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ABSTRACT

This paper concerns aircraft system identification and, in particular,
the process of aerodynamic model structure determination. Its appli-
cation to experimental data from unmanned aerial vehicles (UAVs)
is also described. The procedure can be particularly useful for deter-
mining an aerodynamic model for aircraft with unconventional
airframe configurations, which some unmanned aircraft tend to have.
Two model structure determination techniques are outlined. The first
is the well-established stepwise regression method, while the second
is an adaptation of an existing frequency response approach which
instead utilises maximum likelihood estimation. Example applica-
tions of the methods are presented for two data sources. The first is a
set of UAV flight test data and the second is data recorded from
dynamic wind tunnel tests on a UAV configuration. For both
examples, the model structures determined using stepwise regression
and maximum likelihood analysis matched one another, suggesting
that the maximum likelihood approach and the chosen thresholds for
its statistical metrics were reliable for the data being analysed.

NOMENCLATURE

Cl  non-dimensional rolling moment coefficient

Cl,  derivative of rolling moment coefficient with respect to roll rate

Cl,  derivative of rolling moment coefficient with respect to
yaw rate

Cl,  derivative of rolling moment coefficient with respect to
angle-of-sideslip

Cl,  derivative of rolling moment coefficient with respect to
rudder deflection

Cl.  derivative of rolling moment coefficient with respect to
aileron deflection

deg degrees

stepwise regression F-distribution threshold

stepwise regression F-distribution threshold

partial F-statistic

I parameter insensitivity

J cost function
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metres

number of unknown parameters to be estimated
Fisher information matrix

number of regressors

derivative of yawing moment with respect to roll rate
derivative of yawing moment with respect to yaw rate
derivative of yawing moment with respect to lateral velocity
derivative of yawing moment with respect to rudder deflection
number of discrete measurement points

roll rate

parameter covariance matrix

yaw rate

correlation between regressor and dependent variable
measurement noise covariance matrix

coefficient of determination

radians

seconds

standard error, wing semi-span

time

lateral velocity component

true airspeed

matrix of regressors

vector of predicted outputs

derivative of sideforce with respect to roll rate
derivative of sideforce with respect to yaw rate
derivative of sideforce with respect to lateral velocity
derivative of sideforce with respect to rudder deflection
dependent variable vector, measurement vector

angle of sideslip

rudder deflection

confidence ellipsoid

parameter vector

atmospheric density, pair-wise correlation coefficient
equation error variance

time delay in rudder data

matrix of residuals

aileron deflection
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Superscripts

E empirical derivative estimate

F flight test derivative estimate

T matrix transpose

- ratio of flight test derivative estimate to empirical derivative
estimate

~ estimate, non-dimensional motion variable

’ time derivative

1.0 INTRODUCTION

A critical part in the development of any aircraft is establishing its
aerodynamic stability and control characteristics. This information is
required, for example, in the design of flight control systems,
simulator development and handling qualities assessment. Analysis
of experimental data provides aerodynamic models of the highest
fidelity and the process of system identification, or parameter identi-
fication, is used widely as a means of estimating the aerodynamic
derivatives from flight and wind tunnel tests.

Comprehensive treatments of both the theoretical and practical
aspects of aircraft system identification can be found in Klein and
Morelli®, Jategaonkar® and Tischler and Remple®. Major steps in
the system identification process include the following:

@® Selection of instrumentation to provide motion variable data of
suitable quality.

@® Design of control surface input signals to adequately excite the
aircraft dynamics and ensure that enough information is present
in the measurements to reliably estimate the aerodynamic deriv-
atives of interest.

@ Seclection of a suitable parameter estimation method to estimate
values for the aerodynamic derivatives.

@® Validation of the identified aerodynamic model by comparing it
against independent data not used in the identification process.

The success of the identification process also depends on the choice
of which aerodynamic derivatives to include in the aerodynamic
model and what form the aerodynamic model structure should take.
Omission of a significant term from the model will lead to an
inaccurate representation of the true aircraft, resulting in a model
with poor predictive capability. However, inclusion of too many
terms in the model and attempting to estimate a large number of
parameters from a limited amount of data is likely to result in
estimates that are statistically unreliable.

In many cases, the aerodynamic model structure is well defined
and is based on physical understanding of the aircraft dynamics. This
is particularly true if the vehicle’s configuration is conventional and
its motion involves small perturbations from an initial trim
condition, in which case a linear model is usually applicable.
However, specifying the correct model structure may be more
difficult if the aircraft's configuration is unconventional or the
dynamics being investigated are nonlinear. In analysing data for
such an aircraft, it would be convenient to have a systematic, mathe-
matical approach to help determine which terms to be included in the
aerodynamic model, rather than repeating the analysis several times
using various model structures on a trial-and-error basis.

Methods of aerodynamic model structure determination utilising
various statistical metrics were first investigated in the 1970s*”. The
main interest of this research at the time was to construct aerody-
namic models from data recorded at high angles-of-attack or from
large amplitude manoeuvres, for which the dynamics are nonlinear
and less well-understood. The techniques were also used to find
global models which could describe the motion of the aircraft over a
range of flight conditions. The approach to model structure determi-
nation which has arguably received the most attention is stepwise
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regression, which was first applied to flight test data by Gupta, Hall
et al®” and developed further through the work of Klein et al®”. For
this method, a pool of candidate terms for the model is chosen.
These terms are then added to the model (but can also be subse-
quently removed) based on a number of metrics, including F-
statistics, coefficient of determination and predicted sum of squares.
The process is halted when no statistical improvement can be made
to the model. Another method for model structure determination was
proposed by Milne®, which utilised the frequency response
technique developed by Tischler® and has been applied widely to
rotorcraft applications. In this approach, all candidate terms are
initially included in the model. Parameters are then removed based
on their estimated standard deviations, insensitivity and correlation
with one another. The final model structure is achieved when all
parameter values in the model have a similar level of confidence.

