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On some resistance properties of a certain network containing
inductances and capacities and their analogies in a vibrating
mechanical system. By Mr E. B. MOULLIN, Downing College.
(Communicated by Dr G. F. C. SEAELE.)

[Received 1 May, read 26 July 1926.]
(1) Introduction.
In the network shown diagrammatically in Fig. 1, A0A3>

A3Ait ... are resistances of values a\, o8, ... joined in series with
one another, and A3B3, A6BS, ... are resistances of values I/a,,
l/a4, ...: the points B0B3, ... are all on a cable of negligible
resistance. The members A0A3, A3AS, ... will be called the series
members of the network, and the members A3B3, ASBS,... will be
called the shunt members of the network: the points A0B0, will be
called the input terminals of the network. If a potential difference
is maintained between the input terminals, currents will flow in
the members of the network.

The more general network of which the system of Fig. 1 is
a degenerate form is important in telegraphy and telephony; its
properties depend on the character of the various members. In the
degenerate case each member is a simple resistance, and then
a,, a2, ... may represent portions of an overhead line, while 1/os,
l/a4, ... represent leaks at the points of support. The special case
when a1 = a3 ... and l/a2 = l/a4 ... has been examined previously.
(See Dr G. F. C. Searle, F.R.S., Proc. Camb. Phil. Soc. 1915, Vol.
xvin, p. I l l , ' Calculations of the electrical resistance of a certain
network of conductors.')

The resistance Zo, measured between the input terminals of the
network of Fig. 1 may be represented by the continued fraction

Z0 = a1+ — — — - L_ I (i)

We shall call Zo the input resistance of the network.
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In an example of more general interest the branches of the
network contain inductances and capacities, and an alternating
potential difference v= V sin pt is maintained between the input
terminals.

If a current i = I sin (pt + a) then enters the network along
AOAS and leaves it along BOBS, we term the ratio V/I the im-
pedance of the network; this quantity replaces the input resist-
ance of the degenerate system. Important examples of the more
general network are the "filter circuits" used in telephony. In
these circuits the receiving apparatus is the final shunt member
of the network and each series member combined with the suc-
ceeding shunt member is called a stage; thus a filter has as many
stages as it has shunt members. The voltage between the input
terminals is often not simple harmonic and it may be undesirable
that currents of certain frequencies should flow through the
receiver: a filter system is then used to reduce these undesired
components of current to a negligible amount and the degree of
elimination depends on the number of stages in the filter.

The circuit of Fig. 2 is called the " low pass " filter and is used
to exclude from the receiver (for example A7B7) currents whose
frequencies are greater than some predetermined value. If we
transpose the inductances and the capacities, as in Fig. 3, we
obtain a "high pass" filter which excludes from the receiver
currents whose frequencies are less than a certain value. If the
individual members of the network contain both inductance and
capacity we may arrange to obtain a "band pass" filter or a " band
stop" filter which permits or excludes respectively only currents
whose frequencies lie within certain specified limits.

In connexion with these circuits, certain impedance problems
arise which deserve attention in general. Thus if Zo is the input
impedance of the network when the alternator is connected
between the input terminals we may wish to know what the
impedance will be at the same frequency if the input terminals
are short circuited and the alternator is inserted in series with
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some other shunt or series member. Again, since both inductance
and capacity are present, resonance will be possible and we may
enquire under what conditions resonance will occur. Further, if
resonance occurs at a given frequency when the alternator is
between Ao and Bo, will resonance necessarily occur at the same
frequency if .40i?0 are joined'and the alternator is inserted in some
other member of the network ? Also if resonance does occur again
when the alternator is transferred to some other particular member,
would it necessarily have occurred if the alternator had been
transferred to any one arbitrarily selected member ?

In either of the networks of Figs. 2 and 8, two forms of
resonance are possible. In one case the system behaves as an
" acceptor" circuit and the current it receives is a maximum and
the impedance a minimum. In the other case the system behaves
as a " rejector " circuit and the current is a minimum and the im-
pedance a maximum. In the case in which the system is a rejector
circuit to a given alternator placed in one member of the network,
it is important to know if it will also be a rejector circuit when the

same alternator is placed in any one other member, or if it will
then become an acceptor circuit or if it will fail to exhibit re-
sonance.

Similar problems arise in mechanical vibrations of certain
systems of interconnected masses, for the equations of the currents
in the network of Fig. 2 are the same as the equations of motion
for a system of fly-wheels fixed on a light elastic shaft turning
freely in bearings, or of a suspended system of heavy particles
connected together by a series of light vertical springs.

