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INTERACTION OF POISSON HYPERPLANE
PROCESSES AND CONVEX BODIES
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Abstract

Given a stationary and isotropic Poisson hyperplane process and a convex body K in R
d ,

we consider the random polytope defined by the intersection of all closed half-spaces
containing K that are bounded by hyperplanes of the process not intersecting K. We
investigate how well the expected mean width of this random polytope approximates the
mean width of K if the intensity of the hyperplane process tends to infinity.
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1. Introduction

Ever since the seminal papers of Rényi and Sulanke [20, 21, 22], the approximation of
convex bodies by random polytopes has been a much-studied branch of stochastic geometry.
A typical object of investigation is the convex hull of n independent, identically distributed
random points in a given convex body in R

d. A typical question concerns the asymptotic
behavior of a geometric functional of this convex hull, as the number n of random points
tends to infinity. Surveys at least partially devoted to this topic include [2, 3], [8], [13], [19],
[24, 26], [27, Section 8.2], and [29]. The precise asymptotic formulas that have been obtained
usually require that the convex body K under consideration is either sufficiently smooth (where
sometimes the existence of freely rolling balls may be sufficient) or a polytope. For general
convex bodies, one has a precise asymptotic formula for the volume, denoted by V . Let K ⊂R

d

be a convex body with V(K) = 1 (say), and let Kn denote the convex hull of n independent
random points in K with uniform distribution. Then, as shown in [28],

lim
n→∞ n2/(d+1)[1 −EV(Kn)] = c(d)

∫
∂K
κ1/(d+1) dHd−1, (1)

with an explicit constant c(d), where E denotes mathematical expectation. Here κ is the
generalized Gauss–Kronecker curvature (which exists almost everywhere on ∂K) and Hd−1 is
the (n − 1)-dimensional Hausdorff measure. However, for most convex bodies (in the sense of
Baire category: see [30]) the right-hand side of (1) is zero, so (1) gives only partial information
on the order of V(K) −EV(Kn). Additional information for all convex bodies is provided by a
result in [4], which says that

n−1 lnd−1 n � V(K) −EV(Kn) � n−2/(d+1). (2)
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Interaction of Poisson hyperplane processes and convex bodies 1021

Here the notation f (n) � g(n) means that there exists a constant c> 0 such that f (n) ≤ cg(n)
for all sufficiently large n ∈N. The constant c has to be independent of n, but it may depend on
the dimension d, the convex body K, and later on the given measure ϕ. For the mean width W,
it was shown in [23] that

n−2/(d+1) � W(K) −EW(Kn) � n−1/d. (3)

The orders are best possible; they are attained by sufficiently smooth bodies on the right side
of (2) and the left side of (3), and by polytopes on the left side of (2) and the right side of
(3). This change of optimality makes it difficult to conjecture how a common generalization of
(2) and (3) to general intrinsic volumes might look. Although a guess has been formulated in
[1, p. 675], this has remained one of the major mysteries in this area.

It should be mentioned that it follows from [11] that for most convex bodies (in the sense
of Baire category) the middle terms in (2) and (3) oscillate, as n → ∞, between the orders
given by the left and right sides. More precise formulations are found in [4, Theorem 5] and
[23, p. 305]. This shows that, for general convex bodies, two-sided inequalities of type (2, 3)
with optimal orders are the best one can expect (up to the involved constants).

Vaguely ‘dual’ to the preceding are questions about the approximation of a convex body by
the intersection of random closed half-spaces containing the body. Such questions have been
treated in the plane in [22] and in higher dimensions in [6], [7], [10], and [15].

A common feature of these investigations is that a fixed number n of independent random
objects, points, or hyperplanes is considered, and in the end this number n tends to infinity. In
the case of hyperplanes, the underlying model, for example in [22] and [6], may seem a bit
artificial, since the hyperplanes must be restricted so that they intersect a region close to the
convex body under consideration.

