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Abstract. We consider a family of higher-dimensional non-commutative tori, which
are twisted analogues of the algebras of continuous functions on ordinary tori and
their Toeplitz extensions. Just as solenoids are inverse limits of tori, our Toeplitz non-
commutative solenoids are direct limits of the Toeplitz extensions of non-commutative tori.
We consider natural dynamics on these Toeplitz algebras, and we compute the equilibrium
states for these dynamics. We find a large simplex of equilibrium states at each positive
inverse temperature, parametrized by the probability measures on an (ordinary) solenoid.
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1. Introduction

Classical solenoids are inverse limits of tori. There are non-commutative analogues of tori,
which are the twisted group algebras C*(Z", o) of the abelian group Z". For n = 2, these
are the rotation algebras Ay generated by two unitaries U, V satisfying the commutation
relation UV = e?™ V. When 6 is irrational, these are simple C*-algebras, and they
have been extensively studied (see, for example, [10, Ch. VI]). For 8 = 0, we recover the
commutative algebra C ('IFZ), and hence the Ay are also known as ‘non-commutative tori.’
In [24], Latrémoliere and Packer studied a family of non-commutative solenoids that are
direct limits of non-commutative tori. (The connection is that the commutative algebra
of continuous functions on a solenoid is the direct limit of the algebras of continuous
functions on the approximating tori.)
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Following surprising results about phase transitions for the Kubo—Martin—Schwinger
(KMS) states of the Toeplitz algebras of the ax + b-semigroup of the natural numbers [19,
21], many authors have studied the KMS structure of Toeplitz extensions in other settings.
Typically, these Toeplitz extensions exhibit more interesting KMS structure. This recent
work has covered Toeplitz algebras of directed graphs and their higher-rank analogues [7,
8,13, 15, 16] (after earlier work in [11]), Toeplitz algebras arising in number theory [9], the
Nica—Toeplitz extensions of Cuntz—Pimsner algebras [1, 4, 17-19] and Toeplitz algebras
associated to self-similar actions [22, 23]. In [6], Brownlowe, Hawkins and Sims described
Toeplitz extensions of the non-commutative solenoids from [24], and they considered a
natural dynamics on this extension. They showed that, for each inverse temperature g > 0,
the KMSg states are parametrized by the probability measures on a commutative solenoid
which is the inverse limit of one-dimensional tori [6, Theorem 6.6].

Here we consider a family of higher-rank non-commutative solenoids and their Toeplitz
extensions. As for the algebras of higher-rank graphs [16], there is an obvious gauge action
of a torus T¢ on these algebras, but to get a dynamics one has to choose an embedding of
R in the torus. We fix r € [0, c0)?, giving an embedding ¢ > ¢/ of R in T¢, and we
compose with the gauge action to get a dynamics «” .

The building blocks in [6] are Toeplitz non-commutative tori in which one generator U
is unitary and the other V is an isometry; the relation is still given by UV = ¢>"* VJ, and
the dynamics fixes U. Here we fix d, k € N. Our blocks By are Toeplitz non-commutative
tori generated by a unitary representation U of Z¢ and a Nica-covariant isometric
representation V of N¥, and the commutation relation is given by U, V), = e2mip' n VyUn
for a fixed k x d matrix 8 with entries in [0, co). Then the dynamics «” is given by a
vector r € (0, 0o)X; it fixes the unitaries U, and multiplies V), by e’

We begin by describing the direct system of Toeplitz non-commutative tori whose
limit is the Toeplitz non-commutative solenoid of the title. Everything is defined in terms
of presentations of the blocks: building the connecting maps is, in particular, quite
complicated, and it requires us to be careful with the notation, which we try to keep
consistent throughout the paper. We then discuss the dynamics, which is again defined
using actions on the individual blocks. Then, remarkably, we have a presentation of
the direct limit which allows us to state our main result as Theorem 2.8. This gives a
satisfyingly explicit description of the KMSg states in terms of measures on a commutative
solenoid of the form l(ln T¢. This concrete description is new even in the case k =d = 1
studied in [6].

The first step in the proof of our theorem is an analysis of the KMS states of a building
block By, which we do in §3. The description in Proposition 3.7 looks rather like the
descriptions of KMS states on graph algebras in [15, Theorem 3.1] and [16, Theorem 6.1]
and on algebras associated to local homeomorphisms in [2, Theorem 5.1]: we find a
subinvariance relation which identifies the measures on the torus associated to KMS states,
and then we describe the solutions of that relation in terms of a concrete simplex of
measures.

In the next section (§4), we show how the subinvariance relations for the building
blocks combine to give one continuously parametrized subinvariance relation for the direct
limit (Theorem 4.1). We then describe the solutions to this new subinvariance relation in
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Theorem 5.1, which is the key technical result in the paper. This solution is very concrete,
involving a formula which is reminiscent of a multi-variable Laplace transform, and it is
much more direct than the ad hoc approach used in [6].

In the last section, we give a concrete description of the isomorphism p > v, of the
simplex P(l(ir_n T?) of probability measures on the solenoid onto the simplex of KMS 8
states on the Toeplitz non-commutative torus. Then, by evaluating these KMS states on
generators, we arrive at the explicit values described in Theorem 2.8.

2. Toeplitz non-commutative solenoids

We define a Toeplitz non-commutative solenoid as the direct limit of a sequence of blocks,
which we call Toeplitz non-commutative tori. So we begin by looking at these blocks. In
the course of this section, we will introduce notation which will be used throughout the

paper.

First, we fix positive integers d and k. We write AT for the transpose of a matrix A. We
view elements of R¥ as column vectors, and we write the inner product of n, p € R¥ in
matrix notation as p” n. We use similar conventions for R?.

The pair (Z*, N¥) is a quasi-lattice-ordered group in the sense of Nica [25]. Indeed, for
every p, g € NK, the element p V ¢ defined pointwise by

(pVvq)j=max{pj,q;} forl<j=<k

is a least upper bound for p and ¢, so it is lattice ordered. An isometric representation

V :NK — B(H) is Nica-covariant if it satisfies

VpViVy Ve =VpvgVi,, forall p,qeNt,
or, equivalently [20, (1.4)], if
ViVy = Vipvgy—p Vg —q forall p, g e N-.

For 6 € My 4([0, 00)), we consider the universal C*-algebra By generated by a unitary
representation U of Z¢ and a Nica-covariant isometric representation V of N¥ such that

UpV, =P 0y, U, forp, g eNandn e 7¢. @.1)
We then have also
UV = (VoU_p)* = (e 2P 0y, )* = ¢ 2mir 0y sy, 2.2)
Direct calculation shows that, for p, ¢, p’, ¢’ € N* and n, n’ € Z¢,
VoUn ViV Un Vi = VUnVigypy=g Vi py—p Un Vi
= 2@V on gV =y o) Vo+qvp)—qUntw Vq*’+(qvp’)—p“
and we deduce that
By =span{V,U,V; :n € Z? and p, g € N*}.

We call By a Toeplitz non-commutative torus.
Now we move on to non-commutative solenoids. First, we need some more conventions.
We write S¢ for the compact quotient space R?/Z¢, and we view functions f € C(S¢) as
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74 -periodic continuous functions f :R? — C. We write M (S?) for the set of positive
measures on S¢, and we view measures u € M(S?) as positive functionals f > fol fdu
on C(S%). Then ||| := w(S?) is the norm of the corresponding functional, and P(S?) :=
{w e M(S%) : |||l = 1} is the set of probability measures.

We consider three sequences of matrices {6,,,} C My 4([0, 00)), {Dpn} C Mi(N) and
{En} C My(N) such that each Dy, is diagonal with entries larger than one, each E,, has
det E,, > 1 and

D1 Ey =6, form > 1. (2.3)

We choose a sequence {r"} = {(r’/.”)} of vectors in (0, o)X satisfying

pmtl — D,;Ir'" form > 1. (2.4)

Notice that both sequences are determined by the first terms 0; € My 4([0, c0)) and rle
[0, co)k.

Example 2.1. Wefix N >2,andwesetd =k=1,D,, = E,,, = N form > 2,0 € (0, 00)
and 6,, = N~20"=Dg, . Taking the equivalence classes of the 6, in S =R/Z yields an
example of the set-up of [6] except that we are insisting that 6,, = N26,,,1 as real numbers,
not just as elements of S. This has the consequence that 6,, — 0 as m — oo, which need
not happen in the situation of [6]; but see Remark 2.2 below.

Remark 2.2. Our hypothesis that D,,0,, 41 E,, = 6,, exactly, and not just modulo Z¢, seems
to be crucial in our arguments. Specifically, to assemble the sequences of KMS states
that we will construct on the approximating subalgebras B, into a KMS state on By,
we will need to show that the associated probability measures v, (see Proposition 3.7(a))
intertwine through the maps induced by the E'. We do this in Lemma 6.2, and we indicate
there the step in the first displayed calculation where it is critical that D,,60,,+1E;n = 65,
exactly. This prompted us to review carefully the arguments of [6] and we believe that
those arguments also require that N26,,,.; = 6,, exactly. Specifically, the calculation at the
end of the proof of [6, Theorem 6.9] implicitly treats 6; as an element of R (there are
many solutions to Ny =6 i in S). Similarly, the formulas in [6, §8] that involve setting
ri=pB/(N ) ;) only make sense if 6 is an element of R. In particular, in the final displayed
calculation in the proof of [6, Lemma 8.1], it is critical that N 29 i1 = 0; exactly.

