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SUMMARY
Overconstrained manipulators in lower subspaces with unique motions can be created and analyzed. However, far
too little attention has been paid to creating a generic method for overconstrained manipulators kinematic analysis.
This study aimed to evaluate a generic methodology for kinematic analysis of overconstrained parallel manipula-
tors with partial subspaces (OPM-PS) using decomposition to parallel manipulators (PMs) in lower subspaces. The
theoretical dimensions of the method are depicted, and the use of partial subspace for overconstrained manipulators
is portrayed. The methodology for the decomposition method is described and exemplified by designing and eval-
uating the method to two overconstrained manipulators with 5 degrees of freedom (DoF) and 3 DoF. The inverse
kinematic analysis is detailed with position analysis and Jacobian along with the inverse velocity analysis. The
workspace analysis for the manipulators using the methodology is elaborated with numerical results. The results of
the study show that OPM-PS can be decomposed into PMs with lower subspace numbers. As imaginary joints are
being utilized in the proposed methodology, it will create additional data to consider in the design process of the
manipulators. Thus, it becomes more beneficial in design scenarios that include workspace as an objective.

1. Introduction
In recent years, there has been an increasing interest in parallel manipulators(PMs). Numerous PMs have
been proposed, and kinematics and dynamics methods are suggested and applied [1]–[5]. There has been
a particular interest in lower mobility parallel manipulators (LMPMs) due to their advantages as having
simpler mechanical designs, larger workspace, error tolerance, agility and robustness. Overconstrained
parallel manipulators (OPMs) are subclass for LMPMs. The overconstrained manipulators are arranged
due to their subspaces. Moreover, the overconstrained manipulators are perfect candidates for the job
done by LMPMs because the desired motion of the end effector is in a subspace.

Research has been done for the overconstrained manipulators in the areas such as structural synthesis,
type synthesis, kinematic analysis, dynamic analysis, stiffness, force analysis and dynamic analysis. In
the structural synthesis, the needed number of joints and their configurations are found. Intuition, screw
theory, or group theory are the most common methods. Gogu [6] Suggested a methodology for the
structural synthesis of fully isotropic OPMs. In their research, Kong and Gosselin [7] proposed a screw
theory-based virtual chain approach for the type synthesis of PMs where some are overconstrained. Dai
et al. [8] prompted a screw theory based mobility formulation for overconstrained parallel mechanisms.
Lee and Herve [9] created a lie group approach for the structural synthesis of 4 DoF (3T1R) OPMs with
uncoupled actuation. Hu [10] investigated the Exechon PM, expressed kinematically identical overcon-
strained and non-overconstrained manipulators and compared them with the Exechon PM. Structural
synthesis of overconstrained manipulators with partial subspaces is described with a methodology based
on unit screws is described in the work of Selvi [11].
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Some overconstrained manipulators are suggested by researchers [12]–[15], and kinematic analysis is
done by analytical and geometric methods. Yan et al. [12] suggested two overconstrained 2-RPU&SPR
PMs and compared their kinematic behaviors, workspace and dexterity. They also made a comparative
stiffness analysis for the same two manipulators [16]. Yan et al. [13] proposed a 3 DoF overconstrained
manipulator. Using an analytical method, it analyses the manipulator’s kinematics, recommends an
algorithm for the manipulator’s workspace analysis, then finds the reachable workspace. Li et al. [14]
proposed a 2R1T OPM, namely Hex4. After the kinematic analysis is done, the link parameters are opti-
mized for a better transmission workspace. Arian et al. [15] provides a Schönflies motion generator with
infinite tool rotation in their research. The system is overconstrained, and the kinematic problem is inves-
tigated for the position, velocity and acceleration of the mechanisms. Singularity analysis and dynamic
models are also developed for the system. Kinematic analysis of a 5 DoF overconstrained manipulator
for rehabilitation is described in the work of Selvi and AL-Dulaimi [17].

Also, dynamic analysis of OPMs is done by several researchers. Sharifzadeh et al. [18] claim to have
obtained a closely realistic dynamic model of 3 DoF translational OPM Tripteron using the white box
and black box model and genetic algorithm. For the overconstrained 2PUR–PSR PM, researchers [19]
described two dynamic models with and without constrained forces/moments using the Newton–Euler
approach and natural orthogonal complement method. Arian et al. [15] carried out the kinematic and
dynamic analysis of overconstrained manipulator Tripteron through Newton–Euler approach. Research
also has been done related to the force and stiffness relations of the overconstrained manipulators. Xu et
al. [20] carried out a screw theory based method considering the link elastic deformations and stiffness
matrix for analyzing the force relation of overconstrained LMPMs. Liu et al. [21] reviewed the methods
for the force analysis of OPMs. They discussed the problem of passive and active OPMs’ statically
indeterminacy. They also prompted a universal method for those two kinds based on the screw theory.
Dynamic analysis of a 5 DoF overconstrained manipulator is done with the decomposition of the partial
subspaces is described in the work of Selvi and Yilmaz [22].

