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The purpose of this article is to study several preservation properties of stochastic
comparisons based on the mean inactivity time order under the reliability opera-
tions of convolution and mixtur€haracterizations and relationships with the other
well-known orders are giverSome examples of interest in reliability theory are
also presentedrinally, testing in the increasing mean inactivity time class is
discussed

1. INTRODUCTION

During the past several decadesarious concepts of stochastic comparisons be-
tween random variables have been defined and studied in the literbagause
they are useful in modeling for reliability and economics applications and as math-
ematical tools for proving important results in applied probabilstye Shaked and
Shanthikumaf20] for an exhaustive monograph on this topic

For any life variableX = 0, the residual life variablX; = [X —t| X =t], where
te (0,1x) andlx = sup{t: Fx(t) < 1}, is anonnegative random variable representing
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the remaining life ofX at aget. Hence if F(-) is the distribution function oK and

F(.)=1— F(-)is its survival functionthen the survival function oX, is given by

F(x+1)
F(t) ’

Given two random variablesandy, X is said to be smaller thariin the hazard rate

order(denote byX =g Y) if

Fx,(X) = x=0,t=0.

X =4Y, forallt,

where the stochastic orderifig;) means thatfxt(t) = Ifyt(t) for all t.

However it is reasonable to presume that in many realistic situatithresran-
dom life variable is not necessarily related to the future but can also refer to the past
For instanceconsider a system whose state is observed only at certain preassigned
inspection timedlf at timet the system is inspected for the first time and it is found
to be “down” then the failure relies on the pate., on which instantif(0, t) it has
failed). It thus seems natural to study a notion that is dual to the residualirife
the sense that it refers to past time and not to futsee Di Crescenzo and Longo-
bardi[9]).

For any random variablX, let

denote a random variable whose distribution is the same as the conditional distri-
bution oft — X given thatX < t. When the random variabl¢ denotes the lifetime
(X= 0, with probability 1) of a unit X, is known as the inactivity time or reversed
residual life(seg for instance Chandra and Ro}8], Block, Savits and Singh 7],
Li and Lu[14], and NandaSingh Misra, and Pau[17]).

Now we recall the definition of the mean inactivity time ordety,r), the in-
creasing concave ordég cy ), and the reversed hazard rate or@legyg).

DeriNITION 1.1: Let X and Y be two nonnegative random variables with absolutely
continuous distribution functions F and G and densities f and g, respectively. X is
said to be smaller than Y in the following:

(i) the mean inactivity time order (denoted by=X,r Y) if
E[t—X|X<t]=E[t—Y|Y<t] forallt e R*

(ii) the increasing concave order (denoted by=xy Y) if
f F(u)du= f G(u)du forall x (1.1)
0 [0]

(iii) the reversed hazard rate order (denoted by=xur Y) if

fv) _ g
Fu  G(u)

forallu =v.
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For more detailsone may refer to Shaked and Shanthikufigd] and Muller
and Stoyar 16] for the stochastic ordgr=g7), hazard rate order=,r), reversed
hazard rate orddr=gur), increasing concave ordée ) and Nanda et aJ 17] for
the mean inactivity time orddr=,, ) and other commonly used stochastic orders

The purpose of this article is to study several preservation properties of sto-
chastic comparisons based on the mean inactivity time o8kstion 2 contains
definitions notationsand basic properties used throughout the artilgo in that
section we give some characterizations and relationships ofsthg- order and
other well-known orderdn Section 3we present some preservation results under
the operations of convolution and mixtuies well as some examples of interest
in reliability theory Finally, in Section 4 we discuss hypothesis testing in the in-
creasing mean inactivity time clagbVIT ) defined as the class wheE{ X, ] is
increasing for all nonnegative

Throughout the article we will use the term “increasing” in place of “non-
decreasing” and “decreasing” in place of “nonincreasirg0 is understood to be
oo whenevera > 0. All integrals and expectations are implicitly assumed to exist
whenever they are written

2. DEFINITIONS, NOTATIONS, AND CHARACTERIZATIONS

Let X andY have the distribution functions and G, respectively we denote the
expected value of the random variablg andY(,, by «(t) andB(t), respectively

where
a(t) :fot F(Fu()t;j” >0,

and

B tG(u) du
B(t)—fo G t>0.

