
TLP 13 (4–5): Online Supplement, July 2013. C© 2013 [TOM SCHRIJVERS, BART DEMOEN,
BENOIT DESOUTER and JAN WIELEMAKER]

URL: http://dx.doi.org/10.1017/S1471068413000331

533

Delimited continuations for prolog

TOM SCHRIJVERS

Ghent University, Belgium

(e-mail: tom.schrijvers@ugent.be)

BART DEMOEN

KU Leuven, Belgium

(e-mail: bart.demoen@cs.kuleuven.be)

BENOIT DESOUTER

Ghent University, Belgium

(e-mail: benoit.desouter@ugent.be)

JAN WIELEMAKER

University of Amsterdam, The Netherlands

(e-mail: jan@swi-prolog.org)

submitted 10 April 2013; revised 23 June 2013; accepted 5 July 2013

Abstract

Delimited continuations are a famous control primitive that originates in the functional

programming world. It allows the programmer to suspend and capture the remaining part

of a computation in order to resume it later. We put a new Prolog-compatible face on this

primitive and specify its semantics by means of a meta-interpreter. Moreover, we establish

the power of delimited continuations in Prolog with several example definitions of high-level

language features. Finally, we show how to easily and effectively add delimited continuations

support to the WAM.

KEYWORDS: delimited continuations, Prolog

1 Introduction

As a programming language Prolog is very lean. Essentially it consists of Horn

clauses extended with mostly simple built-in predicates. While this minimality has

several advantages, the lack of infrastructure to capture and facilitate common pro-

gramming patterns can be quite frustrating. Fortunately, programmers can mitigate

the tedious drudgery of encoding frequent programming patterns by automating

them by means of Prolog’s rich meta-programming and program transformation

facilities. Well-known examples of these are definite clause grammars (DCGs),

extended DCGs (Roy 1989), Ciao Prolog’s structured state threading (Ivanovic et al.

2009) and logical loops (Schimpf 2002).

However, non-local program transformations are not ideal for defining new

language features for several reasons. Firstly, the effort of defining a transformation

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

534 T. Schrijvers et al.

is proportional to the number of features in the language – the more features are

added, the harder it becomes. Secondly, program transformations are fragile with

respect to language evolution: they require amendments when other features are

added to the language. Thirdly, when the new feature is introduced in existing code,

the whole system may have to be transformed. For instance, consider introducing

DCGs into an existing code base to pass information from a top-level predicate,

through several layers of predicate calls, to a particular target predicate.

All of the above issues stifle the initial development and further adoption of new

programming language features that are defined by means of non-local program

transformations.

We remedy these problems by bringing for the first time a well-known control

primitive to Prolog: delimited continuations (Felleisen 1988; Danvy and Filinski

1990). Delimited continuations enable the definition of new high-level language

features at the program level (e.g., in libraries) rather than at the meta-level as

program transformations. As a consequence, feature extensions based on delimited

continuations are more light-weight, more robust with respect to changes and do

not require pervasive changes to existing code bases.

Our specific contributions are:

1. We put a new Prolog-compatible face on the originally functional delimited

continuations feature and specify its semantics by means of a meta-interpreter.

2. We establish the power of delimited continuations in Prolog by defining several

high-level language features, including implicit state and DCGs, on top of them.

3. We show how to easily and effectively add delimited continuations support to

the WAM.

2 Delimited continuations by example

2.1 Informal definition

Our design of delimited continuations consists of two interacting predicates, reset/3

and shift/1. The meta-predicate reset(Goal,Cont,Term1) executes Goal, and,

• if Goal fails, then reset/3 also fails.

• if Goal succeeds, then reset/3 also succeeds and binds Cont and Term1 to 0.

• if at some point Goal calls shift(Term2), then its further execution is suspended

and reset/3 succeeds immediately, binding Term1 to Term2 and Cont to the

remainder of Goal.

