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Abstract

We survey the present status and potentialities of diagnostics for arbitrary magnetized plasmas of inertial confinement
fusion concern. These diagnostics include: Faraday rotation, inverse Faraday effect, Thomson scattering, Stark–Zeeman
line broadening as well as proton stopping for any ratio, of the particles plasma frequency to cyclotron frequency. This
presentation is timely motivated by recent experiments highlighting laser-produced kilo Teslas and nearly steady
magnetic fields in inertial fusion plasmas. Positive synergies due to diagnostics combinations are also addressed.
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1. INTRODUCTION

1.1. General

For the last few years, or so, a sudden and strong interest for
strongly magnetized plasmas has emerged on an international
scale within the inertial confinement fusion (ICF) dedicated
community. Certainly, it is related to the very stringent condi-
tions demanded by a successful laser driven implosion of the
thermonuclear pellet, as evidenced by the last national igni-
tion facility (NIF) campaign at Lawrence Livermore National
Laboratory (LLNL) – Livermore.
Simultaneously, very encouraging demonstration of a

nearly steady, on a ns-time scale, kilo-Tesla magnetic field re-
sulting from a laser irradiated coil (Fujioka et al., 2013) has
prompted the perspective of using strong applied magnetic
(B) intensities to control the laser–plasma interaction, itself.
In this context, it appears highly timely to survey the diag-

nostics of magnetized plasmas. We try to fulfill this goal by
focusing attention on:

• Faraday rotation
• Inverse Faraday effect (IFE)
• Thomson scattering (TS)
• Combined Stark–Zeeman line broadening of hydrogenic

transitions (dipolar)

• Proton and heavier ion stopping in dense and arbitrary
magnetized plasmas and as a prerequisite, we first
survey the commonly used parameters in a no field sit-
uation (B= 0) and a magnetized one (B≠ 0) (Potekhin
& Chabrier, 2012).

1.2. General parameters

The state of a free-electron gas is determined by the electron
number density ne and temperature T. Instead of ne it is conve-
nient to introduce the dimensionless density parameter rs =
ae/a0, where a0 is the Bohr radius and ae= (4/3πne)

−1/3.
The parameter rs can be quickly evaluated from the relations

rs = 1.1723n−1/3
24 = (ρ0/ρ)1/3, where n24≡ ne/10

24 cm−3

and ρ0= 2.6752(A/Z )g/cm3. The analogous density param-
eter for the ions is RS = aimi(Ze)2/h− 2 = 1822.89AZ7/3rs,
where mi is the ion mass and ai≡ (4/3πni)

−1/3 is the ion
sphere radius while electron degeneracy is θ= T/TF. In the
nonrelativistic limit, TF ≈ 1.163 × 106r−2

s K, and

θ = 0.543 rs/Γe,

where

Γe ≡
e2

aekBT
≈

22.747
T6

ρ6
Z

A

( )1/3
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The strength of the Coulomb interaction of nonrelativistic
ions is characterized by the Coulomb coupling parameter

Γ = (Ze)2
aikBT

= ΓeZ
5/3,

where T6≡ T/106 K.

1.3. Magnetic parameters

Convenient dimensionless parameters that characterize the
magnetic field in a plasma are the ratios of the electron cyclo-
tron energy h−ωc to the Hartree unit of energy, to the electron
rest energy, and to kBT:

γm = h− 3
B/m2

ece
3 = B/B0,

where B0= 2.3505 × 109G,

b = h− ωc

mec2
= α2f γm = B

4.414 × 1013G
,

where αf = e2/h−c is the fine-structure constant, and

ζ = h−ωc/kBT ≈ 134.34B12/T6

where B12≡ B/1012G. The magnetic length am = (h− c/eB)1/2
= a0/

���
γm

√
gives a characteristic transverse scale of the

electron wave function.
For the ions, the cyclotron energy is h−ωci = Z(me/mi)h−ωc,

and the parameter analogous of ζ is

ζi = h−ωci/kBT ≈ 0.0737(Z/A)B12/T6.

Another important parameter is the ratio of the ion cyclotron
frequency to the plasma frequency,

β = ωci/ωp = ζi/η ≈ 0.0094B12
���
ρ6

√
.