The research outlined in this paper forms part of a study focusing on
the issues of applying system identification to unmanned aerial vehicles
(UAVs)'™. Some UAVs have more unusual configurations in
comparison to manned aircraft. One example is the typical configu-
ration for unmanned combat aerial vehicles (UCAVs), which are
designed to have a low radar signature and consequently have a blended
wing-body and no fin. The lack of a fin and, thus, a conventional
rudder, means that the aircraft requires an alternative means of yaw
control™. One solution is to use aerodynamic devices which generate
differential drag between the wings and produce the required yawing
motion. However, these devices will also change the lift generated by
each wing resulting in undesirable rolling moments and, depending on
the location of the devices relative to the aircraft's centre of gravity,
pitching moments. Application of model structure determination to
flight test data could help quantify the significance of such effects.

In this paper, two model structure determination techniques are
examined. The first is stepwise regression and the second is an
adaptation of Milne and Tischler’s technique. Like Milne and
Tischler’s method, the modified approach presented in this paper
utilises the estimated standard deviations, parameter insensitivity and
correlation among the parameters to assess the adequacy of the model
structure but parameter estimation is performed using maximum
likelihood estimation, rather than the frequency response method. The
two techniques are then applied to data from two sources. The first is a
set of UAV flight test data, supplied by BAE Systems, and the second
is data taken from dynamic wind tunnel tests on a UAV configuration.
By comparing the resulting model structures from the maximum
likelihood approach with that obtained from the more-established
stepwise regression technique, an assessment can be made on the
performance of the maximum likelihood method. While the model
structure determination process has been highlighted above as being
particularly useful for the analysis of nonlinear dynamics or unconven-
tional configurations, it should be noted that the examples given in this
paper involve relatively linear dynamics and relatively conventional
airframe configurations. These examples have been used to validate the
maximum likelihood approach for simpler, linear problems, before
assessing the technique on more-complex, nonlinear data, which is the
focus of further research.

The next section of the paper briefly describes the theory under-
lying the stepwise regression procedure, while the maximum
likelihood approach is outlined in Section 3. The application of the
two methods to the UAV flight test data is then presented in Section
4, while the results of the analysis of the dynamic wind tunnel data
are given in Section 5. Finally, the conclusions of the analysis are
outlined in Section 6.

2.0 STEPWISE REGRESSION

The first model structure determination method examined in this
paper is stepwise regression, which utilises least squares estimation
and seeks to find the most appropriate model with the following
general form,
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231) = 0+ 0,X,(i) + 0,X,(0) + ... +0,X,(i) +e(i) i=12,....N...(])

where z is the dependent variable, X;, X,(i), ..., X, are the n
independent variables or regressors, 0., 04, 0,,...0, are the m =n + 1
unknown parameters to be determined and N is the number of
discrete measurement points. The variable € is the so-called equation
error and is assumed to account for random noise corrupting the
measurement of the dependent variable. The equation error is treated
as a white noise process with zero mean and variance c. The
regressors are assumed to be known without error.

If the number of available data points N is greater than the number
of unknown parameters to be determined m, the least squares
estimates of the parameters are found from,

0=-x"x)" X"z )

where 8 is the m x 1 vector containing the parameter estimates, X is
the N x m matrix of data for the regressors, and z is the N X 1 vector
of data for the dependent variable.

The stepwise regression process is described briefly below. More
detailed theoretical treatments of stepwise regression, including
equations for the various statistical metrics utilised in the method,
can be found in Refs 1 and 13. The process begins with just the
offset parameter 0, in the aerodynamic model. The correlation
between each of the regressors and z, denoted 7, for the jth regressor,
is then calculated and the first candidate term added to the model is
that with the highest value of 7,. If the first regressor added to the
model is X, then the model structure becomes,

A A
z=0,+0,X, tv ...

where the elements of v are known as the residuals and least squargs
regression (Equation (2)) is used to find the parameter estimates Qo
and 01. The regressors subsequently added to the model are the terms
which have the highest correlation with the, as yet, unmodelled
dynamics i.e. the residuals. For example, the second term added to
the model is the regressor which has the highest correlation with z —
00— 01X.

Every time a regressor is added to the model, the significance of
each regressor within the model is reassessed using the partial F-
statistic, F/,. The F, value for each parameter is compared to a pre-
selected F-distribution threshold, denoted F,. Any term with a value
of F, less than F, is removed from the model. It is entirely possible
that a term added at an early stage of the analysis could become
insignificant as more regressors are added and therefore removed at
a later stage. A suitable value for F, is dependent on the number of
data points N and the number of unknown parameters m. From F-
distribution look up tables (see Ref. 14, for example) a typical value
for aircraft system identification problems may be F, = 4. However,
it has been suggested that more suitable values of F, are around four
to five times the figure indicated by F-distribution tables®.

The sole use of the partial F-statistics to determine the most
appropriate model structure has been found to be too restrictive and
can result in the model having too many parameters. Therefore, it is
recommended that a number of metrics be used in assessing the
suitability of the model™®. Various metrics have been proposed and
the most common are summarised below.

® The coefficient of determination, denoted R* represents the
proportion of the variation in the dependent variable explained
by the terms in the model. After all significant terms have been
included in the model, the change in R* due to the inclusion of
additional terms will be small. Therefore, the appropriate model
structure is considered to have been found when the increase in
R’ falls below a given threshold, typically 0-5%.

® The predicted sum of squares (PRESS) is the sum of the square

of the residuals in v, hence, in theory, the most appropriate
model structure is the one with the minimum value of PRESS.
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However, in practice, it has been found that for cases where the
number of data points N is much larger in comparison to the
number of model terms m (which is typical for aircraft applica-
tions) then PRESS can continue to decrease even when insignif-
icant regressors are added to the model. Therefore, care must be
taken when using PRESS to assess the adequacy of the model
structure.

® The predicted square error (PSE) metric is the sum of two
terms, the first of which decreases as the fit to the measured
data improves while the second increases as more terms are
added to the model. It therefore helps in obtaining an accurate
match to the data without including an excessive number of
parameters in the model structure. The correct model structure
is that with the minimum PSE value.

® Examination of the residuals can also provide an indication of
the adequacy of the model structure. If the model structure is
correct then the residuals should be a sequence of uncorrelated
random variables with a Gaussian distribution. On the other
hand, if they are found to contain a deterministic component,
this could suggest that an important regressor has been omitted
from the model.