Another model, which in the case of hyperplanes seems more natural, starts with a stationary
Poisson process, either of points or of hyperplanes, which is then restricted, either to the points
contained in the considered convex body or to the hyperplanes not intersecting the body. The
intensity of the Poisson process is finally assumed to increase to infinity. For point processes,
relevant investigations are [5], [9], [16, 17], and [18], and hyperplane processes are considered
in [15].

The setting in this paper consists in a stationary Poisson hyperplane process X and a convex
body K with interior points in R

d. The K-cell of X is the random polytope defined by

ZK :=
⋂

H∈X,H∩K=∅

H−(K), (4)

where H−(K) denotes the closed half-space bounded by H that contains K. If the intensity of
X tends to infinity, the K-cell ZK may or may not approximate K, depending on the directional
distribution of X (an even probability measure on the unit sphere) in relation to properties of
K. In [14], the approximation was measured in terms of the Hausdorff metric, and various
situations of good approximation were investigated. For example, ZK converges almost surely
to K in the Hausdorff metric as the intensity of X tends to infinity, if and only if the support of
the directional distribution of X contains the support of the area measure of K.

The majority of investigations on random approximation deals with the asymptotic behavior
of geometric functionals, such as volume, mean width, number of k-faces, of the approximating
random polytopes. In the present setting, a first result of this type was proved in [15]. We
assume now that the stationary Poisson hyperplane process X has intensity n ∈N, and we
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denote the corresponding K-cell by Z(n)
K . It is assumed further that the directional distribution

ϕ of X has a positive, continuous density with respect to spherical Lebesgue measure. Under
these assumptions, Kaltenbach [15] proved that

n−2/(d+1) �EV(Z(n)
K ) − V(K) � n−1/d. (5)

The proof can be considered as a ‘dualization’ (in a non-precise sense) of that of (3) and an
extension to Poisson processes.

The purpose of this note is to obtain a similar counterpart to (2), and thus a result of
type (5) with the volume replaced by the mean width W (observe that under dualization,
volume and mean width interchange their roles, roughly). We have to assume now that the
stationary Poisson hyperplane process X is also isotropic, that is, its distribution is invariant
under rotations.

Theorem 1. Let X be a stationary and isotropic Poisson hyperplane process in R
d of intensity

n. Let K ⊂R
d be a convex body with interior points, and let Z(n)

K denote the K-cell of X. Then

n−1 lnd−1 n �EW(Z(n)
K ) − W(K) � n−2/(d+1). (6)

For random polytopes generated by finitely many independent hyperplanes with a suitable
distribution, depending on K, a similar result was proved in [6]. Some ideas used there can
be employed in the following. It turned out, however, that a proof for Poisson hyperplane
processes is not straightforward and requires additional arguments. These will be presented in
this note.

That the orders in (6) are best possible can be seen from extensions, to Poisson hyperplane
processes, of precise asymptotic formulas that have been obtained for a finite number of
independent random hyperplanes with a suitable distribution. These formulas are, on the one
hand, Theorem 1.3 in [6], which holds for simple polytopes, and on the other hand Theorem 5.2
in [7], which yields the exact order on the right side of (6) if applied to a convex body of
class C2. The extension, which we do not carry out here, would require a dual version of
the argument sketched in [18] (proof of Lemma 1) and an estimate of the type provided by
Lemma 1 below.

2. Preliminaries

The standard scalar product of Rd is denoted by 〈· , ·〉, and the induced norm by ‖ · ‖. The
unit ball of Rd is Bd, and the unit sphere is Sd−1. Lebesgue measure on R

d is denoted by λd.
Hyperplanes and closed half-spaces of Rd are written in the form