For each m there is a Toeplitz non-commutative torus B, := Bg, with generators Uy, ,
and V, , such that U : n+> U, , is a unitary representation of 74,V pr Vypisa
Nica-covariant isometric representation of N* and the pair U, V satisfy the commutation
relation (2.1) for the matrix 6,,.

Next, we use the matrices D,, and E,, to build homomorphisms from B, to B,+1.

PROPOSITION 2.3. Suppose that m is a positive integer. Then there is a homomorphism
T By — Bing1 such that 7y (U ) = Upa1,Epyn and 0, (Vi p) = Vi1, D p-

Proof. We define U : 74 — But1 by Uy =Upy1,E,n and V : Nt — Buy1 by V), =
Vin41,D,p- Then, since Dy, and E,, have entries in N, U is a unitary representation of
Z% and V is an isometric representation of N¥.
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We claim that V is Nica-covariant. To see this, we take p, g € NF. Then Nica-
covariance of p > V41, implies that

* * * *
VP Vp Vq Vq - VerlmeP Vrn-i—l,D,anm‘H»qu Vm+1,qu
_ *

= Vit 1,(Du )V Ou@) Vi1, (D p)V (D) (2.5)

Now recall that D, is diagonal with diagonal entries d,,_;, say. Then, for 1 < j <k,

((Dmp) vV (Dnq))j =max{(Dmp)j, (Dmq)j} =max{dm, jpj, dm,jq;}
=dp,jmax{p;j, q;j} =dm,j(pV q);
=DnlpVaq);.

Thus
Vin+1,(Dp p)V (Dwg) = Vi+1,D,(pvg) = Vpvgs
and (2.5) says that V is Nica-covariant.

We next claim that U and V satisfy the commutation relation (2.1). We take n € Z¢ and
p € N, and using the commutation relation in B,,41, we compute

Uan = m+1’Em”Vm+1;DmP

2778 (D p) T Oy Emn
=e (D p)” Oy Em Vm+l,DmpUm+l,Emn

- T
— e27'”17 (Dn19m1En1)Vle+1’DmpUm+l’Emn

= 2P 0y U, using (2.3).
Now the universal property of By, gives the desired homomorphism 7,,. O

Remark 2.4. It was crucial in the proof of Proposition 2.3 that D is a diagonal matrix. To
see this, consider, for example,
11
D= .

Then De; =e1, Dey = e +e3, 1 V ey =e1 + e, and D(e; V e3) = 2e; + e3 is not the
same as (Dej) V (Dey) = e + er.

Remark 2.5. Although we do not think that we use this anywhere, the homomorphisms 7,
are, in fact, injective. One way to see this is to use the Nica-covariance of n — V,;, ,, to get
a homomorphism 7y, : T (N¥) = Bgm and to interpret (2.1) as saying that (7y,,, Uy) is a
covariant representation of a dynamical system (7 (N¥), Z¢, ™) in the algebra Bgm. Then
Bym has the universal property which characterizes the crossed product 7 (N¥) X ym z¢4,
and we can deduce from the equivariant uniqueness theorem for the crossed product (for
example, [26, Corollary 4.3]) that the representation

Dy, Em =TTV, 10Dy X (Um+10 Ep)
of THIN®) >aym Z4 in THNK) 31, mar Z is faithul.
We now define our higher-rank Toeplitz non-commutative solenoid to be the direct limit

By := li_1>n(Bm7 TTm)- (2.6)

meN
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We write 7, » for the canonical homomorphism of B, into By,. To ease notation, we
also write Uy, ,, for the image 7, oo (Up n) In Boo.

Now we use the vectors r” € (0, oo)¥ from our set-up to define the dynamics we
propose to study.

PROPOSITION 2.6. There is a dynamics o : R — Aut B, such that
& Vo, p U Vi ) = €' P07 Vo U Vi 2.7)

. i T . . .
Proof. Since Uy, and V) : p> €''P' 7 " Vin,p satisfy the same relations in By, as Uy, and
Vin, there is a dynamics o” "R — Aut B,, such that

r’m * it(p—q)Trm *
o (Vm,pUm,an,q)Ze (P=a) Vm,pUmJle,q'

. m m+1
We claim that 7, o] =}

nelZ,

o 1. To see this, we compute on generators. First, for

m+1 m+1
atr T (Un,n)) = 05; (Um+1,E,nn) =Un+t1,Enn
= 7Tm(Um,n) = ﬂm(atrm (Um,n))-

Second, for p € N¥, and using the relation (2.4) at the crucial step to pass from r"*! to
r'™, we have

m+1 m+1 it(D, T, .m+1
o On Vi p) = Ving1,0,p) =" PP Vo1 pp
ienT m+1 it m
=P Dur ﬂm(Vm,p) =’ ﬂm(Vm,p)

m
=TTm (Oftr (Vm,p))
Now the universal property of the direct limit implies that, for each ¢t € R, there
is an automorphism o; of Bs such that o o my 00 = T 00 oat’m. The formula (2.7)
(which implicitly involves the homomorphisms 7, ) implies that # — «; is a strongly
continuous action of R on By. O

Our goal is to describe the KMS states of the dynamical system (Bso, ¢). But first we
pause to establish some conventions about probability measures on inverse limits.

Remark 2.7. All measures in this paper are positive Borel measures. We view probability
measures on a compact space X as states on the C*-algebra C(X) of continuous functions.
We write P (X) for the set of probability measures on X.

When {h,, : X;y+1 — X : m € N} is an inverse system of compact spaces with each &,
surjective, the inverse limit l(iLn(Xm, hy,) is also a compact space. We write /1, o for the
canonical map of X := LiLn(va h,) onto X, so that we have hy, o0 = hyy © By, 00 for
all m € N. The maps £, o induce maps /,, o, On measures: if 1 is a probability measure
on Xoo, then wy, 1= hyy, 00+ (1) 1s the measure on X, such that

f £ dpim = f (f 0 hmeo) diu for f € C(Xp).
X,, Xoo

Conversely, because each £, is surjective, for any sequence of probability measures {u, €
P(X,,) : m € N} such that w,;, = h;s(tm+1) for all m, there is a probability measure p© €
P (Xoo) such that p, = hm cox () for all m (see [5, Lemma 6.1], for example). Thus the
simplices P(l(igl X,,) and 1(&1 P(X,,) are canonically isomorphic.
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To state our main result, we need to observe that, because the entries in the E,, are
integers, multiplication by E,,T1 onR? maps Z¢ into Z¢ and hence induces a homomorphism
E,E of S =R4/Z% onto itself. We show that the KMS states are parametrized by the
probability measures on the inverse limit 1(ir_n(Sd, E,E), which is an ordinary solenoid. We
write E], ., for the projection of 1(i£1(Sd , EI'y on the mth copy of S¢, so that

T _ gl gl
Epoow=E 0K, | formel.

The main theorem of this paper is the following; we prove it at the end of the paper.

THEOREM 2.8. Suppose that 1 € P(l(iﬂl(Sd, ETY) and B>0. Let {jun} be the
corresponding sequence of probability measures on S?. Form e N and n € N%, we define
the moment M,, , (i) to be the number

Mm,n(,u*) 2/ eZm'xTn d,um(.x) :/ eQJH‘EVZn‘,OO(X)Tn d,u(x)
sS4 @(Sd,E,E)
Then there is a KMSg state r,, on (Bso, ) such that
k m
T,.m ﬂr'
Vo (Vi pUnn VE ) =8, e PP T .
ulVm,pYm.nVm q P-4 ]1:[1 ﬁr}" — 27n(9,£n)j

My (). (2.8)

The map |+ Y, is an affine homeomorphism of P(l(iLn(Sd, E,Z;)) onto the simplex
KMSg(Bso, @) of KMSg states.

Remark 2.9. As areality check, we take p =g =0and n =0. Then V,;, ,Up, » V,;lk’q is the
identity 1g, = 1p,, and our formula collapses to v, (1) = 1.

Remark 2.10. 1t is interesting to set d = k = 1 and compare the formula (2.8) with the
formula (6.4) in [6, Theorem 6.9], which, on the face of it, looks different. The point is that
the integral on the right-hand side of [6, (6.4)] is with respect to the subinvariant measure
associated to the probability measure 1, which in our notation would be v, . There is
no specific description for this measure in [6]: they get an isomorphism of the simplex
P(l(iLn S) onto the simplex of subinvariant measures by specifying it on the extreme points
(see [6, Lemma 8.2]). We reconcile the two approaches in Remark 5.3.

3. Equilibrium states on a Toeplitz non-commutative torus
In this section, we fix 8 € My 4([0, 00)), and we investigate the KMS states on the Toeplitz
non-commutative torus By.

