimensions as there are rating factors that have been collected – say 20 or more of them: however, in

practice you may find that certain rating factors which you have zealously collected (e.g., the

current colour of the house) end up being not material, or that only certain combinations of the

values of the factors occur in practice.

Sometimes the underlying manifold is a linear manifold, i.e. it is a linear subspace of the data space.

In this case linear modelling techniques suffice to discover this subspace. An example of these

techniques is given by principal component analysis (PCA), which projects all the data points onto a

principal subspace with some optimisation criterion, e.g. the subspace that captures most of the

variance. PCA comes in many fashions: straight PCA, probabilistic PCA, EM PCA, Bayesian PCA,

factor analysis, kernel PCA (see Bishop (2007) for a short review).

In general, the manifold around which the data lie will not be linear, and nonlinear techniques are

therefore needed. This can be dealt with by, e.g.,

> approximating the non-linear manifold with a piecewise linear manifold (e.g. approximating a

hypersurface locally with hyperplanes);

> using self-organising maps (aka Kohonen maps). A self-organising map represents a 2D nonlinear

manifold as an array of discrete points, called prototype vectors. Initially, these prototype vectors

are distributed at random, but during training they ‘‘self organise’’ (hence the name of this

technique) into a discrete rendition of a low-dimensional smooth manifold. One disadvantage of

this technique is that there is not a clearly defined cost function that can be minimised and

according to which convergence can be assessed. The next technique, generative topographical

mapping, is a variant of SOMs that addresses this problem;

> using generative topographical mapping (GTM). This is a probabilistic version of the self-organising

maps mentioned above, and produces a probability density in the data space made up of a mixture of

Gaussian distributions with the same variance and with means lying on a smooth two-dimensional

manifold. The ‘‘optimal’’ mixture corresponds to the maximum of a log-likelihood function.

The reader who is interested in more detail on these techniques is referred to Bishop (2007) and to

the literature cited therein.

3.2. Practical general insurance example: Clustering for IBNER data

A possible application of unsupervised learning is to IBNER analysis. The underlying problem is

that of predicting the ultimate value of a claim (or a probability distribution) given its previous

history of paid and incurred amounts. An example is shown in Figure 10.

The numerical example illustrated here was analysed with the help of Nicola Rebagliati, from the

Department of Computer Science of the University of Genoa.

7 A manifold is an m-dimensional geometric structure embedded in an n-dimensional space with n.m.

Simple examples of manifolds are lines or surfaces in three-dimensional spaces, and lines in two-dimensional

spaces. Examples of linear manifolds are planes and straight lines in three-dimensional spaces.

Computational intelligence with applications to general insurance – I

335

https://doi.org/10.1017/S1748499512000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499512000036


For pricing or reserving purposes, especially for large losses, one often looks at the distribution

of past IBNER factors to predict the ultimate value of a particular claim or to put aside

some IBNER reserves. The idea is that by spotting a systematic bias (on average) on the claims

estimates, the estimates can be put right (again, on average!) by correcting all claims with the same

characteristics.

The calculation of IBNER factors is usually performed by chain ladder calculations (or something

similar) and often a simple average over all open claims (settled claims will of course have no

IBNER, unless they are re-opened) is all that is used, especially if the number of individual claims

histories is not large: the output of such analysis would then be an IBNER factor which depends

only on the development year.

However, it is obvious that the IBNER factor will depend in general on many factors, such as:

> development year (the younger the claim, the more scope there is for it to deviate from the

incurred estimate), as already mentioned;

> size of claim (larger claims may have more uncertainty about them);

> outstanding ratio (the larger the outstanding amount, the more conjectural the estimate of the

incurred value will be);

> type of claim (for example, bodily injury claims will be more difficult than property claims to

estimate reliably as the victim’s health may worsen unexpectedly);

> reserving style (claims managers may be more or less effective at reserving, and some may

introduce a systematic upward/downward bias);

> y

As in all situations in which one needs to understand how different factors impact a given variable,

one can use the data set to perform supervised learning as in Section 2 (‘‘Learning from data’’).

However, not all the variables in the list above lend themselves to be used easily as input variables:

specifically, the ‘‘reserving style’’‘ above is quite difficult to use as the claims history is a vector of,

say, 15 years of development.

One possible solution is to collect all individual claims development histories and group them into

clusters of similar behaviour. Once clustering is performed, the cluster ID can be used as one of the

rating factors in a regression exercise with GLM or regularisation.

Figure 10. The history of a claim occurred in 2000 and reported in the same year. For each year of
development, the paid, outstanding and incurred (estimated) amounts are given. The outstanding
ratio (outstanding amount divided by incurred amount) is also given for each year. The last row
shows the IBNER factors for this claim, calculated as the ratio between the incurred amounts of two
successive years. The claim shown here is a real claim after scaling by a random amount and the
removal of any identifiable information.

