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Non-stationary, rotational, linear surface waves are considered where the underlying
sheared current has constant vorticity. A time-dependent study is presented on the
formation and persistence of a Kelvin cat-eye structure in the presence of bottom
topography. The flow domain is two-dimensional, which allows for the use of a
conformal mapping and working in a computational flat-bottom domain. In some
cases an initial disturbance is prescribed, while in others the waves are generated
from rest. Submarine particle dynamics numerically captures the horizontal critical
layer, defined by closed orbits separating the fluid domain into two disjoint regions.
In the wave’s moving frame, these recirculation regions are structured in the form of
Kelvin cat-eyes. Owing to the interaction with topography, the usual travelling-wave
formulation is abandoned and the critical layer is identified through a non-stationary
set of equations. The respective time-dependent Kelvin cat-eye structure dynamically
adjusts itself at the onset of wave–topography interaction, without losing its integrity.
The formation of a Kelvin cat-eye structure is also studied in the case where
the surface is initially undisturbed. Surface waves are generated from either the
current–topography interaction or by a pressure distribution suddenly imposed along
the free surface. Under the pressure forcing, an isolated cat-eye forms with a single
recirculation region beneath the wave.

Key words: surface gravity waves, critical layers

1. Introduction and background

Water waves propagating in the presence of a background flow is a problem
of great current interest regarding both applications as well as the mathematical
questions that arise. This topic is broad and therefore it is difficult to give a
comprehensive overview of contributions. For the interested reader, we mention

† Email address for correspondence: nachbin@impa.br
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a few recent references from which the bibliography may be useful. Regarding
geophysical applications, Soontiens, Subich & Stastna (2010) studied trapped internal
waves over isolated topography, in the presence of a background shear. The book
by Buhler (2009) presents several techniques relevant to geophysical fluid dynamics,
where an example includes ‘the interplay between large-scale Rossby waves and
two-dimensional turbulence’. At the other extreme of the scientific spectrum, we
have many contributions in analysis with rigorous theoretical results on the existence
of surface waves in the presence of vorticity, namely rotational waves as defined by
several authors (Ko & Strauss 2008; Wahlén 2009; Ehrnström, Escher & Villari 2012).
Problems include the existence of stagnation points in the wave’s moving frame, in
identifying Kelvin cat-eye recirculation regions and the respective critical layer
below nonlinear (periodic, travelling) Stokes waves, among others. The first rigorous
construction for linear (constant-vorticity) rotational waves, and one critical layer, was
done by Wahlén (2009). The important first step studying linear waves was based on
the work by Ehrnström & Villari (2008). Later these two authors, in collaboration
with Escher, constructed the first waves with several (arbitrarily many) critical layers
(see Ehrnström et al. 2012). A recent work on rotational steady waves and critical
layers is presented by Aasen & Varholm (2018), with small-amplitude waves and
an affine vorticity. These authors mention that, besides difficulties regarding the
mathematical analysis, there are ‘many physical effects that can induce rotation in
waves, such as wind and thermal or salinity gradients, and rotational waves are also
important in wave–current interactions’. Many other recent references on nonlinear
rotational waves may be found through Constantin (2011), Henry (2013), Constantin,
Strauss & Varvaruca (2016) and Constantin (2017), among others.

Numerical studies with travelling waves and the respective stationary submarine
structures, such as stagnation points, started with the work of Teles da Silva &
Peregrine (1988). More detailed numerical studies on the flow structure beneath
travelling waves appeared recently, as for example that of Vasan & Oliveras (2014)
and Ribeiro-Jr., Milewski & Nachbin (2017). A numerical stability study for
finite-amplitude steady rotational surface waves is presented by Francius & Kharif
(2017).

Having travelling waves in mind, most studies are formulated in the wave’s moving
frame, thus addressing stationary differential equations. In this case particle pathlines
can be visualized through the level curves of the streamfunction. In certain regimes the
particle dynamics form a critical layer. In the literature the definition of a critical layer
has a few non-conflicting variations, as seen in Ehrnström et al. (2012) and Constantin
et al. (2016). The former is better suited for our non-stationary recirculation regions.
Ehrnström et al. (2012, p. 407) define a critical layer as a horizontal layer with closed
streamlines separating the fluid into two disjoint regions. The closed streamline regions
are structured in the Kelvin cat-eye pattern. Here we adopt a similar definition, where
we replace streamlines by pathlines (particle paths), since our particle dynamics is non-
autonomous.

As mentioned above, the linear wave regime is a first step in a topic not much
explored theoretically and numerically. The nonlinear regime is certainly of interest.
Unfortunately, for nonlinear travelling waves, there is strong evidence of instabilities,
some associated with the Benjamin–Feir modulational instability (Francius & Kharif
2017). To the best of our knowledge there are no articles with time-dependent
potential theory models and non-stationary waves studying the submarine Kelvin
cat-eye structure and the associated critical layer for the Euler equations, even in the
linear regime. However, for reduced models, such as the Korteweg–de Vries (KdV)
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equation with uniform depth, an asymptotic study was done by Johnson (1986). Under
a specific vorticity distribution, with the inclusion of a vortex sheet, Johnson analysed
the development of a critical layer under a two-soliton solution. Of particular interest,
Johnson (1986, figure 7) illustrates schematically the ‘birth process’ (as this author
calls it) of a Kelvin cat-eye as a consequence of a stagnation point in the wave’s
moving frame. The physical mechanism relates to this stagnation point, which creates
a ‘region which can support closed streamlines’, as mentioned by Johnson (1986).
In a later paper, Ehrnström & Villari (2008) comment that the presence of vorticity
– even when it is constant – changes the particle trajectories in a qualitative way:
the presence of a point with the wave speed defines a vortex in the wave’s moving
frame.