Observe that by the definition oy, order X =<\, Y holds if and only if
a(t) = B(t) forallt = 0. Actually, an equivalent condition for MIT order is given in
Nanda et al[17], and is the following

ProrosiTiON 2.1: Let X and Y be two continuous nonnegative random variables
with absolutely continuous distribution functions F and G. Themsyy Y if and

only if
t
f F(u)du
-

. is decreasing in € R". (2.2)
f G(u)du
[0]
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For any real numbea, let a- denote the negative part af thatis a™ = aif
a=0anda” =0if a> 0. Thereforeif X =\7 Y, then

M is decreasing imnover{t:E[(Y—t)"] > 0}
E[(Y-1)"] '
or, equivalently X =y, Yif and only if
t t
F(t)f G(u)du= G(t)f F(uydu forallte R*.
0 0

Nanda et al[17] proved that the reversed hazard rate order is stronger than the
mean inactivity time ordetn the following resultwe prove that the mean inactivity
time order is stronger than the increasing concave order

THEOREM 2.1: Let X and Y be two nonnegative random variables.# ¥ Y, then
X=icv Y.

Proor: Let F andG be the distribution functions oX andY, respectively From
(2.1), it follows that
a a
Iogf F(u)du— Iogf G(u)du is decreasing im € {a: G(x) > 0}.
0 0

Therefore
F(a) G(a)

anF(u)du - anG(u)du

Now, the proof is similar to that of Theorem/.13 in Shaked and Shanthi-
kumar[20]. A straightforward computation gives

JXF(u)du .
Lol b F(a)

fowF(u)du * anF(u)du

foralla € {a: G(x) > 0}.

_[1__c®@

- fx anG(u) du i
fOXG(u) du

- fOOOG(u)du
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fOXF(u)du LXG(u)du

fowF(u) du - J:OG(U) du‘

SinceX =y, Yimplies that

fOXF(u)du fOXF(u)du

= |im

Thus

J G(u)du o f G(u)du
o] 0
_ F(x)
= lim G(x) L
it follows that(1.1) holds u

We have the following implications among some of the previous orders

X=murY
A N

X=rur Y X=icv Y.

X SSTY

3. PRESERVATION RESULTS

Useful properties of the stochastic orders are their closure with respect to typical
reliability operations like convolution or mixtusee Barlow and Prosch@b] and
Shaked and Shanthikumgz0]). In this sectionwe present some preservation re-
sults for themean inactivity time ordei=\1 ). First, we recall the definition of some
notions that will be used in the sequel

DEerINITION 3.1: Given two continuous random variables X and Y with densities f
and g, respectively, X is said to be smaller than Y in the likelihood ratio order
(denoted by X, Y) if

f(t) .

@ decreases over the union of the supports afidY.
DEeFINITION 3.2: A probability vector = (ay, ..., a,) witha; > 0fori =1,2,...,n
is said to be smaller than the probability vecir= (S3s,...,Bn) in the sense of the
discrete likelihood ratio order, denoted by= B, if
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PilBi forali=i=j=n
i aJ

DEeFINITION 3.3: A function dx), —oco < X < oo, is said to be a Polya function of
order 2 (PF,) if the following hold:

(&) g(x) =0for —co < x< ooand
(b)
g(X1—y1) 9(X1—¥>) _
g(X2—vy1) 9(X2—Y>)
forall —oo < X3 < X, < oo and—oo <y; <Yy, < co or, equivalently,
(b’) log[ g(x)] is concave ori—oo,c0).
The equivalence ofb) and(b’) is shown in Barlow and Proschdb, Exer-
cise 12 p. 79].
3.1. Convolution