Pietro Parodi

336

https://doi.org/10.1017/S1748499512000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499512000036


One complication of this exercise is that different claims histories will have different lengths (some

may be 2 years long, some 15) and therefore one must put a little care into how one defines a

similarity measure. Since here we are only interested in giving an illustration of various applications of

clustering, we will limit ourselves to extract sections of claims histories of exactly 5 years (the history

of the claim may go on after 5 years, but we look at a section of the data spanning 5 years only).

The data used are large motor losses from several UK insurers. The losses have been normalised so

that the latest known incurred value (not necessarily that at the fifth year) is set to 1 – which makes

them unrecognisable and removes the dependency on loss size.

Figure 11 shows a few examples of the claims histories we are trying to cluster, after normalisation.

The clusters were obtained with a simple K-means algorithm. A value of K 5 10 was chosen, which

gives good results in terms of separation of clusters. The cluster means are shown in Figure 12.

Notice that these clusters can be interpreted as follows:

> cluster 6 is the most typical behaviour and occurs when the estimate of the incurred amount is

quite stable after an initial 8% increase. Cluster 7 is also relatively stable but it starts with a 30%

over-reserving;

Figure 11. Examples of loss progressions. The most recent estimate of the claim (possibly beyond
the 5-year horizon) is normalised to 1.

Figure 12. Cluster centres for the clusters calculated with K-means, k 5 10.
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> cluster 8 shows a typical pattern of under-reserving;

> clusters 1, 2, 4, 5, 9, 10 are typical patterns of over-reserving;

> cluster 3 shows claims for which the incurred amount has returned to the initial value after a

period of over-reserving.

It is interesting to compare these clusters with a piece of information that we have not used in the

clustering process – the name of the company that reserved those claims. The results of this

comparison are shown in Figure 13. It is clear that certain companies (such as Company J) have a

higher-than-average tendency to under-reserve.

It is interesting to compare these results with those one obtains with spectral clustering. To use

spectral clustering, we first have to choose a similarity graph. One choice is the e –neighbourhood

graph with similarity function s xi;xj


 �
¼ exp �jjxi�xjjj

2=2s2

 �

, where ||xi–xj|| is the distance in R5

between our vectors representing the development of claims. However, this is going to give results

very similar to the K-means algorithm tested above.

We have therefore used the k-nearest-neighbour similarity graph.The choice of k is of course crucial.

Unfortunately, there are few theoretical results guiding us in the choice of k. A few heuristics are often

recommended, though. One is that k be chosen so that the resulting similarity graph is connected, or

that the number of connected components is less than the number of expected clusters – otherwise

there is a danger that the algorithm will simply return the connected components as clusters. For very

large graphs, a rule of thumb is to look at values of k in the region of log n(n being the number of data

points). In our case, this does not give sensible results.

Another option is to look at the so-called Laplacian spectrum, which gives (for a given number of k of

the kNN graph) the value of all the n eigenvalues (some of them possibly repeated if their eigenspace

has dimension .1) in decreasing order. In the ideal situation we would have only K eigenvalues8 that

are near zero and can therefore be considered—from a perturbation theory point of view – as ‘‘noisy’’

versions of the first eigenvalue l1 5 0 of multiplicity K. Then there should be, always in the ideal case,

a gap between the K-th and the K11th eigenvalue,related to the gap between l1 and l2.

Figure 13. The percentage of each type of cluster for a selection of UK companies.

8 K indicates here the number of clusters, k is the number of nearest neighbours in the kNN graph.
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After trying out several values of k, we have found that we need to go up to about k 5 300 to have

the appropriate structure of the graph, and the Laplacian spectrum indicates that a reasonable

choice for the number of clusters is 5. See Figure 14 for examples of Laplacian spectrums.

Notice that the selected number (k 5 300) is quite an extreme choice for the number of nearest

neighbours in the similarity graph. The underlying reason might just be that there are no natural

clusters in this IBNER problem, because the patterns in IBNER development are not sharply

defined. However, the existence of a few (3-5) patterns is indeed confirmed by a comparison of the

results of spectral clustering and K-means, and by looking at which clusters are more common for

each company.

These results are shown in Figure 15, which shows the centres of the five clusters found with

spectral clustering, and in Figure 16, which shows the percentage of each cluster for each company.

There is indeed a striking similarity with the results obtained with K-means: in both cases, we have

an important cluster collecting all the claim developments that are stable (cluster 6 for K-means and

cluster 5 for spectral clustering). Also, in both cases we have a single cluster which attracts all claims

Figure 14. Left. Laplacian spectrum for the k-nearest-neighbour similarity graph, k 5 20. No
structure is apparent in the graph and there is a large number of eigenvalues near zero, without a
clear difference between the near-zero behaviour and the rest. It is therefore not possible to identify
a small number of eigenvalues that are near-zero. Right. Laplacian spectrum for the k-nearest-
neighbour similarity graph, k 5 300. The structure is better and there are only a few eigenvalues
below 0.5 (five of them). There is then a significant gap between the fifth and the sixth eigenvalue.
This structure therefore suggests the existence of five clusters (but anything between 3 and 5 would
be acceptable).