For n € Z4, we write gn for the character on s given by g, (x) = e ixT”, and we write
12 C(S%) — C*(Z%) C By for the isomorphism such that (g, ) = U,. Then

By =span{V,u(f)V,) : f € CSY), p. g e N¥Y.
For y € R4, we define Ry : st 5 s by Ry(x) =x + y. Later, we will also write R; for
the automorphism of C(S%) given by R} f = f o Ry, and we write Ry, for the dual map
on measures defined by

/dey*(u)=/ Rj(f)du=/ foRydp.
sS4 sS4 Sd

The assignment y — RY is a strongly continuous action R of R4 on C(S?), and each Ry
is norm-preserving.
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LEMMA 3.1. For f € C(S?) and p € N,
Vpt(f)=u(f o R_gr)Vy and V5u(f)=u(f o Ryrp)V,. (3.1)

Proof. Since C(S?) = span{g, : x — e2mixin .y o 74}, it suffices to check (3.1) for f =
gn. Letn € Z4. Then (2.1) gives

Voi(gn) = VyUy = e 2P 00y, v = o= 21 0n (g )y
Since
e 2P g, (x) = 72T OMATINN — g (x — 0T p) = (g2 0 R_gr ) (¥),
the first equality follows. The second follows from a similar computation using (2.2). O

Remark 3.2. The minus sign in the first identity in (3.1) is crucial. As a reality check,
notice that the signs in the two formulas have to be different, because V; V, =1 means
the +67 p have to cancel. As a corollary, note that V, V. which is a proper projection,
commutes with the ((f). (To see that V, V; # 1, we can use the specific representation of
By constructed in the proof of Proposition 3.7(b).)

We now fix r € (0, 00)¥. The universal property of By gives a dynamics " : R —
Aut By such that

oa;(Upy) =U, and of(V,)= eitr'r vV, forne 74, pE Nt eR. (3.2)
Then o] (V, U, V) = &"P=0""V,U, V¥, and hence
{VpUan* ‘neZ4, p,q€ N}

is a set of o -analytic elements spanning an «"-invariant dense subset of By.

To describe the KMSg states of (By, o), it was tempting to apply [3, Theorem 6.1]
to the Toeplitz algebra of the commuting homeomorphisms 4 : x > x + 6; associated to
the rows 6; of 6. That result is, in several ways, more general than we need, but it has an
unfortunate hypothesis of rational independence on the set {r;} which we prefer to avoid.

PROPOSITION 3.3. Suppose that B > 0 and ¢ is a state of (By, o). Then ¢ is a KMSg
state of (Bg, &") if and only if

VU V) =80 P 79U, forneZd and p, g € NV, (3.3)

To prove Proposition 3.3, we need two lemmas. The arguments are based on [16, proofs
of Lemmas 5.2 and 5.3].

LEMMA 3.4. Suppose that B > 0 and ¢ is a KMSg state of (Bg, o). If p, q € NK satisfy
pTr=q"r, then:

@ VUV =9 (VU V) forn € Z¢; and

®) ¢V L(HVAI < d(Vp LNHV}) for positive f € C(SY).
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Proof. For (a), since V, is an isometry,

¢(Vp Un V;) = ¢(VpUn(Vq* Vq) V[;k) = ¢((Vp Un V;)(Vq V;))a
and since p’r = ¢ r, the KMS condition gives

BVpUn Vi) = e PP=DTT g (V VIV, Un VD)) = p(VUn V).

For (b), we take a positive function f in C(S?). By linearity and continuity, part (a)
implies that ¢ (V, ¢(f) V;) =V, u(f) V;)' Using the Cauchy—Schwarz inequality at the
second step, we calculate

BVt (HVAP =16 (Vpt /) Ve /NI
< p(Vpt(NHVI Vet (HIV)
=V (HV)?.

Since both sides are the squares of non-negative numbers, we can take square roots, and
we retrieve (b). O

LEMMA 3.5. Suppose that > 0 and ¢ is a KMSg state of (Bg, o). Suppose that p, q €
N¥ satisfy pTr = qTr and that f € C(S?). Write P := (p V q) — p. Then

dVpt(HIVS) = (Vpsipt(f o Rigrp)Viisyp)  foralll €N. (3.4)
If p#q, then (V) ((f)V)) =0.

Proof. We prove (3.4) by induction on /. The base case [ =0 is trivial. Now suppose
that (3.4) holds for / > 0. The inductive hypothesis gives

VLNV = (Vpsipt(f o Rigr p)V,iiip)
=¢(Vpript(f o Rigr p)Vy'y1p Varip Vyyip)-
Since the dynamics " fixes the element V,, ;p Vq* ", p» the KMS condition implies that
SVt (V) = Var1p Vi1 pVpript(f o Rigr p) Vi p),
and Nica-covariance gives
SV (V)
= (V1P Viq+ PY (p+1PY)~(q+P) Vg1 Py (p+1 Py —(p+1 Py L © Riar P)V'yip)-
For ¢ € N¥, we have (p+c)Vvg+c)=(pVvqg)+c. Thus
‘P(Vp‘(f)vq*) =d(VgrirVipvg)—q V(T,vq)_pl(f o R[QTP)V;HP)
= ¢(V(qu)+lP V;l(f o RzeTp)Vq*+1p)
=¢(Vipvg)+ipt(f o Rygrp o RQTP)V;+(Z+])P) by Lemma 3.1
=¢Vpra+ppi(fo R(l+1)9TP)Vq*+(Z+1)P)

because (p VvV g¢) + 1P = p + (I + 1) P. This completes the inductive step, and hence the
proof of (3.4).
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Now suppose that p # g. Then at least one of P and (p V ¢) — ¢ is non-zero. We argue
the case where P # 0, and the other case follows by taking adjoints. For [ € N,

B (Vpt(HVOI =19 (Vpript(f o Rigr p) Vi p)l
< ¢(Vpt1pt(f o Rigrp)V,,;p) by Lemma 3.4(b)
= g—ﬁ(p+1p)rr¢( ;+1PVp+lP‘(f o Ryt p))
= e_ﬂ(pHP)Tr(P(L(f o Rigrp))
< e PPHDT £l

Since P >0 and r € (0, oo)k, we have (p—l—lP)Tr — o0 as [ — oo, and hence
e PPHPT| £l g — 0as ] — oo. Thus ¢ (V, L(f)V,}) = 0. 0

Proof of Proposition 3.3. First, suppose that ¢ is a KMSg state for (Bg, @"). For n € z4
and p, g € N¥, two applications of the KMS condition give
SV U V) = e PP T (U, VIV, = e PP T g (v, U, V), (3.5)

It follows immediately that if (p — ¢)7r # 0, then o (VpUy, Vq*) =0.If (p —¢)'r =0 but
P # q, then Lemma 3.5 gives ¢(V,U, Vq*) = 0. This, combined with the first equality
in (3.5), gives

_BpT _p,T
¢(VpUan*):5p,qe bp r¢(UnV;Vp):5p,qe Pp "¢ (Un)

because V), is an isometry. This is the desired formula (3.3).

Now suppose that ¢ is a state satisfying (3.3). Since the V, U, Vq* are analytic elements
spanning a dense o’-invariant subspace of By, it suffices to fix p,q, b, ce€ N* and
n, n' € Z¢ and to show that

_ T
O (VpUViViUy V) = e P00 g (VU VIV, UL V). (3.6)
Let P:=(qVvb)—band Q:=(qVb)—gq. Then P, Q € N¥ are the unique elements
such that P A Q =0and P + b = Q + ¢, and Nica-covariance says that V'V, = Vo V3.
Now, using first the identities (2.1) and (2.2) and then (at the last step) the assumption (3.3),
we calculate
o (VpyU, Vq*VbU,,/ V) =¢(V,U, Vo VpUy V)
— e271iQT9n¢ (Vp(VQ Un) V; Un’ VC*)
; T Tp,'
_ e2m(Q On+PTon )¢(VQ+pUn+n/ V;—&—c)

_ T ccnT Tg,/
=004p pace POTPI AT, ). (BT)

Similarly, let M := (¢ V p) — pand N := (¢ V p) — c. Then M, N € N¥ are the unique
elements such that M A N =0and M + p = N + ¢, and the right-hand side of (3.6) is
e PP=D (VU Vv Vi Un V)
= e_ﬁ(p_q)Trezni(NT0'1/+MT6n)¢(Vh+N Uniw Vyym)

— — T i(NTon' T
:8N+b,M-‘rqe /3(17 q+b+N) re27Tl(N on'+M en)¢(Un+n’)~ (38)
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To see that (3.7) is equal to (3.8), we first show that the two Kronecker deltas have the

same value. For this, observe that, by definition of M, N, P, Q,
(P+b)+(N+c)=(Q+q)+ M+ p),

and, consequently, (N +b) — (M +¢q) =(Q + p) — (P +¢). Thus §g1 p pyc =1 if and

only if y4p m+q = 1. So it now suffices to prove that (3.7) equals (3.8) when Q + p =

P+candN+b=M+q.

We first claim that M = Q and N = P. By assumption, we have M + g = N + b, and
we have P 4+ b = Q + g by definition of P, Q. Subtracting these equations, we obtain
M — Q =N — P, and rearranging gives M — N =Q — P. Since PA Q=0 and M A
N =0, we deduce that 0 =(Q — P)vO0=(M — N)v0=M, and then P = N too, as
claimed.