In many cases, it is unlikely that all of the criteria described above
will be satisfied at any one time. Often, the choice of when to halt
the process of adding and removing terms from the model is made
based on a consensus of the metrics. Another useful criterion when
making a borderline decision as to whether a regressor is included or
not is the principle of parsimony’”, which says that given two
models which have similar levels of fidelity, the better model is that
which has the fewer number of parameters.

3.0 MAXIMUM LIKELIHOOD MODEL
STRUCTURE DETERMINATION

The second model structure determination technique to be outlined
in this paper is an adaptation of the approach developed by Milne
and Tischler®” which, as mentioned earlier, utilises the frequency
response method for identification. However, the metrics used to
assess the adequacy of the model structure can be defined for other
estimation techniques. In this paper, the model structure determi-
nation process is based on maximum likelihood estimation. The
principal advantage time domain maximum likelihood estimation
has over the frequency response identification is that system nonlin-
earities can be estimated directly"”. The frequency response method,
on the other hand, finds the best linear describing function to model
the system. The least squares regression method described in Section
2 is also not suited for estimation when the system model is
nonlinear in terms of the parameters to be estimated.

As with stepwise regression in the previous section, only a brief
outline of maximum likelihood estimation will be given here. The
interested reader can find detailed theoretical treatments of
maximum likelihood estimation, for example, in Refs 1 and 2.

Estimates of the unknown parameters are those which minimise
the cost function,

IS L) (O] R[> (O] S mR|

where z is now a vector of measured outputs from the aircraft, y is a
vector of predicted outputs and R is the covariance matrix for the
noise corrupting the measurements z. The process of determining the
parameter estimates 6 which minimise J is an iterative one, requiring
a numerical optimisation technique such as the modified Newton-
Raphson method®®.

The accuracy of the parameter estimates is defined by the
parameter covariance matrix P, which can be found approximately
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from the expression®,

P~M"~ i{%ﬁ’)] R {aya—(ei)} 71 (5

i=1

where M denotes the Fisher information matrix.
Four metrics calculated from Equation (5) are used to assess the
chosen model structure:

® Standard error of the parameter estimate, denoted s(éj )for the
jth parameter, and calculated from the square root of the
diagonal elements of P. The standard error approximates the
standard deviation of the parameter estimate.

@® Parameter insensitivity is a measure of how much a parameter
value can be changed without causing an increase in the cost
function. It therefore provides a measure of the significance of
each parameter. For the jth parameter, the insensitivity is given

by,
1,=1//M, ...(6)

where M, is the jth diagonal element of the information matrix.

@® The pair-wise correlation coefficient between two parameters is
found from,

B o1, (7)
p, = ij=12,..,m
< JER
A correlation coefficient of 0 indicates that the parameters are
completely independent of each other. On the other hand, a
value of 1 means that the two parameters are linearly dependent
and are in some way modelling the same phenomena in the
aerodynamic model.

® The uncertainty or confidence ellipsoid can be used to detect
correlation between more than two parameters®”, which would
not be shown by the pair-wise correlation coefficients from
Equation (7). For the jth parameter, the elements of the confi-
dence ellipsoid are found from Ref. 3,

Tax -1
M,

)

where T is a diagonal matrix containing the insensitivities from
Equation (6) and M,"" denotes the jth column of the inverse of the
information matrix. For each of the parameters, ® is a vector of
length equal to the number of parameters, the elements of which are
usually scaled to unity. For the jth parameter estimate, the jth
element of (5/ is equal to 1 and correlation is indicated if any of the
remaining elements are large in comparison to the jth element.

The model structure determination process based on the above
metrics is described as follows. Parameter estimation is initially
carried out with all candidate terms in the model. The resulting insen-
sitivity values are checked against a threshold and the parameter with
the highest insensitivity exceeding the limit is removed from the
model i.e. it is held fixed at zero or another appropriate value.
Parameter estimation is then repeated. At any stage, it may be that all
parameters have acceptable insensitivities but the standard errors of
some parameters may be large. This is most likely due to correlation
between parameters, so the correlation coefficients or confidence
ellipsoid for the parameter with the largest standard error are analysed.
If correlation between parameters is indicated then the choice of which
parameter to remove must be made. This decision can be a difficult
one and it may be useful to rely on an understanding of the physics of
the aircraft to choose which term to remove. The model structure
determination process is halted when all parameters have standard
errors and insensitivities within the respective thresholds.

0=

.(8)
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The following guidelines have been suggested for indicating if a
parameter is significant enough to be included in the model®,

__s(9) 1 _
5, =2 x100<20%, T, = L x100 <10%, p, <0-9,8, <0-6
0

J J

. (9)

It has been found from experience that the standard deviation of
parameters determined from repeated manoeuvres can be greater
than the theoretical values obtained from Equation (5). A discussion
of this issue can be found in Refs 17 and 18. The estimated standard
deviation and insensitivity thresholds suggested in Ref. 3 include a
‘fudge factor’ of 2 to compensate for this discrepancy. Some
analysts, instead of a ‘fudge factor’, prefer to modify the calculation
of the covariance matrix once the parameters have been estimated
and, for the analysis presented in this paper, a correction proposed
by Morelli and Klein? has been utilised.

It should also be noted that the guidelines in Equation (9) are
suggested for frequency response analysis and, because of differences
in the formulation of the cost function for the two methods, may not
be reliable thresholds for the maximum likelihood approach. In the
examples presented in Sections 4 and 5, the thresholds in Equation (9)
were used. By then comparing the resulting model structure with that
obtained from the more-established stepwise regression technique, a
judgement on the suitability of the thresholds for the maximum
likelihood approach could be made.

