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The present paper is concerned with the solution of a series of practical problems relevant to
great circle navigation, including the determination of the true course at any point on the

great circle route and the determination of the lateral deviation from a desired great circle
route. Intersection between two great circles or between a great circle and a parallel is
also analyzed. These problems are approached by means of vector analysis, which yields
solutions in a very compact form that can be computed numerically in a very straightforward

manner. This approach is thus particularly appealing for performing computer-aided great
circle navigation.
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1. INTRODUCTION. In air navigation it is well known that the Earth can
be regarded as a sphere and, as a consequence, the shortest distance between any
two points on its surface is an arc of a great circle. Great circles are obtained by the
intersection with the surface of the Earth of any plane passing through the Earth’s
centre. For short distances, the difference between the great circle and the rhumb
line is negligible. However, flying on a great circle allows saving considerable dis-
tance particularly on a long-range flight in high latitudes. For instance, the distance
between London and Tokyo is about 6100 n.m. by rhumb line and 5170 n.m. by
great circle, which allows a saving of about 930 n.m.

Nevertheless, unlike the rhumb line that crosses all meridians at the same angle, the
angle between a great circle route and the meridians constantly changes as progress is
made along the route and is different at every point along the great circle. This implies
that a vehicle shall be continuously steered to follow a great circle route. This
necessity gives rise to a series of problems to be solved, such as: the determination
of the True Course (TC), that is, the angle between the great circle route and the
meridians, at any point on the great circle route; the determination of the lateral
deviation, or Cross Track Distance (XTK), from a desired great circle route; and the
intersection between two great circles or between a great circle and a parallel.

The position of a point P on the Earth’s surface of latitude Q and longitude l can be
represented on a unit sphere by the unit vector P joining the Earth’s centre to the
point itself. The P vector has components given by:

P � (cos Q cos l, cos Q sin l, sin Q) (1)
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with reference to an ECEF (Earth Centred Earth Fixed) frame: a right-handed,
orthonormal coordinate system whose origin is located at the Earth’s centre and has
axes fixed to the Earth. Its z-axis points towards the North Pole along the spin axis of
the Earth and its x-axis is the intersection of the reference meridian with the equator.

Therefore, great circle navigation can be developed taking advantage of vector
analysis, allowing a continuous control of the trajectory and the solution of more
complex problems such as the previously mentioned ones. Solutions obtained ap-
plying vector analysis to great circle navigation problems have a very compact form,
and can be computed numerically in a very straightforward manner. This approach is
thus particularly appealing for performing computer-aided great circle navigation.

This problem has been already examined in a previous paper of the first author
(Nastro, 2000), and recently discussed in this Journal (Earle, 2005; Tseng and Lee,
2007) ; the present manuscript reports some of this previous paper’s results in a more
compact form.

2. EQUATION OF THE GREAT CIRCLE. Figure 1 shows the great
circle between the departure point P1(Q1, l1) and the arrival point P2(Q2, l2), where h
stands for the shortest distance between these two points. For the sake of sim-
plicity, the meridian passing through P1 is taken as the reference meridian, implying
that the components of the vectors P1 and P2 are:

P1 � cos Q1 0 sin Q1ð Þ
P2 � cos Q2 cosDl cos Q2 sinDl sin Q2ð Þ

(2)

where Dl=l2xl1 is the difference of longitude between such points.
The distance h between the two given points P1 and P2 is given from the dot

product between the two corresponding vectors:

h= cosx1 (P1 �P2) (3)

Figure 1. Representation of the great circle.
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The vector K, representing the great circle pole, can be obtained normalizing to one
the vector cross product between P1 and P2, as :

K=
P1rP2

sin h
(4)

The coordinates of the vertex V of the hemisphere of interest (e.g. the northern one in
Figure 1), that is, the point on the great circle path that is nearest to the geographic
pole, can be obtained using the latitude and the longitude of the great circle pole
(lK, QK), as follows:

QV=90�xQK; lV=lKt180� (5)

From Figure 2, P2 can be seen as the result of a rotation of the vector P1 around the
direction K of an angle h :

P2= cos hP1+ sin h KrP1ð Þ (6)

Analogously, for a generic point P on the great circle at a distance h1=kh from P1

(where ks[0,1]) the following holds:

P= cos h1 P1+ sin h1 (KrP1) (7)

The vector KrP1 can be expressed in terms of the two vectors P1 and P2, making use
of equation (6), yielding:

P= cos h1 P1+ sin h1 T1 (8)

where the vector T1w(T1x, T1y, T1z)=(P2xcos hP1)/sin h is orthogonal to P1 and
tangent to the great circle at the departure point P1.