The pair reset/3 -shift/1 is similar to catch/3 -throw/1, with the following dif-

ferences: (1) shift/1 does not copy its argument, (2) shift/1 does not delete

choice points, (3) apart from its argument, shift/1 also communicates the delimited

continuation to the enclosing reset/3.

The following applications provide more insight in the possibilities of delimited

continuations.

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

Delimited continuations for prolog 535

Fig. 1. Effect handler expressing the State monad (left) and effect handler for DCGs (right).

2.2 Effect handlers

Plotkin and Pretnar (2009) have recently formulated a particularly insightful class of

applications: effect handlers. Effect handlers are an elegant way to add many kinds

of side-effectful operations to a language and far less intrusive than monads (Moggi

1991).

Implicit State Passing Figure 1 (left) defines an effect handler for an implicit state

passing feature. The feature provides two primitive operations: get/1 for reading

the implicit state, and put/1 for writing it. For instance, the predicate inc/0 uses

these primitives to increment the state.

inc :- get(S), S1 is S + 1, put(S1).

The effect handler decouples the syntax of the new operations from their semantics.

The put/1 and get/1 predicates are all syntax and no semantics; they simply shift

their own term representation. The semantics is supplied by the handler predicate

run state/3. This handler predicate runs a goal and interprets the two primitive

operations whenever they are shifted. For the interpretation, run state recursively

threads a state. Hence, a minimal example that uses implicit state is:

?- run_state(inc,0,S).
S = 1.

Definite clause grammars Figure 1 (right) shows a light-weight effect handler for

definite clause grammars (DCGs). DCGs are a well-known Prolog extension to

sequentially access the elements of an implicit list. They are conventionally defined

by program transformation, for which they require special syntax to mark DCG

clauses H --> B and to mark non-DCG goals {G}. Our effect handler requires

neither. It only introduces one new primitive operation c(E) to access the current

element E in the implicit list. For instance, the following predicate implements the

grammar (ab)n and returns n.

ab(0).
ab(N) :- c(a), c(b), ab(M), N is M + 1.

?- phrase(ab(N),[a,b,a,b],[]).
N = 2.

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

536 T. Schrijvers et al.

Fig. 2. Iterators and iteratees.

Composing Effect Handlers Effect handlers can easily be made compositional. All it

takes is for a handler to propagate unknown operations to the next one in line. For

example we can mix the DCG and state features this way.

phrase(Goal,Lin,Lout) :- ab.
reset(Goal,Cont,Term), ab :- c(a), c(b), inc, ab.
(Cont == 0 -> ...
; Term = c(E) -> ... ?- run_state(phrase(ab,[a,b,a,b],[]),0,S).
; S = 2.

shift(Term),
phrase(Cont,Lin,Lout)

).

2.3 Coroutines

Delimited continuations also lend themselves well to the implementation of various

coroutines, i.e., subroutines that can be suspended and resumed at certain locations

to communicate with another routine.

Coroutines that suspend to output data are called iterators. They are created by

generators that use the yield keyword to suspend and return an intermediate value

before continuing with the generation of more values. Figure 2 (top) shows two

straightforward examples, which we will use later. In a sense yield/1 generalizes

Prolog’s write/1 built-in: the coroutine runs in a context that consumes its output

in a user-defined way.

Iteratees are the opposite of iterators: they suspend to request external input,

using ask/1, which generalizes Prolog’s read/1 built-in. See Figure 2 (bottom) for

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

Delimited continuations for prolog 537

an example. We can now play iterator and iteratee coroutines against each other,

using play/2 (see Figure 2, bottom right):

?- play(sum(Sum),from_list([1,2,3])). ?- play(sum(Sum),enum_from_to(7,10)).
Sum = 6. Sum = 34.

Note how loosely coupled the communication partners are. This engenders a

flexible and modular design that promotes reuse. There is growing consensus

that coroutines are easier to understand than lazy evaluation, which has similar

advantages (Kiselyov 2012; Kiselyov et al. 2012).