The torsional problem is of practical interest in the investiga-
tion of torsional oscillations of the crank shaft masses of a multi-
cylinder engine, and here one of our problems is as follows:—If
any one of the cranks is actuated by pressure behind a light piston
and resonance of torsional oscillations is produced, will resonance
be produced if the, same piston actuates any other crank and what
will be the result of actuating every crank simultaneously by a
similar piston?
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(2) Expression for the impedance of the network.

We may still use the continued fraction (1) to express the im-
pedance of the general network, typified diagrammatically by
Fig. 1 and exemplified in Figs. 2 and 3, if we specify the meanings
to be attributed to the quantities a,, a^ The network is
actuated by a periodic voltage v = Veipt applied between Ao and
Bo, and in the final steady state, which we are here considering,
the currents in the various branches will also be proportional to

d d2

e#*. We may therefore replace -r- by jp and 3— by — p2: if this is
done, we find that A0A3 in Fig. 3 is represented by the complex
quantity (r̂  +jpL,). We may express the same fact more directly
as follows:—Every current can be analysed into a Fourier series
of simple harmonic terms and therefore every component may be
represented instantaneously by the projection of a uniformly
rotating line of constant length. Now the voltage across A0A3

consists of a component ri in phase with the current and a com-
ponent pLxi in phase quadrature with the current. So we may
represent the voltage A0A3 by another uniformly rotating line
which is related to the current line by the vector equation
V = I(r1 +^pZj). Hence, in accordance wibh the well-known
methods of making alternating current, calculations, we may
replace the a's by complex quantities such that Oj = {̂  +jpLx\
and 1/osj = {ra —j/ipC,,)}, where j = V— 1.

We may now proceed to use the properties of continued
fractions ; the reader will note that all the quotients are in general
complex quantities.

Let pr/qr be the rth convergent of fraction (1). Then

where Yr = ar+

Now let Ao and Bo be joined and let the network be opened at
Ar and let an alternator be inserted between Ar and Ar' as in-
dicated in Fig. 4. We may note that the quantity Yr defined above
is the impedance of the part of the network to the right of the
points Ar andBr'. Let XT be the impedance of the network to the
left of ArBr. Then according to the arrangement of Fig. 4 we
have

a,
When the alternator is placed between the points Ar and Ar'

the circuit consists of an impedance YT to the right of AJ which
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is in series with the impedance Xr to the left of Ar. Accordingly
the impedance Zr, between the points Ar and Ar' is given by the
expression

Zjr = \.a~T + I r) {.")•

We wish to relate Za and Zr. It follows readily from the theory
of continued fractions that

1 1 1 1
• ^ 0>f \ ~r ~ r • • • ^ -wr • \ />

Pr-2 ^ - 2 + ar-3 *r Cti -^r

^r_x 1 1 1 / R .
• ^ ttr—i 4" ~~ "T" • • • — ( &)j

C£r j (Xf 2 "T* ttf—3 i* C&2

and Pr=l-9i=i=(~iy~1 (6).

In our notation r is an odd integer. Hence by (4) and (6) we have

Ar-t-2.

T+1

Fig. 4.

On substituting in (2), we have by (3) that
(\ 1\

17 __ \*-r Jr/ _ ...(7).

Equation (7) connects Zo with Zr, Xr, Yr, pr-a, qr-»- •

(3) Resonance cmditions.

We will now find the conditions for resonance in a network
whose members are subject to the following restrictions.

(a) Every member is resistanceless, so that at resonance the
impedance is zero or infinite according as the circuit is an acceptor
or a rejector.

(8) No one of the impedances alt a,, a6) ... is infinite and no
one of the impedances I/a,, l/at, l/a6,... is zero. This means that
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no series member may contain inductance and capacity in parallel
and no shunt member may contain inductance and capacity in
series.

Since pr and qr etc. consist of various products of the a's no p
or q can be infinite on account of restriction (/5).

(i) Acceptor circuit from input terminals.

We will first suppose that neither Xr nor Yr is infinite. Then,
from (7) Zo will be zero if pr-t = 0, or if Zr = 0, or if both pr_2 and
Zr are zero, provided that the denominator of (7) is not zero.