In comparing the maximum likelihood method to stepwise
regression, the merits and drawbacks of each technique will in part be
related to the characteristics of the underlying estimation method used.
Full descriptions of the advantages and disadvantages of least squares
and maximum likelihood estimation can be found in Refs 1 and 2.
Least squares regression, for example, is a simple estimation method
which can be solved using matrix algebra. Maximum likelihood
estimation, in its most common output error formulation, on the other
hand is a more complex iterative process requiring a suitable
numerical optimisation algorithm to find the unknown parameters.
However, least squares estimation assumes that the regressors are
known without error. In practice, measurements from the aircraft will
always contain a given amount of noise which will adversely affect
the parameter estimates. The maximum likelihood output error
method, in contrast, directly accounts for noise in the recorded motion
variables. In terms of the model structure determination process itself,
one advantage that stepwise regression has over the maximum
likelihood approach described above is that, at each stage of the
process, the significance of terms already included in the model are
reassessed. Therefore, as already described, if a term added early on in
the process is found be less significant as more parameters are added
to the model, it can subsequently be removed. The maximum
likelihood approach conversely can be thought of as a ‘backward
elimination’ process. All terms are initially included in the model and
insignificant terms are removed one at a time until an appropriate
model structure has been obtained. However, there is no mechanism in
the process to re-introduce parameters which may have been
considered insignificant early in the process but whose importance
only becomes evident as further terms are removed from the model
structure. This could potentially be an issue if using the maximum
likelihood approach for complex nonlinear problems with large
numbers of candidate parameters.

4.0 UAV FLIGHT TEST DATA EXAMPLE

The results presented in this section are for the analysis of UAV
flight test data in order to determine an aerodynamic model for the
aircraft's rolling moment. The analysis was carried out on six
concatenated data segments containing a series of aileron and rudder
inputs, as shown in Fig. 1.
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Ailero n Deflection (deg)

Ru dder Deflection (deg)

_ | 1 1 1 1
[ 5 10 15 20 25
Time (s)

Figure 1. Time histories of aileron and rudder deflections.

The dependent variable is the non-dimensional rolling moment
coefficient Cl defined as,

L

Cl_%pVZSS ...(10)
where L is the dimensional rolling moment, p is the atmospheric
density, V is the aircraft's true airspeed, S is its wing area and s its
wing semi-span. This non-dimensional notation system was chosen
for the analysis because it matched the notation system used in an
existing simulation model of the aircraft and, ultimately, one of the
purposes of the system identification analysis was to validate the
derivative values within this simulation model.

As mentioned in the Introduction, the UAV from which the data
was obtained can be considered to be relatively conventional in
configuration. From empirical analysis methods, such as those
published by the Engineering Science Data Unit® (ESDU) or
DATCOM®™, the following regressors were considered as the most
likely to be significant for the manoeuvres under analysis,

angle-of-sideslip
non-dimensional roll rate (ps/V)
non-dimensional yaw rate (rs/V)
aileron deflection
rudder deflection

Y RS>

where p and r are the dimensionalised roll and yaw rates respectively.

Note that, for commercial reasons, the aerodynamic derivative
values from the UAV flight test data cannot be presented. Instead,
the parameter estimation values are expressed as ratios of the flight
test estimates to the empirically-derived estimates. For example, the
lateral stability derivative estimates are expressed in the results
sections below as,

(1)

where superscripts F and E denote flight test estimate and empirical
derivative values respectively.

4.1 Stepwise regression analysis

For the first step of the analysis, the correlation 7, between each of
the regressors and the rolling moment coefficient C, were calculated
and are shown in the first section of Table 1. The offset term Cl, was
included in the model by default. Also displayed are the initial
values for the fit error &2, the coefficient of determination R%, PRESS
and PSE. The regressor with the largest correlation with the
dependent variable was the aileron deflection &, therefore the control
derivative Cl, was the first term added to the model.

In Step 2 of the analysis, least squares estimation was used to find
the value of Cl.. This is given in the second section of Table 1. The
partial F-statistic for the derivative was calculated to be 160-94. For
the analysis presented here, parameters were considered to be signif-
icant if their partial F-statistic exceeded a value of F, = 20. With the
inclusion of CI; in the model, the values of &2, PRESS and PSE all
decreased in comparison to step 1 and R increased to 38-23%. The
values of 7, for the remaining candidate regressors were calculated
and the next most significant term was found to be Cl,.

The third section of Table 1 shows the results of adding the roll
damping derivative to the model. Its F, value was found to be
310-90, while the same statistic for Cl. increased to 663-64. Again,
the inclusion of Cl, led to decreases in the fit error, PRESS and PSE,
while the coefficient of determination rose to 71:93%. Of the
remaining terms, the yaw rate 7 was found to have the highest corre-
lation to the as yet unmodelled effects in Cl, therefore Cl, was the
next derivative added to the model.

The results of Step 4 of the analysis are displayed in Table 2. The
new derivative Cl, had a partial F-statistic of 74-75 and its addition to
the model resulted in R* increasing to 78-24%. The other metrics &,
PRESS and PSE also continued to decrease. The correlation values
with the dependent variable for the two remaining candidate
regressors, B and , suggested that sideslip angle was the more
significant term, hence it was included in the model next.

The addition of Cl; to the model resulted in further reductions in
the fit error, PRESS and PSE metrics and the coefficient of determi-
nation increased to 83-58%, as shown in Table 2. The value of F, for
Cl; was calculated to be 83-73 and the partial F-statistics for the
other model parameters also increased with the addition of Cl,.

In the sixth step of the process, the final candidate regressor £ was
added to the model and the results are displayed in the final section
of Table 2. This time, the partial F-statistic of the new parameter Cl,
was found to be 5-41, which was below the F, value of 20. As well

n

as this, the PSE value increased slightly from 2-371x10° to

Table 1
Stepwise regression steps 1 to 3
Step 1 Step 2 Step 3

A A A

0 Flf rjz 0 Flf 'fiz 0 Fl’ 'sz
Cl - - 0-0053 - - 0-0025 - - 0-1706
ql, - - 0-0000 - - 0-5455 0-747 310-90 -
ClL, - - 0-0458 - - 0-0320 - - 0-2247
ClL - - 0-3823 0-435 160-94 - 0-822 663-64 -
Cl - - 0-1062 - - 0-0119 - - 0-0100
&2 3-603x107 2-838x107 1-917x107
R 0-0% 38:23% 71-93%
PRESS 3-415x1073 2-174x107 9-963x1073
PSE 1-299x107 8-089x107® 3.780x107°
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Table 2
Stepwise regression steps 4 to 6
Step 1 Step 2 Step 3
A A A
0 F, T 6 F, T 6 F, T
Cl, - - 0-2457 1-320 83.73 - 1251 73-11 -
(E 0-807 450-76 - 0-944 676-07 - 0-959 68815 -
Cl, 1-934 74-75 - 2-020 107-50 - 2-108 114-68 -
Cl.- 0-831 871-04 - 0911 1226-6 - 0-936 1,119-4 -
Cl. - - 0-0504 - - 0-0207 0-390 541 -
&2 1.691x173 1-471x1073 1-459x1073
R 78-24% 83-58% 83-92%
PRESS 7-775%x107 5-921x107 5-827x107°
PSE 3-014x107 2:371x107° 2-377x107°
Table 3
Results for maximum likelihood analysis of the rolling moment equation
Step 1 Step 2 Step 3