We now have

ezni(Q79n+PT0n’) _ eZm‘(MTGn—i-NTQn’)
and so it remains to check that
e B—atb+N)'r _ —B(p+ Q)
For this, we apply N = P, from above, at the second equality and b + P =¢q + Q, by
definition of Q, P, at the third to get
P-—)+G+N)=p+O0+N-q)=p+O0+P—gq)
=p+@+0-9=p+0,

which gives the result. Thus ¢ is a KMSg state. O
LEMMA 3.6. Write 0; for the jth row of 0. Then the series
~p"r
3 e Ry, (3.9)
peNk

converges in the operator norm of B(C(S?)) to an inverse for ]—[I;»:] (id —e=Pri Ryr,).
J

Proof. We first need to understand the sum (3.9), which we want to calculate as an iterated
sum. So we interpret (3.9) as a B(C (Sd ))-valued integral over Nk with respect to counting
measure o (for which all functions on N¥ are measurable). Since each Rgrp is norm-
preserving,

k
_g,T _g,T _Bpir
le Bp rRGTp*”:e Bp rZHe Bpjrj
=1

By Tonelli’s theorem,

oo oo k
PO PN ED DD (H e’ ”"”’)
peNk Pk=0 p1=0 *j=1
oo oo k 0o
= Z . Z <1_[ e—ﬁPj’j)(Z e—ﬂplrl)
Pk=0 p2=0 *j=2 p1=0
= i c i <ﬁ e—ﬂﬁjfj)(l _ e—ﬂ"])—l.
pr=0 p2=0 *j=2
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Repeating this k — 1 more times gives

k

—ﬁpTrR — 1 — e Priy-1
> e o pull = [T =771,

peNk j=1

. T .. . ..
Thus the function p > ¢ #7° " Ryt 18 integrable with respect to o, and Fubini’s theorem

J
for functions with values in a Banach space (for example, [12, Theorem II.16.3]) implies
that

’ 0 ) k
Z e PP Ryr = Z . Z < e_ﬁpjrjRp_/GjT*>
1

peNk Pe=0 p1=0 "j=
k [
(S o)
J
Jj=1"p;=0

Writing the infinite sum as a limit of partial sums shows that

o
> (e PRy )P (d —e P Ryr,) =id. (3.10)
J J
pj=0
To simplify the product
k

00 k
((Eene ) [-cns)

Jj=1"p;=0 j=1

we write the left-hand product from j =k to j = 1 and the right-hand one from j =1 to
Jj = k. Now k applications of (3.10) show that the product telescopes to the identity id of
B(C(SY). m

The next proposition is an analogue of [16, Theorem 6.1] and [3, Theorem 6.1].

PROPOSITION 3.7. Fix 8 € (0, 00).
(@) Suppose that ¢ is a KMSg state for (Bg, o), and let v € P(S%) be the measure such
that

$((f) = /Sd Fdv for feCE.

Suppose that F C N¥ is a finite set such that p # q € F implies p A q = 0. Then the
measure v satisfies the subinvariance relation

[TGd—e#7"" Ryr 0 () = 0. (3.11)
peF

(b) Define yg := ZpeNk e_ﬂpT’, and suppose that « is a positive measure on S with
total mass y}gl. Write 0; for the jth row of 0. Then

k
v=1v,:=[]Gd—e P Rg.0 " ()
j=1
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is a subinvariant probability measure, and there is a KMSg state ¢, of (Bg, o) such
that

by (Vp (V) = Spqe T f fdv forp,geNand fec$?). (3.12)
sd
(¢) The map k — ¢y, is an affine isomorphism of the simplex
Xg,r = {positive measures k : ||| = y/;]}
onto the simplex of KMSg states of (Bg, o).

Proof. (a) We take a positive function f € C(S%); and compute

/Sd f d(l_[ (id —eﬁPT’RQTp*)(v)) = /Sd fo <]_[ (id —ef’PT’RQTp)) dv

peF peF
= —1)'s —pplr Ryr, ) dv. 3.13
/Sd2< S TTe follRer,)dv (3.13)
SCF pesS peS
We write pg:=}_ g p, and we observe that [ ] g e BT — ¢=PPST and [1,es Rorp =

Ryr ¢ Thus

(3.13) :/Sd Z(—l)‘s‘e—ﬁps”(f o Ryt ) dv

SCF

_gpT .
= ¢<Z(—1)Se PPSTU(f o Ryr ) Vi Vps) since V Vs =1
SCF

= ¢<Z (—DPWpeu(f o RerpS)V;S> by the KMS condition
SCF

:¢<Z(_1)Svpsv,fsl(f)> by 3.1).
SCF

Because the set F has the property that p A ¢ =0 for p # g € F, Nica-covariance gives

VVaVaVi =VivgVpug = Vp+qVpiq for p#q € F. Thus, for each S C F, we have
VPSV;S = Hpes VpV;‘, and

Y =D, v =T =v,vo.

SCF peF

The latter product is a projection, and it is fixed by the action . Hence another application
of the KMS condition gives

/&d f d<l_[ (id —eﬁpTrRGTp*)(v)> - ¢(]‘[ a1-v, V;)L(f))

peF peF
2
=¢((1‘[(1 - vpv;>> t(f))
peF
=¢(1‘[(1 — VvV [0 - vpv;;)).
pEF peF
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This last term is positive because the argument of ¢ is a positive element of By, and this
proves (a).
(b) We have
[Tad—e"iRg () =k =0,
j=l1

so v is subinvariant. By Lemma 3.6,

/Sd ldv =/Sd 1 d(Z e‘ﬂ”TRer,,*(K)>

peNk
= Z efﬂpTr/ lo Rng dK
PeNk sd
2. T
=Y ek =yplicl =1, (3.14)
peNk

and hence v is a probability measure.
We will build a KMSg state using a representation of By on 2(NF) @ L2(S4, k). Recall

that we write g, for the trigonometric polynomial g,(x) = e** ix'n_Then the formula
W, f := g, f defines a unitary representation W of Z¢ on L>(S%, k). Write {8 piDE Nk}
for the orthonormal basis of point masses for £2(N%), and let D,, be the bounded operator
such that D,§,, := e*" ip"ong »- Then D is a unitary representation of Z¢ on ¢?(N¥), and
hence D ® W is a unitary representation of 74 on £2(NF) @ Lz(Sd, K).

Let T be the usual Toeplitz representation of N by isometries on £2(N¥). Then

(Ty ® DDy @ W,)(84 & f) = (514 @ W, ),
and
(D ® Wa)(Tp @ 1)(8g ® f) =P 05, @ W, f)
= (T, @ 1) (D, ® Wy).
Hence the universal property of By gives a representation
71 By — BU*(NY) @ L*(S9, k)

such that w (Up) = (D, @ W) and (V) =T, ® 1.
Since ) peNk e PPIr s convergent, there is a positive linear functional ¢, : By — C
such that

po(@) =Y P @)@, @118, ®1).

peNk

Then (3.14) implies that ¢, (1) =1, and ¢, is a state. To see that ¢, is a KMSg state, we
take p, g € NF, n € Z4 and calculate

‘pu(vpt(gn)vq*) = ¢y (VpUy Vq*)

=Y D@ WIS D | TS ® 1)
beNk
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T . T
S X W@, 6,15, 1)

bzpvq
=084 Z e—ﬂhTrezm(h—p)Ten(gn B
b=p
251’*’1(2 e—ﬂ(b-i-I’)TreZnibTé)n) / gn di. (3.15)
bek 8¢
In particular,
$u(1(gn)) = v (Un) = (Z eﬂb”e%b%) / 2 dc. (3.16)
sd

beNk

Thus r
¢V(VpUn Vq*) = Sp,qe_ﬁp "¢v(Un),

and ¢, is a KMSg state by Proposition 3.3.
From (3.15),

by (Uy) = Z e—ﬂbTr/ eZni(x+bT9)Tn dic (x)

I
beNk &

=2 eiﬂbrr/ gn © Ryt dic
sd

beNk

= /%d 8n d(z eﬁbTrROTh*(K)>y

beNk

which, by Lemma 3.6, is [gs g» dv. Thus

—gpT _gpT
Do (Vpt(8n)Vy) = 8p.ge " $u(t(gn) = 8p ge ™" f L gndv.

S
Since C(S?) =span{g, :n € Z%}, (3.12) follows from (3.16) and the linearity and
continuity of ¢,.

(c) We first observe that both maps x — v, and v — ¢, are affine, and hence so is the
composition. To see that the composition is surjective, we take a KMSg state ¢, restrict it
to the range of ¢ to get a measure v and take

k
K= n(id —ePri Ro;) (V).

j=1

Then the formula (3.3) implies that ¢ and ¢,, agree on the elements V,¢( )V, and hence
by linearity and continuity on all of By. Thus ¢ = ¢,, . The procedure that sends ¢ to « is
weak* continuous and inverts « — ¢, . Thus it is a continuous bijection of one compact
Hausdorff space onto another, and it is therefore a homeomorphism. Thus so is the inverse
K = ¢V/< . O
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4. The subinvariance relation for the direct limit
We now return to the set-up in which the dynamics o on the direct limit B, is given by a
sequence {r"}.