We remove the restriction of travelling waves, and our propagating waves might
change their profiles as time evolves, implying that the streamlines are no longer
pathlines. In this case, not only do we have to compute the free surface conditions
in time, but also we have to solve the particle trajectories’ dynamical system for a
cloud of tracers in order to visualize the pathlines and the respective Kelvin cat-eye
submarine structure.

The persistence of the Kelvin cat-eye structure is first tested through a conveniently
chosen initial surface disturbance, which eventually interacts with the bottom
topography. We consider a modulated initial surface disturbance, with a Kelvin cat-eye
structure already present at time t = 0. This wavetrain is chosen so that dispersive
effects are very weak and we observe effectively (namely, to a good approximation)
a wave of translation. The persistence of the cat-eye structure is very clear when
observed through a cloud of tracers, even in the presence of the topographic forcing.
The recirculation region adjusts itself to the topographic undulations.

Our novel results on Kelvin cat-eye formation are obtained by letting linear surface
waves be generated from rest. The free surface is initially undisturbed. The onset
of surface-wave generation starts through the current–topography interaction, or by a
localized (steady) surface pressure distribution suddenly applied at time t = 0+. This
case is motivated by the work of Johnson (2012). A localized low-pressure forcing
is applied where subsequently a stationary pulse forms, together with two depression
pulses propagating in opposite directions. An isolated Kelvin cat-eye then forms
under the the stationary pulse. These time-dependent Kelvin cat-eye structures and
the associated critical-layer scenarios described above have not been contemplated in
the literature.

The paper is organized as follows. In § 2 we present the mathematical formulation
of the linear free surface Euler equations in the canonical domain, which is a
uniform strip where computations are more easily performed, as depicted to the
right in figure 1. The canonical domain is defined through a conformal mapping.
In § 3 the numerical method is presented. We introduce the dynamical system
for particle trajectories in canonical coordinates. By not using a travelling-wave
formulation, this dynamical system is no longer autonomous and its vector field
must be constantly updated. This update depends on solutions of the Euler equations
and is done through the potential component of the velocity field. Properties of
harmonic functions are used in order to write all ‘Euler information’ needed in terms
of one-dimensional Fourier expressions. These are essentially Fourier-type operators
acting on the Dirichlet (boundary) data. This framework leads to the numerical
method described in § 3. The results are presented in § 4 and the conclusions in § 5.
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y ˙

≈x

f-1(z) = w

y = -1 + h(x) ˙ = -D
z = x(≈, ˙) + iy(≈, ˙) w = ≈ + i˙

FIGURE 1. The inverse conformal mapping. The bottom topography is flattened out in
the canonical domain.

2. Mathematical formulation
We have a two-dimensional incompressible flow of an inviscid fluid. The

corresponding formulation presented in Flamarion, Milewski & Nachbin (2019) starts
with the Euler equations, which are then written in potential theory form. We here
summarize the formulation, recalling that it is convenient to first start by considering
that the bottom obstacle or the surface pressure distribution are moving with uniform
speed U0. With this in mind, we write the velocity field in the form

(u, v)=∇ϕ̃ + (ay, 0), (2.1)

where ϕ̃(x, y, t) is the velocity potential of the irrotational component of the flow,
while −a prescribes constant vorticity. Potential theory formulation yields

1ϕ̃ = 0, for − h0 + h(x+U0t) < y< ζ̃(x, t),
(U0 − ah0)hx + ahhx + ϕ̃xhx = ϕ̃y, at y=−h0 + h(x+U0t),

ζ̃t + (aζ̃ + ϕ̃x)ζ̃x − ϕ̃y = 0, at y= ζ̃ (x, t),

ϕ̃t +
1
2
(ϕ̃2

x + ϕ̃
2
y )+ aζ̃ φ̃x + ζ̃ − aψ̃ =−

P̃(x+U0t)
ρ

, at y= ζ̃ (x, t),

where ζ̃ (x, t) is the wave elevation and ψ̃ is the harmonic conjugate of ϕ̃. The applied
pressure distribution is denoted by P̃ and the bottom profile by h. In a moving frame,
given by x→ x+U0t, and denoting ζ̃ (x, t)≡ ζ (x+U0t, t), ϕ̃(x, y, t)≡ φ(x+U0t, y, t),
these equations read as

1φ = 0 for − h0 + h(x) < y< ζ(x, t),
(U0 − ah0)hx + ahhx + φxhx = φy at y=−h0 + h(x),
ζt + (U0 + aζ + φx)ζx − φy = 0 at y= ζ (x, t),

φt +
1
2
(φ2

x + φ
2
y )+ (U0 + aζ )φx + ζ − aψ =−

P(x)
ρ

at y= ζ (x, t).

 (2.2a−d)

In this framework we have a background sheared current satisfying the Neumann
condition around a stationary obstacle along the bottom. The surface pressure
distribution is also stationary in this reference frame.

Next we write the system in dimensionless form. In the framework above, we have
a fluid, of constant density ρ, flowing with a background sheared current, which varies
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vertically as ay+ U0. The depth variations of the channel are defined at the bottom
boundary as y=−h0+h(x), where the undisturbed depth is h0 while h(x) describes the
topography’s profile. As our characteristic scales for length, speed, time and pressure
we choose the quantities h0, (gh0)

1/2, (h0/g)1/2 and ρgh0. The dimensionless velocity
field (u, v) reads

(u, v)=∇φ + (Ωy+ F, 0), (2.3)

where we have the Froude number F = U0/(gh0)
1/2, the dimensionless vorticity

ω =−Ω = ah0/(gh0)
1/2, and g is the acceleration due to gravity. The dimensionless,

linearized equations are

1φ = 0, for − 1+ h(x) < y< 0,
(F−Ω)hx +Ωhhx + φxhx = φy, at y=−1+ h(x),

ζ t + Fζ x = φy, at y= 0,

φt + Fφx + ζ −Ωψ =−P(x), at y= 0.