A — = A - — A _ —

0 s 1 0 s 1 0 s 1
Cl, 1-644 12-40 6-02 1-687 7-52 5-87 1-747 8-58 5-67
Cl, 1-220 6-05 1-70 1-201 5-88 1.72 1.201 5-88 1-72
Cl, 1-969 8-41 6-69 1-962 8:52 672 1-874 9-61 7-04
Cl 1-061 4-65 1-33 1-060 4-68 1-34 1-028 450 1-38
Cl; 0-564 36:00 21.94 0-547 3528 22-69 0* - -
Cl, 1-210 212-71 140-21 0* - - 0* - -
* — Removed from model structure

002 R —— Cl=ClB +ClLp + ClF + CLE o (12)

| - - - Identified Model - with €,

Identificd Model - without Cj,

)

= -0.01

olling Moment Coefficient Cy

R

-0.02

iy E | E HI N : i
0.03 25

Figure 2. Comparison of measured and identified
rolling moment time histories — with and without C1..

2:377x10°°. The addition of Cl, to the model resulted in R* increasing
to 83-92%, however this rise in comparison to the value in the
previous step was only 0-34%, which fell below the guideline of a
minimum increase of 0-5% in the coefficient of determination for a
new regressor to be considered significant. On the other hand, the
estimated fit error 6 decreased, as did the PRESS metric. However,
as explained above, for typical aircraft problems the value of PRESS
can continue to decrease even when an insignificant regressor is
added to the model. Time histories of the rolling moment coefficient
derived from aircraft measured data and the response generated
using the identified model, with and without the inclusion of Cl, are
shown in Fig. 2. It can be seen that there is no significant change in
the identified response when Cl, is added or removed from the
model. Therefore, taking all the metrics into account and considering
the principle of parsimony introduced earlier, it was decided that the
derivative Cl, should not be included in the model. The final rolling
moment equation was then,
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Note that the offset term Cl, was itself found to be negligibly small
so was removed from the model.

4.2 Maximum likelihood analysis

The analysis begins with all candidate terms in the model so the
initial equation for the rolling moment was taken to be,
Cl=Cl,+ClB + ClLp + ClF + CLE + CIE ...(13)
The results for Step 1 are given in the first section of Table 3, which
shows the estimated derivative values, the standard errors and the
insensitivities. Of the six parameters, the offset term Cl, had by far
the largest insensitivity at 140-21% so was removed from the model
structure. Parameter estimation was repeated and the results are
displayed in the middle section of Table 3. This time, Cl, was found
to have the highest insensitivity at 22:69% so this parameter was
also removed from the model. On the third run, the standard errors
were all found to be below 20% and all insensitivities were under
10%. Therefore the procedure was halted at this point, with the final
model structure given by,
Cl=ClB +CLp+ClF +CLE ... (14)
This matched the model structure determined using stepwise
regression, given in Equation (12), indicating that the respective
thresholds of 20% and 10% for the standard errors and insensitivities
were reliable guidelines for this particular example. Comparison of the
final parameter estimates in Table 3 with those in Table 2 showed that
the maximum likelihood values for Cl, and Cl. matched the stepwise
regression values to within around 10%. The discrepancies in the Cl,
and Cl, estimates were slightly larger at around 30%.

Figure 3 shows a comparison of the time histories of Cl identified
using the two analysis techniques. While the general match between
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Figure 3. Comparison of identified rolling moment time histories
from stepwise regression and maximum likelihood analysis.
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Figure 4. Time histories of aileron and rudder
deflections for validation manoeuvres.

the measured and identified responses may be considered close,
discrepancies can be seen around some of the peaks during the
aileron inputs. The stepwise regression model tends to under-predict
the rolling moment response while the maximum likelihood model
over-predicts the rolling moment in these regions. This may be due
to differences in the estimated values of the derivative CI,
Significant roll rates would result from the aileron inputs and, as
mentioned above, the maximum likelihood estimate of Cl, is around
30% greater than the stepwise regression estimate. The difference
between the two estimates of Cl; is much smaller in comparison. As
to why the identified models do not match the measured data in
these regions, the parameter estimation process is trying to find a
single value for each derivative which provides the best match over
the six manoeuvres. In practice, the derivative values will vary with
flight conditions. However, there were no significant changes in
variables such as airspeed or angle of attack over the six manoeuvres
which might have explained why the identified models match the
data more closely in some regions and not so well in others. Further
investigation of the data is required to identify the cause of these
discrepancies.

The identified models were also subsequently used to predict the
aircraft response using a set of independent data not used in the
estimation process. The data used to validate the models comprised
four concatenated segments containing aileron and rudder inputs, as
shown in Fig. 4. The rolling moment response predicted by the models
are plotted against the measured data in Fig. 5. The match provided by
the models to the data is of a similar fidelity to that in Fig. 3.

A criticism of the validation process presented here could be that
the inputs used for validation were similar in nature to those used for
the identification process (Fig. 1). Ideally, the validation inputs
should be dissimilar, or have a different frequency content, from the
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Figure 5. Measured and predicted rolling
moment time histories for validation manoeuvres.

identification inputs to ensure against the identified model providing
adequate predictive capability for only one particular input type®.
For example, frequency sweeps could be used for identification and
doublets could be used for validation. Unfortunately, inputs of
dissimilar nature were not available for this analysis.

