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The purpose of this article is to study several preservation properties of stochastic
comparisons based on the mean inactivity time order under the reliability opera-
tions of convolution and mixture+Characterizations and relationships with the other
well-known orders are given+ Some examples of interest in reliability theory are
also presented+ Finally, testing in the increasing mean inactivity time class is
discussed+

1. INTRODUCTION

During the past several decades, various concepts of stochastic comparisons be-
tween random variables have been defined and studied in the literature, because
they are useful in modeling for reliability and economics applications and as math-
ematical tools for proving important results in applied probability~see Shaked and
Shanthikumar@20# for an exhaustive monograph on this topic!+

For any life variableX $ 0, the residual life variableXt 5 @X2 t 6X $ t # , where
t [ ~0, l X! andl X 5sup$t : FX~t ! , 1%, is a nonnegative random variable representing
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the remaining life ofX at aget+ Hence, if F~{! is the distribution function ofX and
OF~{! [1 2 F~{! is its survival function, then the survival function ofXt is given by

OFXt
~x! 5

OF~x 1 t !

OF~t !
, x $ 0, t $ 0+

Given two random variablesX andY, X is said to be smaller thanY in the hazard rate
order~denote byX #HR Y! if

Xt #st Yt for all t,

where the stochastic ordering~#st! means that OFXt
~t ! # OFYt

~t ! for all t+
However, it is reasonable to presume that in many realistic situations, the ran-

dom life variable is not necessarily related to the future but can also refer to the past+
For instance, consider a system whose state is observed only at certain preassigned
inspection times+ If at time t the system is inspected for the first time and it is found
to be “down,” then the failure relies on the past~i+e+, on which instant in~0, t ! it has
failed!+ It thus seems natural to study a notion that is dual to the residual life, in
the sense that it refers to past time and not to future~see Di Crescenzo and Longo-
bardi@9# !+

For any random variableX, let

X~t ! 5 @t 2 X6X , t # , t [ $x : FX~x! , 0%,

denote a random variable whose distribution is the same as the conditional distri-
bution of t 2 X given thatX , t+When the random variableX denotes the lifetime
~X $ 0, with probability 1! of a unit, X~t ! is known as the inactivity time or reversed
residual life~see, for instance, Chandra and Roy@8# , Block, Savits, and Singh@7# ,
Li and Lu @14# , and Nanda, Singh, Misra, and Paul@17# !+

Now we recall the definition of the mean inactivity time order~#MIT !, the in-
creasing concave order~#ICV !, and the reversed hazard rate order~#RHR!+

Definition 1.1: Let X and Y be two nonnegative random variables with absolutely
continuous distribution functions F and G and densities f and g, respectively. X is
said to be smaller than Y in the following:

(i) the mean inactivity time order (denoted by X#MIT Y) if

E @t 2 X6X , t # $ E @t 2 Y6Y , t # for all t [ R1

(ii) the increasing concave order (denoted by X#ICV Y) if

E
0

x

F~u! du $ E
0

x

G~u! du for all x (1.1)

(iii) the reversed hazard rate order (denoted by X#RHR Y) if

f ~v!

F~u!
#

g~v!

G~u!
for all u # v+
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For more details, one may refer to Shaked and Shanthikumar@20# and Muller
and Stoyan@16# for the stochastic order~#ST!, hazard rate order~#HR!, reversed
hazard rate order~#RHR!, increasing concave order~#ICV ! and Nanda et al+ @17# for
the mean inactivity time order~#MIT ! and other commonly used stochastic orders+

The purpose of this article is to study several preservation properties of sto-
chastic comparisons based on the mean inactivity time order+ Section 2 contains
definitions, notations, and basic properties used throughout the article+Also in that
section, we give some characterizations and relationships of the#MIT order and
other well-known orders+ In Section 3, we present some preservation results under
the operations of convolution and mixture, as well as some examples of interest
in reliability theory+ Finally, in Section 4, we discuss hypothesis testing in the in-
creasing mean inactivity time class~IMIT ! defined as the class whereE @X~t !# is
increasing for all nonnegativet+