 (2.4a−d)

We omit the bars for h and P, which are now dimensionless. For simplicity, from now
on, each time we mention the Euler equations we mean the linear system (2.4).

Regardless of working with linear or nonlinear waves, the particle trajectory beneath
a surface wave is governed by the dynamical system

dx
dt
= φx +Ωy+ F,

dy
dt
= φy,

x(0)= x0, y(0)= y0.

 (2.5a−c)

To compute its vector field, one needs φx and φy in the bulk of the fluid. These are
obtained from the Euler equations (2.4). From the dispersion relation of system (2.4),
we have that the linear wave speed c is given by

c= F−
Ω tanh(k)

2k
±

√
Ω2 tanh2(k)+ 4k tanh(k)

2k
. (2.6)

We will consider the mode with the positive sign of the square root. In the presence
of a background flow, there is some ambiguity in the choice of the wave speed.
The choice made, through expression (2.6), is with reference to the Froude number.
For clarity, F is the (dimensionless) surface speed of the background flow. In the
simplified case that Ω = 0, we have c= F± (tanh(k)/k)1/2, the latter being the phase
speed.

Suppose we have a wave solution in a moving frame of the form φ(x, y, t) =
φ̃(x − ct, y, t). If (x(t), y(t)) represents a particle trajectory given by the dynamical
system (2.5), then, in the wave’s moving frame X = x− ct and Y = y, the trajectories
(X(t), Y(t)) satisfy the dynamical system in the form

dX
dt
= φ̃X(X, Y, t)+ΩY + F− c= ψ̃Y(X, Y, t)+ΩY + F− c,

dY
dt
= φ̃Y(X, Y, t)=−ψ̃X(X, Y, t).

 (2.7a,b)
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As mentioned above, this system of ordinary differential equations (ODEs) is
nonlinear even for a linear wave with no background flow. The vector field of
this ODE depends on the solution of the linear potential theory (Euler) equations.
A second linearization, as for example by expanding the potential in X and Y , can
lead to closed elliptical orbits. This is further discussed in Constantin & Villari
(2008).

From (2.6) and (2.7) it is easy to show that we cannot have waves excessively long
(k→∞) while seeking a Kelvin cat-eye structure. This conclusion arises from the
relation

Y? =−
tanh(k)

2k
±

√
tanh2(k)

4k2
+

tanh(k)
Ω2k

, (2.8)

where Y? is the depth of the stagnation point. As mentioned in the Introduction and
discussed by Johnson (1986), for the cat-eye structure to exist, one needs the presence
of stagnation points, in the wave’s moving frame. For linear waves, the stagnation
point will appear as a balance between wavelength, total depth and the vorticity
applied. Having in mind (2.8) and as defined through (2.3), we adopt a background
velocity profile given by U(y)= (Ωy+ F, 0).

In the next section we detail the conformal mapping technique for solving the
Euler equations (2.4) and the dynamical system (2.5) or (2.7) in the canonical
domain, where we have a flat strip.

2.1. Conformal mapping
As depicted in figure 1, the conformal mapping z= f (w) from the canonical domain
(a flat strip) onto the physical domain is defined by

z(ξ , η)= x(ξ , η)+ iy(ξ , η),

where in the canonical w-plane w = ξ + iη. We have the following boundary
conditions:

y(ξ , 0)= 0 and y(ξ ,−D)=−1+H(ξ).

We are imposing that the canonical upper boundary η = 0 is mapped onto the
undisturbed free surface y = 0. We denote by H(ξ) = h(x(ξ , −D)) the topography
representation in the ξ -variable, running along the bottom of the flat strip. The flat
bottom boundary η = −D in the canonical domain is mapped onto the topography
profile, which in the physical domain reads as −1 + h(x). The conformal mapping
allows for the constant D to be chosen given the constraint that the physical domain
has the same length as the canonical domain. Therefore, wavelengths will not be
rescaled under the mapping.

We denote by X(ξ) and Y(ξ) the traces of the respective harmonic functions along
η = 0, and by Xb(ξ) the respective trace along the bottom η = −D. The L-periodic
harmonic function y satisfies

yξξ + yηη = 0, in −D<η < 0,
y= 0, at η= 0,

y=−1+H(ξ), at η=−D.

Using a Fourier transform F in the ξ -variable, we have that

y(ξ , η)=F−1
k 6=0

[
− coth(kD) sinh(kη)Ĥ

cosh(kD)

]
+
η(1− Ĥ(0))

D
, (2.9)
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Kelvin cat-eyes due to current–topography interaction 889 A11-7

where k= (2π/L)j, j ∈Z, and

Fk[g(ξ)] = ĝ(k)=
1
L

∫ L/2

−L/2
g(ξ)e−ikξ dξ,

F−1
[ĝ(k)](ξ)= g(ξ)=

∞∑
j=−∞

ĝ(k)eikξ .

The Cauchy–Riemann equation xξ = yη yields

x(ξ , η)=F−1
k 6=0

[
i coth(kD) cosh(kη)Ĥ

cosh(kD)

]
+

1− Ĥ(0)
D

ξ . (2.10)

From (2.10) we obtain

Xb(ξ)= x(ξ ,−D)=F−1
k 6=0[i coth(kD)Ĥ] +

1− Ĥ(0)
D

ξ .