As pointed out at the start of this section, empirical analysis of this
UAYV indicated that the rudder contribution to rolling moment was
significant. However, both stepwise regression and maximum
likelihood analysis indicated Cl, to be small and that the parameter
should be excluded from the model. As mentioned in the
Introduction, part of the system identification process is the design
of control surface inputs to adequately excite the aircraft dynamics
of interest and the model structure determination process will only
highlight as significant the aerodynamic derivatives which can be
reliably identified from the data. The subject of optimal design of
control surface inputs is discussed in Refs 1 and 2. It could be that
the data analysed simply did not contain enough information about
Cl.. However, significant rudder inputs were applied during the
manoeuvres flown in flight, as shown in Figs 1 and 4, and in the
regions of rolling moment response corresponding to these rudder
inputs, there was little change in the value of Cl, as shown in Figs 3
and 5. Therefore, based on the available flight test data, it is
concluded that the rolling moment due to rudder is not significant for
this aircraft.

5.0 WIND-TUNNEL TEST DATA EXAMPLE

The wind tunnel data used in this paper were obtained from tests
performed at Cranfield University’s dynamic wind tunnel facility,
which allows scaled aircraft models with actuated control surfaces to
be flown in semi-free flight, emulating flight test-like experiments.
The commands to the control surfaces and the aircraft model's
resulting motion are measured, allowing system identification to be
performed. A miniature inertial measurement unit is housed within
the model to record its motion. A detailed description of the facility
can be found in Refs 11 and 21.

The data analysed in this example comes from tests of an approx-
imate 1/3 scale model of a demonstrator UAV (shown in Fig. 6)
developed for the Flapless Air Vehicle Integrated Industry Research
(FLAVIIR) programme™, which is jointly funded by BAE Systems
and the Engineering and Physical Sciences Research Council
(EPSRC). The broad aim of the project, which is a collaboration
between ten university partners, is to develop technologies for UAVs
with unconventional control surfaces.

During the tests, the model was restricted to three degrees of
freedom (DoF) — roll, pitch and yaw. The data analysed here
contained a doublet input to the rudder. The time history of the
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Figure 7. Rudder deflection angle for doublet input.

rudder deflection angle is shown in Fig. 7. A theoretical investi-
gation of the motion of aircraft models on the test rig indicated that
the following state space representation could be used to describe the
motion as a result of a rudder input“?,

5 ek
7 n, nlr ",
where v is the lateral velocity component, 7 is the yaw rate and C is
the rudder deflection. The sideforce derivative y, and the yawing
moment derivatives n,, n, and n, are in the concise form defined in
Cook®™. Note that Equation (15) utilises a different notation system
from that used in Section 4. The reason for this is that, as with the
UAV flight test example, one of the purposes of the system identifi-
cation analysis was to validate the derivative values in an existing
simulation model. This simulation model utilised the state space
representation given in Equation (15), therefore, the analysis was
also carried out using the state space form.

Equation (15) is effectively the classical second-order dutch roll
approximation. However, the rig suppresses the lateral translational
motion of the aircraft model, resulting in the theoretical values of the
sideforce derivatives with respect to v and £ being zero. The model
will see a lateral velocity component v due to yaw or sideslip. The
value of the sideforce derivative y, should in theory have a value of
approximately the negative of the wind tunnel speed V,, which, for
this example, was 30ms™".

During the test, the aircraft model was observed to undergo some

...(15)
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Figure 9. Angle-of-attack and angle-of-sideslip time histories.

rolling motion when the rudder input was applied. This can be seen
in Fig. 8 which shows that the model experienced a roll rate oscil-
lation of a similar magnitude to the yaw rate oscillation. The model
was also free to rotate in pitch, allowing changes in angle of attack
to occur during the manoeuvre. Figure 9 shows that some variation
in angle of attack, between approximately 0-5 and 2 degrees, was
observed. Equation (15) is based on the assumption of small pertur-
bations about an initial trim condition and that longitudinal and
lateral/directional ~ dynamics are decoupled ie. for a
lateral/directional perturbation, angle-of-attack is assumed to be
constant. The candidate model structure, therefore, could have been
extended in this example to account for these changes in incidence.
However, the angle-of-attack was limited to relatively low angles
over a narrow range. Hence, in a first instance, it was assumed that
the lateral/directional dynamics would be insensitive to these
changes of angle-of-attack over this range and an angle-of-attack
dependency was not included in the candidate model structure.

The data acquisition process also lead to the introduction of a time
delay between the rudder data and the other motion variables,
denoted 1. For the data being analysed here, the value of t, was
known to be around 0-28 sec. With the inclusion of rolling motion
effects and the time delay, the initial model structure containing all
candidate terms was assumed to take the following form,

V(t) Yo Y V(t) y[’ yC p(t)

el = + L= || ==

i) Ln, mlr(t)]| | n, n g(t—rg)
Note that the roll rate p has been included in Equation (16) not as a
state variable but as, what is termed, a pseudo-control input®. This
approach allows the effects of additional motion variables to be

incorporated into the equations of motion without increasing the
model complexity.

... (16)


https://doi.org/10.1017/S0001924000006126

CARNDUFF AND COOKE APPLICATION OF AERODYNAMIC MODEL STRUCTURE DETERMINATION TO UAV DATA 489
Table 4
Stepwise regression Steps 1-3 for sideforce equation
A Step 1 Step 2 Step 3
0 F, T 0 F, T 0 F, r
¥, - - 0-0000 - - 0-0000 - - 0-1706
Y, - - 0-0854 - - 0-1372 - - 0-0399
¥, - - 0-9986 -29.05 252,500 - 2874 208,500 -
Ve - - 0-3272 - - 0-1877 0-647 79-97 -
c’ 10-3625 0-3845 0-3470
R’ 0-0% 99-.86% 99-89%
PRESS 3-758x10* 52-343 42-810
PSE 107-38 0-762 1-042
Table 5
Stepwise regression Steps 1-3 for yawing moment equation
n Step 1 n Step 2 n Step 3
0 F, T 0 F, T 0 F, ¥,
n, - - 0-8477 3271 19319 - 3.759 3,659-4 -
n - - 0-2840 - - 0-1149 - - 0-0495
n, - - 0-0000 - - 0-0000 - - 0-3949
n, - - 0-0545 - - 0-1877 -3.448 299-0 -
c’ 4-0250 1-5729 1-5537
R 0-0% 84-77% 91-83%
PRESS 5,670-4 869-87 476-81
PSE 16-201 2-5526 1-4588
Table 6
Stepwise regression Steps 4-5 for yawing moment equation
n Step 4 n Step S5
6 F, T e F, T
¥, 3.776 6,082-3 - 3.281 1,963-0 -
Y, - - 0-1682 1-967 69-55 -
Vv, —2-447 2252 - -3.702 305-6 -
ne —5-021 7179 - —6-295 7529 -
c’ 0-8987 0-8209
R 95-06% 95-89%
PRESS 290-33 240-96
PSE 0-9841 0-8963