If Zr=0, the system is an acceptor circuit, with A^B,, joined, to
an alternator placed between Ar and Ar' and by (7) it is then also
an acceptor circuit to an alternator placed between Ao and Bo.
Thus we have proved that the network can be an acceptor circuit
when it is energised by an alternator either situated in series with
the rth series member or connected between Ao and Bo.

Now we see from (6) that pr^qr-2 -/V-2<Zr-i — 1, since r is odd.
Hence, if pr_2 is zero, then pr^x is not zero, since no p or q is
infinite.

But, by (4), we have pr_,/pr_2 = 1/XT and hence, if pr-2 = 0,
then Xr = 0 also.

But we have seen from (7) that Zo is zero if pr^ = 0 and we
see from (2) that this entails that YT = 0, since neither pr-x nor qT_2
can be zero when pr_^ = 0; accordingly Xr = 0 and Yr — 0 and
Zr = (Xr + Yr) = 0. Hence the necessary and sufficient condition
for the case where Xr and Yr are finite is that Zo should be zero.
Thus we have proved that if the network is an acceptor circuit
to an alternator placed in series with a certain series member
then it must be an acceptor circuit to an alternator placed be-
tween the input terminals.

If one and one only of Xr and Yr is infinite then Zr = Xr + Yr
will certainly be infinite; is it then possible that Zo should be
zero ?

We see from (2) that if Yr is infinite, then Zo is zero only if
pT-\ is zero. But we see from (4) that if pT-\ is zero then Xr is
infinite. Hence we find that Za is zero if Xr + Yr = 0 or if both Xr
and Yr are infinite*. In the first case the system is an acceptor
from both positions of the driving alternator and in the second
condition it is an acceptor from one place and a rejector from the
other.

* Though both Xr and Fr become infinite at a certain frequency, it may be
shown that their sum cannot be zero. Both Xr and Yr consist of two parallel
branches, one whose impedanoe is positive and increasing and the other whose im-
pedance is negative and decreasing for a steady increase of frequency: hence the
rate of change of each branch impedance is positive. From this it follows that
XTjYT cannot have the value - 1 .
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We have now proved that if the network is an acceptor circuit
from the input terminals, then the same alternator will produce
resonance if it is inserted in any series member whatsoever pro-
vided the input terminals have been short-circuited. There will
always be resonance but not necessarily acceptor resonance. There
will be rejector resonance if, and only if, the alternator is placed
in a member which previously carried no current: that is to say
only if it is situated in a member which carried no current, and so
may be called a current node, when the alternator was feeding the
input terminals. Conversely we see that if an alternator at the
input terminals causes a certain member to be a current node,
then this member will remain a current node if the alternator is
moved to it.

(ii) Rejector circuit from input terminals.

We will now examine the condition that the network should be
a rejector circuit from the input terminals, in which condition Zo
must be infinite. Remembering that no p or q is infinite we see
by equation (2) that Zo is infinite only if

7r=-qr^lqr^ (8).
Now both Zr and Zo can be infinite only if either Xr or Yr is
infinite: if both are infinite we have seen above that Za is zero.
Now if qr-! is zero, neither j>r-i nor qr^ can be zero. Therefore
both ZQ and Zr will be infinite if Yr is infinite and gv_i is zero
simultaneously: also they will both be infinite if XT is infinite and
Yr satisfies condition (8). We may note that if Xr is infinite qr-2
cannot be zero and so Yr = 0 cannot satisfy (8), but that if Yr is
infinite the condition that qr^ = 0 does not preclude the possibility
that Xr should be zero.

So we find that if the network is a rejector circuit- from the
input terminals it will not be a rejector circuit when energised
from some series member unless certain special conditions are
satisfied.

(4) Network excited from a shunt member.

We will now consider briefly the conditions obtaining when the
alternator is placed in a shunt member as shown in Fig. 5. Let
Xr be the impedance of the part of the network to the left of
ArBr (excluding the shunt member ArBr). Then the impedance
Zr' presented to the alternator, consists of the impedance Xr' in
parallel with the impedance YT, and these two together are in
series with the impedance l/Or-^ Hence
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1 1 1
Xr' = ar_2

Xr =

398

Now

and then

Hence

Now

whence, using (9) we have

ar-3

X i
r —

ar_, + l/Xr''

Xr .(9).

Zr':
1/Xr+1/Yr .(10).

We see from (10) that Zr' = 0 if Xr + Yr = 0, or if Xr + Yr are
both infinite. But we saw previously that Z0 = 0 in both these
circumstances. If therefore the circuit is an acceptor circuit from

the input terminals it will always be an acceptor circuit to an
alternator placed in any shunt member, provided only the im-
pedance of that particular member is not infinite.