Throughout the article we will use the term “increasing” in place of “non-
decreasing” and “decreasing” in place of “nonincreasing+” a00 is understood to be
` whenevera . 0+ All integrals and expectations are implicitly assumed to exist
whenever they are written+

2. DEFINITIONS, NOTATIONS, AND CHARACTERIZATIONS

Let X andY have the distribution functionsF andG, respectively; we denote the
expected value of the random variablesX~t ! andY~t ! by a~t ! andb~t !, respectively,
where

a~t ! 5E
0

t F~u! du

F~t !
, t . 0,

and

b~t ! 5E
0

t G~u! du

G~t !
, t . 0+

Observe that by the definition of#MIT order, X #MIT Y holds if and only if
a~t ! $ b~t ! for all t $ 0+ Actually, an equivalent condition for MIT order is given in
Nanda et al+ @17# , and is the following+

Proposition 2.1: Let X and Y be two continuous nonnegative random variables
with absolutely continuous distribution functions F and G. Then, X#MIT Y if and
only if

E
0

t

F~u! du

E
0

t

G~u! du

is decreasing int [ R1+ (2.1)
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For any real numbera, let a2 denote the negative part ofa; that is, a2 5 a if
a # 0 anda2 5 0 if a . 0+ Therefore, if X #MIT Y, then

E @~X 2 t !2#

E @~Y2 t !2#
is decreasing int over$t :E @~Y2 t !2# . 0%

or, equivalently, X #MIT Y if and only if

F~t !E
0

t

G~u! du # G~t !E
0

t

F~u! du for all t [ R1+

Nanda et al+ @17# proved that the reversed hazard rate order is stronger than the
mean inactivity time order+ In the following result,we prove that the mean inactivity
time order is stronger than the increasing concave order+

Theorem 2.1: Let X and Y be two nonnegative random variables. If X#MIT Y, then
X #ICV Y.

Proof: Let F andG be the distribution functions ofX andY, respectively+ From
~2+1!, it follows that

logE
0

a

F~u! du2 logE
0

a

G~u! du is decreasing ina [ $a :G~x! . 0%+

Therefore,

F~a!

E
0

a

F~u! du
#

G~a!

E
0

a

G~u! du
for all a [ $a :G~x! . 0%+

Now, the proof is similar to that of Theorem 3+A+13 in Shaked and Shanthi-
kumar@20# + A straightforward computation gives

2 log5 E0

x

F~u! du

E
0

`

F~u! du6 5E
x

`F F~a!

E
0

a

F~u! duG da

# E
x

`F G~a!

E
0

a

G~u! duG da

5 2log5 E0

x

G~u! du

E
0

`

G~u! du6 +
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Thus,

E
0

x

F~u! du

E
0

`

F~u! du

$

E
0

x

G~u! du

E
0

`

G~u! du

+

SinceX #MIT Y implies that

E
0

x

F~u! du

E
0

x

G~u! du

$ lim
xr`

E
0

x

F~u! du

E
0

x

G~u! du

$ lim
xr`

F~x!

G~x!
5 1,

it follows that~1+1! holds+ n

We have the following implications among some of the previous orders:

X #MIT Y

; '

X #RHR Y X#ICV Y+

' ;

X #ST Y

3. PRESERVATION RESULTS

Useful properties of the stochastic orders are their closure with respect to typical
reliability operations like convolution or mixture~see Barlow and Proschan@5# and
Shaked and Shanthikumar@20# !+ In this section, we present some preservation re-
sults for themean inactivity time order~#MIT !+First,we recall the definition of some
notions that will be used in the sequel+

Definition 3.1: Given two continuous random variables X and Y with densities f
and g, respectively, X is said to be smaller than Y in the likelihood ratio order
(denoted by X#lr Y) if

f ~t !