H(u, τ ) = {x ∈R
d : 〈x, u〉 = τ }, H−(u, τ ) = {x ∈R

d : 〈x, u〉 ≤ τ },
respectively, with u ∈ S

d−1 and τ ∈R. Let H be the space of hyperplanes in R
d with its usual

topology. For a subset M ⊂R
d, we write

HM := {H ∈H : H ∩ M =∅}.
We let Kd denote the space of d-dimensional convex bodies (compact, convex sets with

interior points) in R
d. As usual, it is equipped with the Hausdorff metric. For K ∈Kd, let

Ro(K) be the radius of the smallest ball with center at the origin o of Rd that contains K.
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For our notation concerning point processes, we refer to [27, Sections 3.1 and 3.2]. In
particular, given a locally compact topological space E, we let (Ns(E),Ns(E)) denote the
measurable space of simple, locally finite counting measures on E. We often identify a simple
counting measure η ∈ Ns(E) with its support, using η({x}) = 1 and x ∈ η synonymously. A
(simple) point process in E is a mapping X : (�, A, P) → (Ns(E),Ns(E)), where (�, A, P) is
some probability space, such that {X(C) = 0} is measurable for all compact sets C ⊂ E. We let
	=E X denote the intensity measure of X. The point process X is a Poisson process if

P(X(A) = k) = e−	(A)	(A)k

k!
for k ∈N0 and each Borel set A ⊂ E with 	(A)<∞. For the independence properties of
(simple) Poisson processes, we refer to [27, Theorem 3.2.2]. A stationary Poisson hyperplane
process in R

d is a Poisson process X in the space H of hyperplanes whose intensity measure
(and hence whose distribution) is invariant under translations. The intensity measure of such a
process, assumed to be non-zero, is of the form

	(A) = γ

∫
Sd−1

∫ ∞

−∞
1A(H(u, τ )) dτ ϕ(du)

for Borel sets A ⊂H. Here γ > 0 is the intensity of X and ϕ is an even probability measure on
the sphere S

d−1, the spherical directional distribution of X.
We assume now that X is a stationary Poisson hyperplane process in R

d of intensity γ > 0
and with a non-degenerate spherical directional distribution ϕ. Here, ‘non-degenerate’ means
that ϕ is not concentrated on any great subsphere.

For K ∈Kd, we let ZK denote the K-cell defined by X and K, as above. This is a random
polytope, since it is almost surely bounded. More precisely, we show the following estimate,
which later on, when the intensity tends to infinity, will allow us to restrict ourselves to K-cells
contained in a sufficiently large fixed ball.

Lemma 1. Let K ∈Kd. There are constants a, b> 0, depending only on ϕ, such that

P(Ro(ZK)> b(Ro(K) + x)) ≤ 2d e−aγ x for x ≥ 0.

Proof. Since supp ϕ, the support of the even measure ϕ, is not contained in a great
subsphere, we can choose vectors ±e1, . . . ,±ed ∈ supp ϕ positively spanning R

d. In the
following, we write ed+i := −ei for i = 1, . . . , d. We can choose a sufficiently large constant
b and sufficiently small, pairwise disjoint neighborhoods Ui ⊂ S

d−1 of ei, i = 1, . . . , 2d, such
that each intersection

P :=
2d⋂

i=1

H−(ui, 1) with ui ∈ Ui, i = 1, . . . , 2d,

is a polytope with Ro(P) ≤ b. Let x ≥ 0. If the numbers τi are such that Ro(K) ≤ τi ≤ Ro(K) + x
and if ui ∈ Ui for i = 1, . . . , 2d, then

Ro

( 2d⋂
i=1

H−(ui, τi)

)
≤ Ro((Ro(K) + x)P) = (Ro(K) + x)Ro(P) ≤ b(Ro(K) + x).
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The sets of hyperplanes

Ai(x) := {H(u, τ ) : u ∈ Ui, Ro(K) ≤ τ ≤ Ro(K) + x}, i = 1, . . . , 2d,

are pairwise disjoint. If X(Ai(x))> 0 for i = 1, . . . , 2d, then Ro(ZK) ≤ b(Ro(K) + x). Therefore,
observing that 	(Ai(x)) = γ xϕ(Ui) and choosing 0< a ≤ ϕ(Ui) for i = 1, . . . , 2d, we get