2. FARADAY ROTATION

In 1845 Michael Faraday discovered that a longitudinal mag-
netic field can rotate the polarization direction of light pass-
ing through transparent dielectric material. That discovery
was, in fact, the first empirical connection between light
and magnetism.
In interstellar space, Faraday rotation is most easily seen in

linearly polarized radio beams traversing a region of magne-
tized plasma. The resulting rotation Δθ of the beam’s polar-
ization direction is given by ℜλ2, where λ is the radio
wavelength andℜ, the so-called rotation measure, is an inte-
gral over the observer’s line of sight to the radio source.
In Gaussian units, it is given by

ℜ = (e3/2πm2c4)
∫
ne(s)Bs(s)ds, (1)

where ne is the local density of free electrons, m is the elec-
tron mass, and Bs is the local magnetic field’s component
along the line of sight.

3. THE IFE

The IFE is the phenomenon where a magnetic field is created
in a medium due to the rotation of the electric field (Eliezer,
2002). In particular, a circularly polarized laser can induce a
magnetic field in the plasma. The magnetic field arises be-
cause the electrons quiver with the oscillating electric field
of the incoming laser light, and if the laser is circularly polar-
ized then the electrons describe a circular motion. The net
effect of this is a circular current on the edge of the
plasma, which generates the magnetic field (see Fig. 1).
A simple (order of magnitude) calculation for the magnetic

field created by the IFE in cold plasma is now developed.
The motion of the electrons in an applied electric field is, ac-
cording to linearized law,

∂v
∂t

= − e

me
E (2)

where v is the electron velocity and E is the applied electric
field in the plasma, as a result of the absorbed laser energy.
The ions are considered immobile. The electric field is inci-
dent in the z-direction and is circularly polarized in the x–y
plane:

E = E0
x̂+ iŷ��

2
√

( )
exp[−i(ωt − kz)] (3)

where x̂ and ŷ are unit vectors in the x- and y-directions,
respectively.

Fig. 1. A schematic presentation of the inverse Faraday effect (after (Eliezer,
2002)).
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Substituting (3) into (2), one gets the solution for the elec-
tron (fluid) velocity:

v = v0
−x̂+ iŷ��

2
√

( )
exp[−i(ωt − kz)], v0 = eE0

meω
(4)

The electrons also satisfy the continuity equation

∂ne
∂t

= −∇ · (nev). (5)

The density is assumed to consist of a background (n0) and
perturbed (n1) components

ne = n0 + n1 n0 ≫ n1 (6)

where n0 does not depend on time and n1≈ exp (−iωt).
Since ∇ · v = 0, the continuity Eq. (5) yields

iωn1 = v · (∇n0). (7)

The electric current, which in this approximation is a second-
order perturbed value, is obtained by using (4) and (7):

J = −e〈n1v〉 = 〈ie
ω
(v ·∇n0)v〉 = e3E2

0

2meω3
∇n0 × ẑ (8)

where 〈〉 is the time average over the fast oscillations and ẑ is
the unit vector in the z-direction. Note that the wave vector of
the electromagnetic field is parallel to ẑ. From Eq. (8) one can
see that the electric current J has a contribution from the den-
sity gradient in the x–y plane (mainly from the edge of the
plasma) and it points in the toroidal direction. This current
produces an axial magnetic field (i.e., in the z-direction) ac-
cording to Maxwell’s equation (Gaussian units):

∇ × B = 4π
c
J,

which in order of magnitude is given by

B = ω2
p

ω3

e

mc
|E|2 (9)

where ωp is the electron plasma frequency. This may be ex-
pressed in terms of the laser light intensity IL by

IL = c

4π
|E|2.

Thus, we find the axial poloidal magnetic field

B

gauss
= 2 × 10−10 IL

W/cm2

λ

1 μm

( )3 n

1021 cm−3

( )
. (10)

where λ is the laser wavelength. For instance, taking λ=
1 μm, as for a neodymium laser, and n= 1021 cm−3, with
IL= 1016W/cm2, gives B= 2 × 106 Gauss. As a second

example, suppose λ= 10 μm, as in a CO2 laser, n=
1019cm−3, and IL= 1014W/cm2. We kept ILλ

2 constant in
the two examples, as this seems to be the case in practice.
For this example, B= 2 × 105 gauss.

This derivation highlights a classical dipole
approximation.