There are a number of ways of dealing with time delays. The
simplest approach would be to manually time shift the rudder data to
match the other measurements. However, time delays can also be
treated as unknown parameters to be estimated along with the
aerodynamic derivatives. In the stepwise regression analysis,
presented next, the time delay was removed manually prior to the
model structure determination process. In the maximum likelihood
example in Section 5.2, the time delay was included as a parameter
to be estimated. Note that the parameter estimation values presented
in the following sections have not been normalised (unlike Sections
4.1 and 4.2) but are those obtained directly from the analysis.

5.1 Stepwise regression analysis

For the stepwise regression analysis, the side force and yawing
moment equations are treated separately. Concentrating first on the
sideforce equation, the stepwise regression results are displayed in
Table 4. To start with, yaw rate » was found to be the regressor most
significantly correlated with v, hence was the first term added to the
model. When this was done, a very close match to the measured data
was achieved, with the coefficient of determination rising to 99-86%.
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The next most significant regressor was the rudder input so y, was
also added to the model. However, the increase in R* as a result was
only 0-03%. There was also a rise in the PSE statistic. The partial F-
statistic of y, did exceed the F), threshold of 20 (79:97 from Table 4)
but was significantly smaller than the F, figure for y,. Therefore, y,
was removed from the equations of motion.

Tables 5 and 6 present the results from the analysis of the yawing
moment equation. The regressor with the highest correlation to yaw
acceleration 7 was the sideslip velocity v, therefore n, was the first
derivative added to the model. The next term included was n, and
this was followed by n, leaving roll rate p as the only remaining
candidate regressor. When 7, was added to the model, the
improvement in the coefficient of determination was marginal, with
R* increasing by 0-83%. However, this is greater than the 0-5%
guideline suggested in Section 2. Also, the partial F-statistic for n,
was greater than F, and its inclusion in the model structure led to
decreases in PRESS and PSE. Therefore, it was a borderline decision
as to whether n, should be included in the equations of motion.
Figure 10 displays the measured time history of 7 plotted against
those from the identified model with and without 7, in the model
structure. As can be seen, the inclusion of the derivative made little
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Figure 10. Comparison of identified yaw responses
with and without n,, in model structure.

difference to the reconstructed response, despite significant levels of
roll rate, as shown in Fig. 8. It may be that the contribution to
yawing moment due to roll rate had already been accounted for
through the yaw variation with sideslip velocity, as the two effects
are coupled aerodynamically®. A disturbance in sideslip will result
in differential lift and induced drag across the wing span, leading to
rolling and yawing motion. The rolling motion itself will result in
the port and starboard wings seeing different levels of induced drag,
also contributing to the yawing moment. Therefore, the two effects
may be difficult to separate. Considering the principle of parsimony
and the fact that the theoretical equations of motion due to a rudder
input (Equation (15)) did not include the parameter, it was felt that
the most appropriate model structure was one without 7,

5.2 Maximum likelihood analysis

The choice was made to perform the maximum likelihood analysis
in the frequency domain, an outline of which can be found in Ref. 1.
In comparison to time domain approaches, the frequency domain is
better suited to the estimation of time delays, such as 7, .

The results of the analysis are displayed in Tables 7 and 8. The
control derivative y, was found to have the highest insensitivity at
21:62% so was the first parameter removed from the model. When
the estimation process was repeated, all the parameters were found
to have insensitivities below the 10% guideline, as shown in second
section of Table 7. However y,, y,, n, and n, had standard errors
greater than 20%. The derivative with the lowest confidence was n,,
which had a standard error of 76-88%, therefore the correlation
coefficients and confidence ellipsoid for this parameter were
analysed. These are shown in the fourth and fifth columns respec-
tively of the second section of Table 7. None of the correlation
coefficients exceeded 0-9 but the values of p,, were still relatively
high (= 0-8) between n, and the other yawing moment derivatives 7,
n, and n,. The elements of the confidence ellipsoid also suggested
that some correlation existed between n, and other parameters,
particularly 7, and n, for which the absolute values of ®, were
greater than 0-6. These correlation figures may be due to the strong
aerodynamic coupling between roll rate, yaw rate and sideslip
velocity on yawing moment, described earlier in Section 5.1. The
choice was made to remove 7, from the model. The confidence in the
estimated value of this derivative was low, despite the magnitude of
the roll rate during the manoeuvre, as shown in Fig. 8. Also, based
on a theoretical understanding of the model dynamics (Equation
(15)), for a rudder input, the derivatives n,, n, and n, were expected
to be more significant than 7,

In Step 3 of the process, all parameters again had sensitivities
below the 10% threshold but the standard errors for y,, y, and n,
remained greater than 20%. The derivative with the largest standard

Table 7
Results for maximum likelihood analysis of the yaw dynamics Steps 1 and 2
A Ste_p 1 B A N Step 2 _
0 s 1 0 s 1 Pup 0,
Vv, -0-178 69-12 813 -0.245 38-67 596 0-15 -0.09
Y 0-683 5901 5-62 0-950 28:13 4-10 0-20 0-12
V. -29-29 1-15 0-13 -29-47 0-64 0-14 0-09 —0-04
Ve 0-212 1703 21-62 0* - - - -
n, 3-644 7-66 0-90 3-636 7-49 0-90 0-81 -0.60
n, 1-248 7976 6-99 1263 76-88 691 1-00 1-.00
n, -3-273 26-84 273 -3.262 25-80 274 0-82 -0.70
n -5-816 15-50 1-79 -5-806 14.74 1-79 0-78 -0-58
T 0-282 1-28 0-48 0-281 2-66 0-50 0-42 0-20
* — Removed from model structure
Table 8
Results for maximum likelihood analysis of the yaw dynamics Steps 3-5