Based on linear algebra and screw theory, Liu et al. [23] presented a systematic approach for
force/motion transmissibility of redundantly actuated and OPMs. Comparing both types, they found
out that the effect of being overconstrained has little concerning having actuation redundancy. To over-
come the statically indeterminate problem in the force analysis of OPM’s, Xu et al. [24] investigates the
presence of the linearly dependent overconstrained wrenches. They reformulate the deformation com-
patibility equations between the overconstrained wrenches and describe the principle force model for
OPMs and analyze these on a 2RPU–SPR OPM.

Hu and Huang [25] provided a kinetostatic model for an overconstrained LMPM with 2-RPU+UPR
joint leg configuration. Using this kinetostatic model, the stiffness and the deformations of links are
exemplified. Yang et al. [26] proposed a modeling method for the elastostatic stiffness of OPMs using
screw theory and applying the method to 2UPR–RPU PMs. Zhang and Fang [27] proposed a 1T2R
OPM with 2RPU–2SPR joint configuration and they calculated the linear and angular stiffness of the
PM to find distributions law of the performance indices of redundantly actuated and overconstrained. Li
et al. [28] proposed a method for the analytical elastostatic stiffness modeling of OPMs. They elaborated
geometric algebra along with strain energy. They also showed proof of concept comparison with finite
element methods. In the study of Zhao et al. [29], the reachable workspace of an OPM with 2RPU&SPR
joint configuration is investigated by using an analytical approach. Decomposition is used to divide a
closed chain system into serial chains for the direct task and path planning of manipulators in the work
of Han and Amato [30]. A random loop generator is presented and used for the kinematic analysis of
closed-loop chains by Cortes et al. [31]. The selection of active and passive links is essential and is
mainly used for path planning for probabilistic road mapping.

Overconstrained manipulators for lower subspaces can be created and analyzed for different tasks
with unique motions. However, far too little attention has been paid to creating a generic method for
OPM’s kinematic analysis. This study aimed to evaluate a generic methodology for kinematic analy-
sis of overconstrained parallel manipulators with partial subspaces (OPM-PS) and validate the method
with examples. The essay has been organized in the following way. It begins by laying out the theoretical
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Figure 1. Bennet double spherical overconstrained mechanism.

dimensions of the research and looks at how the partial subspaces can be used to describe an overcon-
strained manipulator. The new method that decomposes the mechanism into multiple lower subspace
manipulator loops is presented. The methodology is then exemplified by designing and evaluating an
overconstrained manipulator with a 5 DoF overconstrained manipulator. The inverse kinematic anal-
ysis for position analysis is shown. The Jacobian is derived for the system, and the inverse velocity
task is described. The workspace calculation for the methodology is also described, and some numeri-
cal examples are depicted. Additionally, the procedure is applied for a 3 DoF (2T1R) PM. Finally, the
methodology and examples are discussed.

2. Decomposition Method in OPMs
Mechanisms that belong to a subspace are described to be overconstrained. Depending on the geometry
of links, these subspaces can have partial subspaces, which can be helpful in the kinematic analysis of
overconstrained manipulators of this type.

Bennett [32] proposed a method for creating an overconstrained mechanism by combining two mech-
anisms by using an intersecting joint. Removing the joint is possible due to the overconstrained subspace
property (Fig. 1). These mechanisms behave in how the motion has both independent parts at each sub-
space and intersecting motion. The resulting 6R mechanism can be defined with two partial spherical
subspaces with an imaginary joint, as shown in Fig. 1.

In Selvi’s (2012) work, this method was generalized and used for the structural design of PMs. Several
manipulators are generated using the method. Kinematic analysis and synthesis of the resulting mecha-
nisms are done by reversing the idea and decompose the mechanism with an imaginary joint. The output
of the first mechanism with a lower subspace will be input for the second one with another lower sub-
space. The partial subspaces for overconstrained manipulators are listed as spherical, planar, cylindrical,
line and plane with just translation. An overconstrained manipulator generated using the combination
method (Selvi 2012) will include subspaces with lower subspace degrees. In that case, the decompo-
sition method can be used to separate the manipulator into two subspaces by adding imaginary joints.
Imaginary joints are selected according to the intersection motion of the partial subspaces. The over-
constrained manipulator is simulated as two manipulators where one’s input is the other manipulator’s
output. One of the manipulators will include passive joints, and the other will include active joints. Also,
end effector motion will belong to these two subspaces and their intersection motion.

The manipulator to be analyzed is an N DoF manipulator (Fig. 2(a)) and should be dividable into two
partial subspaces (Fig. 2(b)). J imaginary joints are added to the manipulator (Fig. 2(c)). J is determined
by investigating each leg of the manipulator, in each leg, the added joint should not crate any redundancy
on the newly created manipulator in the upper subspace. The type and direction of the imaginary joints
should be selected according to the intersection motion of the subspaces. The first section below will
be defined with an N DoF manipulator that consists of the real base and a virtual platform (Fig. 2(e)).
N DoF controls the motion of the moving platform and controls accompanying links to the platform
that transmits motion to the second section (upper part) of the manipulator. The motion of these links
will be the input for the second section. The second section is described with a manipulator with J DoF
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Figure 2. (a) Overconstrained manipulator with N DoF, (b) joints relation to two partial subspaces,
(c) imaginary joints added to the manipulator, (d) second section parallel manipulator with J DoF,
(e) first section parallel manipulator with N DoF.