Using ponderomotive forces (Lehner, 1994), it was sug-
gested that the induced magnetic field is not linear with IL,
as given by the classical IFE (10), but B is proportional to
the square root of IL.Moreover, the constant of proportionality
is significantly larger than in the classical approach. In this
formalism the electric current is a first-order effect rather
than a second-order perturbation value. In the non-relativistic
domain the axial magnetic field, can thus be written as

B = Bc
ωpe

ω

( ) eE0

meωc

( )

≈ 6.5 × 105
ne
nec

( )1/2 IL
1014 Watt/cm2

( )1/2

. (11)

This formula fits some experiments (Horovitz et al., 1997) in
the domain of IL≈ 1010 W/cm2. However, for ∼1014 Watt/
cm2 the experimental values are larger than those estimated
by Eq. (11).

It has also been stressed (Talin et al., 1975) that the IFE
strongly relies on angular momentum transfer between radi-
ation field and plasma as evidenced by a Kubo response
function formalism. Up to now, experiments have not yet
been discriminated amongst the above theory proposals.

Apparently, the very first manifestations of IFE in plasmas
have been identified with a Klystron source of waves (De-
schamps et al., 1970).

Currently, high power lasers are used.
Magnetic fields in excess of 7 MGhave beenmeasured with

high spatial and temporal precision during interactions of a cir-
cularly polarized laser pulsewith an underdense heliumplasma
at intensities up to 1019 Watt/cm2 (Najmudin et al., 2001). The
fields, while of the form expected from the IFE for a cold
plasma, are much larger than expected, and have a duration ap-
proaching that of the high intensity laser pulse (<3 psec). These
observations can be explained by particle-in-cell (PIC) simula-
tions in3D.The simulations show that themagnetic field is gen-
erated by fast electrons which spiral around the axis of the
channel created by the laser field.

More generally, 3D PIC simulations allow for a detailed
analysis of a given experiment, while deeper theoretical inves-
tigations are still lacking in this area of magnetized plasmas.

4. PLASMA SCATTERING OF
ELECTROMAGNETIC RADIATION: TS

4.1. General

It is well-known that electromagnetic radiation is emitted by
an accelerated charge. An important example of this
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phenomenon occurs when the acceleration is induced in the
first place by an electromagnetic wave. This interaction,
when the incident radiation is of sufficiently low frequency
ω so that h−ω is much less than mc2, the rest energy of the
charge, is generally referred to as TS.1 It is the extension of
the theory to include the simultaneous scattering from a
large number of free positive and negative charges, that is,
the plasma, and the experimental application of scattering,
which are the topics of concern.
For a single charge the angular distribution of intensity, the

frequency, and the phase of the scattered radiation depend on
the orbit of that charge relative to the observer. Equally, for a
large group of charges the scattered spectrum is related to the
orbits of all those charges, or rather in practice, to some av-
erage taken over the probable behavior of the group. From the
spectrum of radiation scattered from a plasma we may in
principle determine the electron and ion temperatures and
densities, the direction and magnitude of a magnetic field
in the plasma, and in general, information about all fluctua-
tions (waves, instabilities) within the plasma. In reality, we
are of course limited by the radiation sources available to
us; the cross-section for scattering is so small that measure-
ments on laboratory plasmas were not possible at all until
the advent of high-power lasers. The first measurements
were by the scattering of radio waves from the ionosphere
in the late 1950s.

4.2. Stokes parameters for TS in magnetized plasma

We consider the scattering of a plane monochromatic electro-
magnetic wave by an electron located at the origin of a Car-
tesian coordinate system, in a cold collisionless plasma in a
uniform magnetic field. Let B be a uniform static magnetic
field pointing in the direction of the z-axis, B = Bẑ, where
ẑ represents the unit vector and B denotes the field strength
(Chou & Chen, 1994).
The propagation vector k of the incident electromagnetic

wave makes an angle α with the static magnetic field, and
is lying in the xz-plane as shown in Figure 2.
To calculate the polarization parameters due to magnetic

TS we first resolve the E(t) vector of the incident wave
into parallel (E∥(t)) and perpendicular (E⊥(t)) components
with respect to the xz-plane formed by the static external
magnetic field B and the direction of propagation of the inci-
dent wave. The intensity of the incident wave may therefore
be written in terms of these two transverse components
and the longitudinal component EL in the direction of
propagation