Again by the Cauchy–Riemann equation xξ = yη and (2.9), we obtain an alternative
(and equivalent) expression:

Xb(ξ)=
1− Ĥ(0)

D
ξ +F−1

[
i coth(kD)
cosh2(kD)

Ĥ
]
+F−1

[
i tanh(kD)Ĥ

]
. (2.11)

As mentioned, we have made the choice that both the canonical and physical
domains have the same length. Under this constraint, we now compute the canonical
depth D. Let L and λ be the respective lengths, so that

X(ξ = L/2)−X(ξ =−L/2)= λ

with

〈Xξ 〉 ≡
1
L

∫ L/2

−L/2
Xξ (ξ) dξ = 1. (2.12)

From (2.10) and 〈Xξ 〉 = X̂ξ (0), it follows that

1=
λ

L
=

1− Ĥ(0, t)
D

, where D= 1− 〈H〉. (2.13)

This is the depth of the canonical channel.
The velocity potential φ is a harmonic function in both domains. Changing variables

in the bottom boundary condition (2.4b) yields the elliptic problem

φξξ + φηη = 0, in −D<η < 0,
φ =Φ(ξ , t), at η= 0,

φη = (F−Ω)Hξ (ξ)+ΩHHξ (ξ), at η=−D.

The notation is such that φ(ξ, η, t) ≡ φ(x(ξ , η), y(ξ , η), t) and ψ(ξ, η, t) ≡
ψ(x(ξ , η), y(ξ , η), t) is the harmonic conjugate expressed in the canonical domain.
Their traces along η = 0 are denoted by Φ(ξ , t) and Ψ (ξ , t), respectively. These
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time-dependent traces will be updated through the free surface conditions. The
harmonic conjugate ψ satisfies

ψξξ +ψηη = 0, in −D<η < 0,
ψ =Ψ (ξ , t), at η= 0,

ψ =−(F−Ω)H(ξ)−
Ω

2
H2(ξ)+Q, at η=−D,

where Q=Q(t). Solving these elliptic problems in Fourier space leads to

φ(ξ, η, t)=F−1

cosh(k(η+D))
cosh(kD)

Φ̂(k, t)+

 i(F−Ω)Ĥ + i
Ω

2
Ĥ2

cosh(kD)

 sinh(kη)

 ,
ψ(ξ, η, t)=F−1


Ψ̂ (k, t)+

(F−Ω)Ĥ +
Ω

2
Ĥ2

cosh(kD)

 sinh(k(D+ η))
sinh(kD)

−

(F−Ω)Ĥ +
Ω

2
Ĥ2

cosh(kD)

 cosh(kη)

− Q(t)
D
η.


(2.14a,b)

In order to find Q(t), we start with the Cauchy–Riemann equation ψη = φξ and use
the periodicity in ξ to obtain

ψ̂η(k= 0, η, t)= φ̂ξ (k= 0, η, t)=
1
L

∫ L/2

−L/2
φξ (ξ , η, t) dξ = 0.

From (2.14b) we have

ψη(ξ , η, t) = F−1


Ψ̂ (k, t)+

(F−Ω)Ĥ +
Ω

2
Ĥ2

cosh(kD)

 k cosh(k(D+ η))
sinh(kD)

−

(F−Ω)Ĥ +
Ω

2
Ĥ2

cosh(kD)

 k sinh(kη)

− Q
D
.

Imposing 〈ψη〉 = 0 in the equation above yields(
Ψ̂ (0, t)+ (F−Ω)Ĥ(0)+

Ω

2
Ĥ2(0)

)
1
D
−

Q
D
= 0,

which is rewritten as

Q(t)= Ψ̂ (0, t)+ (F−Ω)Ĥ(0)+
Ω

2
Ĥ2(0).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

51
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.51


Kelvin cat-eyes due to current–topography interaction 889 A11-9

Using −φη =ψξ in (2.14), and evaluating over η= 0, gives

Φξ (ξ , t)=F−1

−i coth(kD)

Ψ̂ξ (k, t)+
(F−Ω)Ĥξ +

Ω

2
∂̂ξH2

cosh(kD)


 . (2.15)

In a similar fashion as presented in Nachbin (2003), the kinematic condition and
Bernoulli law are given in the canonical variables. From the Euler equations (2.4) we
have that

Nt =−
F

M(ξ)
Nξ −

Ψξ

M(ξ)2
,

Φt =−M(ξ)N −
F

M(ξ)
Φξ +ΩΨ − P(X(ξ)).

 (2.16a,b)

Here N(ξ , t) is the wave elevation in the canonical domain. Through the conformal
mapping we have the functional relation ζ (X(ξ), t) = y(ξ , N(ξ , t)) between the
two wave elevation representations. The mapping’s Jacobian, evaluated along the free
surface, is denoted as J(ξ , 0)=X2

ξ (ξ)≡M(ξ)2. As in Nachbin (2003), it is convenient
to map a reflected domain about the undisturbed free surface η= 0. This leads to an
odd extension of the harmonic function y(ξ , η) within the enlarged strip −D<η<D.
This domain reflection is useful in the weakly nonlinear regime where using a Taylor
series expansion in the vertical direction yields, to leading order,

ζ (X(ξ), t)= y(ξ ,N(ξ , t))≈M(ξ)N(ξ , t). (2.17)

We are in position to rewrite the two-dimensional Euler equations only in the
canonical variable ξ . The dependence on the η-variable is implicitly built-in through
the harmonic extension performed by the (Hilbert-type) Fourier operator containing
coth(kD) as a multiplier. These operators are defined below. The two-dimensional
Euler system is recast in the form

Xξ = 1+ Ck 6=0

[
F−1

[
Ĥξ

cosh(kD)

]]
,

Φξ =−C

Ψξ (k, t)+F−1

(F−Ω)Ĥξ +
Ω

2
∂̂ξH2

cosh(kD)


 ,

Nt =−
F

M(ξ)
Nξ −

Ψξ

M(ξ)2
,

Φt =−M(ξ)N −
F

M(ξ)
Φξ +ΩΨ − P(X(ξ)),



(2.18a−d)

where

H(ξ)= h(Xb(ξ)),

Xb(ξ)= ξ + Ck 6=0

[
F−1

[
Ĥ

cosh2(kD)

]]
+F−1

[i tanh(kD)Ĥ].