As an important reliability operatigrronvolutions of a certain stochastic order are
often paid much attentiomhe closure properties ofst, =pr, =<grur, aNd=cv
orders can be found in Shaked and Shanthikm@}. In Theorem 31, we establish
the closure property of the,+ order under the convolution operatidn general

if Xy =wir Yo andX, =yt Yo, WhereX; andX, are independent random variables
andY; andY, are also independent random variabtégn it is not necessarily true
thatX; + X, =uir Y1 + Y. However if these random variables have log-concave
density then it is true This is shown in the following

THEOREM 3.1: Let X, X5, and Y be three nonnegative random variables, where Y is
independent of both Xand X, and let Y have density g. If X<y X, and g is
log-concave, then X+ Y =yt X, + VY.

Proor: First, we note that for fixed = 0 andi = 1,2,

0,0 = [ Feit-o)do
0

:fowfowlzi(t—u—u)dFY(U)dv

:J;wf;Fi(z—v)fY(t—z)dzd)
:Jtoofy(t—z)fomFi(z—v)dvdZ

=ft fy(t—2)¢(,z)dz
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As shown in Proposition.2, the assertion follows if we prove thdt(i, t) is
TP,in (i, t) (Joag-DeyKochar and Proschafil2]). By the assumptioiX; <t Y1,
we can say thaf (i, z) is TR, in (i, z). Moreover sinceY has log-concave densjty
fy(t —2) is TR, in (t, z). Therefore by the basic composition formul&arlin [13])
it follows that® (i, t) is TP, in (i, t). This completes the proof

CororLrary 3.1: If X; =y Yy and X% =yt Yo, Where X is independent of
X, and Y is independent ofYthen the following statements hold:

(i) If X, and Y; have log-concave densities, thep XX, =yt Y1 + Ya.
(i) If X, and Y, have log-concave densities, thepn XX, =yt Y1 + Ya.

Proor: The following chain of inequalitigswhich establish(i), follows from
Theorem 3L:

X+ Xo=mr Xy + Yo =ur Y1+ Ya.
The proof of(ii) is similar u

THEOREM 3.2: If X4, X5, ... and Y, Y, ... are sequences of independent random
variables with X =\, Y; and X and Y have log-concave densities for all i, then

Proor: We will prove the theorem by inductioRlearly the result is true fon = 1.
Assume that the result is true fpr= n — 1; that is

M:

Y, (n=12...).

i=1

- n—1

2 Xi =mir 2 Yi. (3.1)

i= i=1
Note that each of the two sides (& 1) has a log-concave densitgee e.g., Karlin
[13, p. 128]). Appealing to Corollary 3, the result follows u
3.2. Mixture

Let nowX(#) be a random variable having distribution functignand let®; be a
random variable having distributid®;, for i = 1,2, and supporR*. The following
is a closure of MIT order under mixture

TueoreM 3.3: Let{X(6), § € R*} be a family of random variables independent
of ®; and 0,. If ©®; =, 0, and if X(6,) =wr X(6,) wheneverd; = 6,, then
X(01) =mit X(02).

Proor: LetF; be the distribution function aX(®;), with i = 1,2. We known that

F(x) = j " F,(0 4G (0).

https://doi.org/10.1017/50269964804183071 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804183071

402 M. Kayid and I. A. Ahmad

Because of Proposition® we should prove thab(i, t) = [;° F; (t — x) dxis TP, in
(i,t). However actually

cb(i,t)=f0mFi(t—X)dX
=ff|:9(t—x)da(e)dx
:ngi(e)Lng(t—x)dxw

= fo ai (6) ¢ (6,1) dé.