E∗ · E = E∗
∥E∥ + E∗

⊥E⊥ + E∗
LEL , (12)

as shown in Figure 2,

The Stokes parameters which describe the intensity and
polarization of the incident electromagnetic wave propagat-
ing in a magnetized plasma will now be written in terms of
the parallel and perpendicular electric field components E∥

and E⊥ as

I ≡ S0 = E∗
∥E∥ + E∗

⊥E⊥,

Q ≡ S1 = E∗
∥E∥ − E∗

⊥E⊥,

U ≡ S2 = E∗
∥E⊥ + E∗

⊥E∥

V ≡ S3 = −i(E∗
∥E⊥ + E∗

⊥E∥).

(13)

We note that for electromagnetic waves propagating in a
plasma, there is generally, also an electric field in the direction
of propagation, namely, the longitudinal componentEL = ELk̂
where k̂ is a unit vector in the direction of propagation.
The first Stokes parameter I simply gives the intensity of

the radiation, the second Q and third U specify the linear po-
larization, and the fourth V, the circular polarization. The
effect of the magnetized plasma on the scattered radiation
may then be determined by the following set of Stokes
parameters in a symbolic matrix form

�M′ = r20
R2

�M · �S,

where

�S = (I,Q,U,V) = (S0, S1, S2, S3),
�S′ = (I ′,Q′,U′,V ′) = (S′0, S′1, S′2, S′3)

(14)

Fig. 2. Thomson scattering in a magnetized plasma. E∥ is in xz-plane, E⊥ is
perpendicular to xz-plane, EL is along the propagation vector k, α< (k,B),
B denotes a static uniform magnetic field.

1TS is a limiting case of Compton scattering applicable at low enough fre-
quencies so that the photon energy is much less than the charge rest energy,
so that quantum effects may be neglected.
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are the 4-vectors constructed with the Stokes parameters for
the incident and scattered radiation, with

r0 = e2/mc2

= 2.83 × 10−13 cm

r̂ = R/R a unit vector directed from the position of the
charge to the observation point, and R is the distance between
the two points.
If the incident wave is linearly polarized with its electric

field perpendicular to the external magnetic field, the scat-
tered wave is in general elliptically polarized. The polariza-
tion of the scattered wave becomes linear only if the
observation is made in the plane perpendicular to the mag-
netic field in view of azimuthal symmetry of the scattering
relative to the static magnetic field. The Stokes parameters
of the scattered radiation are significantly reduced in the
regime of low frequency and strong magnetic field (Ωc≪
ω≪ ωc) due to the presence of the magnetized plasma.
Plasma effects are relatively small and insensitive to the
value of ∨ (∨≡ ω2

p/ω
2) as long as ∨≪ 1.

For TS in a cold magnetized plasma, the total cross-section
may thus be cast in the form (u = ω2

c/ω
2)

σλ(ω,B) = σT
[1+ K2

λ (α) + L2λ(α)]
× [kλ(α) sin α+ Lλ(α) cos α]2
{

+ 1

(1− u)2 [1− u1/2(Kλ(α) cos α− Lλ(α) sin α]2

+ 1

(1− u)2 [u
1/2 − Kλ(α) cos α− Lλ(α) sin α]2

}
,

(15)

where α is the angle of incidence relative to the static magnet-
ic field B and σT = 8πr20/3 denotes the canonical Thomson
cross-section, where

Kλ(α) = 2u1/2(1− ∨) cos α
usin2 α− (−1)λ

�������������������������������
u2 sin4 α+ 4u(1− ∨)2 cos2 α

√ ,

and

Lλ(α) = 2u1/2 ∨ sinα

2(1−∨)− u sin2 α+(−1)λ
������������������������������
u2 sin4 α+ 4u(1−∨)2 cos2 α

√

with λ= 1 mode designating the extraordinary wave and
λ = 2 mode the ordinary wave.
The r20-scaling of σλ(ω, B) thus highlights a m−2 depen-

dence featuring an overwhelming electron contribution to
TS, while the e4-dependence demonstrates that only very
highly charged ion could substantially contribute to TS.
We have in this way documented incoherent scattering by in-
dependent electrons.
Correlated (Coherent) redistribution of incoming radiation

should be expected in a hot plasma. Up to now, that situation

has only been taken up in the highly dilute magnetized plas-
mas encountered in Tokamak-like machines, (Sheffield,
1975). TS in dense and magnetized plasmas of ICF concern
seems to be still awaiting for a dedicated treatment. A very
recent experimental demonstration of TS in a magnetized
plasma had just appeared (Kenmochi et al., 2014).