There are many more variations of coroutines: coroutines that mix yield/1 and

ask/1 to communicate in two directions, coroutines captured in data structures that

have the look and feel of Java iterators, transducers that transform iterators of one

kind of elements into iterators of another kind, . . . We refer interested readers to

our companion technical report (Demoen et al. 2013) for several such examples.

3 Meta-interpreter semantics

This section formalizes the delimited continuations feature by extending the vanilla

meta-interpreter for Prolog with the reset/3 and shift/1 predicates. See Section 4.3

for the fine print.

eval(G) :-
eval(G,Signal),
(Signal = shift(Term,Cont) ->

format(’ERROR: Uncaught ‘shift(~w)\’.\n’,[Term]),
fail

;
true

).

eval(shift(Term),Signal) :- !,
Signal = shift(Term,true).

eval(reset(G,Cont,Term),Signal) :- !,
eval(G,Signal1),
(Signal1 = ok ->

Cont = 0,
Term = 0

;
Signal1 = shift(Term,Cont)

),
Signal = ok.

eval((G1,G2),Signal) :- !,
eval(G1,Signal1),
(Signal1 = ok ->

eval(G2,Signal)
;

Signal1 = shift(Term,Cont),
Signal = shift(Term,(Cont,G2))

).
eval(Goal,Signal) :-

built_in_predicate(Goal), !,
call(Goal),
Signal = ok.

eval(Goal,Signal) :-
clause(Goal,Body),
eval(Body,Signal).

The meta-interpreter extends every goal with an extra output parameter Signal.

It is instantiated to ok when the goal succeeds normally. The base case for this

behavior is the eval/2 clause for built-in predicates.

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

538 T. Schrijvers et al.

When a goal’s evaluation is abruptly terminated by a call to shift(Term) before its

continuation Cont can be executed, Signal is instantiated to shift(Term,Cont). The

base case for this behavior is the eval/2 clause for shift(Term), where the empty

continuation is represented by the goal true.

The clause for conjunction (G1,G2) evaluates the first goal. If it succeeds normally,

the conjunction clause proceeds with G2. If G1 is aborted by shift/1, then the whole

conjunction case is aborted too and G2 is added to the returned continuation.

The clause for reset(G,Cont,Term) evaluates G and binds Cont and Term to 0

when G terminates normally; otherwise, they are bound to the returned values.

4 Implementation

This section presents an implementation reset/3 and shift/1 in the WAM

(Aı̈t-Kaci 1991; Warren 1983), more specifically in the context of hProlog (Demoen

and Nguyen 2000).

4.1 The hProlog implementation

There are three main issues in the implementation: (1) the representation of a

(delimited) continuation, (2) the change of control involved in shift/1, and (3) how

to pass the continuation and the argument of shift/1 to reset/3. They are described

at the abstract machine level, using the hProlog WAM variant that originates in

the XSB implementation (Swift and Warren 2012): the name of several abstract

machine instructions reflects that. Still, the code below should be easily readable to

anyone acquainted with the WAM. Note that hProlog uses a separate environment

and choice point stack, that WAM argument registers are numbered starting at 1,

and that a free variable (a self-reference) never occurs in an environment.

Reset The hProlog code of reset/3 is shown below on the left; sysh:asm/1 is

a variant of the C asm command for generating inline WAM instructions. The

corresponding WAM code is on the right: for each instruction, it shows the code

address.

reset(Goal,Cont,Term) :- 000 allocate 4
016 getpvar Y2 A3
032 getpvar Y3 A2

call(Goal), 048 call call/1 4
reset_marker, 080 builtin_reset_marker_0
sysh:asm(getpval(Cont,1)), 088 getpval Y3 A1
sysh:asm(getpval(Term,2)). 104 getpval Y2 A2

120 dealloc_proceed

The builtin reset marker 0 serves two roles:

• If no shift is executed inside a succeeding Goal execution returns to the

reset marker. It is then responsible for putting the default value 0 in the WAM

argument registers 1 and 2. The getpval instructions subsequently unify these

registers with the appropriate arguments of reset.