The conditions that the circuit of Fig. 5 should be a rejector
circuit are readily followed from (9) a. In order that the im-
pedances ZQ and ir should be infinite simultaneously, very special
selection of the members of the network may be necessary.

If we remove restriction (£) we can examine the resonance
conditions only when we have specified which of the a's have
become infinite.

(5) Illustration.

To illustrate the various resonance conditions just developed
let us consider the circuit depicted in Fig. 6, which represents a
five-stage filter in which all the inductances are equal to L and all
the capacities are equal to G and all the resistances are zero. If we
write 1/LC = p0", and make suitable substitutions in (1) we can
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show that the system is an acceptor circuit to an alternator placed
between -40 and Bo when p'/po" is a root of the equation

f - Kfy4 + 36y - 56ys + 35y - 6 = 0,
and the roots of this are

y = 0-27, 1, 2, 3, 3-73.

Acceptor condition for p^/po" = 1.

That p =p0 is a possible condition is readily seen, for at this
frequency the portion to the right of AtBB has infinite impedance
and its presence is not felt by Gt. But L4Ct is an acceptor circuit
and therefore is a complete short circuit across C3 which will there-
fore carry no current. Hence A7 is in effect joined to J57and hence
the portion to the right of A3 has infinite impedance and in effect
we are left with only Lx and Gx in series. The current will be large
everywhere except i n i 2 , L6 and G3 where it is zero.

Let us now join A0B0 and place an alternator in series with Lt.
The portion to the right of A7 has zero impedance and thus F = 0.
The portion to the left of Cs reduces to a zero impedance shunting
Gs and hence X = 0 and the condition X + Y = 0 is satisfied.

If we now remove the alternator from Lt and place it in series
with La, we see readily that F i s infinite. But we have just seen
that 0, is short-circuited by the system to its left and so in effect
A7 is joined to B7. Consequently X consists of L4 in parallel with
C4 and this circuit has infinite impedance. Consequently the con-
dition that both X and Y are infinite is satisfied and we have an
acceptor circuit.

Acceptor condition for p*/po
3=2.

Now consider the condition when p* = 2/LC, corresponding to
the root p*/po" = 2: then each inductance has an impedance pL>J1
and each condenser has an impedance l/(pC^/2). If we denote the
inductive impedance by 2Ry then the condensive impedance will
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equal — R. Then Cs and Le in parallel evidently have impedance
— 2R and this in series with L5, whose impedance is 2R, will make
a short circuit across (74. Following the same argument, we see
that G2 is short-circuited and that the initial part of the system
(Lu Glt L2) has zero impedance and thus the current will be large
everywhere except in O2 and Ct where it is zero.

Now let us insert an alternator at A7 in series with Lt. We
have just seen that Ct is short-circuited by the acceptor circuit
beyond it and so Y reduces in effect to Lt alone, and this im-
pedance we have called 2R. We now consider the circuit to the
left of A7B7, and see that G2 is short-circuited by the acceptor
circuit beyond it. Therefore in effect X consists of L3 in parallel
with (7a and evidently the impedance of this is — 2R. Therefore we
find X = -2R, and Y-2R, and so the condition X+Y=0 is
satisfied though neither X nor Y is zero: the system is an acceptor
circuit whether the alternator is at Ao or A,.

Rejector conditions with p*lp* = 1.

To consider the rejector circuit conditions we will suppose that
in Fig. 6, AnBn are joined by a thick conductor. We then have a
system which is a rejector circuit to an alternator placed between
Ao and Bo, when p=Po. For the circuit beyond A7B7 evidently
has infinite impedance and does not affect G3: again, C2 is short-
circuited by L, in series with Cs and evidently the remaining
circuit has infinite impedance. Now let us insert the alternator at
A7 (and remember that AuBn are permanently joined). Inspection
shows that Y is infinite and that X is zero. But we saw that if Y
is infinite then qr^ must be zero if Zo is to be infinite. Now con-
sider the circuit from A0B0 to A7B7 and suppose the remainder
removed. Then (73is short-circuited byX8, (78and so the impedance
between Ao and Bo is infinite : this means (since r — 7) that qt is
zero and so the necessary condition is satisfied. We may note that
the system up to A7B7 is a rejector circuit from one end and an
acceptor circuit from the other. If the alternator is inserted a,tAc,
inspection will show that F = 0 and that X — l/(po(7): but if
F = 0 the condition that Zo should be infinite is that qr_^ = 0.
Consequently (since now r = 5) q3 should be zero, and inspection
shows that this is so.