Figure 3. Decomposition method applied to 5 DoF parallel manipulator (a) OPM with subspace
regions, (b) OPM with redundant imaginary joints, (c) 3 DoF passive spherical manipulator and (d) 5
DoF active planar manipulator.

(Fig. 2(d)) and a virtual base. This J DoF generates a motion about the geometry of the second section.
The input of the manipulator in the second section comes from a part of the output of the first section
manipulator. To formulate the number of motions that describe the platform motion, Eq. (1) is suggested.
Where the number of motions belongs to the first subspace (M) is found with the difference between the
DoF of whole manipulator and second section manipulator.

M = N − J (1)

3. Overconstrained Manipulator Analysis with Decomposition Method
Two OPMs with partial subspaces are newly created and analyzed to demonstrate the methodology’s
aspects. The first one is a 5 DoF manipulator in subspace λ= 5 and the second example is a 3 DoF
manipulator in λ= 3 subspace.

3.1. 5 DoF PM in subspace λ = 5
The manipulator is designed with four legs, where three legs have PRR(RR) joint combination and one
leg has RRS combination, as shown in Figs. 3(a) and 4(a). The joints in the planar region shown in
Fig. 3(a) will be used to create the active planar manipulator. The joints shown in the spherical region
will be used to create the passive spherical manipulator. For the manipulator, J is found as three because
adding joints to three legs with PRR(RR) do not create redundancy, and adding a joint to RRS leg will
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Figure 4. Plano spherical λ= 5 manipulator (a) actuators configuration, (b) passive spherical
manipulator and (c) active planar manipulator.

Figure 5. Kinematic scheme of the imaginary spherical manipulator.

create redundancy if connected with the spherical joint. In Fig. 3(b), three revolute joints are shown
as imaginary joints. Revolute joints are selected due to the intersection motion between the planar and
spherical subspaces is rotation, and the direction of the joints should be perpendicular to the planar
subspace because the intersecting motion of two partial subspaces is in that direction. Figure 3(c) 3
DoF passive spherical manipulator and Fig. 3(d) 5 DoF active planar PM configuration are shown.
The actuated joints in the system are shown as underlined in Fig. 3(d). The imaginary actuators of the
spherical manipulator are imaginary joints. Platform translates along the plane in two directions and
rotates around three directions. According to the Eq. (1), motion of the end effector that belongs to the
lower platform (M) is found as two, which is the two translations of the lower platform.

Inverse Kinematic Analysis
Imaginary Primary Manipulator (Spherical Subspace)
The upper part is a 3RRR spherical manipulator shown in Fig. 4(b), where three input revolute joints
are inline. The kinematic scheme for the identical leg of the imaginary manipulator is shown in Fig. 5.
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End-effector orientation of the manipulator is defined by ρ. It will be determined for a specific motion
by using Euler angles in the R(z’-y’-z’)(ζ , ξ ,ψ) configuration, as ρ = Rotz (ζ ) .Roty (ξ) .Rotz (ψ).

The vectors wi = [wx,i wy,i wz,i]T, end effector joint positions for the upper manipulator will be found
from Eqs. (2) and (3).

wi = ρ . Rotz(ηi) . Roty(βi) . s (2)

The use of rotation matrices from a forward kinematics view describes the position of the vectors
wi in terms of the orientation of the input joint u = [0,0,1]T and kinematic parameters of the upper
manipulator as shown in Eq. (3).

wi = Rotz(θ1i) . Rotx(α1) . Rotz(θ2i) . Rotx(α2) . u (3)

The closure formed by Eqs. (2) and (3) gives three separate closure equations. The first two equations
of Eq. (3) are used to find θ 1i values for each leg of the mechanism. θ 1i values will be used as output
values for the secondary manipulator.

Velocity analysis
Let the angular velocity of the platform be ω = [ωx ωy ωz]T and the angular velocities of imaginary
joints as θ̇ = [

θ̇ 11θ̇ 12θ̇ 13
]T

.
� is related to the orientation velocity matrix of the platform as

� = ṡs−1 =
⎛
⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞
⎠ (4)

Angular velocity of the rigid body is defined with the linear equations as,

ω = uiθ̇ 1i + viθ̇ 2i + wiθ̇ 3i i = 1, 2, 3 (5)

Where vi = Rotz (θ1i) · Rotx (α1) · u
Multiplying both sides of the Eq. (5) with (vi × wi) will eliminate θ̇ 2iand θ̇ 3i from the constraint

equation

ω · (vi × wi)= ui · (vi × wi) θ̇ i i = 1, 2, 3 (6)

Eq. (6) results in three linear equations that we can form a Jacobian matrix for the spherical
manipulator.