• If a shift is executed inside Goal, the code for shift puts the correct values of

Cont and Term in argument registers 1 and 2. The reset marker then acts as

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

Delimited continuations for prolog 539

a marker in the stack for shift, which returns to the getpval right behind the

marker so that the reset marker itself is not executed.

Shift The implementation of shift/1 (together with that of a helper predicate

get chunks/3) is listed below. It performs two tasks: 1) to capture the continuation

up to the nearest enclosing reset/3 in a heap term Cont, and 2) to unwind the local

stack to pass control back to that reset/3.

shift(Term) :- get_chunks(E,P,L) :-
% 1/ capture continuation (points_to_reset_marker(P) ->
nextEP(first,E,P), L = []
get_chunks(E,P,L), ;
Cont = call_continuation(L), get_chunk(E,P,TB),
% 2/ pass control L = [TB|Rest],
sysh:asm(putpval(Cont,1)), nextEP(E,NextE,NextP),
sysh:asm(putpval(Term,2)), get_chunks(NextE,NextP,Rest)
unwind_environments.).

1. The first task is handled by the auxiliary predicate get chunks(E,P,L). It captures

the (delimited) continuation as a list L of continuation chunks by traversing the

local stack and constructing with get chunk/3 a continuation chunk for each

environment on the way.

The traversal is made possible by the new nextEP(E,NextE,NextP) primitive

that retrieves the next environment pointer NextE and next continuation pointer

NextP stored in the given environment E. The traversal starts at the current

environment, aliased by the atom first, and ends at the environment of the reset/3

call, which is reached when the continuation pointer points to the reset marker

(identified by the new primitive points to reset marker/1).

Finally, shift wraps the resulting list in the functor of the call continuation/1

predicate (shown later) so that it can be directly meta-called.

2. For the second task, shift first sets up Cont and Term in the first and second

WAM argument registers (with putpval) where the two getpval instructions at

the end of reset/3 can find them. Then it passes control to reset/3 with the new

primitive unwind environments/0. This primitive unwinds the environment stack

up to the environment of the first enclosing reset/3 call. Then it sets the WAM

E register to point to this environment, and the WAM P register to point to just

after the builtin reset marker 0 instruction so that it does not get executed. Note

that unwind environments/0 is careful not to upset the WAM argument registers

set up by shift/1. Also note that unwind environments/0 leaves the choice points

unchanged, so that later backtracking could bring the execution back in the

scope of the reset/3 goal. This is compatible with the meta-interpreter semantics

in Section 3.

Continuation Chunks The predicate get chunk(E,P,TB) builds a continuation chunk

in its TB argument. Such a chunk captures in a heap term all the necessary

information to resume the unexecuted remainder (the tail) of a predicate body. This

information consists of 1) the code to execute, and 2) the data to execute with.

The first part is easy: the code to execute starts at P. The second part is more

involved: the code may refer to data in both argument registers and environment

variables. Fortunately, it is a WAM invariant that no argument registers are live

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

540 T. Schrijvers et al.

Fig. 3. Example Prolog and WAM code.

at a code point, like P, right after a call. Hence, we only need to capture the set

of live environment variables (LEV) in the environment E. In hProlog, just as in

YAP (Costa et al. 2012) and possibly other systems, the LEV set at a continuation

point P is determined at compile-time, and can at runtime be retrieved from P. This

basically follows the ideas of Branquart and Lewi (1970). Hence, in summary, the

term built by get chunk/3 in argument TB is term $cont$(P,LEV).

The dual of get chunk/3 is call chunk($cont$(P,LEV)): it builds a new envi-

ronment on the local stack from the continuation chunk. The size of the new

environment can be found in the call-instruction right before P, and the live variables

LEV can be filled in the appropriate slots of the environment by using the position

information provided by P.