(6) Analogy with torsional oscillations.

It has been stated previously that the equations of motion for
a system of fly-wheels fixed to an elastic shaft are the same as the
equations for the currents in the network of Fig. 2. If the com-
parison is made, it will be found that the twist in any portion of
the shaft corresponds to the current in the corresponding condenser
and that the displacement of any fly-wheel corresponds to the
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current in the corresponding inductance. The five-stage filter
illustrated in Fig. 6 is analogous to six equal fly-wheels fixed at
even distances along a light uniform shaft which is mounted freely
in bearings. This is illustrated in Fig. 7.

When considering Fig. 6 we saw that when p = p0, the current
in C3 was zero and likewise the currents in L2 and Z5,and that the-
current in Z3 equals the current in Z4 in both magnitude and'
phase. Now the current in Z6 lags a quarter period behind the-
p. D. between Au and Bn, and hence behind the P.D. between A9
and Bs: but the current through 6'4 leads this P.D. by a quarter
period and so the currents in Z4 and Z6 are in antiphase with one
another. Similarly the currents in Lx and Z3 are in antiphase.

Now let us translate these results to the system of Fig. 7 which
we shall suppose to have been set in motion by applying an alter-
nating couple, of frequency p0 = 1 / *J — for a short time only to
the wheel of moment of inertia / , , fixed to a shaft of strength \ .
If the couple is then removed, each wheel of this frictionless.

1 1
*- —¥• - « —

Fig. 7.
system will continue to oscillate at the frequency p0. The system
is exactly analogous to Fig. 6 and we can find the mode of vibra-
tion from the information we now have about the currents in
Fig. 6.

Thus, since the current in G3 is zero the angle of twist of the
middle section of shaft must also be zero and therefore Is and /«
must oscillate always as one body. Again the current in Z2 and Z,
is zero and therefore /2 and I5 should be at rest. Further the cur-
rents in Zj and Z6 were in phase with one another and in antiphase
to the current in Z3 and Z4, hence i^ and Ie should oscillate in
phase with one another but in antiphase with I3 and 74. Arrow-
heads are marked in Fig. 7 to suggest this condition of motion.
Evidently this motion is possible, for it gives zero angular
momentum to the system and could have been initiated, for
example, by twisting Ix and /„ through a clockwise angle 9
and Is with It through an anticlockwise angle 6 and then releasing
the system. We should then have the familiar two node vibration
with nodes at /2 and 76.

VOL. XXIII. PART IV.
https://doi.org/10.1017/S0305004100015218 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100015218


402 Mr Mouttin, On some resistance properties, etc.

Now consider the case when p! = 2pu
3 in Fig. 6. The current

through (75 is twice as large as that through Le and consequently
the currents through L5 and Lt must be in antiphase with one
another. The current in Ct is zero so that the current in Lt and L,
is the same in magnitude and phase and equal to half the current
through Cs. Proceeding to the beginning of the circuit we find
the currents are arranged symmetrically about the middle member.
Now translating this to Fig. 7 we find I2 and / , oscillating as one
body, likewise It and Is. The displacement of 72, / , and I6 are
always identical and in antiphase with / , , It and /„. Again the
motion is a possible one for a free system as the total angular
momentum is zero : it is a three node vibration with nodes at the
middle of the first, third and fifth section of the shaft.

Lastly consider the case when p* — 3p0* in Fig. 6. The current
in Lt is twice the current in Lg and is in antiphase with it whilst
the current in Ct is zero. If we proceed in a similar manner to
consider all the members of the network, we find the currents dis-
tributed symmetrically on either side of the middle condenser.
Translating this to Fig. 7, we find I3 and It moving as one body
and with amplitude 8 and that Ix and I6 move in phase with them
also with amplitude 6. But J2 and 76 move with amplitude 20,
and in antiphase with the other fly-wheels. This is again a possible
condition for a free motion and gives the four node vibration with
nodes one-third the way along the first and fifth section of the
shaft (each distance measured from the terminal mass) and again
at two-thirds along the second and fourth section (distances
measured from the second and from the fifth mass). The single
node and the five node vibrations are followed less readily because
of the non-integral values of p2.

https://doi.org/10.1017/S0305004100015218 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100015218