g~t !
decreases over the union of the supports of XandY+

Definition 3.2: A probability vector ta 5 ~a1, + + + ,an! with ai . 0 for i 51,2, + + + , n
is said to be smaller than the probability vectornb 5 ~b1, + + + ,bn! in the sense of the
discrete likelihood ratio order, denoted byta #dlr nb, if
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bi

ai

#
bj

aj

for all 1 # i # j # n+

Definition 3.3: A function g~x!, 2` , x , `, is said to be a Polya function of
order 2~PF2! if the following hold:

(a) g~x! $ 0 for 2` , x , ` and
(b)

*g~x1 2 y1! g~x1 2 y2!

g~x2 2 y1! g~x2 2 y2!* $ 0

for all 2` , x1 , x2 , ` and2` , y1 , y2 , ` or, equivalently,

(b') log@g~x!# is concave on~2`,`!.

The equivalence of~b! and ~b'! is shown in Barlow and Proschan@5, Exer-
cise 12, p+ 79# +

3.1. Convolution

As an important reliability operation, convolutions of a certain stochastic order are
often paid much attention+ The closure properties of#ST, #HR, #RHR, and#ICV

orders can be found in Shaked and Shanthikumar@20# + In Theorem 3+1,we establish
the closure property of the#MIT order under the convolution operation+ In general,
if X1 #MIT Y1 andX2 #MIT Y2, whereX1 andX2 are independent random variables
andY1 andY2 are also independent random variables, then it is not necessarily true
thatX1 1 X2 #MIT Y1 1 Y2+ However, if these random variables have log-concave
density, then it is true+ This is shown in the following+

Theorem 3.1: Let X1, X2, and Y be three nonnegative random variables, where Y is
independent of both X1 and X2, and let Y have density g. If X1 #MIT X2 and g is
log-concave, then X1 1 Y #MIT X2 1 Y.

Proof: First, we note that for fixeds$ 0 andi 5 1,2,

F~i, t ! 5E
0

`

FXi1Y~t 2 v! dv

5E
0

`E
0

`

Fi ~t 2 v2 u! dFY~u! dv

5E
0

`E
2`

t

Fi ~z2 v! fY~t 2 z! dz dv

5E
2`

t

fY~t 2 z!E
0

`

Fi ~z2 v! dv dz

5E
2`

t

fY~t 2 z!c~i, z! dz+
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As shown in Proposition 2+1, the assertion follows if we prove thatF~i, t ! is
TP2 in ~i, t ! ~Joag-Dev, Kochar, and Proschan@12# !+ By the assumptionX1 #MIT Y1,
we can say thatc~i, z! is TP2 in ~i, z!+ Moreover, sinceY has log-concave density,
fY~t 2 z! is TP2 in ~t, z!+ Therefore, by the basic composition formula~Karlin @13# !,
it follows thatF~i, t ! is TP2 in ~i, t !+ This completes the proof+ n

Corollary 3.1: If X1 #MIT Y1 and X2 #MIT Y2, where X1 is independent of
X2 and Y1 is independent of Y2, then the following statements hold:

(i) If X1 and Y2 have log-concave densities, then X1 1 X2 #MIT Y1 1 Y2.
(ii) If X 2 and Y1 have log-concave densities, then X1 1 X2 #MIT Y1 1 Y2.

Proof: The following chain of inequalities, which establish~i!, follows from
Theorem 3+1:

X1 1 X2 #MIT X1 1 Y2 #MIT Y1 1 Y2+

The proof of~ii ! is similar+ n

Theorem 3.2: If X1, X2, . . . and Y1, Y2, . . . are sequences of independent random
variables with Xi #MIT Yi and Xi and Yi have log-concave densities for all i, then

(
i51

n

Xi #MIT (
i51

n

Yi ~n 5 1,2, + + + !+

Proof: We will prove the theorem by induction+ Clearly, the result is true forn51+
Assume that the result is true forp 5 n 2 1; that is,

(
i51

n21

Xi #MIT (
i51

n21

Yi + (3.1)

Note that each of the two sides of~3+1! has a log-concave density~see, e+g+, Karlin
@13, p+ 128# !+ Appealing to Corollary 3+1, the result follows+ n

3.2. Mixture

Let nowX~u! be a random variable having distribution functionFu and letQi be a
random variable having distributionGi , for i 51,2, and supportR1+ The following
is a closure of MIT order under mixture+

Theorem 3.3: Let $X~u!, u [ R1% be a family of random variables independent
of Q1 and Q2. If Q1 #lr Q2 and if X~u1! #MIT X~u2! wheneveru1 # u2, then
X~Q1! #MIT X~Q2!.