The predicate call continuation/1 extends call chunk/1 to a list of continuation

chunks.

call_continuation([]).
call_continuation([TB|Rest]) :-

call_chunk(TB),
call_continuation(Rest).

4.1.1 Example

The example of Fig. 3 provides more insight in the representation of a continuation.

The example shows Prolog code on the left, and the corresponding hProlog WAM

instructions on the right. The continuation captured in the example consists of two

chunks:

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

Delimited continuations for prolog 541

Fig. 4. The local stack and the E and P pointers at the moment shift/1 is called.

1. $cont$(800,[bla(165)]) mentions: 1) the address (800) of the first instruction

following the shift/1 goal, and 2) the one active Yvar (Y2) of r/0 at that point.

The existence of the latter is derived from the preceding call 3 instruction (768):

3 is the length of the environment at that point (E,CP and Y2). Hence, the

(dereferenced) reference to Y2 is copied in the list; the term is not copied with

copy term/1. During call continuation/1, this reference is put in the appropriate

environment slot in a new environment.

2. $cont$(632,[]) points to the instruction 632 right after the call to r/0 in the body

of q/0. Since that clause has no permanent variables, the LEV is empty.

Figure 4 completes the example. It shows the environments of the activations of

p, reset, q and r, at the moment that shift/1 is constructing the continuation. The

reader can check the values of all code pointers in the figure. Note that the term

bla(165) resides on the heap. Some environment entries are not shown as they are

not relevant here.

4.2 Alternative implementations

As a proof of concept, we have implemented delimited continuations also in SWI-

Prolog (Wielemaker et al. 2012): it is based on the simpler ZIP (Bowen et al. 1983).

Since an SWI-frame (similar to a WAM environment) records which predicate

it belongs to, the reset marker is not needed for finding the corresponding reset

activation. SWI-Prolog uses code scanning (Wielemaker and Neumerkel 2008)

to determine the live frame variables. Code scanning is performed once while

constructing the delimited continuation, and avoided while reconstructing the frame

with its correct slots. The SWI-Prolog analogue of the hProlog $cont$/2 term is

a $cont$/3 term with as first argument a clause reference for keeping the clause

corresponding to the chunk alive long enough. The second argument is a program

counter similar to the first argument of the hProlog $cont$/2. The third argument is

a list of Offset-Term pairs identifying the frame slot and the value of the live frame

variables.

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

542 T. Schrijvers et al.

The interaction between the two implementations lead to the exploration of some

alternatives.

Reinstalling the whole continuation in one go at call continuation This can lead to

repeatedly scanning (a copy of) the same continuation, and sometimes leads to

changing the runtime complexity of the program from linear to quadratic.

Leaving continuations on the local stack instead of copying them to the heap. The

obvious advantages are: a) creating the continuation in shift/1 is cheap, and b)

no data is created on the heap that must be garbage collected. After implementing

this alternative, we made the following observations: (1) it can lead to the same

complexity increase as installing the whole continuation in one go, unless one

introduces an extra WAM-register (or global scoped variable) that remembers the

environment with the CP that points to the marker: in this way, no scanning of the

stack is needed to find the limits of the continuation. (2) The recursive reactivation

of a delimited continuation is no longer possible. (3) To make the approach work,

one needs to implement a local stack garbage collector. We have refrained from

doing so. (4) Heap garbage collection needs some modification to scan the live

continuations. (5) In case the delimited continuation is small (a few frames) the

approach yields no performance advantage. (6) In SWI-Prolog, there are two extra

advantages: a) the clause reference in the cont/3 term is no longer needed. b) It does

no longer interfere with SWI-Prolog’s meta-calling of control structures by means

of a special temporary clause on the local stack.

In conclusion, keeping continuations on the stack is feasible, but whether it is

desirable depends on the design of the virtual machine.