Jx,sω = Jq,sθ̇ (7)

Jsω = θ̇ (8)

Js = J−1
q,s Jx,s (9)

Where Jq,s =
⎛
⎝ v1,xw1,y − v1,yw1,x 0 0

0 v2,xw2,y − v2,yw2,x 0
0 0 v3,xw3,y − v3,yw3,x

⎞
⎠,

Jx,s =
⎛
⎜⎝

v1,yw1,z − v1,zw1,y −v1,xw1,z + v1,zw1,x v1,xw1,y − v1,yw1,x

v2,yw2,z − v2,zw2,y −v2,xw2,z + v2,zw2,x v2,xw2,y − v2,yw2,x

v3,yw3,z − v3,zw3,y −v3,xw3,z + v3,zw3,x v3,xw3,y − v3,yw3,x

⎞
⎟⎠
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Figure 6. Kinematic scheme for the planar part of 5 DoF manipulator.

Imaginary secondary manipulator (planar subspace)
Planar manipulator
The imaginary secondary manipulator will be a planar 5 DoF redundant manipulator shown in Fig. 4(c).
The manipulator’s output is the coordinates of point P and orientations of links joined at point P.

For the inverse kinematics of point P and joints at E and D loop closure equation will be,
OP = OD + DE + EP (10)

It will result in two equations as
Px = Dx + b1 cos (φ14)+ b2 cos (φ14 + φ24) (11)

Py = Dy + b1 sin (φ14)+ b2 sin (φ14 + φ24) (12)

Solving these two equations will result in

φ14 = Atan2 (Dy − Py, Dx − Px)± cos−1

(
b1

2 + b2
2 + (Dx − Px)2 + (Dy − Py)2

−2b1

√
(Dx − Px)2 + (Dy − Py)2

)

φ24 = −φ14 + Atan2 (Py − Dy − b1sin (φ14), Px − Dx − b1cos (φ14))

the second loop closure equation (Eq. (13)) will be used to find actuator values for legs 1,2,3
OP + PC = OA + AB + BC (13)

Px + a2icos (θ1i)= hicos (αi)+ Sicos
(
αi + π

2

)
+ a1icos

(
αi + π

2
+ φ1i

)
(14)

Py + a2isin (θ1i)= hisin (αi)+ Sisin
(
αi + π

2

)
+ a1isin

(
αi + π

2
+ φ1i

)
(15)

Linear actuator values can be found as
Si = −b ± √

b2 − 4c (16)
Where

b = (−2Pycos (αi)+ 2 (Pxsin (αi)+ a2isin (αi − θ1)))

c = −a1i
2 + a2i

2 + hi
2 + Px2 + Py2 − 2hiPxcos (αi)− 2a2ihicos (αi − θ1i)− 2hiPysin (αi)

+ 2a2i (Pxcos (θ1i)+ Pysin (θ1i))
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Velocity analysis
For the planar manipulator, output velocities are stated with Ẋ = [

θ̇11 θ̇12 θ̇13 Ṗx Ṗy
]T and the input

velocities are shown with vector q̇ = [
Ṡ1 Ṡ2 Ṡ3 φ̇14 φ̇24

]T .

Px + a2icos (θ1i)= hicos (αi)+ Sicos
(
αi + π

2

)
+ a1icos

(
αi + π

2
+ φ1i

)
(17)

Py + a2isin (θ1i)= hisin (αi)+ Sisin
(
αi + π

2

)
+ a1isin

(
αi + π

2
+ φ1i

)
(18)

From Eqs. (14) and (15), φ1i is eliminated to create a constraint equation

a1i
2 = h2

i + S2
i + Px2 + Py2 + a2i

2 − 2Pxhicos (αi)− 2hicos (αi − θ1i) a2i − 2PxSicos
(
αi + π

2

)
+ 2Pxa2icos (θ1i)− 2Pyhisin (αi)− 2PySisin

(
αi + π

2

)
+ 2Pya2isin (θ1i) (19)

Moreover, it was derived by time for the velocity relations.

[−Px − cos (θ1i) a2i + cos (αi) hi − sin (αi) Si] Ṗx+ [−Py − sin (θ1i) a2i + sin (αi) hi + cos (αi) Si

]
× Ṗy+a2i

[−Pycos (θ1i)+ Pxsin (θ1i)+ sin (αi − θ1i) hi + cos (αi − θ1i) Si

]
θ̇1i

= [ − Pycos(αi) + Pxsin(αi) + sin(αi − θ1i)a2i + Si]Ṡi (20)

Eqs. (10) and (11) is derived by time for further velocity relations

Ṗx = (−b1sin (φ14)− b2sin (φ14 + φ24)) φ̇14 − b2sin (φ14 + φ24) φ̇24 (21)

Ṗy = (b1 cos (φ14)+ b2 cos (φ14 + φ24)) φ̇14 + b2 cos (φ14 + φ24) φ̇24 (22)

