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NOTES

A NOTE ON THE ANALYTICAL
SOLUTION TO THE NEOCLASSICAL
GROWTH MODEL WITH LEISURE

RYOJI HIRAGUCHI
Ritsumeikan University

In this note, we study the basic Ramsey models with labor–leisure choice. We first study
the deterministic model and find that a closed-form solution exists and is represented by
the Gauss hypergeometric functions. We next incorporate stochastic productivity shocks
into the model. We prove that the analytical solution path still exists if the coefficient of
relative risk aversion is equal to the capital share.
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1. INTRODUCTION

The Gauss hypergeometric functions are becoming popular in macroeconomics.
Pioneering works of Boucekkine and Ruiz-Tamarit (2008) (henceforth BR) and
Boucekkine et al. (2008) use them and obtain an explicit solution path to the
two-sector endogenous growth model of Lucas (1988). Ruiz-Tamarit (2008) and
Hiraguchi (2009) consider human capital externalities in the Lucas model and find
that the closed-form solution path still exists.

The special functions have been applied to several growth models. Guerrini
(2010) studies the AK model [in which the production function linearly depends on
technology (A) and capital (K)] with logistic population growth. Pérez-Barahona
(2011) studies the AK model with energy resources. Both find that solution
paths are expressed in terms of the hypergeometric functions. A recent paper
of Benchekroun and Withagen (2011), on the other hand, finds the closed form
solution to the neoclassical growth model with exhaustible resources (Dasgupta–
Heal–Solow–Stiglitz model) by using another type of the special function, the
exponential integral.

In this note, we study the Ramsey models with leisure. First we study the
deterministic model and show that the solution path is represented by the hyper-
geometric functions. We use the additively separable utility function, which is
constant relative risk aversion (CRRA) in consumption, and the disutility from
labor is linear. Such a function is commonly used in dynamic macroeconomics.
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This note is close to Smith (2006) and Nagata (2008), who obtain the explicit
solution paths to the deterministic Ramsey models. The main difference between
their models and ours is that they impose a parametric restriction so that the
differential equation on capital becomes a simple Bernoulli type, whereas we do
not.

Next we introduce stochastic productivity shocks as in Wälde (2011) into the
model and obtain the solution path. The stochastic process is a combination of a
Wiener process and Poisson processes. Here we assume that the coefficient of the
relative risk aversion is equal to the capital share. Wälde (2011) studies the AK
model and guesses that one may leave the AK framework by adding parameter
restrictions. His guess is correct.

The note is organized as follows. Section 2 studies the deterministic
model. Section 3 considers the stochastic model. The conclusions are in
Section 4.

2. MODEL

In this section, we study the deterministic Ramsey model with leisure.

2.1. Mathematical Preparation

Here we describe some equalities we use in this note. First, a solution to the
differential equation ẋt = atxt + bt is

xt = exp

(∫ t

0
asds

) {
x0 +

∫ t

0

[
bs exp

(
−

∫ s

0
azdz

)]
ds

}
. (1)

In particular, if at = a and bt = b are constant, then xt is written as xt =
−b/a + eat (x0 + b/a) and it satisfies ẋt /xt = a + b/xt . Thus exp(

∫ t

0 b/xsds) =
(xt/x0) exp (−at) .

Second, the hypergeometric function satisfies

∫ ∞

x

e−a1y(b1 + b2e
−a2y)a3dy = e−a1xb

a3
1

a1 2
F1

(
−a3,

a1

a2
, 1 + a1

a2
;−b2

b1
e−a2x

)
,

(2)

where 2F1(a, b, c; z) = ∑∞
n=0[(a)n(b)n/(c)n]zn/n!, (a)n = �(a+n)/�(a), a1 >

0, a2 > 0, a3 > 0, and b1 > 0. BR also use a similar property. (The proof is in the
Appendix.)
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2.2. Setup

We consider the following problem:

(P1) : max
{ct ,kt ,nt }

∫ ∞

0
e−ρt

(
c1−θ
t

1 − θ
− nt

b

)
dt,

s.t. k̇t = Akα
t n1−α

t − δkt − ct , (3)

where ρ is the discount factor, ct is consumption, θ is the coefficient of relative
risk aversion, nt is labor supply, b and A are parameters, kt is capital, δ is the
depreciation rate and α ∈ (0, 1) is the capital share. The initial capital k0 is given.
In the following, we use four additional parameters, ω = (1/α − 1)(ρ + δ) > 0,
β = 1/(1 − α), ψ = A[(1 − α)Ab]1/α−1 > 0, and γ = α/[θ(1 − α)] > 0. We
define a growth rate xt as x̂ = ẋ/x.