5. STARK–ZEEMAN BROADENING OF
HYDROGENIC TRANSITIONS

The standard impact formalism (Griem, 1964; Bekefi el al.,
1976) for line broadening by plasma may be easily extended
to take into account the full es-structure of the static patterns
in presence of combined Stark and Zeeman effects.

Then the light intensity polarized along a unit vector êmay
be written

I(ω, ê) = π−1Re
∫
W(�F)d�F

∑
i,j,k,l

〈ni|ê · �R|nj〉

× 〈n′k|ê · �R|nl〉〈ni|〈nj|{i[ω− h−−1(Hn − Hn′ )]
− fnn′ }−1|nl〉|n′k〉,

(16)

with �R the optical electron position vector. Hn[Hn′] is the
atomic Hamiltonian taking into account the full static electro-
magnetic perturbation operating on the sublevels |ni〉 and |nl〉
of the upper state (n)[|nj〉 and |nk〉 of the lower state (n′)] of
the line. fnn′ denotes the electron collision (or relaxation)
operator.

As in most line-broadening theories, the ions are regarded
as infinitely massive classical particles over the time of inter-
est (static ion approximation). Moreover, it may be shown
that the low-frequency microfield distribution W(�F) is rigor-
ously unaffected in presence of a magnetic field of any
strength when Doppler broadening is negligible in a thermal
plasma. Therefore, it remains to evaluate the fnn′ matrix ele-
ments. We restrict our attention to a sufficiently high electron
density, such that the Larmor radius remains greater than the
corresponding Debye length, that is,

rG/λD = 4.544 × 10−3N1/2
e /H ≥ 1, (17)

where Ne is in cm–3 and H in gauss.
The electron–atom interaction may then be evaluated with

the usual monopole–dipole approximation and a straight-line
trajectory for the perturbing electron traveling in the Debye
sphere surrounding the emitter.

Relative strength of Stark to Zeeman line shift features

τ = 3
2
n(n− 1)ea0E0/

(n− 1)eh− H

2mc
= 3

2
nA0

A0 = 3.43 × 10−7N2/3
e [cm−3]/H

(18)

for the H-atom like emitter.
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Pure Stark broadening is retrieved with τ≫ 1 (large n and
Ne moderate H. Line profiles depend on the direction of ob-
servation. The magnetic field �H polarizes the emitted light.
Averaging the usual impact profiles around the direction of

the magnetic field, yields the complete profiles including av-
erages on the plasma microfield, which are polarized either
along or transverse to the magnetic field. This procedure is
illustrated in Figures 3 and 4, (Nguyen - Hoe et al., 1967)
for the Hα lines of atomic hydrogen observed either parallel
or perpendicular to �H and expressed in terms of the polarized
intensities by the relations

I∥(Δλ) =
1
2
[I(Δλ, x̂) + I(Δλ, ŷ)]

I⊥(Δλ) = 1
2
[I∥(Δλ, x̂) + I(Δλ, ẑ)].

(19)

In Figures 3 and 4 the abscissa α= Δλ/E0 is scaled with
the Holtsmark field

E0 = 2.603Z1/3
P eN2/3

e

4πe0

where Np denotes the perturbed density Np= Ne/Zp.
The same line of reasoning applies to the well-known hy-

drogenic lines 2P–4Q(Q= P,D,F) located at 4471 and
4921 Å in the spectrum of neutral helium (Deutsch, 1970).