Jx,pẋ = Jq,pq̇ (23)

Jpẋ = q̇

Jp = J−1
q,p Jx,p

Jq,p =

⎛
⎜⎜⎜⎜⎜⎝

J1,1
q,p 0 0 0 0
0 J22

q,p 0 0 0
0 0 J3,3

q,p 0 0
0 0 0 J4,4

q,p J4,5
q,p

0 0 0 J5,4
q,p J5,5

q,p

⎞
⎟⎟⎟⎟⎟⎠

Where,

J1,1
q,p = −Pycos (α1)+ Pxsin (α1)+ sin (α1 − θ11) a21 + S1

J2,2
q,p = −Pycos (α2)+ Pxsin (α2)+ sin (α2 − θ12) a22 + S2

J3,3
q,p = −Pycos (α3)+ Pxsin (α3)+ sin (α3 − θ13) a23 + S3

J4,4
q,p = (−b1sin (φ14)− b2sin (φ14 + φ24))

J4,5
q,p = −b2sin (φ14 + φ24)

J5,4
q,p = (b1cos (φ14)+ b2cos (φ14 + φ24))

J5,5
q,p = b2cos (φ14 + φ24)
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Jx,p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

J1,1
x,p 0 0 J1,4

x,p J1,5
x,p

0 J2,2
x,p 0 J2,4

x,p J2,5
x,p

0 0 J3,3
x,p J3,4

x,p J3,5
x,p

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Where,

J1,1
x,p = a21

[−Pycos (θ11)+ Pxsin (θ11)+ sin (α1 − θ11) h1 + cos (α1 − θ11) S1

]
J2,2

x,p = a22

[−Pycos (θ12)+ Pxsin (θ12)+ sin (α2 − θ12) h2 + cos (α2 − θ12) S2

]
J3,3

x,p = a23

[−Pycos (θ13)+ Pxsin (θ13)+ sin (α3 − θ13) h3 + cos (α3 − θ13) S3

]
J1,4

x,p = −Px − cos (θ11) a21 + cos (α1) h1 − sin (α1) S1

J1,5
x,p = −Py − sin (θ11) a21 + sin (α1) h1 + Cos (α1) S1

J2,4
x,p = −Px − cos (θ12) a22 + cos (α2) h2 − sin (α2) S2

J2,5
x,p = −Py − sin (θ12) a22 + sin (α2) h2 + Cos (α2) S2

J3,4
x,p = −Px − cos (θ13) a23 + cos (α3) h3 − sin (α3) S3

J3,5
x,p = −Py − sin (θ13) a23 + sin (α3) h3 + cos (α3) S3

Using Eqs. (7) and (22) recurrently, the velocity analysis of the whole manipulator can be done.

Results of kinematic calculations
The parameters for the 1st manipulator is selected with trial and error as follows,

η1 = 0◦, η2 = 120◦, η3 = 240◦, βi = 60◦; i = 1, 2, 3

α1 = α2 = 75◦, Dx = 0, Dy = 75, b1 = 100, b2 = 100

To test the inverse kinematic solution for the manipulator and an objective motion is defined that
has sinusoidal characteristic with different phase angles and frequencies. The objective motion of the
orientation and translation of the end effector is shown in Fig. 7(a) and (b), respectively.

Using Eq. (3), the imaginary joint values are found for the objective orientation data and presented
in Fig. 8.

These imaginary joint values are used as an objective function for the bottom manipulator. The actu-
ated joints of the manipulator’s position and orientation are shown in Fig. 9(a) and (b), respectively.

The velocity relations for imaginary joints are tested by describing angular velocity at the end effec-
tor. The related imaginary joint velocities are found in Fig. 10(a), which will be used along with the
sinusoidal translational velocity defined for the end effector to calculate the actuator velocities. The
translational and angular velocities are found as presented in Fig. 10(b).

The decomposition method is also used to determine or design the workspace of the overconstrained
manipulator. The determined workspace for the upper part of the 5 DoF manipulator is shown in
Fig. 11(a), where the orientation is dexterous around ζ . The range of the imaginary joints is calcu-
lated for ±20◦ in all directions as, θ11: −0.55 to +0.55 radians, θ12 from 1.4 to 3.2 radians, θ13 from
3.5 to 4.9 radians. The workspace for the whole manipulator is then calculated using these ranges and
presented in Fig. 11(b) and (c). It is seen that the θ13 direction is dexterous.
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Figure 7. Objective values for 5 DoF manipulator (a) orientation and (b) translation.

Figure 8. Calculated orientation values of imaginary joints.

Figure 9. Calculated position and orientation values of actuated joints: (a) prismatic and (b) revolute.

For a design case of the manipulator for a better workspace, number of parameters in design should
be 25. The use of imaginary joints helps divide the system into two parts and split the number of design
parameters by 9 and 16. Thus, the design space is decreased from the order of 25 to 16 and 9. Also,
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Figure 10. (a) Imaginary joints velocity, (b) linear actuator velocities and (c) angular actuator
velocities.