Proof: Let Fi be the distribution function ofX~Qi !, with i 5 1,2+We known that

Fi ~x! 5E
0

`

Fu~x! dGi ~u!+
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Because of Proposition 2+1, we should prove thatF~i, t ! 5 *0
` Fi ~t 2 x! dx is TP2 in

~i, t !+ However, actually

F~i, t ! 5E
0

`

Fi ~t 2 x! dx

5E
0

`E
0

`

Fu~t 2 x! dGi ~u! dx

5E
0

`

gi ~u!E
0

`

Fu~t 2 x! dx du

5E
0

`

gi ~u! c~u, t ! du+

By the assumptionX~u1! #MIT X~u2! wheneveru1 # u2, we have thatc~u, t ! is TP2

in ~u, t !, and from the assumptionQ1 #lr Q2, it follows that gi ~u! is TP2 in ~i ,u!+
Thus, again, the assertion follows from the basic composition formula+ n

Suppose thatXi , i 5 1, + + + , n, is a collection of independent random variables+
Suppose thatFi is the distribution function ofXi + Let ta 5 ~a1, + + + ,an! and nb 5
~b1, + + + ,bn! be two probability vectors+ Let X andYbe two random variables having
the respective distribution functionsF andG defined by

F~x! 5 (
i51

n

ai Fi ~x! and G~x! 5 (
i51

n

bi Fi ~x!+ (3.2)

The following result gives conditions under whichX and Y are comparable
with respect to the MIT order+One can refer to Ahmed@3# and Ahmed and Kayid@4#
for a similar preservation property of the mean residual life order~#MRL ! and the
Laplace transform of residual life order~#Lt2rl !, respectively+ Definition, proper-
ties, and applications of#MRL order and#Lt2rl order can be found, for instance, in
Shaked and Shanthikumar@20# ,Belzunce,Ortega, and Ruiz@6# , and Gao,Belzunce,
Hu, and Pellerey@10# +

Theorem 3.4: Let X1, + + + ,Xn be a collection of independent random variables with
corresponding distribution functions F1, + + + ,Fn, such that X1 #MIT X2 #MIT + + +#MIT

Xn and let ta 5 ~a1, + + + ,an! and nb 5 ~b1, + + + ,bn! such that ta #dlr nb+ Let X and Y have
distribution functions F and G defined in Eqs. (3.2). Then, X#MIT Y.

Proof: Again, because of Proposition 2+1, we need to establish that

E
0

`

(
i51

n

bi Fi ~x 2 u! du

E
0

`

(
i51

n

ai Fi ~x 2 u! du

#

E
0

`

(
i51

n

bi Fi ~ y 2 v! dv

E
0

`

(
i51

n

ai Fi ~ y 2 v! dy

for all 0 , y , x+ (3.3)
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Multiplying by the denominators and canceling out equal terms, it can be shown that
inequality~3+3! is equivalent to