 (2.19a,b)

The Fourier operators are:

C[·] ≡F−1
[i coth(kD)Fk[·]] and Ck 6=0[·] ≡F−1

[i coth(kD)Fk 6=0[·]].
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3. Numerical method
Our main goal in this study is to exhibit (numerically) the formation from rest

of a Kelvin cat-eye structure, as well as its persistence while overcoming a bottom
topography. In the stationary wave regime, particle pathlines coincide with streamlines.
In the non-stationary regime, in order to display the evolution in time of the Kelvin
cat-eye structure, we compute the orbits (pathlines) of several particles. These tracers
will enable the time-dependent visualization of the critical layer. Owing to the
presence of bottom topography, the wave and particle dynamics are computed in the
(simpler) canonical domain and then mapped back onto the physical domain for a
proper visualization of the pathlines.

In order to describe our numerical procedure, the Euler formulation, presented
earlier, is now coupled with the tracer dynamics. Recall that particle orbits (x(t), y(t))
are governed by system (2.5). In the canonical domain the pre-image of a trajectory
is given by (ξ(t), η(t)), where the mapping onto the physical domain yields
(x̃(t), ỹ(t)) = (x(ξ(t), η(t)), y(ξ(t), η(t))). The dynamical system for computing the
particle pathlines in the canonical domain is

dξ
dt
(t)=

φξ (ξ , η, t)
J(ξ , η)

+
(Ωy(ξ , η)+ F)xξ (ξ , η)

J(ξ , η)
,

dη
dt
(t)=

φη(ξ , η, t)
J(ξ , η)

−
(Ωy(ξ , η)+ F)yξ (ξ , η)

J(ξ , η)
,

ξ(0)= ξ0, η(0)= η0.


(3.1a−c)

The Jacobian is expressed as J(ξ , η) = x2
ξ (ξ , η) + y2

ξ (ξ , η). The particle is initially
located at (ξ0, η0), the pre-image of (x0, y0). The physical pathline is obtained from

x̃(t)= x(ξ(t), η(t))=F−1
k 6=0

[
i coth(kD) cosh(kη)Ĥ

cosh(kD)

]
+

1− Ĥ(0)
D

ξ, (3.2)

ỹ(t)= y(ξ(t), η(t))=F−1
k 6=0

[
− coth(kD) sinh(kη)Ĥ

cosh(kD)

]
+
η(1− Ĥ(0))

D
. (3.3)

Recall that in the canonical variables the topography is denoted by −1 + H(ξ). All
Fourier transforms F are in the ξ -variable, computed numerically through a fast
Fourier transform (FFT). In computing the vector field of the dynamical system (3.1)
we use the potential φ given by its Fourier representation

φ(ξ, η, t)=F−1

cosh(k(η+D))
cosh(kD)

Φ̂(k, t)+

 i(F−Ω)Ĥ + i
Ω

2
Ĥ2

cosh(kD)

 sinh(kη)

 . (3.4)

The dynamical system is not autonomous. Therefore, its vector field is updated
through the free surface conditions (2.16).

In other words, we evolve the boundary data for the velocity potential as well as
for the wave profile. Within the fluid body, updated values of φ and its derivatives are
readily available from expression (3.4). The boundary data of its harmonic conjugate
are obtained from

Ψ̂ (k, t)= i tanh(kD)Φ̂(k, t)−

(F−Ω)Ĥ +
Ω

2
Ĥ2

cosh(kD)

 . (3.5)
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The term P(X), in the dynamic condition (2.16b), is only used when a pressure
distribution is considered along the free surface. We use the fourth-order Runge–Kutta
method (RK4) for numerically evolving systems (3.1) and (2.16). In Nachbin
& Ribeiro-Jr. (2017) a review is presented on some aspects of the numerical
methodology. In particular, the RK4 method was thoroughly tested for submarine
particle dynamics, exhibiting very high precision in capturing closed orbits in the
case of a uniform current. In Flamarion et al. (2019) the RK4 scheme was tested
for wave generation with both a KdV model and the potential theory model. In the
long-wave regime the two solutions agreed very well.

As mentioned, all Fourier transforms are approximated by the FFT on a uniform
grid, with all derivatives performed in Fourier space (Milewski & Tabak 1999;
Trefethen 2001). The computational grid in the canonical domain is given by
ξ ∈ [−L/2, L/2), with N uniformly spaced points, with grid size 1ξ = L/N. This
corresponds to a non-uniform grid in physical space. A typical resolution has N = 213

with a time step 1t = 0.05. A Kelvin cat-eye structure is typically captured with a
cloud of 90 tracers.

We have shown that Xb(ξ) and H(ξ) are coupled in a non-trivial fashion. We need
to compute beforehand the topography profile H(ξ) in the canonical domain. This
depends on a non-trivial composition of the form h(x(ξ , −D)). This topographic
composition is preprocessed using an iterative method as presented by Flamarion
et al. (2019). The iterates are labelled by a superscript l. The iterative scheme has
the following structure:

Xl
b(ξ)= ξ + Ck 6=0

[
F−1

[
Ĥl

cosh2(kD)

]]
+F−1

[
i tanh(kD)Ĥl

]
,

Hl+1(ξ)= h(Xl
b(ξ)),

 (3.6a,b)

where the initial step is based on the identities X0
b(ξ) = ξ and H1(ξ) = h(ξ). The

stopping criterion used is

max
ξ∈[−L/2,L/2)

|Hl+1(ξ)−Hl(ξ)|< ε,

where ε is a given tolerance. In our simulations, we used ε= 10−12.
When we have a travelling wave along the free surface, the pathlines are identical to

the streamlines. When this is not the case, one can still compute the streamlines. The
potential’s harmonic conjugate ψ is readily available from the Fourier representation
(2.14b).