By the assumptioX(61) =u it X(6,) wheneve#, =< 6,, we have thaiy(6,t) is TR,
in (#,t), and from the assumptio®, =<, ©,, it follows thatg;(6) is TP, in (i,0).
Thus again the assertion follows from the basic composition formula u

Suppose thaX;, i =1,...,n, is a collection of independent random variables
Suppose thaF; is the distribution function o;. Let a = (ay,...,a,) andB =
(B4,..., Bn) be two probability vectord et X andY be two random variables having
the respective distribution functiofsandG defined by

F(x) = En: a;Fi(x) and G(x)= En: Bi Fi(x). (3.2)

The following result gives conditions under whié¢handY are comparable
with respect to the MIT orde©ne can refer to Ahmegd@] and Ahmed and Kayif#4]
for a similar preservation property of the mean residual life ofegfg.) and the
Laplace transform of residual life ordé= ), respectively Definition, proper-
ties and applications ofyg, order and=,,_, order can be foundor instancein
Shaked and Shanthikum&0], BelzunceOrtegaand Rui4 6], and GagBelzunce
Hu, and Pellerey10].

THEOREM 3.4: Let X,,..., X, be a collection of independent random variables with
corresponding distribution functions .., F,, suchthat X =yt Xo =<wit ... =<mir
Xn,and leta = (aq,...,a,) andB = (B4,..., By) such thaty =4, 8. Let X and Y have
distribution functions F and G defined in Egs. (3.2). Thersr Y.

Proor: Again, because of PropositionZ we need to establish that
o n

BiFi(x—u)du DOiﬁiFi(y_U)dU
1 0 i=1

0 i=

fwiaiFi(x—u)du fwiaiFi(y—v)dy

forallO<y<x. (3.3)
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Multiplying by the denominators and canceling out equal tefhesin be shown that
inequality (3.3) is equivalent to

ZZBiajJ; Fi(X_U)deO F(y—v)dv

i=1j=1
i

SZZBi“]L Fi(y_U)deo Fi(x—v)dv

EZ{[MJ Fi(X—U)de Fi(y—v)dv
+,Bjaifoon(X—U)deooFi(y—v)dv}
[,Biajfo Fi(y_v)dl}fo Fi(x—u)du

+Bjaifo F,-(x—v)dvfo Fi(y_u)du:|'

Now, for each fixed paiKi, j) with i < j, we have
{BiajLwFi(y—v)dufoij(x—u)du
+,BjaiLij(y—v)dewFi(y—u)du]
—{,Biajfowl:i(x—u)duJOOOF,-(y—v)dv
+,Bjaifooon(x—u)dufomFi(y—v)dv}

= (Biq _Bjai)[fo Fi(y_v)dy—’; Fi(x—u)dx

_fﬁ(x—u)dxfﬁ(y—wdy},

which is nonnegative because both terms are nonpositive by assuniftisicom-
pletes the proof u
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3.3. Applications

To demonstrate the usefulness of the above results in recognizing MIT-ordered ran-
dom variableswe consider the following examples

Example 3.1:Let X, denote the convolution afi exponential distributions with
parametersi,,...,A,, respectively Assume without loss of generality that
A1 = -+ = A, Since exponential densities are log-concaMeeorem 34 implies
thatX, =y Y,wheneven; =y fori=1,...,n.

Example 3.2:Let X; ~ exp(A;), i =1,...,n, be independent random variahlést
XandY bea andg mixtures ofX;’s. An application of Theorem.3 is immediately
X =yt Y for every two probability vectore andg such thar =g, S.

Another application of Theorem4is contained in following example

Example 3.3:Let X, and X, be as given in Example.BR For0=qg=p=1and
p + qg=1, we have )

PXy + aXy =mir 09X, + X,
4. TESTING IN THE IMIT CLASS

In the literature many nonparametric classes of distributions have been defined
(cf. Barlow and Proschalb] and Ros$18]). In particular the decreasing reversed
hazard rat€ DRHR) class of distributions has been studied by many researchers in
the recent pagtcf. Shaked and Shanthikumg0], Block et al [7], and Sengupta
and Nandd419]). Recently Chandra and Ro}2] introduced a new nonparametric
class called the increasing mean inactivity time class of life distributiabbrevi-
ated as the IMIT clags