(
i51

n

(
j51

n

iÞj

bi ajE
0

`

Fi ~x 2 u! duE
0

`

Fj ~ y 2 v! dv

# (
i51

n

(
j51

n

iÞj

bi ajE
0

`

Fi ~ y 2 u! duE
0

`

Fj ~x 2 v! dv

or, equivalently

(
i51

n

(
j51

n

i,j

Fbi ajE
0

`

Fi ~x 2 u! duE
0

`

Fj ~ y 2 v! dv

1 bj aiE
0

`

Fj ~x 2 u! duE
0

`

Fi ~ y 2 v! dvG
# (

i51

n

(
j51

n

i,j

Fbi ajE
0

`

Fi ~ y 2 v! dvE
0

`

Fj ~x 2 u! du

1 bj aiE
0

`

Fj ~x 2 v! dvE
0

`

Fi ~ y 2 u! duG +
Now, for each fixed pair~i, j ! with i , j, we have

Fbi ajE
0

`

Fi ~ y 2 v! dvE
0

`

Fj ~x 2 u! du

1 bj aiE
0

`

Fj ~ y 2 v! dvE
0

`

Fi ~ y 2 u! duG
2 Fbi ajE

0

`

Fi ~x 2 u! duE
0

`

Fj ~ y 2 v! dv

1 bj aiE
0

`

Fj ~x 2 u! duE
0

`

Fi ~ y 2 v! dvG
5 ~bi aj 2 bj ai !FE

0

`

Fi ~ y 2 v! dyE
0

`

Fj ~x 2 u! dx

2 E
0

`

Fi ~x 2 u! dxE
0

`

Fj ~ y 2 v! dyG ,
which is nonnegative because both terms are nonpositive by assumption+ This com-
pletes the proof+ n
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3.3. Applications

To demonstrate the usefulness of the above results in recognizing MIT-ordered ran-
dom variables, we consider the following examples+

Example 3.1:Let X tl denote the convolution ofn exponential distributions with
parametersl1, + + + ,ln, respectively+ Assume without loss of generality that
l1 # {{{ # ln+ Since exponential densities are log-concave, Theorem 3+4 implies
thatX tl #MIT Y nµ wheneverl i $ µi for i 5 1, + + + , n+

Example 3.2:Let Xi ; exp~l i !, i 5 1, + + + , n, be independent random variables+ Let
X andYbe ta and nb mixtures ofXi ’s+An application of Theorem 3+4 is immediately
X #MIT Y for every two probability vectorsta and nb such that ta #dlr nb+

Another application of Theorem 3+4 is contained in following example+

Example 3.3:Let X tl andX nµ be as given in Example 3+1+ For 0# q # p # 1 and
p 1 q 5 1, we have

pX tl 1 qX nµ #MIT qX tl 1 pX nµ+

4. TESTING IN THE IMIT CLASS

In the literature, many nonparametric classes of distributions have been defined
~cf+ Barlow and Proschan@5# and Ross@18# !+ In particular, the decreasing reversed
hazard rate~DRHR! class of distributions has been studied by many researchers in
the recent past~cf+ Shaked and Shanthikumar@20# , Block et al+ @7# , and Sengupta
and Nanda@19# !+ Recently, Chandra and Roy@2# introduced a new nonparametric
class called the increasing mean inactivity time class of life distributions~abbrevi-
ated as the IMIT class!+

Recall that a random variableX having distribution functionF~{!, densityf ~{!,
and reversed hazard rate functionIr ~t ! 5 f ~x!0F~x! is said to have the following:

1+ Increasing mean inactivity time~IMIT ! if E @X~t !# is increasing int . 0
2+ Decreasing reversed hazard rate~DRHR! if Ir ~t ! is decreasing int . 0

Block et al+ @7# have shown that there exists no nondegenerate life distribution
that has increasing reversed hazard rate~IRHR! over the domain@0,`!+Also,Nanda
et al+ @17# proved that there exists no nonnegative random variable for whichE @X~t !#
decreases over the domain@0,`! and the DRHR property is stronger than the IMIT
property; that is,

DRHRn IMIT +

On the other hand, in the context of reliability, “ageless notion” is equivalent to
the phenomenon that age has no effect on the residual survival function of a unit+
Ageless has thus been equivalently described as constant failure rate, constant mean
residual life, and exponential survival distribution+ Note that the exponential distri-
bution defines this notion; hence, testing any aging notion is done via testing expo-
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nentiality versus the class at hand+ This applies to many classes, such as increasing
hazard rate~IHR!, increasing hazard rate average~IHRA!, new better than used
~NBU!, new better than used in expectation~NBUE!, harmonic new better than
used in expectation~HNBUE!, and decreasing mean residual lifetime~DMRL!; see
Ahmad @1# , Ahmad and Mugdadi@2# , and Mugdadi and Ahmad@15# for recent
developments and references+