Non-selective Environment Saving We have also tried saving all environment slots in

the $cont$/2 structure, rather than selectively saving only the live variables. As a

consequence, heap garbage collection becomes slightly more complicated but can

still be accurate. Whether this approach saves time and space depends theoretically

on the ratio between the sizes of the environment and the LEV, but in practice, it

turns out to be only slightly more efficient, and we have abandoned it.

4.3 Semantic fine print

Now that the general implementation approach is clear, we draw attention to a few

semantic intricacies.

Cut and If-then-else WAM-based implementations usually store information (e.g.,

in a permanent variable in hProlog) for how far to cut in the environment. This

distance may no longer be appropriate when the cut is captured in and executed as

part of a delimited continuation. Special care must be taken to not inadvertently

cut unrelated choice points. hProlog solves this problem by restricting the scope of

a cut in a captured continuation to the most enclosing call to call continuation.

Re-activation A continuation can be called more than once, so the question arises:

what variables do those different activations share? In our approach, this depends

on which optimizations are performed.

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

Delimited continuations for prolog 543

Table 1. Benchmark results for shifting (top) and calling (bottom) continuations

Native Transformed Binarization

Depth hProlog SWI-Prolog hProlog SWI-Prolog BinProlog

shift

5,000 64 1,965 164 505 1,120

10,000 128 3,950 328 1,028 2,230

20,000 268 8,388 664 2,037 4,450

exec

5,000 248 (398) 1,951 (1,137) 480 (398) 1,415 (1,137) 260 (270)

10,000 492 (796) 3,886 (2,283) 964 (796) 2,847 (2,283) 530 (550)

20,000 992 (1,586) 7,780 (4,390) 1,932 (1,586) 5,688 (4,390) 1,040 (1,100)

a :- shift(x), nonvar(X), X = 1.

a :- X = X, shift(x), nonvar(X), X = 1.

E.g. in the first clause the variable X is not live at the moment shift/1 is called.

Hence, the variable X is not shared between different invocations of the continuation.

However, in the second clause sharing depends on whether X=X is optimized away

or not. The meta-interpreter does not have this problem, and this is the only point

where the low-level implementation differs from the meta-interpreter.

Shift-less resets and reset-less shifts In hProlog, we have chosen to unify the Cont

and Term arguments of reset/3 with zero in the absence of shift, and to have the

toplevel catch shifts outside of a reset. Alternative semantics are easy to implement

as a variation on the basic schema.

4.4 Evaluation

To assess the quality of our native implementation approach, we compare it to two

other approaches for implementing delimited continuations:1

• The transformation-based approach can be thought of as partially evaluating

the meta-interpreter of Section 3 for a given program. It adds a signal

parameter to every predicate that is checked at every conjunction.

• The binarization approach uses the internal continuation-passing representa-

tion of Prolog clauses in BinProlog (Tarau 2012) and implements delimited

continuations using the BinProlog built-ins.

The native and transformation approaches were implemented in hProlog and SWI-

Prolog. It only makes sense to use the binarization approach in BinProlog.

We compare the three implementation approaches on two artificial benchmarks:

(1) shift shifts a delimited continuation, and (2) exec calls a previously shifted

continuation. We use three different sizes of continuations: 5,000, 10,000 and 20,000

chunks.

1 See also our technical report (Demoen et al. 2013) for more details on these approaches.

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

544 T. Schrijvers et al.

Table 1 shows the timing results (in milliseconds) obtained on an Intel Core2

Duo Processor T8100 2.10. Garbage collection times (only in SWI-Prolog) were not

included, and the timings of empty loops were subtracted.

The shift benchmark in the upper half of the table shows that the native

hProlog implementation is about 2.5 times faster than the transformed hProlog

implementation. This shows that in hProlog the native implementation effort payed

off. This is not the case in SWI-Prolog, partly because the native implementation is

more involved in the ZIP and also because of other implementation choices made

in SWI-Prolog. BinProlog’s binarization does not exhibit an advantage compared to

hProlog’s transformation-based and native implementations. It is even outperformed

by transformation in SWI-Prolog. Overall, we see that all implementations scale

roughly linear with the size of the continuation, as expected.