In the moving frame we have that

X = x− ct and Y = y, (3.7a,b)

where c is the wave speed given by (2.6). The streamfunction ψT is obtained by
putting ψ̃ together with the shear flow in the form

ψT(X, Y, t) := ψ̃(X, Y, t)+
ΩY2

2
+ (F− c)Y. (3.8)

At any instant of time, the streamfunction can be evaluated on a uniform grid in the
canonical domain and mapped onto points in the physical domain in order to trace its
level curves there. Yet, at each given time, we denote ψT(t)≡ψT(X,Y, t) and consider
‖ψT(t)‖1 as its 1-norm evaluated on the computational grid.
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4. Results
It is well known in the literature that stagnation points and a critical layer can

be formed beneath a periodic travelling wave in the presence of vorticity (Teles da
Silva & Peregrine 1988; Ehrnström & Villari 2008; Ehrnström et al. 2012; Vasan
& Oliveras 2014; Nachbin & Ribeiro-Jr. 2017; Ribeiro-Jr. et al. 2017). There are
different forms of finding the initial wave profile, depending whether we have in
mind an irrotational (Nachbin & Ribeiro-Jr. 2014) or a rotational (Ribeiro-Jr. et al.
2017) surface travelling wave. See the references within these two papers.

In the present study, the waves are linear and dispersive, so we do not have
a (non-monochromatic) travelling wave. Nevertheless, for weak dispersion, the
propagating waves change shape very slowly. A right-propagating disturbance is
obtained by preprocessing our desired wave profile over a flat bottom and keeping
the right-going mode. The initial wave elevation is usually positioned at a reasonable
distance from the bottom topography so that there the Jacobian is effectively equal
to 1, and therefore N(ξ , 0) = N0(ξ) ≡ ζ (x, 0) = ζ 0(x). Hence the wave elevation
representations in the canonical and physical domains are identical.

In the present study the periodic boundary condition is only for numerical purposes,
namely for the Fourier spectral method. We consider wave disturbances localized in
space which undergo reflection and transmission over a bottom variation of compact
support. Hence, over the time interval of our simulations, no disturbances should
be observed at the endpoints of our computational domain. We consider a tabletop
modulated wavetrain localized in space, which resembles a periodic wave in its central
region. The goal is to observe a Kelvin cat-eye structure which (locally) resembles
that of periodic waves.

4.1. Wave–current interaction for a slowly varying wavetrain
We start with a tabletop wave profile of the form

N0(ξ)= αe−2(σ (ξ−ξ0))
s
cos(k(ξ − ξ0)), (4.1)

where α = 10−3, σ = 6 × 10−3, s = 8 and k = 2π/50. The very first simulation is
for an unforced case (with h(x) = 0 and P(x) = 0) where the underlying current
is such that Ω = −18 and F = −9. The respective background flow is given
by U = (−18y − 9, 0), as defined in (2.3). The dispersion is very weak in this
case. The wave profile barely changes during the simulation. The streamfunction
fluctuation was computed over a large time interval (t ∈ [0, 340]) corresponding
to a propagation distance of approximately 60 wavelengths. We observed that
1ψ(t) = ‖ψT(t)−ψT(0)‖1/‖ψT(0)‖1 < 10−6 at all times. Hence, over this time
interval the level curves of the streamfunction are a good approximation for the
pathlines. The vector field of (2.7) is effectively autonomous.

The initial phase portrait obtained from the streamfunction ψT(0) is depicted in
figure 2. The central region is typical of a phase portrait for a periodic travelling
wave in the presence of constant vorticity (Ehrnström & Villari 2008; Wahlén 2009).
The novelty here is that the wavetrain is effectively of compact support, rather than
periodic as in the previous studies. The super-Gaussian envelope, which provides
a tabletop pattern over the central region of the wavetrain, was designed so that
we could observe a Kelvin cat-eye structure similar to periodic waves, as presented
numerically by Teles da Silva & Peregrine (1988), Vasan & Oliveras (2014) and
Ribeiro-Jr. et al. (2017). This is the case in the region located approximately within
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FIGURE 2. Nearly stationary regime depicting streamlines ψT(0). Left vertical axis: the
wave elevation scale (top thicker line). Right vertical axis: depth scale, indicating a Kelvin
cat-eye structure very close to the bottom.

the interval [400, 600]. This is a first numerical display of the cat-eye structure
dynamically adjusting to the endpoints of the wavetrain. The wave is propagating
to the right and it is remarkable that, beneath the very small (weakly dispersive)
oscillatory tail, the method can detect a number of diminishing cat-eyes (recirculation
regions) fading to the left. The small asymmetry observed in the streamlines is due
to the weak dispersion. On the left axis of figure 2 the small wave amplitude is
quantified. The Kelvin cat-eye structure, generated by this linear wave, is narrow and
located near the bottom, as indicated by the values on the right axis of figure 2.
Nevertheless, due to a non-trivial vorticity the cat-eye structure is detached from the
bottom, exhibiting both types of critical points: saddles and a centre. The cat-eye
structure persists as the oscillatory tail of the wave changes and the recirculation
regions adjust accordingly. In particular, in analogy with the development of an
Airy-type solution, as the lagging oscillatory tail develops, a small new recirculation
(cat-eye) region is generated.