P(Ro(ZK)> b(Ro(K) + x))

≤ P(X(Ai(x)) = 0 for at least one i ∈ {1, . . . , 2d})

= 1 −
2d∏

i=1

(1 − P(X(Ai(x)) = 0))

= 1 −
2d∏

i=1

(1 − e−γ ϕ(Ui)x)

≤ 1 − (1 − e−γ ax)2d

≤ 2d e−γ ax,

by Bernoulli’s inequality. This was the assertion. �

3. Proof of the upper bound

The approach to proving the right-hand estimate of (6) consists in establishing an extremal
property of balls and then finding a connection to a known result on approximation of balls by
convex hulls of finitely many random points. Since we are dealing with Poisson processes, this
requires extra arguments in either step.

Let X be a stationary Poisson hyperplane process in R
d, with a non-degenerate spherical

directional distribution ϕ and with intensity γ . If a convex body K ∈Kd is given, we let
ZK denote the K-cell defined by X and K, as in (4). In order to be able to compare ZK

and ZL for different K, L ∈Kd, we use an auxiliary Poisson process. For this, we consider
the product space E := S

d−1 × [0,∞) with the product measure ϕ ⊗ λ+, where λ+ is the
Lebesgue measure on [0,∞). Let Y be the Poisson process on E with intensity measure
2γ ϕ ⊗ λ+. (Its existence and uniqueness up to stochastic equivalence follows, for example,
from [27, Theorem 3.2.1].) Let M(E) denote the set of all locally finite subsets S ⊂ E with the
property that the set {u ∈ S

d−1 : (u, t) ∈ S for some t ≥ 0} positively spans R
d. For η ∈ Ns(E)

with support in M(E), we define

P(η,K) :=
⋂

(u,t)∈supp η

H−(u, h(K, u) + t)

for K ∈Kd, where h(K, ·) := max{〈x, ·〉 : x ∈ K} denotes the support function of K. This is a
polytope containing K. We shall see below that the random polytope P(Y,K) is stochastically
equivalent to the K-cell ZK defined by the hyperplane process X. We use the random polytopes
P(Y,K) to show that the function K �→EW(ZK) is concave and continuous on Kd. Here a
function f : Kd →R is called concave if

f ((1 − α)K + αL) ≥ (1 − α) f (K) + αf (L)

for K, L ∈Kd and α ∈ [0, 1], where K + L := {x + y : x ∈ K, y ∈ L} and βK := {βx : x ∈ K} for
K, L ∈Kd and β ≥ 0.
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Lemma 2. For K, L ∈Kd and α ∈ [0, 1],

EW(Z(1−α)K+αL) ≥ (1 − α)EW(ZK) + αEW(ZL). (7)

The functional K �→EW(ZK) is continuous on Kd.

Proof. For η ∈ Ns(E) we have

(1 − α)P(η,K) + αP(η, L) ⊆ P(η, (1 − α)K + αL),

as follows immediately from the definition of P(η,K) and the linearity properties of the support
function. The monotonicity and linearity properties of the mean width yield

W(P(η, (1 − α)K + αL)) ≥ (1 − α)W(P(η,K)) + αW(P(η, L)).

Here we can replace η with Y . Then linearity and monotonicity of the expectation yield

EW(P(Y, (1 − α)K + αL)) ≥ (1 − α)EW(P(Y,K)) + αEW(P(Y, L)). (8)

We define the Poisson hyperplane process XK by

XK(A) := X(A \Hint K)

for Borel sets A ⊂H. Its intensity measure is given by

E XK(A) =	(A \Hint K)

= γ

∫
Sd−1

∫ ∞

−∞
1{H(u, τ ) ∈ A}1{H(u, τ ) ∩ int K =∅} dτ ϕ(du)

= γ

∫
Sd−1

∫ −h(K,−u)