Figure 15. Cluster centres for the clusters calculated with spectral clustering. A k -nearest-
neighbour similarity graph has been used, with k 5 300.
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that are under-reserved and sometimes keep growing year-on-year. The other clusters are in both cases

mostly examples of over-reserving and could easily be further aggregated. The main difference is the

presence in K-means of a cluster (cluster 3) that starts from 1, goes up to 1.3 and goes back to 1 again –

however, this is likely to be an artifact, and spectral clustering is probably right in ignoring it.

Overall, there seems to be some improvement with respect to K-means. However, it should be

mentioned that in this example the clusters are probably already convex in the original space, and

clusters are not sharply defined because claims developments vary over a continuous range.

Although in this case the difference between K-means and spectral clustering is not striking, spectral

clustering is a far more flexible method (which incorporates K-means anyway in the standard

implementation of the method) and despite the fact that it takes a while to explain, it is quite simple

to implement, it is very efficient and has some important properties (local minima, convexity in the

appropriate space). It is therefore something that actuaries should consider alongside K-means when

doing clustering, especially when the structure of their data is complex, before concluding that

clustering does not help them.

4. Conclusions

The conclusion of the first part of this investigation is that statistical learning provides a natural

framework for data-driven loss modelling. More specifically:

> The familiar problems of pricing, reserving and capital modelling based on data and soft

knowledge are essentially examples of supervised machine learning. Common techniques

for dealing with this problem include regularised regression, GLM, GAM, neural networks,

projection pursuit.

> Exploratory analysis – in itself a rather loose and unstructured activity – can benefit from

unsupervised learning techniques such as clustering and association rules. This is crucial especially

for personal lines insurance, where data mining offers the possibility of finding hidden patterns in

large data sets. Also, clustering can be used to identify a small number of values for risk factors

that are multi-dimensional in nature.

Figure 16. A comparison of a few companies (after scrambling, and selection of the first half of
them, to make them fully unrecognisable).

Pietro Parodi

340

https://doi.org/10.1017/S1748499512000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499512000036


4.1. Practical findings

Although the main question addressed by this paper was epistemological, ‘‘What is the appropriate

framework to describe and understand risk?’’‘, this paper contains a number of practical results:

> A comparison of different statistical learning techniques was carried out. The techniques looked at

were GLM (the current industry standard), neural networks and regularisation. Neural networks

are of limited use for general insurance applications as they provide prediction without inter-

pretation: in other terms, they calculate risk without enhancing our understanding of it. Regularised

regression provides a valid alternative to GLM, and sparsity-based techniques such as the lasso and

the elastic net are especially interesting as they provide an efficient way of selecting the relevant

variables. Elastic net should also be considered for use with situations in which the number of

observations is limited, even far smaller than the number of parameters. The main drawback of

regularised regression is that usually this uses a squared loss function, which leads to a deterioration

of results in the case, for example, of Poisson noise. GLM uses a log P loss function which is more

general. A promising approach is that of using regularised GLM, which has a general loss function

(log P) and still benefits from the application of sparsity-based techniques.

> Clustering techniques (also from machine learning) are useful for a number of tasks ranging from

exploratory analysis to data mining. When addressing these problems, the actuarial community

should be aware not only of the basic clustering techniques such as K-means but also of more

modern approaches such as spectral clustering, which provide far more flexibility.

> Machine learning also offers a number of different methods for model selection and diagnostics

for model validation: splitting the observations into three sets (training sample, selection sample,

test sample), K-fold cross-validation, AIC, BIC, MDLy Some of these diagnostics (hold-out

sample, AIC) are familiar to the actuarial community, especially in personal lines, but we would

benefit from enlarging our toolkit, especially with the systematic use of K-fold cross-validation,

which provides a clever way of overcoming the problem of scarce data.

4.2. Limitations and future research

This review of computational intelligence techniques is by necessity limited, and the examples from

general insurance are only an illustration and there is plenty of scope of more in-depth research.

Specifically, the comparison between GLM and regularised regression should be made far more

systematic and extended beyond the simple case of the lasso, through a battery of controlled

experiments under different experimental conditions, e.g. also when the number of rating factors

exceeds the number of data points. Regularised GLM should also be tested to see how it performs

with respect to regularised (squared loss) regression and traditional GLM.

A more systematic comparison of different clustering techniques on IBNER data should also be

attempted. The example analysed here only involved five years of development for data, but the

most general case should be analysed, possibly on a larger set of data. It should also be determined

whether this helps improve the results of predictive modelling for IBNER purposes.
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