Recall that a random variab¥having distribution functiorf(-), densityf (-),
and reversed hazard rate functit) = f (x)/F(x) is said to have the following

1. Increasing mean inactivity tim@MIT ) if E[X,]is increasing irt > 0
2. Decreasing reversed hazard raBRHR) if r(t) is decreasing in > 0

Block et al [7] have shown that there exists no nondegenerate life distribution
that has increasing reversed hazard (ER&1R) over the domaii0, o). Also, Nanda
etal [17] proved that there exists no nonnegative random variable for viizy, |
decreases over the doméb)eo) and the DRHR property is stronger than the IMIT
property that is

DRHR = IMIT.

On the other handn the context of reliability“ageless notion” is equivalent to
the phenomenon that age has no effect on the residual survival function of a unit
Ageless has thus been equivalently described as constant failureaagéant mean
residual life and exponential survival distributioNote that the exponential distri-
bution defines this notigrhencetesting any aging notion is done via testing expo-
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nentiality versus the class at hafthis applies to many classesich as increasing
hazard ratgIHR), increasing hazard rate averagelRA), new better than used
(NBU), new better than used in expectatiohBUE), harmonic new better than
used in expectatiotHNBUE), and decreasing mean residual lifetifiEMRL); see
Ahmad|[1], Ahmad and Mugdadj2], and Mugdadi and AhmafiL5] for recent
developments and references

In order to do testing for the IMIT clas®r the DRHR for that matter one
observes that there is no boundary distribution afia!, there is no distribution
where MIT(or RHR) is constant The exponential distribution is easily seen to have
IMIT and DRHR. Hence to do testing for IMIT(or DRHR), we testHy: F = F
againstH,: F is IMIT (or DRHR) and notF,, whereF, is known (up to a set of
parameters One obvious choice df,, of courseis the exponentialThus we ad-
dressHy: F is exponential ) againstH, : F is IMIT and not exponential

Note thatF € IMIT if and only if

t
F2(t) zf(t)f F(uydu forallt=0;
0
we thus take as a measure of departure fiiyn

80 = % —fowfz(t)<fotF(u)du> dt. (4.1)

Note that ifF is exp( ), thend® = 5.
Let Xy,..., X, denote a random sample frof A nonparametric estimate of
W is

R T e L o

3 n(h-)(n—=2a= 5%

)(x X)X > X),  (4.2)

wherek(-) is a known probability density function which is bounded and symmetric
with mean 0 and finite varianag? anda = a,, are positive constant such theats 0,
an — oo ash — oo.

The following theorem gives the large sample behavio ®f both underH,
and in general
THEOREM 4.1: If na* — 0 as n— oo, if f has a bounded second derivative, and if
V(a(X41)) < o0, Wwherey,(X,) is given in Eq. (4.10), then (8@ — 6 @) is asymp-
totically normal with mear® and variancdim ,_,.. V(¢,(X1)). Under H,, the vari-
ance issres.
Proor: First, itis easy to see that wit,(x) = E(1/a)k((x — X)/a),

R 1 1 X;— X,
E6W = 3 3 Ek< >(X2 — Xa) 1 (X3 > X3)
= 3 —fgn(x) {xF(x) —fx uf(u) du}f(x) dx. (4.3)
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We can also write

N 1 ) x
oW = 3 f2(x) < XF(x) — . uf(u) dup f(x) dx. (4.4)
Thus
|ES® — 60| = f |gn(X) — F(X)| F(X) | XF(X) —f uf(u) du| dx.
0
However
a2
|gn(X) = F(X)| = Y |7 (X)] fuzk(U)du= 0(a?). (4.5)
Hence
Vn|ES® — 8@| = 0(a?yn) = 0(1) by assumption
Next let us look atvn(8® — ES®), writing ©,, for ES and
L X=X
dn(X1, X5, X3) = a 'k (Xy = X3) 1 (Xy > X3). (4.6)
Then using a standard decompositjane have
Vn(E® — ESW)
—V‘li (X)) + = S D E(XKL XL X) 4.7
=\n ni:11/fn i n(n—1(n-2 <, =, Ea( X, X, X)) [, (4.7)
where
(X)) = E[d’n(xl, xz,x3)|xl]
+ E[bn(Xz, Xg, Xa)[ X4]
+ E[¢n(x37X2’ Xl)‘xl] - 3en
and