Suppose that ¢ is a KMSg state of (Bso, o) and v, are the measures on S? that
implement the restrictions of ¢ o 7, » to C (Sd) C By,. Since the embeddings m,, are
all unital, so are the m, . Thus, for each m, the restriction ¢ o 7, » is a KMS;
state of (B, '), and hence is given by a probability measure v,, that satisfies the
subinvariance relations for 6 =#6,, in (3.11) parametrized by subsets F' of {1, ..., k}.
But here, since ¢ o 7,00 =@ © Tmti,00 © Tm m+1 for I € N, the measure v, satisfies a
sequence of subinvariance relations parametrized by / as well as F. Our first main result
says that these can be combined into one master subinvariance relation with real parameters
s € [0, co)k.

We now describe our continuously parametrized subinvariance relation. For k = 1, this
follows from [6, Definition 6.7 and Theorem 6.9].

THEOREM 4.1. Suppose that ¢ is a KMSg state on (B, o) and m € N. We write v, for
the inclusion of C (S9) in By, and then

tn(C(§)) =Span{Up,, : n € N},

Let vy, be the probability measure on S? such that
b0 Tmoclin(MN = [ f v for f eCE, @

Write Oy, j for the jth row of the matrix 6y,. Then, for every s € [0, o)k,
k m
[Tad =R or Hom) = 0. (42)
j=1

We prove Theorem 4.1 at the end of this section. We first need two preliminary results.
The homomorphism 7, : B;, = By, +1 maps tm (C(S%)) into 141(C(S?)). When we
view 1, (C(S9)) as span{Uy, .}, the homomorphism 7, is characterized by

TTin (Um,n) = Um+1,Emns

and when we view ¢, (C(S9)) as {t, (f): f € C(SY)}, m,, is induced by the covering
map E; :S? — S¢. Hence we have 7, (1 (f)) = tms1(f © EnC). In particular, 7| csq)
is (EZ)* f> fo E; The corresponding map on measures is given by E,,T”: ie.,

/ fdnm(v)=/ de,ﬁ*(u)zf (foElydv.
Sd Sd Sd

LEMMA 4.2. Suppose that ¢ is a KMSg state on (Bso, o). For m € N, let vy, be the
probability measure on S¢ satisfying (4.1). Then, for every finite subset F of N* such
that p Aq=0forallp #q€F,

. _ —1 T ,.m
[T dd—e PP Ry i, ) () = 0.
peF
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Proof. We apply Proposition 3.7(a) to the state ¢ o 741,00 Of (Bp+1, oz’mJrl ). We deduce
that

. _RpT,m+1
[TGd—e?r Ryt ) Wng1) 2 0. 4.3)
peF

To convert this to a statement about v,,, we want to apply EnTM to the left-hand side. We

first observe that

E;Z © Rerﬁﬂp(x) = E;x - Encer£+1p

=EIx—0l'D1p using (2.3)

T
= RGIED,;lp o E, (x). (4.4)
Since E,ﬁ* preserves positivity and & — h, is covariant with respect to composition, (4.3)
implies that

. _RpT,m+1
05E£*<]"[<1d —e PP Re,g+],,*><vm+1>)

peF
. _RpT,m+1 .
= <n(1d _e PP R%Dmlp*)> o E,ﬁ*(vmﬂ) using (4.4)
peF
. _p,T —1,.m .
= l_[(ld —e PP (D) RB,EDVZ'IJ*)(U’”) using (2.4)
peF
. _ —1 N7 ,.m
= H(ld —e BDu Py Ry1 p=t ) Wm). 0
peF

For a positive integer /, we can apply the argument of Lemma 4.2 to the embedding
Tm.m+1 Of By in By4y. This amounts to replacing the matrix D, with Dy, 4 :=
Dyyi—1Dpti—2 - - - Dyyy1 Dy, Ey, with a similarly defined E,;, 4, 6n+1 With 6,4/, and
r*1 with "+, We obtain the following corollary.

COROLLARY 4.3. Suppose that ¢ is a KMSg state on (B, @) and vy, is the probability
measure satisfying (4.1). Then, for every positive integer | and for every finite subset F of
NK such that p A g =0 forall p #q € F,

[1dd e PO P B
peF

)(vy) = 0.

T -1
Hm Dm4m+/p*

Proof of Theorem 4.1. For each > 0 and p € N¥, we can apply Corollary 4.3 to the finite
subset Fj, :={pje; : 1 < j <k} of N¥. This gives us the subinvariance relation

o) (Vm) = 0. (4.5)

k
. —ﬂ(Dil p,e,)Trm
id —e m,m+1£J%] R 1
1_[1( erzz"Dm,erlp.l J
j=

Each factor in the left-hand side L of (4.5) has the form id —e *R,.. Since
(e Ryx) (€ "Rys) = e DRyt s, the product (id —e 5 Rys)(id —e ™" Ryys) of two
such terms collapses to

id =™ Ry — ¢ "Rys + ¢ T Riyy)s.
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Thus we can expand

L=id+ Z (_l)lG\e*ﬁ(D;11m+,PG)Trm RQmTDr;'meG*(V'")’
P£GC{L,...k}
where pg ==} pje;-

For each fixed f € C(S%) and v € P(S%), the function s f Rs(f)dv on R¥ is
continuous, being the composition of the norm-continuous map s +— Rs(f) and the
bounded functional given by integration against v. We now consider a positive function
f in C(S%: we write f e C(S%),. For s €[0, 00)f and G C {1, ..., k}, we write
SG = ZjeG sjej. Then

gG:s»—>/fd(e—ﬁsgrmRezm*)(vm)

is continuous, and so is the linear combination

L(s) := / f d( Z (_l)lG\ —ﬂﬁcrhz RQTSG*) ).
Gc{l,....,k}
The subinvariance relation (4.5) says that L(s) > 0 for all s of the form D_
and p € N¥,
Since each of the matrices D,, is diagonal with entries d,, ;, say, at least two,

Dmm+lpJe] (1_[ m+n, /)pjef‘

Since dy,j > 2 for all n and j, the rational numbers of the form (]_[2 lodelrn j) pj are
dense in [0, 00). Thus the vectors s for which L(s) > 0 form a dense subset of [0, o0)k,
and the continuity of L implies that L(s) > 0 for all s € [0, co)X. A measure v which has

J fdv=0forall f e C(S?), is a positive measure, and this is what we had to prove. O

pforl>0

m m+

5. The solution of the subinvariance relation

We now describe the solutions to the subinvariance relation (4.2). We observe that the
formula on the right of (5.1) below is the Laplace transform of a periodic function, and
as such is given by an integral over a finite rectangle. This observation motivated our
calculations, but in the end we found it easier to work with the trigonometric polynomials

X = eZJunx'

THEOREM 5.1. Let6 € My 4(S%), B € (0, 00) and r = (r;) € (0, 00)*. Denote the jth row
of 0 by 0.
(a) ForeachueM (Sd), there is a non-negative measure v, € M (Sd) such that

/ fde:/ e—ﬂwT’/ fe+0Twydux)dw for feC$S?), (5.1)
Sd [0,00)k Sd

and v, has total mass | ul| ]—[ljzl(ﬁrj)fl. The measure v =v, satisfies the
subinvariance relation
k
l_[(id —e—ﬁSf’fstQf*)(u)zo fors € [0, co)k. (5.2)
j=1
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(b)  Foreach v satisfying the subinvariance relation (5.2), there is a measure i, € M (S%)
such that

k
1
_ . . . _ 713 .
/Sdfduu— lim --- lim s /Sdfd(]li[l(ld e AJVJRSjG}"*))(V)

sg—07F s1—>0% Sk -

(5.3)

for f € C(S%), and ., has total mass ||v|| ]_[Ijzl(ﬂrj).
(¢) The map > v, is an affine homeomorphism of M(S%) onto the simplex of
measures satisfying the subinvariance relation (5.2), and the inverse takes v to (.

Remark 5.2. A measure v that satisfies the subinvariance relation (5.2) also satisfies the
analogous relation involving ]_[jej(id —e Psiri st«e.T*) for any subset J of {1, ..., k}. To
J

see this, observe that, for any vector y € [0, 00)?, R\ is an isometric positivity-preserving
linear operator on C (S%). Hence so are Ry, and e Psiri Ry,. Since the numbers —Br; are
negative, the series > o, e Psir " R, converges in norm in the Banach space of bounded
linear operators on M (S?) to an inverse for id —e~#%"i R y«. Hence applying this inverse
allows us to remove factors from the subinvariance relation without losing positivity.

Remark 5.3. (Reality check) We reassure ourselves that the description of subinvariant
measures in Theorem 5.1 is consistent with the description in [6, Theorem 7.1]. There d =
k =1, and they describe the simplex of subinvariant probability measures by specifying
the extreme points of the simplex.

We recall that the matrices D,, € M1 (N) =N and E,, € M| (N) are all the same integer
N > 2, and the sequence 6,, then satisfies N 29m+ 1 = 6. In terms of our generators, the
dynamics « : R — Aut B, in [6] is given by

* — Lit(p—q)N™" *
’ ’ m ) )
o (Vin, pUmn nV, ’q) e Vin,pUm an,q

(see [6, Proposition 6.3]), which is our o with r™ = N~™, We are interested in KMS B
states, so the subinvariant probability measures for (B,,, «) are those in the set denoted by
QY forr =BN~"0,; U= grmg 1 (see [6, Notation 6.8]; the displayed equation there is
meant to say this, as opposed to r = BN ~"0,,, which is the way we first read it).