4.2. Topographic forcing and the persistence of the cat-eye structure
Now we introduce a topography located in the middle of our computational domain.
There is no pressure distribution along the free surface. The topography has compact
support and a tabletop configuration, in order to locally resemble a periodic depth
variation. The bottom profile is given by

h(x)= δe−2(σ (x−x̃0))
s
cos(kb(x− x̃0)), (4.2)

where δ � 1. The right-going initial wave profile is the same as before. We have
kept the super-Gaussian (tabletop) modulation the same, for the wave and for
the topography, so that they have comparable lengths. The physical domain is
schematically depicted in figure 3. The initial disturbance has a Kelvin cat-eye
structure formed beneath it and will eventually interact with the topography. At the
same time, a wave is generated by the current topography interaction, as studied in
Flamarion et al. (2019). We will examine the submarine pathline structure in the
presence of all these features.
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FIGURE 3. Schematic physical domain for the wave–topography interaction. Two regimes
are considered: λ≈ l and λ� l (rapidly varying topography).

We consider two wave–topography regimes. First we consider the regime where
the surface wavelength is comparable to that of the topography and we let l/λ= 0.5.
Then we consider the case where the topography is rapidly varying: l/λ= 0.05. The
parameters used for the underlying flow and the initial disturbance (4.1) are: Ω=−18,
F =−9, α = 10−3, σ = 3× 10−3, s= 8 and k = 2π/50. For the topography we used
δ=2×10−3, kb=2k and kb=20k in expression (4.2). The amplitude of the topography
needs to be small so that the height of the waves generated by the current–topography
interaction is also small, which is required in the approximation (2.17). For more
details about the amplitude of generated waves in linear regimes, see Milewski (2004).

In order to visualize the pathlines we track the orbits of cloud tracers, each tracer
solving the dynamical system (3.1). In figure 4 we consider the l/λ= 0.5 case, first
in the (fixed) laboratory frame. In the top snapshot (at time t= 34) we see the initial
(right-going) disturbance at the left of the topography and the current-generated wave
above the topography. We focus on the initial disturbance and release cloud tracers
below this wave. The initial cloud (depicted by black particles near the bottom) is
positioned to the left of x= 500. At time t= 34 the cloud has travelled to the right,
positioned below the wave train, and is depicted by a bunch of white particles. The
inset provides a zoom of a white cloud with the tracers’ initial positions. In the
wave’s moving frame, their non-stationary evolution will trace closed pathlines, which
display the time-dependent Kelvin cat-eye structure. The interaction of this structure
with the topography is shown in figure 4(b). At time t= 118 we observe the pathlines
in a terrain-following pattern, moving over the topography. The particle trajectories
are distorted by the bottom undulations. At this stage the right-going initial wave
has a linear interaction with the stationary wave generated by the current–topography
mechanism. The computational domain is wider than that shown by these pictures.
The wave pattern due to the current–topography interaction is in accordance with
that observed in Flamarion et al. (2019), where there were standing waves above the
topography together with waves moving downstream. In figure 4(c) at time t = 170
the initial right-going disturbance is leaving the variable bottom region. The inset
shows the tracers back to (nearly) the same formation as at time t= 34.

The wave profile, due to the initial disturbance (4.1), changes very slowly. Hence
we proceed as with travelling waves and display particle orbits in the moving frame
associated with the wave speed c, given in (2.6). In figure 5 the Kelvin cat-eye
structure is evident, with closed pathlines forming a recirculation region about the
stagnation point. In figure 5(a), the inset displays tracers that were initially located at
the black dots, but have moved along the cat-eye contours reaching the white dots at
time t= 34. In figure 5(b), at time t= 118, the inset displays material curves, where
a collection of tracers is following a given contour of the cat-eye structure. In the
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FIGURE 4. Tracer pathlines in the laboratory frame, with λ = 2l: initial tracer positions
(black dots) and final tracer positions (white dots). Left axis: scale for the free surface
disturbance. Right axis: depth values for the tracers near the bottom. An animation
(movie 1) may be found in the supplementary material for this article, which is available
at https://doi.org/10.1017/jfm.2020.51.

middle part (in red) we have a closed material curve where the white points indicate
the current position of each tracer. We have the same particles (cloud of tracers) in
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FIGURE 5. Tracer pathlines in the moving frame, with λ = 2l: initial tracer positions
(black dots) and final tracer positions (white dots). Left axis: scale for the free surface
disturbance. Right axis: depth values for the tracers near the bottom. The persistence of
Kelvin cat-eye structure is accurately captured in time, as it adjusts to the topography. An
animation (movie 1) may be found in the supplementary material for this article.

all snapshots of figure 5. The top material curve (in yellow) and the bottom material
curve (in blue) eventually connect to the saddle points, as were displayed in figure 2.
The Kelvin cat-eye structure is persistent and the respective critical layer evolves
accordingly.

We now consider a rapidly varying topography, as displayed in figure 6. The initial
disturbance and cloud of markers are the same as in the previous example. The
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FIGURE 6. Tracer pathlines in the moving frame; rapidly varying topography case (λ� l):
initial tracer positions (black dots) and final tracer positions (white dots). Left axis: scale
for the free surface disturbance. Right axis: depth values for the tracers near the bottom.
For panels (b) and (c) we erased the initial position for a better visualization of the
cat-eye.

current–topography interaction generates rapidly varying wavetrains. In the present
regime there is a stationary wavetrain above the topography and another wavetrain
moving upstream. As the wavetrain propagates over the rapidly varying topography,
the cat-eye structure is destroyed. In figure 7(a) we observe the disintegration of
the material curves, which formed the contours of the cat-eye. But as soon as the
wavetrain reaches the other side of the topography, it is remarkable to observe that
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FIGURE 7. The right-going wave, from figure 6, crosses over the rapidly varying
topography. The bottom’s fine features destroy the cat-eye configuration. Upon leaving
the variable-depth region, a cat-eye is immediately reformed with the same particles as
considered in figure 6.

each respective group of markers remain, forming a closed material curves of a
cat-eye (recirculation) region. It is important to comment that the collision of waves
propagating in opposite directions had a minor effect since we are dealing with linear
waves. With nonlinear waves the scenario can be much more complicated, also due
to the possibility of wave breaking. It is of interest to investigate the evolution of the
Kelvin cat-eye structure in such a case, but that is beyond the scope of the present
study.