−∞
1{H(u, τ ) ∈ A} dτ ϕ(du)

+ γ

∫
Sd−1

∫ ∞

h(K,u)
1{H(u, τ ) ∈ A} dτ ϕ(du)

= 2γ
∫
Sd−1

∫ ∞

h(K,u)
1{H(u, τ ) ∈ A} dτ ϕ(du),

where we have used the fact that ϕ is an even measure. Next, we define a mapping
FK : E →H by

FK(u, t) := H(u, h(K, u) + t)

and denote for η ∈ Ns(E) by FK(η) the pushforward of η under FK . Then FK(Y) is a Poisson
hyperplane process. For its intensity measure we obtain, for Borel sets A ⊂H,

E (FK(Y))(A) =EY(F−1
K (A))

= 2γ
∫
Sd−1

∫ ∞

0
1{(u, t) ∈ F−1

K (A)} dt ϕ(du)

= 2γ
∫
Sd−1

∫ ∞

0
1{H(u, h(K, u) + t) ∈ A} dt ϕ(du)

= 2γ
∫
Sd−1

∫ ∞

h(K,u)
1{H(u, τ ) ∈ A} dτ ϕ(du).
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Thus, XK and FK(Y) have the same intensity measure. Since either of them is a Poisson process,
they are stochastically equivalent. It follows that the zero cell ZK is stochastically equivalent
to the random polytope P(Y,K). Therefore, (8) yields the assertion (7).

To prove the continuity assertion, let K,Ki ∈Kd for i ∈N and suppose that Ki → K in the
Hausdorff metric, as i → ∞. If ε0 > 0 is small enough, then

Kε :=
⋂

u∈Sd−1

H−(u, h(K, u) + ε)

is a convex body for any ε >−ε0. Clearly, Kε → K as ε→ 0. For given ε > 0, let i be so
large that K−ε ⊂ Ki ⊂ Kε. Observe also that X(HKi�HK) = 0 (where � denotes the symmetric
difference) implies that ZKi = ZK . Therefore,

|EW(ZKi) −EW(ZK)| ≤E|W(ZKi) − W(ZK)|
≤ P(X(HKi�HK)> 0)EW(ZKε )

≤ P(X(HKε \HK−ε )> 0)EW(ZKε0
)

→ 0

as ε→ 0. The limit follows from the fact that

	(HKε \HK−ε ) = γ

∫
Sd−1

[h(Kε, u) − h(K−ε, u)]ϕ(du) → 0

as ε→ 0, by monotone convergence. This proves the continuity assertion. �

From now on, we assume that the stationary Poisson hyperplane process X is isotropic and
has intensity n. Then its intensity measure is given by 	= nμ with

μ=
∫
Sd−1

∫ ∞

−∞
1{H(u, τ ) ∈ ·} dτ σ (du), (9)

where σ is the normalized spherical Lebesgue measure. For convex bodies K, L ∈Kd with
K ⊂ L, we have

μ(HL \HK) =
∫
H\HK

1{H ∩ L =∅}μ(dH)

=
∫
Sd−1

∫ ∞

−∞
1{H(u, τ ) ∩ L =∅}1{H(u, τ ) ∩ K =∅} dτ σ (du)

= 2
∫
Sd−1

[h(L, u) − h(K, u)] σ (du)

= W(L) − W(K). (10)

Lemma 3. If X is isotropic, then the functional

K �→ EW(ZK)

W(K)
, K ∈Kd,

attains its maximum at balls.
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Proof. If X is isotropic, then the functional K �→EW(ZK) is invariant under rigid motions.
Since by Lemma 2 it is concave and continuous on Kd, it is well known that on the set
of convex bodies K ∈Kd with given mean width W(K) it attains its maximum at balls. The
proof, which uses Hadwiger’s ‘Zweites Kugelungstheorem’ ([12, pp. 170–171], reproduced in
[25, Theorem 3.3.5]), is carried out in [6, p. 621]. �

To take advantage of the preceding lemma, we connect this to a known asymptotic result
about convex hulls of i.i.d. random points in a ball. First we write the result of Lemma 3 in the
form

EW(ZK) − W(K) �EW(ZBd ) − W(Bd). (11)

We recall that here ZK = Z(n)
K and ZBd = Z(n)

Bd and that we intend to let n tend to infinity. In view

of this, we choose a number R> b, where b is the constant appearing in Lemma 1 for K = Bd,
and state that

EW(ZBd ) −E [W(ZBd )1{Ro(ZBd )< R}] = O(n−1) (12)

as n → ∞ (where the constant involved in O depends on R). For the proof, we note that the left
side of (12) can be estimated by

E [W(ZBd )1{Ro(ZBd ) ≥ R}] ≤E [2Ro(ZBd )1{Ro(ZBd ) ≥ R}]
= 2

∫
�

Ro(ZBd )1{Ro(ZBd ) ≥ R} dP

= 2
∫ ∞

0
P(Ro(ZBd )1{Ro(ZBd ) ≥ R}> t) dt

= 2R P(Ro(ZBd ) ≥ R) + 2
∫ ∞

R
P(Ro(ZBd )> t) dt.

Lemma 1 provides an estimate for P(Ro(ZBd ) ≥ b(1 + x)). Using this with b(1 + x) = R for the
first summand and with b(1 + x) = t for the second summand (and observing that now γ = n),
we obtain (12).

We use the bijective mapping

ξ : H \H{o} →R
d \ {o}, ξ (H(u, τ )) = τ−1u. (13)

Let κ0 be the pushforward of the measure μ, restricted to H \HBd , under ξ . Then

κ0(A) = 2

ωd

∫
A

‖x‖−(d+1)λd(dx)

for Borel sets A ⊂ Bd \ {o}, where ωd is the surface area of the unit sphere. The measure κ0 is
infinite, but finite on compact subsets of Bd \ {o}.

Let Yn denote the Poisson point process in R
d with intensity measure nκ0. Let Qn be the

convex hull of Yn. Then Qn is a random polytope, which is stochastically equivalent to the
polar of ZBd . With the constant R> b chosen above, we set r = 1/R and Br = rBd. By (10),
we have

W(ZBd ) − W(Bd) =
∫
H\HBd

1{H ∩ ZBd =∅}μ(dH) = κ0(Bd \ Qn),

hence
E [(W(ZBd ) − W(Bd))1{Ro(ZBd )< R}] =E [κ0(Bd \ Qn)1{Br ⊂ Qn}].

https://doi.org/10.1017/jpr.2019.65 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.65


1028 R. SCHNEIDER

Now it follows from (11) and (12) that

EW(ZK) − W(K) �E [κ0(Bd \ Qn)1{Br ⊂ Qn}] + O(n−1). (14)

To express the latter expectation in a suitable way, we note that Qn is almost surely a
simplicial polytope, hence each of its facets is the convex hull of d points of Yn. For any d
points x1, . . . , xd ∈ Yn (almost surely, they are affinely independent and their affine hull does
not contain o), we define

S(x1, . . . , xd) := Bd \ H−(x1, . . . , xd),

where H−(x1, . . . , xd) is the closed half-space bounded by aff{x1, . . . , xd} that contains o.
Further, we define

T(x1, . . . , xd) := S(x1, . . . , xd) ∩ pos{x1, . . . , xd}.
Then we have

κ0(Bd \ Qn)1{Br ⊂ Qn}
= 1

d!
∑

(x1,...,xd)∈(Yn)d=

1{Yn(S(x1, . . . , xd)) = 0}κ0(T(x1, . . . , xd))1{Br ⊂ Qn},

where ηd= denotes the set of ordered d-tuples of pairwise different elements from the
support of η. We note that if Br ⊂ Qn, then points x1, . . . , xd ∈ Yn with Yn(S(x1, . . . , xd)) = 0
automatically satisfy x1, . . . , xd ∈ Bd \ Br and aff{x1, . . . , xd} ∩ Br =∅ a.s. Therefore,