Since the calculation in [6] is about extreme points, we start with a point mass 8, €
P(l(iLn S). Then (E,7,; )«0y is the point mass i, = dy,,, where y,, is obtained by realizing y
as a sequence {y;,} satisfying Ny;,+1 = y». Then the measure v, in Theorem 5.1(a) is
given by

oo 1
/ f dvﬂm Z/ eiﬁwrm / f(x + gmw) d//‘m(x) dw
0 0
e m
=/ e P f (Y + Opw) dw.
0

For f(x) = e*™"* we get

00
/fdvﬂ :e27rinym / e—ﬂwrme%rin@mw dw
m ,
0
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and a change of variables gives
. © —1..m .
/fdvp,m :e2mnym/ e—ﬂé‘m ur eZanQ’;l dv
0
o 1
:e2m'nym9n:l/. e—(ﬂr’"ﬂm’ )veZninv dv.
0

Now we recognize the integral as the Laplace transform of the periodic function
X = 27in%and hence

1

1
pErE / e—(ﬁr’”@,;')veZEinv dv. (5.4)
1 —eBr"m Jo

__ 2winy, p—1
/fdvum—e "0

In the notation of [6], we set r := Br™6,; ! and rewrite (5.4) as

1—e"

1
P _ r _ .
/ fd‘)um 2627”11},”/3 le / e rv62mnv dv
0

1
_ gl /0 XTI (R, ) () (v).

This shows that the measure v,,, is a multiple of the measure (R),, ).(m,) appearing
in [6, Theorem 7.1]. We are off by the scalar 8 —IN™ pecause that theorem is about the
simplex of subinvariant probability measures, and the measures v, in Theorem 5.1 have
total mass (Br™)~! = p~IN™.

For the proof of Theorem 5.1(a), we need the following lemma, which is known to
probabilists as the inclusion—exclusion principle. We could not find a good reference for
this measure-theoretic version, but fortunately it is relatively easy to prove by induction on
the number k of subsets.

LEMMA 5.4. Suppose that ) is a finite measure on a space X and {S;:1=<j <k} is
a finite collection of measurable subsets of X. For each subset G of {1, ..., k}, we set
SG = ijG Sj. Then

k
(Us)= > oo,
j=1

P£GCHL, ...k}

Proof of Theorem 5.1(a). We first claim that there is a positive functional / on C (S%) such
that 1 (f) is given by the right-hand side of (5.1). Indeed, the estimate

< / BT f 1 flloo dit(x) dw,
[0,00)k S

shows that the right-hand side of (5.1) determines a bounded function / : C(S?) — C. This
function [/ is linear because the integral is linear, and f > 0 implies that / (f) > 0 because
all the integrands in (5.1) are non-negative. Thus there is a finite non-negative measure v,
satisfying (5.1). The norm of the integral is given by the total mass of the measure v,

which is
/ ldv#:/ e P | dw.
sd [0,00)k

/O ; ePulr /S;d Fx+6Tw) du(x) dw
[0,00
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To compute the exact value of the integral, observe that

k
k
e—ﬂwTr — e—ﬂ Zj:l w_,-r_,- — 1_[ e—ﬁwjrj'
j=l1

Thus

k k 00 k
Il = el / [Te " dw=ul ] / e Vit dw; = |lull [TBrH™"
[0.00)% 5} j=170

j=1

This proves the assertions in the first sentence of part (a).
For the subinvariance relation, we fix f € C (S" )+, and we aim to prove that

k
/S o d(]‘[(id —e P RSjej*><vM>) >0,

j=1
As in the proof of Theorem 4.1, we write

k
[Taa—e PR =id+ 3 (=D Pe Ry,
j=1 P#£GC{1=<j<k}

with sg = ZjGG sjej. For j <k, we define §;={ve[0,00):v;>s;} and Sg :=
Njec Sj- Then

_ a0 _nJ0
[P R0 = [ P (o R d,
=/ e=BLTr g=BsGr / Fo+0Tw+67s6) du(x) dw
[0,00)k S
:/ e B / Fx+6Tv) du(x) dv. (5.5)
SG sé
Since f is fixed, we can define a measure m on [0, o0)k by

/ gdm:/ g(v)e*ﬂ”Tr/ Fx+06Tv)du(x) dv.
[0,00)k [0,00)k Sd

Now (5.5) says that
_pT
/Sd fd(e P56 Ryr, ) (v) = m(Sg).

Thus

k
/S‘d S d<l—[(id _e_ﬁsjrj Rs‘/ﬁj*)(‘)u)> =m([0, Oo)k) + Z (—1)‘G|m(S(;).

j=1 P#GC{l1<j<k}
By the inclusion—exclusion principle, this is

k
m(10, 00)") — m(U sj> - m<
j=1

k
[0, sj) > 0. 0
j=1
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We now move towards a proof of part (b), and for that the first problem is to prove
that the iterated limit in (5.3) exists. We will work with [ satisfying 1 <[ < k and show by
induction on / that the iterated limit

lim --- lim
s;—0t s1—0t

exists. We will be doing some calculus, so we often assume that our test functions f
belong to the dense subalgebra C (89 of C(S%) consisting of smooth functions, all of
whose derivatives are also periodic.

We begin by establishing that, even after dividing by the numbers which are going to
zero, the norms of the measures remain uniformly bounded.

LEMMA 5.5. Suppose that v is a finite positive measure on S¢ satisfying the subinvariance
relation (5.2). Then, for each s € (0, co),
1 k
Ay 1 = ——— H(id —ePsiri stgjr*)(V)

SkSk—1 81 7 -
j=1

is a positive measure with total mass

k
sl < (H(ﬁr,-))ﬂvn. (5.6)

j=1

Proof. The subinvariance relation implies that the measure is positive. For the estimate on
the total mass of Ay, we deal with the variables s; separately. So, for 1 <[ <k, we set

k
o] = H(ld _e_ﬁSjrj RSijT*)(v),

j=l

which, by Remark 5.2, are all positive measures. We have

k
/S ) 1d</1_[_1(id —e—ﬂsf'ffst@jT*)(v)> = /S | Ldo

= /Sd 1d((id —e P57 R, r.)(02))
= /Sd 1o (id —e P51 R gr) don
= Q—eP")doy.

sd

So for all s1 > 0,

1 1 — e Bs1m

k
— |1 d<l_[(id —ePuiti stgjf*)(u)) = /S o (5.7)

S1 Jsd =1
The integrand here is

_ e Bsir _
1 — e Psin _ SO — f(s1) for f(s1) = B
S1 S1
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Hence, for each fixed s1 > 0, the mean value theorem implies that there exists ¢ € (0, s1)

such that 5
1 — e PBsim
S = —f/©) = —(=prieFm,
S1
which is a positive number less than Sr;. Thus (5.7) is at most Sr||o2]|.

Now we repeat this argument. We first see that

11 d(id —e P22 R )(03)
s2 Jsd 5205 *
has mass at most Br,||o3]|. After k — 2 more steps, we arrive at the estimate (5.6). O

LEMMA 5.6. Suppose that 1 < j <k and that » € M(S?) satisfies
(id —e P ijr*)(x) >0 foralls>0.

Then, for all f € C*®(S%),

lim (1 fdd—e P Rw_r*)()\)> = Brj / fdx —f 0] (Vf)ydr. (58
J sd sd

s—>0t\s Jsd

Proof. Let g:S? x R — C be the function g(x, s) = e #%i f(x + SGJ.T). The term on the
left of (5.8) can be rewritten as

1 1
L L=t ol =1 [ 60 - gtr o) daw.
s Jsd s Jsd

So we want to show that the function G defined by G(s):= fgd g(x,s)dr(x) is
differentiable at zero with —G’(0) equal to the right-hand side of (5.8).
We compute

d
a—g(x, $)=—Brje P f(x +567) + e P67V £ (x + 567).
s .
The Cauchy—Schwarz inequality for the inner product GjT (Vf)=(0;| V) then gives

d
la—f(x, D[ < Brill fllco + 167 11211V f (x +56]) 2. (5.9)

The right-hand side is uniformly bounded on S¢, and hence there is an integrable function
on S? that dominates the right-hand side for all s € [0, 1], say. Thus we can differentiate
under the integral sign, using [14, Theorem 2.27], for example. We deduce that G is
differentiable on [0, 1] with derivative

G'(s) = f (—Brie P fx +50]) +e P07V f(x 4 50])) dr(x).
sd
Taking s = 0 gives the negative of the right-hand side of (5.8), as required. O

Our next step is the inductive argument, which is quite a complicated one. As a point

of notation, for each tuple I = {iy, ..., i} with entries in {1, 2, ..., k}, and for f €
C °°(Sd ), we write |I| := m and Dy f for the partial derivative
amf
Dif=—m———.
8)6,'1 8)6,'2 e 8x,~m
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LEMMA 5.7. Suppose that v is a positive measure on S% satisfying the subinvariance
relation (5.2). Let 1 <1 <k.
(@)  The iterated limit

lim lim

I
1
o d id —e PSiTi R
5i—0+ s1—>0% 87 - -+ 81 /;d f (1_[(1 ¢ S-fg./'T*)> )

j=1

exists for all f € C(S%).
(b) Write

)
=R
n=0

Then there are real scalars {K; 1 €%y} such that K! :]—[lj:](,Brj) and, for
every f e C®(S?) and for every measure v on S? satisfying the subinvariance
relation (5.2), the limit in (a) is

/Sd<z KﬁD,f) dv. (5.10)

VDY

Proof. We prove by induction on / that the limit in (a) exists for every f € C*°(S¢), and
that there exist the scalars K 5 Then, since we know from Lemma 5.5 that the measures A
are norm-bounded by (]_[]j‘-=1 (Brj)lv]l and that C%°(S?) is norm dense in C(S%), we get
convergence in (a) also for f € C (S9).