Corresponding polarized profiles are exhibited on
Figure 5.
At first sight, the given profiles show a structure which

looks very different from the isolated-line Lorentz triplet
and from the hydrogen Hβ line broadened in the presence
of a strong magnetic field with the same (Ne,Te) values.
More precisely, the parallel intensities I∥(Δλ) keep their

central peaks 2P–4D and 2P–4F. The perpendicular intensi-
ties I⊥(Δλ) again exhibit this structure, but with a strong
asymmetry. The second peak of I∥(Δλ) may be surely attrib-
uted to the 2P–4F maximum, as would be shown in a plot of
I(Δλ, ẑ) (polarized along the magnetic field and free from the
σ components) with the same two-peaked structure.
Another striking result is the absence of σ components on

the 2P–4D side and the appearance of a weak σ component
on the 23P− 43F side only, located at

Δλz = λ2 × 4.688 × 10−13B, τ = 0.9 (20)

where λz and λ are in angstroms, and B in gauss (see Fig. 6).
This feature is easily explained by the interpenetration of the
2P–4D and 2P–4F static patterns in the presence of a strong
Zeeman effect and also by the dominating electron-impact
effect in the line center, at the vicinity of the 2P–4D maxi-
mum. This behavior is more pronounced for the 41Q sublev-
els, which have a stronger mutual interaction, than for the

Fig. 3. Calculated Hα profile observed longitudinally Ne= 1015 cm−3; T=
104K, H= 103Γ (τ= 15.44) (1), H= 2 × 104Γ (τ= 0.7715) (2),
H= 4 × 104Γ (τ= 0.3857) (3), H= 6 × 104Γ (τ= 0.2638) (4)
[after Nguyen-Hoe et al. (1967)].

Fig. 4. Calculated Hα profile observed transversally Ne= 1015 cm−3; T=
104 K, H= 1 × 103Γ (τ= 15.44) (1), H= 2 × 104Γ (τ= 0.7715)
(2), H= 4 × 104Γ (τ= 0.3857) (3), H= 6 × 104Γ (τ= 0.2638)
(4) [after Nguyen-Hoe et al. (1967)].
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43Q ones. In fact, the line-center broadening of these
partially degenerate lines is the result of a competition be-
tween Zeeman, static Stark, and electron-impact broadening.
As a by-product it clearly appears that even a strong

Zeeman effect cannot be studied with a linear superposition
of Lorentz triplets to each component of the static Stark
pattern.
These considerations have been very recently extended to

high-Z emitters (Iglesias, 2013) submitted to a combined
Stark–Zeeman broadening mechanism, through a global al-
gorithm presentation.

6. ION STOPPING IN MAGNETIZED PLASMA:
A DIELECTRIC APPROACH

For many years, a high level of sophisticated and theory activ-
ity has been devoted to the stopping of nonrelativistic charged
particles in arbitrary magnetized plasmas (see for instance
Nersisyan et al., 2007). However, the experimental vindica-
tion of this work is still badly missing. In order to promote a
basic science approach easing quantitative studies of ion-
magnetized plasma target, we intend to pinpoint – a few con-
spicuous trends suggested by theory or simulation studies.

6.1. Projectile velocity V≥ Vthe

At V≥ Vthe, target thermal electron velocity, one expects
target ions to remain as a negligible contribution to the ion
projectile showing down.

A first look at �V∥�B, steady applied magnetic field, one ob-
serves (see Fig. 6) a marked shift at u= V/Vthe >1 of the
maximum projectile stopping, toward the right of its usual lo-
cation at u∼ 1 for B= 0.

Usually, one uses a finite series representation (Cereceda
et al., 2000), with a large number of terms (here L= 250
in the stopping expression (Ichimaru, 1973)

dE

dt
= q2

2π2e0

∫k⊥max

0
dk⊥ ·

∫∞
0
dk∥

∑L

ℓ=−L
k⊥J

2
l (k⊥ρL)

×
k⊥v⊥ + ℓωc

k2
Im

−1
e(k, k⊥v⊥ + ℓωc)

( )
.

(21)

where q is the projectile charge, ωc its cyclotron frequency
and ρL= V⊥/ωc, its Larmor radius, in terms of the usual lon-
gitudinal dielectric function.

Another striking trend is the slowing down θ-dependence,
where θ denotes the angle between �V and �B. It features a
monotone decay with increasing θ (see Fig. 7).