Figure 11. (a) Individual workspace of the upper part of 5 DoF manipulator at ζ = 0, (b) workspace
of the manipulator for xy motion and (c) workspace for the imaginary joints.

the workspace of the imaginary joints shown in Fig. 11(c) can be used to set constraint equations for an
optimization problem.

3.2. 3 DoF manipulator in subspace λ = 3
An overconstrained manipulator with 3 DoF is shown in Figs. 12(a) and 13(a). Manipulator has three
legs, where two legs have PPR joint combination and one leg has PPH combination as shown in Fig. 12.
The translational region’s joints belong to the translational subspace, and joints in the cylindrical region
belong to the cylindrical subspace. For the proposed manipulator, J is found as one because only one joint
added to the PPH leg will not create redundancy for the upper passive manipulator. It is selected to be
a prismatic joint due to the intersection motion of the planar with translation only space and cylindrical
subspace is translational motion, and the direction of the prismatic joint should be coaxial with the
intersection of these subspaces. Figure 12(c) 1 DoF cylindrical mechanism is seen, and Fig. 12(d) 3
DoF translational PM is seen. The actuated joints in the system are shown as underlined in Fig. 12(d).
Using Eq. (1), motion of the end effector that belongs to the lower platform (M) is found as two related
to the lower platform’s translations.

The imaginary actuator of the cylindrical manipulator is an imaginary joint. Platform translates along
the plane in two directions and rotates around one of the directions.

Three parameters define the manipulator’s output—two translations along x and y axes as Px and Py
and rotation around the y-axis as φ. The upper part of the system is a one DoF mechanism with PHR
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Figure 12. Decomposition method applied to 3 DoF parallel manipulator (a) 3 DoF overconstrained
manipulator, (b) 3 DoF overconstrained manipulator with redundant imaginary joints, (c) 1 DoF passive
cylindrical manipulator and (d) 3 DoF active translational manipulator.

Figure 13. 3 DoF overconstrained manipulator (a) actuators configuration, (b) kinematics of the 1
DoF cylindrical mechanism and (c) kinematics of the 3 DoF planar manipulator.

joint configuration in cylindrical subspace. The output of the mechanism is φ , and the input is S as
shown in Fig. 13(b). The closure equation of the mechanism can be given as follows

φ = θ = s/p (24)

where p is the pitch value for the helical joint.
From Eq. (24), the imaginary input value S can be calculated and deriver by time to get the velocity

equation

Ṡ = p ∗ φ̇ (25)

The secondary imaginary manipulator is a 3 DoF planar translational manipulator as shown in
Fig. 13(c).

With the leg configuration as 2PP+PPP

OA + AB + BC + CP = OP (26)

(hi − ai) cos (αi)− Sisin (αi)− kicos (βi + αi)= Px (27)

(hi − ai) sin (αi)− Sicos (αi)− kisin (βi + αi)= Py (28)
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Figure 14. Displacement and orientation values of decided objective (a) translation and (b) orientation.

Figure 15. (a) Imaginary joint position changes of 3 DoF manipulator and (b) inverse kinematic
position analysis of 3 DoF manipulator.

For link 1 ki = k1+S

S1 = [
Py cos (α1)− Px sin (α1)+ sin (β1) (k1 + S)

]
/cos (2α1)

S2 = [
Pycos (α2)− Pxsin (α2)+ sin (β2) (k2)

]
/cos (2α2)

S3 = [
Pycos (α3)− Pxsin (α3)+ sin (β3) (k3)

]
/cos (2α3)

Velocity analysis can be done by deriving the position equation by time. The velocity relation of the
second example manipulator is found in Eq. (29).

⎡
⎢⎢⎣

Ṡ1

Ṡ2

Ṡ3

⎤
⎥⎥⎦=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−sin (α1)

cos (2α1)

cos (α1)

cos (2α1)

sin (β1)

cos (2α1)

−sin (α2)

cos (2α2)

cos (α2)

cos (2α2)
0

−sin (α3)

cos (2α3)

cos (α3)

cos (2α3)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎣

Ṗx

Ṗy

Ṡ

⎤
⎥⎥⎦ (29)

The construction parameters for the second example manipulator is selected as, p = 20 (constant pitch
of the screw joint), α1 = 210◦, α2 = 330◦, α3 = 90◦, β1 = 45◦, β2 = 285◦, β3 = 165◦, k1 = 10 mm, k2 =
15 mm, k3 = 25 mm with a ±400 mm range of sliders.

Again a sinusoidal objective motion with different phase angles and frequencies was determined for
the position and orientation of the 3 DoF manipulator, as shown in Fig. 14(a) and (b), respectively. The
imaginary joint position S is found in Fig. 15(a), and the three slider values are calculated as shown in
Fig. 15(b).
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Figure 16. (a) Objective velocity of the platform and (b) calculated velocity of the actuator.

Figure 17. Workspace of the second example manipulator.