When [ = 1, the index set X consists of the empty set ¢ and the one-point sets {j}.
Lemma 5.6 implies that Ké = Bry and K{lj} = GlTej =06;.

We fix [ between 1 and k — 1, and suppose as our inductive hypothesis that, for every
measure A such that

!
[Tad =R 4r)(3) =0 foralls € [0, 00)f, (5.11)
j:] L)
we have such scalars {K 5} parametrized by / € ¥;. We now have to start with a measure
k that satisfies

I+1
[[Gd —e P57 Ryr ) () = 0 forall s € [0, 00)* (5.12)
j=1 ’
and find suitable scalars K ﬁ‘H.
We define
A= (id —e Pt Ry, o1 ) ()

Remark 5.2 reassures us that A is another positive measure, and (5.12) implies that it
satisfies (5.11). The induction hypothesis gives

I+1
1 .
L(si41):= lim --- lim —/Sdfd<]_[(id—eﬁéi’szjgjf*))(K)

sp—>0F s1—>0% Sp41 -0 - 8] il
1
= L([(X &ioir)an).
Si+1 \Js< lex,
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Lemma 5.6 implies that

. 11121()+14(S1+1)=,3rz+1/S (Z KIDIf)d)L /91+1 (Z KlDIf)

1ex; DY
—prn [ (X Kiper)an= [ (2 S Koo 2L ) ano.
sd

1€%; 1€y i=1

To finish off the inductive step, we set Ké“ = ﬂrlHK@ and, for I’ = (1, ij7)+1), we set
l .
kit = | Kifaning if 1] =1,
BrisiKh, — KiOrip,, it <l

This completes the inductive step, and hence the proof. O

Proof of Theorem 5.1(b). Lemma 5.7 shows that the limit exists for all f € C(S%) and for
f € C*®(S%) gives us a formula for the limit. The limit is linear in f, positive when f is,
and is bounded by ||f||oo(l—[l;=] (Brj)lvll. Thus it is given by a finite positive measure
Wy. Since the total mass of the measure is integration against the constant function 1, and
since 1 is smooth, the total mass is given by (5.10). But since all derivatives of 1 are zero,
the only non-zero terms are the ones on which I = J. Now the formula for K ’5 implies that

ol = T5 By IV =

We now work towards the proof of Theorem 5.1(c). To prove that N : > v, is a
bijection of the measures arising from KMSg states onto the subinvariant measures, we
prove that N is one-to-one and that M : v — ., satisfies N o M (v) = v for all subinvariant
measures v. We then have N o (M o N)(iu) = (N o M) o N(u) = N(u), and injectivity
of N implies that (M o N)(u) = . Thus Theorem 5.1(c) follows from the following
proposition.

PROPOSITION 5.8. Suppose that v is a measure on S satisfying the subinvariance
relation (5.2) and with total mass ]_[];:1 (,Brj)_l. Then v =vy,.

Suppose that v is a subinvariant measure and f € C*°(S?). We need to show that the
functional defined by integrating against v, which is defined in parts (a) and (b) of the
theorem as

/ e fim L f(x—i-GTw)d(l_[(ld—e PITIR, o ))(v)(x)dw
0,00)k

s—>0T Sk - -+ 81
j=1

(5.13)

is, in fact, implemented by v. We will do this by peeling off the iterated limit one variable
at a time. For this, the next lemma is crucial.

LEMMA 5.9. Consider a positive measure ) on S%, b e (0, 00) and v e S¢. For f €
(s,

/OO —bt lim _/ f(y—}—z‘v) d((id —e_bYRsv*))‘-)(y) dt
0

s—>0+ §
—bz
= lim
s—0+

/ FO+ 1) d((d —e " Rep )W) (y) dt.
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Proof. Fors >0,
1 . -
- /S FO+ 1) d(d = R ()

1
=7 /d(f(y +1v) — e f(y + tv + 5v)) dA(Y).
S
We write this last integrand as

K@y, s, )=5""(f(y +1v) — e f(y+tv+sv))
=s_1(f(y +tU) - e_bsf(y +IU) +e_hsf(y +IU) _ e—hxf(y +tv +sv))
1 —ebs B
:—ef(y_i_tv)_ke*bsf(y‘i‘lv) f(Y‘i‘lv—i-sv).

N N

—bs

We estimate the first summand using the mean value theorem on e and the second

summand using the same theorem on f, to find

IK(y, 5, D <bll flloo + 10" (V ) llco-

Thus
e bt

- /Sd KO, s, 0)dr)| < e P Bl flloo + 10T (VHllso) IA]l-

Now the result follows from the dominated convergence theorem for Lebesgue measure on
[0, oo) (modulo the trick of observing that it suffices to work with sequences s, — 0+ —
see the proof of [14, Theorem 2.27]). O

Proof of Proposition 5.8. As in the proof of Theorem 5.1(b), Lemma 5.7 implies that there
is a positive measure 7 on S9 such that, for geC ooy,

k
1
dn= lim d id —e PSi"i R V).
/Sdg n=_1 32_)0+Skms2fsdg (||( e s,-a/.T*))()

j=2

Since the operators id —e~#%i"i R ;67 cOmmute with each other,
567

/S L gdld —e PR, 41, ) (D)

k

/Sd g d(l_[(id —e~Psirs Rs_j(,]z*)) ). (5.14)

j=1

= lim

Skyerns2—>0F Sk o+ - 852

Now we need some complicated notation to implement the peeling process. First of all,

we fix f € C®(S9). In an attempt to avoid an overdose of subscripts, we write s = (s1, §),

w = (wq, w) and r = (rq, 7). We also write 6 for the k — 1 x d matrix obtained from 6

by deleting the first row: thus 67 has block form (97 7). With the new notation, (5.13)
becomes

o0
/ e—ﬂﬁ)T? f e Priwi
[0,00)k—1 0

1 .
x lim — [ fx+6Td4+w6l)did —e*ﬁ’IWIRSlelT*)(n)(x) dwi di.

s1—>0t 81 Jsd
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Now we can apply Lemma 5.9 to the inside integrals, which gives

o
/ fdv, = f PV fim L / e Priv
sd [0,00)k—1 s1—>0T 51 Jo

x / fx+0T0 4+ w6l dad —e—ﬂrlwlelelf*)(n)(x) dwy d. (5.15)
sd
‘We now consider the function g on (0, co) defined by
1 [ N
g(s1) == — / e Priw / fx 40T+ w6])d(id —e*ﬂWRnng*)(n)(x) dw.
s1 Jo S4

We aim to prove that g(s;) — [a f(x +6T%) dn(x) as s — 0T. To this end, we
compute
1 [ ~
g(s1) = _/ e Privn / FO+0Td + w0l dn(x) dw
S1.Jo Se
1

oo
_ s_ e Bri(witsy) /d f(X+éTﬁ)+(w1 +s1)91T) dn(x) dw;.
1Jo S

Changing the variable in the second integral to get an integral over [s1, c0) gives

1 [ .
g(s1) = —/ e Priv / F+0T0 4+ w8l dn(x) dw.
S1 Jo sS4
Now
g(sl)—/sd fGc+0") dnx)
1 S1 n R
= e Ariwi If(x—l—GTﬁ)—i—wl@]T)dn(x) dw; —/1 Fx+0Tw) dn(x)
1 J0 §é S¢

1 S1 R R
= / (e Pt f(x + 0T + wi10]) — f(x + 6T W)) dn(x) dwy.
1 Jo Sd

Since y > e A" f(x + 6T + 67 y) is uniformly continuous, there exists § such that

0<w <8= e P f(x + 0T +wi0) — F(x +07 )| < ”e—”
n

1 [ €
S—/ / —dn(x) dw; =e.
s1 o Jse lImll

Thus g(s1) — fou f(x +07H) dn(x), as we wanted.
Putting the formula for lim, _, o+ g(s1) in (5.15) gives

fdv,, = e PV e 46T W) dy(x) di
wy, = n(x) dw,
Sd [O,oo)k_l Sd

which is the right-hand side of (5.13) with one lim,_, 3+ and one fooo removed. Repeating
the argument k — 1 times gives

/Sdfdv“”:/Sdfdv’

as required. O

So, for0 <s; <6,

g(s1) — /S Fx+8Td) dn(x)

As described before Proposition 5.8, this completes the proof of Theorem 5.1.
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6. A parametrization of the equilibrium states
We are now ready to describe the KMS states of our system. At the end of the section, we
will use the following theorem to prove our main result.