The Hamiltonian is H1 = c1−θ
t /(1−θ)−nt/b+λt (Akα

t n1−α
t −δkt −ct ), where

λt is the multiplier. The optimal path satisfies the first-order conditions (FOCs)
and the transversality condition (TC)

FOC[k] :
λ̇t

λt

= ρ + δ − αA

(
kt

nt

)α−1

, (4)

FOC[c] : c−θ
t = λt , (5)

FOC[n] : 1 = (1 − α)λtAb

(
kt

nt

)α

, (6)

TC : lim
t→∞

[
λtkt e

−ρt
] = 0. (7)

A path {ct , kt , nt } is optimal if it satisfies equations (3), (4), (5), (6), and (7) for
some λt .

The steady state (c̄, k̄, n̄) satisfies the FOCs ρ + δ = αA(k̄/n̄)α−1 and c̄θ =
(1 − α)Ab(k̄/n̄)α and the resource constraint c̄ = Ak̄αn̄1−α − δk̄. Thus we have

(c̄, k̄, n̄) = {(1 − α)bA}1/θ (Aα)γ

(ρ + δ)γ

[
1,

1

ω + ρ
,

1

ω + ρ

(
Aα

ρ + δ

)β
]

.

The multiplier in the steady state is λ̄ = c̄−θ .

2.3. Analytical Solution

Equations (4) and (6) imply that the variable μt = λ
1−1/α
t satisfies μ̇t = −ωμt +

ψ(1 − α). Thus exp
∫ t

0 ψ/μsds = (μt/μ0)
βe(ω+ρ+δ)t (see Section 2.1). We have

μt = μ̄ + e−ωt (μ0 − μ̄), (8)
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where μ̄ = ψ(1 − α)/ω > 0. Because ω > 0, limt→∞ μt = μ̄. Equations (3),
(5), and (6) imply that

k̇t = [A(kt/nt )
α−1 − δ]kt − ct = (ψ/μt − δ)kt − μ

γ
t . (9)

The solution to equation (9) is written as

kt =
(

μt

μ0

)β

e(ω+ρ)t

[
k0 − μ

β
0

∫ t

0
e−(ω+ρ)s(μs)

γ−βds

]
. (10)

We show the following lemma.

LEMMA 1. The transversality condition (7) holds if and only if μ0 satisfies

k0 = μ
β
0

∫ ∞

0
e−(ω+ρ)s(μs)

γ−βds. (11)

Proof. See the Appendix.

We can easily show that equation (11) uniquely determines μ0. Using equation
(11), we have

kt = μ
β
t e(ω+ρ)t

∫ ∞

t

μγ−β
s e−(ω+ρ)sds. (12)

Using equation (2), we can express the integral part of equation (12) as∫ ∞

t

μγ−β
s e−(ω+ρ)sds = e−(ω+ρ)t μ̄γ−β

ω + ρ 2
F1

(
β − γ, 1 + ρ

ω
, 2 + ρ

ω
;−μ′

0e
−ωt

)
,

(13)
where μ′

0 = μ0/μ̄ − 1. Now we get the following proposition.

PROPOSITION 1. The solution path {ct , kt , nt } is unique and is denoted as

ct = c̄(1 + μ′
0e

−ωt )α/[θ(1−α)], (14)

kt = k̄(1 + μ′
0e

−ωt )1/(1−α) · 2F1

[
θ − α

θ(1 − α)
, 1 + ρ

ω
, 2 + ρ

ω
;−μ′

0e
−ωt

]
, (15)

nt = n̄ · 2F1

[
θ − α

θ(1 − α)
, 1 + ρ

ω
, 2 + ρ

ω
;−μ′

0e
−ωt

]
. (16)

Equation (11) determines μ0. The path converges to the steady state {c̄, k̄, n̄}.
Proof. See the Appendix.

As BR, Smith (2006), and Nagata (2008) point out, the solutions are simple when
the coefficient of relative risk aversion θ is equal to the capital share α, because the
differential equation on capital becomes Bernoulli-type. When θ = α, equations
(15) and (16) are in fact simplified because 2F1(0, q, 1 + q; z) = 1 for all q

and z. Note that 2F1 has the Euler integral representation 2F1(p, q, 1 + q; z) =
q

∫ 1
0 tq−1(1 − tz)−pdt .
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3. STOCHASTIC TECHNOLOGY SHOCK

This section considers a stochastic technology shock. The setup is similar to that in
Smith (2007), but we adopt the more general stochastic process of Wälde (2011).
The productivity At is a combination of one Wiener and several Poisson processes:

dAt

At

= μdt + σdzt +
N∑

i=1

βidqi,t . (17)

The term zt is a geometric Brownian motion, whereas the term qi,t follows inde-
pendent Poisson processes with arrival rate λi . The model is described as follows:

(P2) : max E
[∫ ∞

0
e−ρt

(
c1−α
t

1 − α
− nt

b

)
dt

]
, s.t. k̇t = Atk

α
t n1−α

t − δkt − ct .