In order to do testing for the IMIT class~or the DRHR for that matter!, one
observes that there is no boundary distribution at all~i+e+, there is no distribution
where MIT~or RHR! is constant!+The exponential distribution is easily seen to have
IMIT and DRHR+ Hence, to do testing for IMIT~or DRHR!, we testH0 : F 5 F0

againstH1 : F is IMIT ~or DRHR! and notF0, whereF0 is known ~up to a set of
parameters!+ One obvious choice ofF0, of course, is the exponential+ Thus, we ad-
dressH0 : F is exponential~m! againstH1 : F is IMIT and not exponential+

Note thatF [ IMIT if and only if

F 2~t ! $ f ~t !E
0

t

F~u! du for all t $ 0;

we thus take as a measure of departure fromH0,

d~1! 5
1

3
2E

0

`

f 2~t !SE
0

t

F~u! duD dt+ (4.1)

Note that ifF is exp~µ!, thend~1! 5 1
12
_+

Let X1, + + + ,Xn denote a random sample fromF+ A nonparametric estimate of
d~1! is

Zd~1! 5
1

3
2

1

n~n2!~n 2 2!a ( (
iÞjÞl

( kS Xi 2 Xj

a
D~Xi 2 Xj ! I ~Xi . Xl !, (4.2)

wherek~{! is a known probability density function which is bounded and symmetric
with mean 0 and finite variancesk

2 anda5 an are positive constant such thatar 0,
anr ` asn r `+

The following theorem gives the large sample behavior ofZd~1! both underH0

and in general+

Theorem 4.1: If na4 r 0 as nr `, if f has a bounded second derivative, and if
V~cn~X1!! ,`, wherecn~X1! is given in Eq. (4.10), thenMn~ Zd~1! 2 d~1! ! is asymp-
totically normal with mean0 and variancelimnr`V~cn~X1!!. Under H0, the vari-
ance is 71

2160
_.

Proof: First, it is easy to see that withgn~x! 5 E~10a!k~~x 2 X !0a!,

E Zd~1! 5
1

3
2

1

a
EkS X1 2 X2

a
D~X2 2 X3! I ~X1 . X3!

5
1

3
2Egn~x! HxF~x! 2E

0

x

uf ~u! duJ f ~x! dx+ (4.3)
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We can also write

Zd~1! 5
1

3
2E f 2~x! HxF~x! 2E

0

x

uf ~u! duJ f ~x! dx+ (4.4)

Thus,

6E Zd~1! 2 d~1! 6 # E 6gn~x! 2 f ~x!6 f ~x!* xF~x! 2E
0

x

uf ~u! du* dx+

However,

6gn~x! 2 f ~x!6 #
a2

2
6 f ''~x!6Eu2k~u! du5 0~a2!+ (4.5)

Hence,

Mn6E Zd~1! 2 d~1! 6 5 0~a2Mn! 5 o~1! by assumption+

Next, let us look atMn~ Zd~1! 2 E Zd~1! !, writing Qn for E Zd~1! and

fn~X1,X2,X3! 5 a21kS X1 2 X2

a
D~X1 2 X3! I ~X1 . X3!+ (4.6)

Then, using a standard decomposition, we have

Mn~ Zd~1! 2 E Zd~1! !