THEOREM 6.1. Consider our standard set-up, and suppose that > 0.

(a) Suppose that e P(hm(Sd E ). Define measures i, € P(SY) by wm=
E,E cox () and take v, to be the subinvariant measure on S? obtained by applying
Theorem 5.1 to the measure |i,,. Then there is a KMSg state \r,, of (Boo, @) such that

_anT,m
Ve Vin, pUnon Vi ) = 8p.qe” P ]_[(ﬁr”') / 2 gy, (). (6.1)
j=1

(b) The map pv> Y, is an affine homeomorphism of P(](iﬂl(Sd,E;;)) onto
KMSg(Boo, o).

To prove the theorem, we first build some maps between the spaces of subinvariant
measures. We will make use of Theorem 5.1, but the measures described there are not
all normalized. To ensure that we are dealing with probability measures, we introduce the

numbers
k

k
cn =[BT = ﬁk<l_[ r;"> and  d, := det D,,.
j=1

j=1
Because D,, is diagonal, (2.4) shows that the two sets of numbers are related by dy,cp41 =
Cm.-
With Xg , from Proposition 3.7(c), we define 6;, : g+l —> X pm by
om(W) =d,'EL_(v).

LEMMA 6.2. Suppose that u € P(l(iLn(Sd, E,Z)), and define iy, = EZ,;’OO*(/L) form > 1.
Then the measures vy, given by Theorem 5.1 satisfy oy (vy,, ) =V

Mm*

Proof. We take f € C(S?), and using (5.1) compute
/ f dO'm(U,um_H) = dr;1 / f ° Er7r; dem+I
sd Sd

d;! / emputrm! / (f 0 EDYx + 61 w) ditms1 (x) dw
[0,00)% S

dm_l / A e—ﬁwTr"H-l / f(ETx + ETGT_HU)) dims1(x) dw
[0,00)*
_ _ T 1 Fm —
:dml /[0 )k ﬂw o / f(me +6 Dmlw) d,bLm+1(x) dw,
00

where at the last step we used both (2.4) and (2.3). Now substituting v = D,;lw in the
outside integral gives

T ,.m+1
/Sd fdam(”um+1):/[0 . e BVt /Sd f(E£x+6,£v) dms1(x) dv. (6.2)
,00

https://doi.org/10.1017/etds.2019.20 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2019.20

KMS states 2909

We write s := 9,51} and consider the translation automorphism 7z of C (S9) defined by
7, (f)(x) = f(x 4+ 5). Then the inside integral on the right of (6.2) is

/S FEL 07 i (0 = /S () 0 D) dpms
_ / 2o () d(ED) s (s 1)
Sd

= /§d Fx 46 v) dpm (x).

Putting this back into the double integral in (6.2) gives the right-hand side of (5.1) for the
measure ji,,, and we deduce from (5.1) that

f [ dow(y,,.) = / fdv,, forall feC(S?),
sd s
as required. O

Proof of Theorem 6.1(a). Since the maps
Ep o lim§? — 57

are surjective, each /i, is a probability measure on S¢. Thus we deduce from Theorem 5.1
that v, 1= (]_[/;: l(,31";”))1)#”, is a probability measure satisfying the subinvariance
relation (5.2). Thus Proposition 3.7(b) gives a KMS state v, of (B, o" ™) such that
Y (Un.n) = de e2rix’n dvp, (x). We now need to check that v, 41 o m,, = ¥, so that
we can deduce from [6, Proposition 3.1] that the v, combine to give a KMSg state of
(Boo, a).

Since we are viewing measures as functionals on C(S%), the map ET_ on M(S?) is

ms*x
induced by the continuous function E : x > EI x on S%. Then, for f € C(S%),

/S T o Ep () dvpii(x) = /S S0 dE (o) (). (63)
For the functions g, € C(S?) given by g, (x) = e2min®x (so that ¢,,(g,) = Um.n € Bp), we
have
(T T ivT
gn © EZ,;(X) ZeZM(me) n ZEQJTIX E,n :gEmn(x)‘
Substituting this on the left-hand side of (6.3) gives
fs 8B, () dvp1 () = fs L 8n@) dE g, () (). (6.4)

Using again d, =detD,, and c, = ]_[l;zl(ﬂr}”) and the relation dpcpmy1 = cm,
Lemma 6.2 gives

T
Em*(Verl) =0on(dnVms1) = dmchrle(V//.mH)
=dnCm+1Vu, = CmVu,, = Vm- (6.5)

Using (6.4) at the third step and (6.5) at the fourth step, we now calculate

1pm—H(ﬂm(Un,m)) = wm—i-l (Um—i-l,Emn) = /d 8E.n dvm-i-l
S

:/;d 8n dE,i*(Vm+1):‘/;d &n dvm = Y (U p).
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Thus the states v, give an element (v,,) of the inverse limit Lln KMSg (B, ocrm), and
surjectivity of the isomorphism in [6, Proposition 3.1] gives a KMSg state v, of (Boo, o)
such that ¥, =¥, 0 7 00 form > 1. O

Remark 6.3. We observe that the KMSg state of Theorem 6.1(a) is given on By, =
Span{Vm,pUm,n Vm,q*} by
_ T ,.m
1»”;,L(Vm,pUm,nVn)‘;,q) = 5p,qe prr /d 8n d(VEg oo*(M))-
S ,
Proof of Theorem 6.1(b). We first prove that every KMSg state has the form v,. So

suppose that ¢ is a KMSg state of (Bso, o). Then, for each m > 1, ¢ o 7, o0 is a KMSg
state of (B, o” m), and hence there are probability measures v, such that

¢onm,oo(f)=fd fdv, forall fecC(S%
S

and E,E*(va) =v,, for all m > 1. Theorem 4.1 implies that each v,, satisfies the
corresponding subinvariance relation. More specifically, we write M5"°(S¢) and P50 (S9)
for the set of measures and the set of probability measures satisfying (4.2). Then we have
v € PSO(SY).

Once more using d,, =detD, and ¢, = ]_[I;= 1 (,Br;”), the construction of
Theorem 5.1(a) gives a function u +— c,v, from M (S%) to the simplex Mf,l“b(Sd).

Lemma 6.2 gives commutative diagrams

T
[m M(S) - M (S [m+1
l d E’E* sub d
CmVi, M;;u (S ) Mm+] (S ) cm+lvﬂm+l

and Theorem 5.1 implies that the vertical arrows are bijections. A simple set-theoretic
argument then implies that we also have commutative diagrams

—1 d E’E* d -1
Cm M‘)m P(S ) P(S ) Cm-‘rlu/Verl
Vi Psb(sdy " P3P (s9) Vi1

Thus the sequence (i) = (c;, 1 v, ) belongs to the inverse limit LiLn(P(Sd), Erg*), and
hence is given by a probability measure p € P(l(iLn(Sd, E,,T1)). We want to show that ¢ =
Y. Since both are states, it suffices to check that they agree on elements V,, , Uy, Vn’;‘ g
Since ¢ is a KMSg state and the measure v, implements ¢ on C(S9) = span{Up n},

¢(Vm,pUm,an* q) = 817,(16‘_/5[77""" / eZJ'[ixTﬂ dvy (x).
, d
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Since v = v, for all v and p,, = ¢y ibm, we have v, = ¢y vy, and
* —Bplrm 2mixTn
G VinpUn.n Vs ) = 8p.ge PP ey e By ().

This is precisely the formula for IﬂM(Vm,pUm,nV,Z“q) in (6.1). Thus ¢ = V..

Since each v, is a state, it follows from the formula (6.1) that u — v, is affine and
weak* continuous from M (S?) = C(S9)* to the state space of By,. The formula (6.1)
also implies that p — ¥, is injective, and since we have just shown that it is surjective,
we deduce that it is a homeomorphism of the compact space P(l(ir_n(Sd, EnT )) onto the
simplex of KMSg states of (B, @). O

Proof of Theorem 2.8. According to (6.1) in Theorem 6.1, we have to compute

v/[\0 )k e27rixTn dvﬂm (X),
,00

which, by Theorem 5.1, is

/ efﬁwrr’"/‘ eZm'(x+9,£w)Tn d,um(x) dw
[0,00)k Sd

_ gy Tm o T T
— e Bw'r eme Omn eme n d,um(x) dw
[0,00)k sd

T ,.m - T
- / e Pwirt 2wt pr () dw. (6.6)
[0,00)%
We can rewrite the integrand as
. k
o BT amiwT bun _ S wi(—Br] 4 2mi O ) _ I 0 (=BT 2O )
j=1
When we view f[o so)k dw as an iterated integral, we find that

k

00 m . .
66 =[] ( / eI PO A (1) dw j>.
0

j=1

Since 8 > 0 and each r}" >0,

| BT O D) _ i BT g a6 S oo,
Thus
k ew;(—ﬂr}"+2ni(0mn)_i) 00 k 1
6.6) = M, = M ,
(6:6) ]lj[l —BrT + 2 (Onn); (i) | ,Ul Br = 2mi(Oun); mn (1)
and the result follows from (6.1). O
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