Fig. 5. Balmer-like transitions in neutral Helium. Ne= 6 × 1015cm−3, Te= 2 × 104 K, H(G)= 7 × 104 [after Deutsch (1970)].
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6.2. V<Vthe

The low ion velocity slowing down (LIVSD) regime is also
endowed with specific behaviors. When a simple kinetic-
theoretic approach is applied to this regime, one easily
faces basic conceptual difficulties (Nersisyan et al., 2007)
for θ= 0 and π/2. A first and preliminary step out of this di-
lemma is to work within a hydrodynamic framework. We
thus implement a radically novel approach to LIVSD when
the projectile velocity n remains smaller than the target elec-
tron thermal nthe. We, thus consider ion stopping

S(V) ≡ dEb

dx
(V), (22)

near n= 0. The ratio S(V )/V usually monitors a linear stop-
ping profile, up to 100 keV/a.m.u in cold matter. Similar
trends are also reported in highly ionized plasma with B= 0
or B≠ 0.
From now on, we intend to make use of a very powerful

connection between very low velocity ion stopping and par-
ticle diffusion through Einstein characterization of ion mobil-
ity associated with thermal electron fluctuations in target,
around the slow ion projectile visualized as an impurity im-
mersed in a dense and homogeneous electron fluid.
Technically, we are then led to use the recently proposed

and exact Dufty–Berkovsky relationship

lim
n�0

S(V)
V

= kBTeD
−1, (23)

connecting the ratio of stopping to n in the zero velocity limit
with the ion diffusion coefficient D in the target.
In a magnetized plasma D can be readily expressed in

terms of Green–Kubo integrands (GKI) involving field fluc-
tuations in the target electron fluid, under the form

D = c2

B2

∫∞
0
dτ〈E(τ) · E(0)〉 (24)

in terms of an equilibrium canonical average of the two-point
autocorrelation function for fluctuating electric fields.
At this juncture we need to frame the GKI in suitable mag-

netized one-component plasma (OCP) models for the trans-
verse and parallel geometry, respectively. This procedure
implies that the slowly incoming ions are evolving against
a background of faster fluctuating target electrons (v<
Vthe) providing the OCP rigid neutralizing background thus
validating the OCP assumption.
Moreover, restricting to proton projectiles impacting the

electron–proton plasma we immediately perceive the perti-
nence of the diffusion-based LIVSD as phrased by Eq. (23).
First, the proton beam can easily self-diffuse amongst its

target homologues, while the same mechanism experienced
by target electrons allow them to drag ambipolarly the in-
coming proton projectiles.
So, the transverse electron LIVSD can either be monitored

by the well-known classical diffusion D⊥∼ B−2, or by the
Bohm-like hydrodynamic one with D⊥∼ B−1. In the first
case, momentum conservation at the level of the electron–ion
pair implies that the ions will diffuse with the same coeffi-
cient as the electrons. On the other hand, the hydro Bohm dif-
fusion across B is operated through clumps with a large
number of particles involved in this collective process.
So, exploring first the ωb≥ ωp domain, one can explicit

the parallel and B-independent diffusion

D(0)
∥ = 2

��
π

√
V2
thi

nc
∼ O(ω0

b), (25)

yielding back readily the unmagnetized (B= 0) LIVSD
where V2

thi = kBT/Mi, and nc= ωpεpln(1/εp) in terms of
the redefined dimensionless plasma parameter εp = 1/neλ

3
D,

and λD, the Debye length, in a beam-plasma system taken
as globally neutral with nc/ωb≪ 1.
At the same level of approximation transverse diffusion

reads as

D(0)
⊥ = r2Lnc

3
��
π

√ ∼O(ω−2
b )

in terms of Larmor radius rL= Vthi/ωb.
With higher B values (ωb≫ ωp) one reaches the transverse

hydro Bohm regime featuring (Marchetti et al., 1984)

D⊥ = D0
⊥ + 0.5V2

thi

ωb
e2p[ln(1/εp)]3/2, (26)

while parallel diffusion retains a ωb-dependence through

D(0)
∥ = Γ5/2

ωpa2
3
π

( )1/2

0.5 ln(1+ X2) − 0.3+ 0.0235
r2

[ ]
, (27)

where Γ = a2/3λ2D with a = (3/4πne)
1/3, r = ωp/ωb and

X = 1/
��
3

√
Γ3/2 < 1 encompasses, most if not all, situations

of practical interest.

Fig. 6. Energy loss of α particles moving parallel to B as a function of di-
mensionless speed u, Ne= 1021 cm−3, T= 5 keV, B= 5 and 10 MG,
[after Cereceda et al. (2000)].
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When electron diffusion is considered, vthe should be used
in Eq. (26) and the above ambipolar process has to be
implemented.
The D⊥ and D∥ expressions introduced in Eqs (26) and

(27) are expected to document a strong anisotropy between
transverse and parallel slowing down. However, in both
cases, B-dependence is obviously increasing with B2 (classi-
cal) or B (Bohm-like). The temperature behavior is much
more intriguing, as respectively displayed on Figures 8 and
9 for transverse and parallel LIVSD. One, then witnesses a

monotonous increase for transverse stopping (Fig. 8) con-
trasted to a monotonous decay for parallel counterpart
(Fig. 9).