5 MnF 1

n (
i51

n

cn~Xi ! 1
1

n~n 2 1!~n 2 2! ( (
iÞjÞl

( jn~Xi ,Xj ,Xl !G , (4.7)

where

cn~Xi ! 5 E @fn~X1,X2,X3!6X1#

1 E @fn~X2,X1,X3!6X1#

1 E @fn~X3,X2,X1!6X1# 2 3un

and

jn~X1,X2,X3! 5 fn~X1,X2,X3! 2 cn~X1! 2 2un+

Now, by the Layaponoulf central limit theorem, the first term of Eq+ ~4+7! is
asymptotically normal if

Ln 5
E~cn~X1!!3

Mn@V~cn~X1!!# 302 r 0 asn r `+
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However, using the fact thatgn~x! 5 f ~x! 1 ~a202! f ''~x!sk
2, we easily see that

for largen,

E @fn~X1,X2,X3!6X1# 5 E @fn~X2,X1,X3!6X1#

5 X1 f ~X1!F~X1! 2 f ~X1!E
0

X1

xf ~x! dx1 OP~a2!, (4.8)

and

E @fn~X3,X2,X1!6X1# 5E
X1

`

xf 2~x! dx2 X1E
X1

`

f 2~x! dx1 OP~a2!+ (4.9)

Hence, for n large enough,

cn~X1! 5 h~X1! 1 OP~a2!, (4.10)

where

h~X1! 5 2X1 f ~X1!F~X1! 2 2f ~X1!E
0

X1

xf ~x! dx

1 E
X1

`

xf 2~x! dx2 X1E
X1

`

f 2~x! dx+

Hence, V~ca~X1!! 5 V~n~X1!! 1 0~a4! andE6c~X1!63 # C3+ Therefore, Ln r 0,
provided thatna4 r 0+

Finally,

EH Mn
n~n 2 1!~n 2 2! ( (

iÞjÞl
( jn~Xi ,Xj ,Xl !J2

5 ~n 2 1!21Ejn
2~X1,X2,X3!

5 oS 1

na
D5 o~1!+ (4.11)

The null variance is obtained by substituting the exponential intoh~X1!+ The
result now follows+ n

To conduct the test, calculateMnYO 71
2160
_~ Zd~1! 2 1

12
_! and rejectH0 if this is

much larger thanZa+ Of course, we must choosek anda to carry out the test+ The
choice ofk is not crucial and the standard normal will do fine+ The choice ofa is
crucial and there are different ways to do that~cf+Wand and Jones@21# !+ The easiest
and highly practical rule is the normal scale rule~Wand and Jones@21, p+ 60# ! with
a5 cn210a , with a an integer greater than 1 andc is the sample standard deviation+

To assess the goodness of this test, one can evaluate its limiting Pitman efficacy
for an alternative that is IMIT but not exponential and compare it to similar values of
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other tests for this problem+ Because there are no other tests known for this problem,
this comparison is left to future work on the topic+ The asymptotic Pitman efficacy
of a test based on a measure of departure fromH1 equal tod~1! is given by

APE~du
~1! ! 5

1

! 71

2160

* d

du
du

~1!*
uru0

+ (4.12)

Two of the distributions that are IMIT but are not exponential are as follows:

1+ The linear failure rate:

OFu~t ! 5 e2t2~u02!t 2
, t $ 0, u $ 0

2+ The Makeham:

OFu~t ! 5 e2t2u~e2t1t21!, t $ 0, u $ 0+

Note that the exponential is attained atu50 in both cases+TheAPE of the above
test is

1

! 71

2160

H2E
0

`

fu0
~t ! fu0

' ~t !SE
0

t

Fu0
~u! duD dt 1E

0

`

fu0

2~t !SE
0

t

Fu0

' ~u! duD dtJ ,
where

Fu0

' ~u! 5
d

du
Fu0

~u! *uru0
and fu0

' ~t ! 5
d

du
fu~t ! *uru0

+

Direct calculation gives a value of APE equal to 0+732 and 0+244 for the above
two alternatives, respectively+ These efficacy values are to be compared to those of
any other procedure that might be developed for this problem+ These values, how-
ever, are very close to the values obtained in standard life testing problems such as
testing for decreasing mean residual lifetime~DMRL!, where the Hollander and
Proschan@11# test has values 0+866 and 0+242, respectively+ Note, however, that
these two problems are not compatible+

The interested reader might want to choose other distributions as null distribu-
tions and develop the null value ofd~1! and perform the test after the null variance is
calculated+
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