The lower half of the table shows the exec benchmark which measures the time

to execute the delimited continuation. This is contrasted (in brackets) with the

time to meta-call a conjunction of equivalent goals. The same pattern shows here:

SWI-Prolog performs better in transformed mode, while hProlog performs better in

native mode. hProlog even executes its native continuations faster than meta-calling

equivalent conjunctions, but note that in hProlog and SWI-Prolog, meta-call suffers

a performance penalty because of the ISO Prolog semantics. Calling continuations

in BinProlog is almost as fast as in hProlog and on par with BinProlog’s meta-call.

In summary, a native implementation of delimited continuations in the WAM is

worthwhile. This does not seem true in the ZIP, or at least not within the overall

design of SWI-Prolog.

5 Related work

Delimited continuations have their roots in functional programming, and their use

in programs that explicitly pass continuations (CPS) is folklore. In the late 1980’s,

Felleisen (Felleisen 1988) and Danvy & Filinski (Danvy and Filinski 1990) indepen-

dently proposed operators for delimited continuations in direct style programs. The

latter is the reset/shift approach adopted in the article, which has a simple static

interpretation in terms of continuations.

Masuko and Asai (2009) give a good account of implementing delimited continu-

ations in the context of the functional language MinCaml. Our implementation has

- almost by necessity - similarities with theirs.

While we are not aware of any prior implementation of delimited continuations

in Prolog, there are several noteworthy related works.

BinProlog Continuations The implementation of BinProlog (Tarau 2012) is based on

explicit continuation passing: clauses are transformed to a binary form and carry

the continuation as a first class citizen in an extra argument. While this continuation

is normally invisible to the user, Tarau and Dahl (1994) describe how (still based

on program transformation) the user can access and manipulate it. Based on this

functionality it is possible to implement reset and shift (see (Demoen et al. 2013) for

details).

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

Delimited continuations for prolog 545

BinProlog Logic Engines BinProlog (Tarau 2012; De Meuter and Roman 2011)

also provides a coroutine-like feature: logic engines. A logic engine is essentially an

independent Prolog environment that can be queried for successive answers to a

goal.

In spirit, logic engines and coroutines are quite similar: to consider concurrency

decoupled from multi-threading. However, our coroutines are more lightweight as

they live in the same engine and, e.g., share the same heap and choice point stack.

Moreover, in our approach the interfaces are more symmetric: coroutines receive

data with ask/1 that was sent by another coroutine with yield/1 and vice versa.

Logic engines receive data with from engine/1 that was sent by to engine/2 and

return data with return/1 that was requested by get/2.

Conventional Prolog Coroutines Various coroutine-like features have been proposed

in the context of Prolog for implementing alternative execution mechanisms such

as constraint logic programming: freeze/2, block/1 declarations, . . . Nowadays most

of these are based on a single primitive concept: attributed variables (Holzbaur

1992; Le Houitouze 1990; Neumerkel 1990; Demoen 2002). However, apart from

the common name “coroutine” these attributed variable coroutines share very little

with coroutines based on delimited continuations.

Environments on the Heap Demoen and Nguyen (2008) describe an implementation

of coroutining in which environments of certain (declared) predicates are put on

the heap instead of on the local stack. The programming interface proposed in that

paper can be easily implemented with the constructs of the current paper. Without

going in too much detail, it is fairly clear that our reset/shift are more general, and

therefore not so efficient as their mechanism. However, the latter interferes more

with other parts of the implementation (stack management, garbage collection ...)

and is therefore perhaps not so attractive. Future work on the implementation might

lead to a unified implementation which uses the best of both approaches.

6 Conclusion

This article has introduced a design of delimited continuations for Prolog that enables

many useful applications. Alongside this design, it has described a complimentary

implementation of the reset and shift operators in the WAM. The implementation

is lightweight, because it is independent of most of the rest of the system, and its

performance accommodates the applications.