The relation (8) can be regarded as the equation of the great circle ; for instance,
if h1=kh=0.5h the vector P is relative to the mid-point of the great circle.

The components of the vector T1 can be expressed in terms of latitude and True
Course at the departure point P1, TC1, by applying the sine and the ‘‘ four part ’’
formulas to spherical triangle PnP1P2 of Figure 1, yielding:

T1 � xsin Q1 cosTC1 sinTC1 cos Q1 cosTC1ð Þ (9)

Figure 2. Rotation of the vector P1 of an angle h.

NO. 3 GREAT CIRCLE NAVIGATION WITH VECTORIAL METHODS 559

https://doi.org/10.1017/S0373463310000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463310000044


In case the determination of the TC at the departure point P1 is of interest, equation
(9) can be exploited to obtain:

TC= tanx1 (T1y cos Q1=T1z) (10)

The above results are easily extended for determining the TC at any point P of
the great circle route, by considering the corresponding vector P in place of P1 in
obtaining equation (10).

3. DETERMINATION OF THE CROSS TRACK DISTANCE. In air
navigation it is necessary to perform a continuous comparison between the present
position derived from the airborne navigation system and the desired position on
the great circle. The deviation of the current navigation fix P from the great circle is
represented in Figure 3 by the length of the arc PP0, where P0 is the closest point of
the great circle to P: the distance PP0 is known as XTK (Cross Track Distance).
The coordinates of the point P0 are derived from the vector P0 that coincides with
the vector T relative to the great circle between K and P:

P0=
Px cos h2K

sin h2
(11)

where:

h2= cosx1 (K �P) (12)

At last, noting that the Cross Track Distance is complementary to h2, it can be
computed as XTK=90xxh2.

The availability of the above explicit expression for computing the cross track
distance is beneficial for tracking the desired great circle route. In air navigation, for
instance, the cross track distance can be coupled to a flight guidance computer that

Figure 3. Determination of the Cross Track Distance (XTK).
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keeps the aircraft on the great circle course by issuing commands based on the current
XTK value, computed as previously shown.

4. INTERSECTION OF TWO GREAT CIRCLES. Figure 4 represents
two great circles : the first one connecting the points P1 and P2, whose pole is K1,
and the second one between P3 and P4 with pole K2. The intersection point I can be
derived from the vector I that is orthogonal to the vectors K1 and K2 ; consequently:

I �(K1xK2)=0 (13)

The vector I can be related by equation (8) to the known vectors P1, T1, and to the
unknown distance h1 between P1 and I. Substituting in the above equation, re-
membering that the dot product of orthogonal vectors is zero, and rearranging,
yields the following expression for determining h1 and, consequently, the intersection
point I.

h1= tanx1 x
P1 �K2

T1 �K2

� �
(14)

The above equation can be made specific in particular cases of interest, such as the
intersection between a great circle and a meridian of longitude lm, or between a great
circle and the equator, by setting:

K2 � (sinDlm, xcosDlm, 0) for the meridian

K2 � (0, 0, 1) for the equator
(15)

5. INTERSECTION OF THE GREAT CIRCLE WITH A
PARALLEL. The coordinates of the intersection point I1 between a great circle
and a parallel can be determined by the knowledge of the distance h1 between the
departure point P1 and I1 (Figure 5).

Figure 4. Intersection of two great circles.
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The vector I1 can be obtained by the rotation of the vector P1 around K1 until :

I1 �K2= sin Qp (16)

where K2 is coincident with the unit vector kw(0, 0, 1) and Qp stands for the latitude
of the parallel. From relation (8) we have:

(cos h1I1+ sin h1T1) �K2= sin Qp (17)

or, equivalently :

cos h1 sin Qp+T1z sin h1= sin Qp (18)

This relation can be written as:

a cos h1+b sin h1=c (19)

Expressing sin h1 and cos h1 in terms of the tangent of h1, the above equation becomes
quadratic in tan h1, whose solution is :

h1= tanx1 xab� c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2+b2xc2

p

b2xc2

� �
(20)

In case the discriminant is positive, we have two distinct and real roots (Qp<Qv), if it is
zero we have a double real root (Qp=Qv), whereas when the discriminant is negative
there are no real roots (Qp>Qv).

6. CONCLUSION. This paper has presented results for several practical
problems relevant to navigation along a great circle route making use of vector
analysis. These results are given in a compact form that is suitable for numerical
implementation, thus being particularly appealing for computer-aided great circle
navigation.

Figure 5. Intersection of the great circle with a parallel.
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