Here we assume θ = α. The value function J satisfies the Bellman equation:

ρJ (k,A) = max
c,n

[
c1−α

1 − α
− n

b
+ Jk(Akαn1−α − c)

]

− Jkδk + JAAμ + JAAA2 σ 2

2
+

N∑
i=1

λi{J [k,A(1 + βi)] − J (k,A)}. (18)

We guess that the value function has the form

J (k,A) = x−α k1−α

1 − α
+ zA1/α, (19)

where x > 0 and z > 0 are unknown. The maximization problem in equation (18)

is

max
c,n

[
c1−α

1 − α
− n

b
+ x−α(An1−α − k−αc)

]

= (αx − δ)x−α k1−α

1 − α
+ α

x
[(1 − α) b]1/α−1A1/α. (20)

The optimal c and n are respectively c = xk and n = [(1 − α) Ab]1/α/x. The
other terms of equation (18) are written as −δx−αk1−α + ηzA1/α , with η =
μ/α + (1 − α)σ 2/(2α2) + ∑

i λi{(1 + βi)
1/α − 1} > 0. Thus the functional form

(19) solves equation (18) if and only if

ρ = αx − (1 − α)δ, (21)

ρz = α

x
[(1 − α) b]1/α−1 + ηz (22)

Equation (21) implies that x = [(1 − α)δ + ρ]/α > 0. Equation (22) then
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means that z = α{(1 − α)b}1/α−1/{x(ρ − η)}. To ensure that z > 0, we must
have

ρ >
μ

α
+ 1 − α

2α2
σ 2 +

N∑
i=1

λi[(1 + βi)
1/α − 1]. (23)

PROPOSITION 2. If equation (23) holds, the value function of the problem
(P2) is given by equation (19). The optimal path satisfies ct = xkt and nt =
[(1 − α) Ab]1/α/x.

4. CONCLUSION

In this note, we get a closed-form solution path to the Ramsey model with leisure
by using the special function. As a future study, we hope to study the stochastic
model without assuming that the capital share is equal to the coefficient of relative
risk aversion. The parametric restriction is not empirically supported and we admit
that it represents a major weakness of the paper. We also want to investigate a model
with a utility function that is multiplicatively separable between consumption and
labor, because such a utility function allows the existence of long-run balanced
growth.
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APPENDIX

A.1. PROOF OF EQUATION (2)

For a variable z = e−a1y , we get dz = −a1e
−a1ydy. Thus

∫ ∞

x

e−a1y(b1 + b2e
−a2y)a3dy = b

a3
2

a1

∫ e−a1x

0
(b1/b2 + z(a2/a1))a3dz. (A.1)

Because a variable u = xt1/b satisfies du = xt1/b−1/bdt , we get

2F1

(
−c,

1

b
, 1 + 1

b
; − 1

a
xb

)
xac = 1

b

∫ 1

0
xt1/b−1(a + xbt)cdt =

∫ x

0
(a + ub)cdu.

Moreover, 2F1 (a, b, c; 0) = 1 for any a, b, and c. Thus we get

∫ e−a1x

0
(b1/b2 +z(a2/a1))a3dz = 2F1

(
−a3,

a1

a2
, 1 + a1

a2
;−b2

b1
e−a2x

)
e−a1x (b1/b2)

a3 (A.2)

Substitution of Eq. (A.2) into Eq. (A.1) yields the result. �

A.2. PROOF OF LEMMA 1

If equation (11) does not hold, limt→∞ k̂ = ω + ρ and the growth rate of the term λtkt e
−ρt

converges to ω > 0. Thus equation (7) does not hold. On the other hand, if equation (11)

holds, one has kt = μ1−α
t

∫ ∞
0 μ

γ
t+ie

−(ω+ρ)idi. Thus limt→∞ kt < ∞ and equation (7) holds.
Therefore equations (11) and (7) are equivalent. �

A.3. PROOF OF PROPOSITION 1

First, equation (14) holds, because ct = μ
γ
t . Second, substitution of equation (13) into

equation (12) yields equation (15). Third, equation (6) implies nt = [(1 − α)Ab]1/αμ
−β
t kt

and equation (16) holds. Finally, ω > 0 and then limt→∞2 F1(a, b, c; e−ωt ) = 1. Thus
limt→∞(ct , kt , nt ) = (c̄, k̄, n̄). �
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