n _ Step 3 _ n Ste_p 4 B n Ste_p 5 _

0 s 1 [ 0, 0 s 1 0 s 1
Vv, -0-215 4383 596 0-15 -0-09 0* - - 0* - -
Y, 0-831 31.72 410 0-20 0-12 0-374 55-01 11-95 0* - -
V. -29-44 0-64 0-14 0-09 -0-04 -29-28 0-67 0-16 -29-13 0-78 0-17
¥ 0* _ _ _ _ 0* _ _ 0* — —
n, 3918 421 0-90 0-81 -0-60 4-008 3-98 0-83 3-981 392 0-82
n, 0* - - - - 0* - - 0%* - -
n, -2:372 20-87 274 0-82 -0-70 -2:521 19-98 3-61 -2-630 18-89 3.37
n -4.972 11-07 1-79 0-78 —0-58 -5:234 11-07 2:03 -5-396 9-53 191
7 0-276 3-03 0-50 0-42 0-20 0-278 1-78 0-57 0-284 255 0-53

* — Removed from model structure
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Figure 11. Comparison of measured and identified
yaw responses in the frequency domain.

error was y, so the correlation between this parameter and the other
derivatives was examined, with the correlation coefficients and
confidence ellipsoid elements given in the last two columns of the
first section of Table 8. Both metrics indicated that some correlation
existed between y, and y, and it was decided that, based on the
theoretical model in Equation (15), y, would be removed from the
equations of motion. When this was carried out, the next run of the
parameter estimation algorithm revealed y, to have an insensitivity of
11-95%. While this value was close to the 10% guideline, it was
much larger in comparison to the other insensitivities. The standard
error for y, was also large at 55%. Therefore, y, was also dropped
from the model.

When y, was removed from the equations of motion and
parameter estimation was repeated, all insensitivities and standard
errors fell within the thresholds, as shown in the last section of Table
8. Therefore, the process was halted at this point. Figure 11
compares the identified response from the final model with the
measured data in the frequency domain.

As with the UAV flight test data example in Section 4, the final
model structure from maximum likelihood analysis matched that
from stepwise regression, further validating the chosen threshold
values for the statistical metrics. There was also close agreement
between the final parameter estimate values from each method, as
shown in Tables 4, 6 and 8. Figure 12 shows a comparison of the
time histories of lateral acceleration and yaw acceleration identified
using the stepwise regression and maximum likelihood techniques.
A close match between the two identified models and the measured
response was obtained.

The two examples presented in this paper indicate that the model
structure determination process is a helpful tool for determining the
most appropriate aerodynamic model. However, the examples also
illustrate that the process works best when used in conjunction with
an understanding of the aircraft dynamics, particularly when making
borderline decisions on whether terms should be added or removed
from the aerodynamic model. It is also important to note that, as
already mentioned in Section 4, model structure determination will
only identify as significant derivatives for which enough information
exists within the data to reliably estimate the term. The fact that a
derivative is not identified as important does not necessarily indicate
that the parameter is insignificant for the configuration being
analysed. To reach a conclusion, the analyst must decide whether the
manoeuvre flown or control surface inputs applied were appropriate
for exciting the derivative of interest. For example, for the wind
tunnel data presented here, the parameter 1, was considered to be
insignificant. However, combining the rudder doublet data with that
from an appropriate aileron input may lead to more information
about n,, allowing a statistically reliable estimate of the derivative to
be obtained. It could possibly be argued that the doublet was not the
most appropriate input to use for analysing cross-coupling effects. It
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Figure 12. Comparison of lateral and yaw acceleration time histories
from stepwise regression and maximum likelihood analysis.

excites a relatively narrow band of frequencies in comparison to
other system identification manoeuvres, such as 3-2-1-1 inputs or
frequency sweeps"?. Also, in the free response of the aircraft (once
the doublet has been completed and the control surface has returned
to the neutral position), the motion variables tend to ‘lock’ together
i.e. they are correlated. Inputs such as frequency sweeps generally
‘unlock’ the motion variables to play their own role. Therefore, it
could be that more information about 7, would have been obtained
if a different input, such as a frequency sweep, had been used instead
of a doublet. The above issue may be crucial for unconventional
configurations exhibiting more significant cross-coupling effects
and, where possible, it should be ensured that the control surface
deflections applied are optimal for exciting such cross-coupling of
the aircraft dynamics.

6.0 CONCLUSIONS

This paper has outlined the process of aerodynamic model
structure determination from experimental data and examples of its
application to UAV data have been presented. The process can be
useful for determining the aerodynamic model of aircraft with
unconventional configurations, which some UAVs tend to have.
Two model structure determination techniques were described. The
first was the well-established stepwise regression method, while
the second was an adaptation of a frequency response method
which uses estimates of the parameter standard deviations,
parameter insensitivity and correlation among parameters to assess
the adequacy of the aerodynamic model. However, the estimation
process was carried out using maximum likelihood estimation
rather than the frequency response approach. The principal
advantage time domain maximum likelihood estimation has over
frequency response identification is that nonlinearities can be
estimated directly. Stepwise regression and maximum likelihood
analysis were then performed on two data sources. The first was a
set of UAV flight test data and the second was data recorded from
dynamic wind-tunnel tests on a UAV configuration. For both
examples, the final aerodynamic model determined using the
maximum likelihood approach matched that found from stepwise
regression, indicating that the threshold values selected for the
maximum likelihood statistical metrics were reliable. However, it
was noted that the examples presented in this paper involved
relatively linear aircraft dynamics and relatively conventional
airframe configurations. These examples have been used to help
validate that maximum likelihood approach for simpler linear
problems, before assessing whether the technique is reliable for
more complex nonlinear data. This is the focus of further research.
It is clear that the model structure determination process cannot be


https://doi.org/10.1017/S0001924000006126

492 THE AERONAUTICAL JOURNAL

Aucust 2011

used blindly but requires engineering judgement, particularly when
making borderline decisions on whether terms should be added or
removed from the aerodynamic model. It is a tool that is most
helpful when used in conjunction with an understanding of the
aircraft physics. Further, model structure determination will only
identify as significant derivatives for which enough information
exists within the data to reliably estimate the term. It is crucial to
ensure that the control surface deflections applied during the flight
test are suitable for exciting the dynamics of interest.
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