fn(xla X2, XS) = d’n(xl» XZ»XB) - ‘/’n(xl) - 2an

Now, by the Layaponoulf central limit theorerthe first term of Eq(4.7) is
asymptotically normal if

=)
" NV (X))

— 0 asn— oo.
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However using the fact thag,(x) = f(x) + (a%2)f"(x)o?, we easily see that
for largen,

E[(,bn(xl, X, X3)| Xi] = E[d’n(xz, X1, X3) ‘ X1

- xlf(xl)F(xl)—f(xl)f "XF(x) dx+ Op(a2), (4.8)

and
E[pn(Xz, X5, X)) | X, ] = fw xf2(x) dx — lewfz(x) dx+ Op(a?). (4.9)
X, Xy
Hence for n large enough
In(Xy) = n(Xy) + Op(a?), (4.10)

where

n(Xy) = 2X F(X)F(Xy) — 2f(X1)f 1Xf(X) dx

+ f xf2(x) dx — le f2(x) dx.
Xy Xy
Hence V(i,(X1) = V(n(Xy)) + 0(a*) andE| ¢ (X,)|® = Cs. Therefore L, — 0,
provided thana* — 0.
Finally,

E{WLZ S S %X >}2

1)(” i#j#l
= (n— 1) EEF(Xy, Xa, X3)

1
= o(;i) =0(2). (4.11)

The null variance is obtained by substituting the exponentialJir(%$,). The
result now follows [ ]

To conduct the test:alculate\/ﬁ/\/%(é(” — 1) and rejectH, if this is
much larger thaz,,. Of course we must choos& anda to carry out the tesfThe
choice ofk is not crucial and the standard normal will do fifléhe choice ofa is
crucial and there are different ways to do ttedt Wand and Jong21]). The easiest
and highly practical rule is the normal scale r(\#and and Jong®1, p. 60]) with
a=cn Y« with « an integer greater than 1 ands the sample standard deviation

To assess the goodness of this,tese can evaluate its limiting Pitman efficacy
for an alternative that is IMIT but not exponential and compare it to similar values of
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other tests for this problerBecause there are no other tests known for this problem
this comparison is left to future work on the topithe asymptotic Pitman efficacy
of a test based on a measure of departure frhraqual tos ! is given by

d

1 ’ (@
71 | dé
2160

Two of the distributions that are IMIT but are not exponential are as follows

APE(5Y) = (4.12)

0—0g

1. The linear failure rate

Fp(t)y =e@2¢  t=0,0=0

2. The Makeham
Fp(t) =e 00 t=0,9=0.

Note that the exponential is attainedat 0 in both casesS he APE of the above
testis

JlT_l {2 I f90<t>fg'0<t>< [ du) ar+ [ "tz ( [ Faw du) dt},

2160

where
! d ’ d
Fa,(U) = do FBO(U)‘F)%HO and f, (t) = do fe(t)‘eaeo-

Direct calculation gives a value of APE equal t@82 and (244 for the above
two alternativesrespectivelyThese efficacy values are to be compared to those of
any other procedure that might be developed for this probldrase valugshow-
ever are very close to the values obtained in standard life testing problems such as
testing for decreasing mean residual lifetifi@MRL), where the Hollander and
Proschar{11] test has values.866 and 242, respectively Note however that
these two problems are not compatible

The interested reader might want to choose other distributions as null distribu-
tions and develop the null value 8fY and perform the test after the null variance is
calculated
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