4.3. The onset of a Kelvin cat-eye structure
4.3.1. Due to current–topography interaction

Up to this point we had tracers released beneath the initial wave disturbance. This
initial wave disturbance immediately establishes the submarine phase-plane picture as
seen in figure 2. In the present case, the free surface starts at rest. We then compute
the submarine orbits for tracers placed beneath the wave generated by the current–
topography interaction. At time t=0+ there are no waves on the surface nor stagnation
points in the bulk. The flow and topographic parameters are the same as before, but
kb = k.

At time t= 0 we distribute tracers at positions that would correspond to a cat-eye.
This is shown in figure 8(a). Then a standing wave appears, and at time t = 10
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FIGURE 8. The onset of the Kelvin cat-eye structure in the wave’s moving frame (λ= l):
initial tracer position (black dots) and final tracer position (white dots). (a) At t=0: tracers
are positioned in a cat-eye formation before the simulation starts. (b) At t= 10: onset of
tracer motion. (c) At t=82: the onset of the cat-eye formation is captured. Left axis: scale
for the free surface disturbance. Right axis: depth values for the tracers near the bottom.
An animation (movie 2) may be found in the supplementary material for this article.

we observe the tracers moving up and down (figure 8b). The colour code (see
online version) is the same as before, according to the position along the cat-eye.
Eventually a downstream-propagating wavetrain is generated by the topography. Note
that the cloud of tracers is always centred about the same position because we are
in the moving frame with respect to this wave. Therefore, the topography seems to
be moving to the left. Observe that, after time t = 82 the tracers are beneath an
effectively steady wave. In this moving region the velocity field is nearly autonomous.
After a preliminary vertical oscillation, the markers initiate tracing orbits in the
anticlockwise direction, revealing a cat-eye configuration as clearly seen a later times
in figure 9. The initial part of the pathlines was omitted for a better visualization.

4.3.2. Due to a variable pressure distribution
In order to study the natural emergence of a critical layer, Johnson (2012) suggests

a pressure distribution along the surface. As in a storm-surge-like scenario, we apply
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FIGURE 9. Continuation from figure 8. The pathlines are restarted for a better
visualization. As time evolves we clearly see the Kelvin cat-eye structure. An animation
(movie 2) may be found in the supplementary material for this article.

a localized low pressure distribution

P(x)=−0.2e−σx2

along the free surface at time t> 0. The bottom is flat (h(x)= 0) and the free surface
initially undisturbed (N0(ξ)= 0, Φ(ξ , 0)= 0). The underlying shear flow is such that
Ω =−18 and F=−9.

In figure 10 we display different stages of the submarine dynamics, in a reference
frame where the pressure is stationary. In figure 10(a), when the pressure distribution
is about to be applied, a cloud of tracers is prepared within the fluid body. At time
t = 7 the steady pressure distribution has generated a steady pulse-shaped wave
and two depression waves, which are about to propagate to the left and right
respectively. The pathlines are quite developed, beneath the steady wave, as depicted
in figure 10(c,d). The white dots indicate the final tracer position for the respective
time interval.

We have a single cat-eye (recirculation) region, located below the pressure
disturbance. As mentioned in the Introduction, the critical layer is defined by having
recirculation regions containing closed pathlines and separating the fluid into two
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FIGURE 10. The onset of a Kelvin cat-eye due to a localized pressure distribution.
(a) Markers initially positioned to capture the cat-eye formation. From time t = 7 until
time t = 99 the cat-eye is clearly traced by the particle pathlines. Left axis: scale for
the free surface disturbance. Right axis: depth values for the tracers near the bottom. An
animation (movie 3) may be found in the supplementary material for this article.

disjoint regions. In the present case, we have nearly horizontal stagnation lines
emerging from both sides of the cat-eye pattern. Above this line the flow is in one
direction, while below it has a reversed direction. The velocity field is continuous so
there is no velocity jump across the stagnation segment. This scenario has not been
reported before, in particular for a non-stationary wave regime under forcing. As
pointed out by a referee, the recent (unpublished) work by Chen, Walsh & Wheeler
(2019) also displays a single (but half) cat-eye structure. Their configuration is quite
different: one has two fluids of different densities bounded by two walls. Hence there
are no surface waves. The free surface is the interface between the two fluids where
there is a vorticity jump, different from our smooth transition. The bottom layer is
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irrotational. Figure 1 of their manuscript displays a schematic picture of what the
authors call an internal bore (in the upper layer) with a ‘half cat’s eye streamline
pattern’.

5. Conclusions

We have studied linear non-stationary rotational surface waves, in the presence of
constant vorticity. We consider the regime where the Kelvin cat-eye structure can
be observed. In the linear regime one has a very narrow structure near the bottom.
The accurate numerical method captured all details of the cat-eye structure and the
respective critical layer separating left- from right-going streams. Particle trajectories
were computed and visualized by evolving the respective submarine dynamical system
with a cloud of tracers. The accurately computed pathlines permitted animations
(movies 1, 2 and 3) presented as supplementary material. These include the formation
of a Kelvin cat-eye structure arising from an initially undisturbed surface. Waves were
generated from either the current–topography interaction or by a surface pressure
distribution suddenly imposed.
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