The velocity is determined and shown in Fig. 16(a), and corresponding velocity values are calculated
as shown in Fig. 16(b).

The sliders’ limits are selected as ±400 mm, and the resulting workspace for φ= 0, 120, 240, 360,
480, 600 are presented in Fig. 17. It is seen that the workspace is shifting due to the rotation in the helical
joint.

5. Discussion
The decomposition method is applied by dividing the system into lower subspace close loops rather
than open loops. This unique approach shows several advantages in kinematic calculation simplicity,
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understanding of the motion of the PM, workspace and singularity determination. With the help of
decomposition, the manipulator is divided into two parts. Lower dimensional subsets can be investigated
separately. Then singularities can be determined regarding the lower subspace and related motion. The
use of the decomposition method is also helpful in means of calculations. Solving the kinematics for
the manipulator commonly, they are needed to be dissected into arms and then for each arm, kinematic
calculations should be done. Assuming the use of homogeneous transformation matrices for single arms
of the system, some complex calculations should have been handled for spatial kinematics. For example,
if this method is applied, the first example multiplication of five six by six homogeneous matrices should
be solved. Also, dividing the motion into lower subspaces helps to identify the motion quickly. The use
of the decomposition method shows that the workspace for the manipulator can be divided concerning
the partial subspaces of the manipulator. Then individual parts can be calculated and investigated in
means of workspace. The intersection of the workspace of the imaginary joints and the sub manipulator
with the actuators will result in the actual workspace. The visualization of the separate workspace also
helps in the interpretation in means of design. Among the two examples shown in the text, additional
four manipulators are described in the appendix without detailed kinematics but just the use of the
decomposition method.

6. Conclusion
The Decomposition method is defined and applied for two example manipulators. Results show that
using the method and adding imaginary joints to the inverse position and velocity analysis with Jacobian
can be achieved. Furthermore, it is also shown that the decomposition method will be a convenient tool
for the design process of these types of manipulators for desired workspaces. Unlike most OPMs, the
OPMs-PS have a clear definition for the subspace itself. Applicability of the method will open a way of
research in this area of OPMs.

Conflicts of Interest. The author declares none.

Financial Support. This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Supplementary Material. To view supplementary material for this article, please visit
https://doi.org/10.1017/S0263574721001351.

References
[1] J. P. Merlet, Parallel Robots (Springer Science & Business Media, 2005).
[2] Z. Huang, Q. C. Li and H. F. Ding, Theory of Parallel Mechanisms (Springer, Dordrecht, 2012).
[3] J. Angeles, Fundamentals of Robotic Mechanical Systems (Springer, 2014).
[4] Z. Huang and Q. C. Li, “General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and

several novel manipulators,” Int. J. Rob. Res. 21(2), 131–145 (2002).
[5] F. Gao, W. Li, X. Zhao, Z. Jin and H. Zhao, “New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator

designs,” Mech. Mach. Theory 37(11), 1395–1411 (2002).
[6] G. Gogu, “Fully-Isotropic Over-Constrained Planar Parallel Manipulators,” In: 2004 IEEE/RSJ Int. Conf. Intell. Robot.

Syst., vol. 4 (2004) pp. 3519–3524.
[7] X. Kong and C. M. Gosselin, “Type synthesis of 5-DOF parallel manipulators based on screw theory,” J. Robot. Syst. 22(10),

535–547 (2005).
[8] J. S. Dai, Z. Huang and H. Lipkin, “Mobility of overconstrained parallel mechanisms,” J. Mech. Des. Trans. ASME 128(1),

220–229 (2006).
[9] C. C. Lee and J. M. Hervé, “Uncoupled actuation of overconstrained 3T-1R hybrid parallel manipulators,” Robotica 27(1),

103–117 (2009).
[10] B. Hu, “Kinematically identical manipulators for the Exechon parallel manipulator and their comparison study,” Mech.

Mach. Theory 103, 117–137 (2016).
[11] O. Selvi, Structural and Kinematic Synthesis of Overconstrained Mechanisms (Izmir Institute of Technology, 2012).
[12] Q. Yan, B. Li, Y. Li and X. Zhao, “Kinematics comparative study of two overconstrained parallel manipulators,” Math.

Probl. Eng. 2016 (2016).

https://doi.org/10.1017/S0263574721001351 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001351
https://doi.org/10.1017/S0263574721001351


1798 Özgün Selvi

[13] B. Li, Y. Li and X. Zhao, “Kinematics analysis of a novel over-constrained three degree-of-freedom spatial parallel
manipulator,” Mech. Mach. Theory 104, 222–233 (2016).

[14] L. Xu, G. Chen, W. Ye and Q. Li, “Design, analysis and optimization of Hex4, a new 2R1T overconstrained parallel
manipulator with actuation redundancy,” Robotica 37(2), 358–377 (2019).

[15] A. Arian, M. Isaksson and C. Gosselin, “Kinematic and dynamic analysis of a novel parallel kinematic Schönflies motion
generator,” Mech. Mach. Theory 147 (2020).