Acknowledgements

We thank Paul Tarau and Olivier Danvy for enlightening discussions.

References

Aı̈t-Kaci, H. 1991. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press.

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

546 T. Schrijvers et al.

Bowen, D., Byrd, L. and Clocksin, W. 1983. A portable Prolog compiler. In Proceedings of

the Logic Programming Workshop, 74–83.

Branquart, P. and Lewi, J. 1970. A scheme of storage allocation and garbage collection for

algol 68. In ALGOL 68 Implementation, North-Holland, 199–238.

Costa, V. S., Rocha, R. and Damas, L. 2012. The YAP Prolog system. TPLP 12, 5–34.

Danvy, O. and Filinski, A. 1990. Abstracting control. In LFP ’90, 151–160.

De Meuter, W. and Roman, G.-C., Eds. 2011. Coordination Models and Languages. LNCS,

vol. 6721.

Demoen, B. 2002. Dynamic attributes, their hProlog implementation, and a first evaluation.

Report CW 350, Department of Computer Science, KU Leuven, Belgium.

Demoen, B. and Nguyen, P.-L. 2000. So Many WAM Variations, so Little Time. LNAI, vol.

1861, 1240–1254.

Demoen, B. and Nguyen, P.-L. 2008. Two WAM Implementations of Action Rules. LNCS, vol.

5366, 621–635.

Demoen, B., Schrijvers, T. and Desouter, B. 2013. Delimited continuations in Prolog:

Semantics, use and implementation in the WAM. Report CW 631, Department of Computer

Science, KU Leuven, Belgium.

Felleisen, M. 1988. The theory and practice of first-class prompts. In POPL ’88, 180–190.

Holzbaur, C. 1992. Meta-Structures vs. Attributed Variables in the Context of Extensible

Unification . LNCS, vol. 631, 260–268.

Ivanovic, D., Morales Caballero, J. F., Carro, M. and Hermenegildo, M. 2009. Towards

structured state threading in Prolog. In CICLOPS 2009.

Kiselyov, O. 2012. Iteratees. LNCS, vol. 7294, 166–181.

Kiselyov, O., Peyton-Jones, S. and Sabry, A. 2012. Lazy vs. yield: Incremental, lazy pretty-

printing. In APLAS.

Le Houitouze, S. 1990. A New Data Structure for Implementing Extensions to Prolog . LNCS,

vol. 456. 136–150.

Masuko, M. and Asai, K. 2009. Direct implementation of shift and reset in the MinCaml

compiler. In ML’09, 49–60.

Moggi, E. 1991. Notions of computation and monads. Information and Computation 93, 1.

Neumerkel, U. 1990. Extensible unification by metastructures. In META’90, 352–364.

Plotkin, G. and Pretnar, M. 2009. Handlers of algebraic effects. In ESOP ’09.

Roy, P. V. 1989. A useful extension to prolog’s definite clause grammar notation. 24, 11,

132–134.

Schimpf, J. 2002. Logical loops. LNCS, vol. 2401. 224–238.

Swift, T. and Warren, D. S. 2012. XSB: Extending Prolog with tabled logic programming.

TPLP 12, 1-2, 157–187.

Tarau, P. 2012. The BinProlog experience: Architecture and implementation choices for

continuation passing Prolog and first-class logic engines. TPLP 12, 1-2, 97–126.

Tarau, P. and Dahl, V. 1994. Logic programming and logic grammars with first-order

continuations. In LOPSTR ’94. Vol. 883.

Warren, D. H. D. 1983. An Abstract Prolog Instruction Set . Tech. Rep. 309, SRI.

Wielemaker, J. and Neumerkel, U. 2008. Precise garbage collection in Prolog. In CICLOPS

’08, 1–15.

Wielemaker, J., Schrijvers, T., Triska, M. and Lager, T. 2012. SWI-Prolog. TPLP 12, 1-2,

67–96.

https://doi.org/10.1017/S1471068413000331 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000331