κ0(Bd \ Qn)1{Br ⊂ Qn}
= 1

d!
∑

(x1,...,xd)∈(Yn)d=

1{Yn(S(x1, . . . , xd)) = 0, Br ⊂ Qn}κ0(T(x1, . . . , xd))

× 1{x1, . . . , xd ∈ Bd \ Br}1{aff{x1, . . . , xd} ∩ Br =∅}.

Using the Slivnyak–Mecke formula (see e.g. [27, Corollary 3.2.3]) and noting that nκ0 is
the intensity measure of Yn, we obtain

E [κ0(Bd \ Qn)1{Br ⊂ Qn}]

= nd

d!
∫

Bd\Br

. . .

∫
Bd\Br

E1{Yn(S(x1, . . . , xd)) = 0, Br ⊂ conv(Yn ∪ {x1, . . . , xd})}
× κ0(T(x1, . . . , xd))1{aff{x1, . . . , xd} ∩ Br =∅} κ0(dx1) · · · κ0(dxd).

Let λ0 := (2/ωd)λd. For Borel sets A ⊂ Bd \ Br we have

λ0(A) ≤ κ0(A) ≤ r−(d+1)λ0(A).

For fixed x1, . . . , xd ∈ Bd \ Br with aff{x1, . . . , xd} ∩ Br =∅, we have

E1{Yn(S(x1, . . . , xd)) = 0, Br ⊂ conv(Yn ∪ {x1, . . . , xd}}
≤E1{Yn(S(x1, . . . , xd)) = 0}
= e−nκ0(S(x1,...,xd))

≤ e−nλ0(S(x1,...,xd)).
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Therefore, we can estimate

E [κ0(Bd \ Qn)1{Br ⊂ Qn}]
� nd

∫
Bd
. . .

∫
Bd

e−nλ0(S(x1,...,xd)) λ0(T(x1, . . . , xd)) λ0(dx1) · · · λ0(dxd).

Let Ỹn be a Poisson point process in R
d with intensity measure nλ0, and let

�n := conv(̃Yn ∩ Bd).

Using the Slivnyak–Mecke formula as above yields that

Eλ0(Bd \�n)

= nd
∫

Bd
. . .

∫
Bd

e−nλ0(S(x1,...,xd))λ0(T(x1, . . . , xd)) λ0(dx1) · · · λ0(dxd).

We conclude that
E [κ0(Bd \ Qn)1{Br ⊂ Qn}] �Eλ0(Bd \�n).

It follows from Lemma 1 in [18] that

Eλ0(Bd \�n) � n−2/(d+1).

Together with (14), this yields the upper bound in (6).

4. Proof of the lower bound

The proof of the left-hand estimate of (6) requires only a few changes in the proof of the
corresponding inequality in [6, (1.3)].

Let K ∈Kd. For x ∈R
d \ K, we define Kx := conv(K ∪ {x}) and set

m(H) := min{W(Kx) − W(K) : x ∈ H}
for hyperplanes H ∈H \HK . For t> 0 we define

HK(t) := {H ∈H \HK : m(H) ≤ t}.
We assume now, as in Theorem 1, that X is a stationary and isotropic Poisson hyperplane

process in R
d of intensity n ∈N. Let H ∈H \HK , and let z ∈ H be such that m(H) =

W(Kz) − W(K) (clearly, such a point exists). If no hyperplane of X separates z and K, then
z ∈ Z(n)

K and hence H ∩ Z(n)
K =∅. It follows that

P(H ∩ Z(n)
K =∅) ≥ P(X(HKz \HK) = 0)

= exp [ −	(HKz \HK)]

= e−nm(H),

where (10) was used. Therefore, we obtain (using (10) again and Fubini’s theorem)