We thus implemented the very simple LIVSD expression
(23) to the, a priory very involved ion beam-arbitrarily
magnetized plasma interaction. We used transverse and par-
allel diffusion coefficients in suitably framed magnetized
OCP with target electrons building up the corresponding

Fig. 7. Energy loss of α particles moving at angle θwith respect to B as a function of dimensionless speed u= V/Vthe. (a) θ= 0, (b) θ= π,
(c) θ= π/4, (d) θ= 3π/8. Ne= 1021 cm−3, Te= 5 keV, B= 500 T [after Cereceda et al. (2005)].

Fig. 8. Proton transverse LIVSD in a dense plasma (n= 1021 cm−3 and B=
1010 G). (a) Electron stopping, (b) ion stopping, [after Deutsch & Popoff
(2008)].

Fig. 9. Proton parallel LIVSD in a dense plasma (n= 1021 cm−3 and B=
1010 G). (a) Electron stopping (B≠ 0), (b) ion stopping (B≠ 0), (c) ion stop-
ping (B= 0), (d) electron stopping (B= 0) [after Deutsch & Popoff (2008)].
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neutralizing background. Thus, we reached analytic LIVSD
transverse and parallel expressions.
Finally, we investigate the stopping power of an ion in a

magnetized electron plasma in a model of binary collisions
(BC) between ions and magnetized electrons, in which the
Coulomb interaction is treated up to second-order as a pertur-
bation to the helical motion of the electrons. The calculations
are done with the help of an improved BC theory which is
uniformly valid for any strength of the magnetic field and
where the second-order two-body forces are treated in the in-
teraction in Fourier space without specifying the interaction
potential. The stopping power is explicitly calculated for a
regularized and screened potential which is both of finite
range and less singular than the Coulomb interaction at the
origin. Closed expressions are derived for mono-energetic
electrons, which are then folded with the velocity distribu-
tions of the electrons. The resulting stopping power is evalu-
ated for isotropic Maxwell velocity distributions of the

electrons. The accuracy and validity of the present model
have been studied by comparisons with the classical trajectory
Monte Carlo numerical simulations.
Finally, with a view toward possible experiments envi-

sioned at LULI (Palaiseau) or TITAN (Livermore) with
PW-laser produced protons, we propose to check at B=
20 T, the θ= 0 and π/2 data obtained with the present
kinetic-elaborated formalism (Fig. 10).

7. SUMMARIES

Out of the above surveyed diagnostics for dense and magne-
tized plasmas of ICF interest, we stress emphasis on the fol-
lowing suggestions:

• The IFE needs a basic theory simulation revisitation in
order to match quantitatively present day available ex-
perimental vindication.

• TS in a magnetized plasma is presently restricted to
dilute and Tokamak-like situations. It has to be extended
to dense and hot plasmas envisioned for ICF.

• Combined Stark–Zeeman line broadening requires to be
adapted to high-Z elements (Iglesias, 2013) and eventu-
ally compared with fine and hyperfine line splitting.
Moreover the spiraling of perturbing charges around
the emitter has to be tackled for Larmor radii smaller
than Debye lengths.

As far as we know, the above panorama of potentially
available diagnostics for strongly magnetized ICF-like plas-
mas is here critically displayed for the first time. Such a pre-
sentation is primarily motivated by novel experimental
achievements (Fujioka et al., 2013) allowing for a very effi-
cient and nearly steady magnetization process, far beyond
those previously proposed for magnetized target fusion (for
instance Cereceda et al., 2000).
We hope that the above speculations could be appreciated

as timely ones in view of the increasing interest within the in-
ertial fusion community for the investigation of ultra-dense
plasmas exposed to kilo Teslas steady magnetic fields. In
particular, it is highly likely that an imposed magnetization
on inertial pellet could allow for a better control of its com-
pression in a large setup of the NIF–LeMegaJoule (LMJ)
class.
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