[16] Q. Yan, B. Li, X. Zhao and Y. Li, “Comparative Stiffness Analysis of Two Over-Constrained Manipulators,” In: ICARM
2016-2016 Int. Conf. Adv. Robot. Mechatronics (2016) pp. 225–230.

[17] O. Selvi and H. Al-Dulaimi, “Kinematic Analysis of a 5 dof Overconstrained Manipulator for Rehabilitation of Upper
Extremite,” In: IEEE Int. Conf. Acoust. Speech, Signal Process. 2017, vol. 11(2) (2015) pp. 52–69.

[18] M. Sharifzadeh, A. Arian, A. Salimi, M. Tale Masouleh and A. Kalhor, “An experimental study on the direct & indirect
dynamic identification of an over-constrained 3-DOF decoupled parallel mechanism,” Mech. Mach. Theory 116, 178–202
(2017).

[19] Z. Chen, L. Xu, W. Zhang and Q. Li, “Closed-form dynamic modeling and performance analysis of an over-constrained
2PUR-PSR parallel manipulator with parasitic motions,” Nonlinear Dyn. 96(1), 517–534 (2019).

[20] Y. Xu, W. Liu, J. Yao and Y. Zhao, “A method for force analysis of the overconstrained lower mobility parallel mechanism,”
Mech. Mach. Theory 88, 31–48 (2015).

[21] W. L. Liu, Y. D. Xu, J. T. Yao and Y. S. Zhao, “Methods for force analysis of overconstrained parallel mechanisms: A
review,” Chinese J. Mech. Eng. (English Ed.) 30(6), 1460–1472 (2017).

[22] O. Selvi and K. Yilmaz, “Inverse kinematics and dynamics of an overconstrained manipulator for upper extremity
rehabilitation,” Mech. Mach. Sci. 46, 437–443 (2017).

[23] H. Liu, T. Huang, A. Kecskeméthy, D. G. Chetwynd and Q. Li, “Force/motion transmissibility analyses of redundantly
actuated and overconstrained parallel manipulators,” Mech. Mach. Theory 109(November 2016), 126–138 (2017).

[24] Y. Xu, L. Lu, W. Liu, J. Guo, J. Yao and Y. Zhao, “Principle of force analysis of overconstrained parallel mechanisms
considering link weight,” Robotica 37(9), 1533–1544 (2019).

[25] B. Hu and Z. Huang, “Kinetostatic model of overconstrained lower mobility parallel manipulators,” Nonlinear Dyn. 86(1),
309–322 (2016).

[26] C. Yang, Q. Li, Q. Chen and L. Xu, “Elastostatic stiffness modeling of overconstrained parallel manipulators,” Mech. Mach.
Theory 122, 58–74 (2018).

[27] H. Zhang and H. Fang, “Stiffness characteristics analysis of a novel 3-DOF parallel kinematic machine tool,” Int. J. Eng.
Technol. 10(4), 346–354 (2018).

[28] Q. Li, L. Xu, Q. Chen and X. Chai, “Analytical elastostatic stiffness modeling of overconstrained parallel manipulators using
geometric algebra and strain energy,” J. Mech. Robot. 11(3) (2019).

[29] F. Zhao, Q. Yan, B. Li and J. Xie, “Workspace analysis of an over-constrained 2-RPU&SPR parallel manipulator,” Math.
Model. Eng. Probl. 3(2), 87–90 (2016).

[30] H. Li and A. Nanc M, “A kinematics-based probabilistic roadmap method for closed chain systems,” Algorithmic Comput.
Robot., 243–251 (2020).

[31] J. Cortés, T. Siméon and J. P. Laumond, “A Random Loop Generator for Planning the Motions of Closed Kinematic Chains
Using PRM Methods,” In: Proc. - IEEE Int. Conf. Robot. Autom., vol. 2, May, pp. 2141–2146 (2002).

[32] G. T. Bennett, “ LXXVII. The parallel motion of Sarrut and some allied mechanisms,” London, Edinburgh, Dublin Philos.
Mag. J. Sci. 9(54), 803–810 (1905).

Cite this article: Ö. Selvi (2022). “Kinematic analysis of overconstrained manipulators with partial subspaces using decomposi-
tion method”, Robotica 40, 1783–1798. https://doi.org/10.1017/S0263574721001351

https://doi.org/10.1017/S0263574721001351 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001351
https://doi.org/10.1017/S0263574721001351

	
	Introduction
	Decomposition Method in OPMs
	Overconstrained Manipulator Analysis with Decomposition Method
	5 DoF PM in subspace lambda ==5

	Inverse Kinematic Analysis
	Imaginary Primary Manipulator (Spherical Subspace)
	Velocity analysis
	Imaginary secondary manipulator (planar subspace)
	Planar manipulator
	Velocity analysis
	Results of kinematic calculations
	3 DoF manipulator in subspace "026E30F lambda==3

	Discussion
	Conclusion