EW(Z(n)
K ) − W(K) =

∫
�

∫
H\HK

1{H ∩ Z(n)
K =∅}μ(dH) dP

=
∫
H\HK

P(H ∩ Z(n)
K =∅)μ(dH)
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≥
∫
H\HK

e−nm(H) μ(dH)

≥
∫
H\HK

1{m(H) ≤ t} e−nt μ(dH)

= e−ntμ(HK(t)),

where t> 0 can be any number. The choice t = 1/n gives

EW(Z(n)
K ) − W(K) ≥ e−1μ(HK(1/n)). (15)

The remainder of the proof is similar to that in [6, p. 619]. For the reader’s convenience, we
adapt the argument to the present case. The idea is to use a result from Bárány and Larman [4],
together with polarity.

We translate K so that (say) its centroid is at the origin. Let K◦ be the polar body of K. For
x ∈ K◦, let v(x) denote the minimal volume that a closed half-space containing x cuts off from
K◦, and define

K◦(t) := {x ∈ K◦ : v(x) ≤ t}
for t> 0. We can choose ρ, t0 > 0 such that ρBd ⊂ K◦(t) for 0< t ≤ t0.

Let ψ : Rd \ {o} →H \H{o} be the inverse of the map ξ defined by (13); thus

ψ(ru) = H(u, r−1) for u ∈ S
d−1, r> 0.

Let ν denote the pushforward of the Lebesgue measure λd under ψ ; thus

ν(A) =ωd

∫
Sd−1

∫ ∞

0
1{H(u, τ ) ∈ A}τ−(d+1)dτ σ (du) (16)

for Borel sets A ⊂H \H{o}.
Let H(u, τ ) be a hyperplane contained in Hρ−1Bd \HK . Since H(u, τ ) ∩ K =∅, we have

τ ≥ h(K, u), which is bounded from below by a positive constant depending only on K. Since
H(u, τ ) ∩ ρ−1Bd =∅, we have τ ≤ ρ−1. Now comparison of (16) and (9) yields the existence
of constants c1, c2 > 0, depending only on d and K, such that

c1ν(A) ≤μ(A) ≤ c2ν(A) if A ⊂Hρ−1Bd \HK .

Let 0< t ≤ t0 and x ∈ K◦(t) \ ∂K◦. There is a hyperplane E through x that bounds a closed
half-space E+ not containing o, such that λd(K◦ ∩ E+) ≤ t. If H :=ψ(x) and y :=ψ−1(E),
then y ∈ H ∈Hρ−1Bd \HK . The mapping ψ maps the cap K◦ ∩ E+ bijectively onto the set of
hyperplanes (weakly) separating y and K. We denote this set by Hy

K . It follows that

m(H) ≤ W(Ky) − W(K) =μ(Hy
K) ≤ c2ν(Hy

K) = c2λd(K◦ ∩ E+) ≤ c2t,

hence H ∈HK(c2t). Since x ∈ K◦(t) \ ∂K◦ was arbitrary, this shows that ψ(K◦(t)) ⊂HK(c2t).
Therefore,

λd(K◦(t)) = ν(ψ(K◦(t)) ≤ ν(HK(c2t)) ≤ c−1
1 μ(Hk(c2t)).

If we choose t = 1/(c2n), then this inequality together with (15) shows that

EW(Z(n)
K ) − W(K) ≥ e−1μ(HK(1/n)) ≥ e−1c1λd(K◦((c2n)−1).
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Theorem 2 of [4] says that
λd(K◦(ε)) ≥ cε logd−1 (1/ε)

for sufficiently small ε > 0, with some constant c depending only on K. It follows that

EW(Z(n)
K ) − W(K) ≥ c3n−1 logd−1 n

for all sufficiently large n, where c3 is a constant depending only on d and K. By adapting the
constant, we can assume that this holds for all n ∈N. This completes the proof of the lower
bound in (6).
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